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TESTING FOR THE BUFFERED AUTOREGRESSIVE

PROCESSES

By Ke Zhu, Philip L.H. Yu and Wai Keung Li

Chinese Academy of Sciences and University of Hong Kong

This paper investigates a quasi-likelihood ratio (LR) test
for the thresholds in buffered autoregressive processes. Under
the null hypothesis of no threshold, the LR test statistic con-
verges to a function of a centered Gaussian process. Under local
alternatives, this LR test has nontrivial asymptotic power. Fur-
thermore, a bootstrap method is proposed to obtain the critical
value for our LR test. Simulation studies and one real example
are given to assess the performance of this LR test. The proof in
this paper is not standard and can be used in other non-linear
time series models.

1. Introduction. After the seminal work of Tong (1978), threshold autoregres-

sive (TAR) models have achieved a great success in practice; see, e.g., Tong (1990)

for earlier works and Tong (2011) and the references therein for more recent ones.

Generally speaking, the TAR model says that the structure of an AR model shifts

among different regimes, i.e.,

yt = φ0 +
p∑

i=1

φiyt−i +

(
ψ0 +

p∑

i=1

ψiyt−i

)
Rt + εt,(1.1)

where Rt = I(yt−d ≤ r) is the regime indicator of yt, r is the threshold parameter,

d(≥ 1) is the delay parameter, and εt is an uncorrelated error sequence with zero

mean and variance σ2(> 0). There have been a lot of interests to detect the threshold

in TAR models since 1990s. Chan (1990, 1993) and Chan and Tong (1990) first

accomplished this task by considering a likelihood ratio (LR) test for TAR models.

Moreover, Tsay (1989) gave some novel methods in this context; Hansen (1996)

studied the Wald test and Lagrange multiplier (LM) test for TAR models; Wong

and Li (1997, 2000) studied LM test for TAR-ARCH models; Li and Ling (2013)

investigated the portmanteau test for threshold double AR models; see also Tsay

(1998), Hansen (1999), Caner and Hansen (2001), Ling and Tong (2005), Li and Li

(2008, 2011), and Zhu and Ling (2012).

Keywords and phrases: AR(p) model, Bootstrap method, Buffered AR(p) model, Likelihood
ratio test, Marked empirical process, Threshold AR(p) model.
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Under model (1.1), the regime of yt shifts when the state of yt−d changes. In

practice, the regime of yt may not shift immediately, and there could be a buffering

region in which the regime of yt depends on the regime of yt−d. Li, Guan, Li, and Yu

(2012) first formulated this situation by assuming that Rt in model (1.1) satisfies

Rt =





1 if yt−d ≤ rL

0 if yt−d > rU

Rt−1 otherwise

,(1.2)

where rL and rU are two threshold parameters such that rL ≤ rU . They called model

(1.1)-(1.2) the buffered AR (BAR) model, and the region in which yt−d lies between

rL and rU is called the buffering region. Also, they found that the BAR model is the

best selected model for the sunspot series in Tong (1990) and GNP series in Tiao

and Tsay (1994), and hence it may provide us with a new way to understand the

non-linear time series. However, how to test for BAR models is still unknown, and

it is more challenging than testing for TAR models because the regime of yt in this

case depends on past observations infinitely far away.

In this paper, we investigate a quasi-LR test for the thresholds in BAR mod-

els. Under the null hypothesis of no threshold, the LR test statistic converges to a

function of a centered Gaussian process. Under local alternatives, this LR test has

nontrivial asymptotic power. Our result nests the one in Chan (1990) as a special

case, but its proof is not standard and different from the proof in that paper. Fur-

thermore, a bootstrap method is proposed to obtain the critical value for our LR

test. Simulation studies and one real example are given to assess the performance

of this LR test.

This paper is organized as follows. Section 2 states our main result on the LR test.

Section 3 proposes a bootstrap procedure. The simulation results and one real ex-

ample are given in Section 4. The proofs are provided in the Appendix, which can be

found in Zhu, Yu, and Li (2013). Throughout the paper, some symbols are conven-

tional. |A| = (tr(A′A))1/2 is the Euclidean norm of a matrix A. ‖A‖s = (E|A|s)1/s

is the Ls-norm (s ≥ 1) of a random matrix. A′ is the transpose of matrix A. op(1)

(Op(1)) denotes a sequence of random numbers converging to zero (bounded) in

probability. →d denotes convergence in distribution and ⇒ denotes weak conver-

gence. I(·) is an indicator function.
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2. Likelihood ratio test. Let φ = (φ0, · · · , φp)
′, ψ = (ψ0, · · · , ψp)

′, λ =

(φ′, ψ′)′, γ = (rL, rU), and xt = (1, yt−1, · · · , yt−p)
′. Then, model (1.1)-(1.2) becomes

yt = xt(γ)′λ + εt,(2.1)

where xt(γ) = (x′t, ht(γ)′)′, ht(γ) = xtRt(γ), and Rt(γ) is defined as in (1.2). Here, we

assume that all the roots of the characteristic equation φ(x) = xp−φ1x
p−1−· · ·−φp

lie inside the unit circle, and both p and d are known. Without loss of generality,

we further assume that d ≤ p if p ≥ 1, because we can set p = d with φp+1 = · · · =
φd = 0 and ψp+1 = · · · = ψd = 0 in (2.1) when d > p ≥ 1.

Suppose that {y0, · · · , yN} are N + 1 consecutive observations from model (2.1)

with the true parameters λ0 and γ0, where λ0 = (φ′0, ψ
′
0)
′, φ0 = (φ00, · · · , φp0)

′,

ψ0 = (ψ00, · · · , ψp0)
′, and γ0 = (rL0, rU0). We consider the following hypotheses:





H0 : ψ0 = 0,

H1 : ψ0 6= 0 for some γ.
(2.2)

Model (2.1) is an AR(p) model under H0 and it is a buffered AR(p) (BAR(p)) model

under H1. When rL = rU (i.e., the buffering region is absent), (2.2) is for testing

the threshold in the threshold AR(p) (TAR(p)) model, for which the likelihood ratio

(LR) test was studied by Chan (1990, 1991) provided that εt ∼ N(0, 1) is a sequence

of i.i.d. random variables. When rL 6= rU , since

Rt(γ) = I(yt−d ≤ rL)

+
∞∑

j=1

I(yt−j−d ≤ rL)
j∏

i=1

I(rL < yt−i+1−d ≤ rU) a.s.,(2.3)

we can see that Rt(γ) depends on all past observations infinitely far away. Note that

Rt(γ) in Chan (1990) only depends on yt−d. Thus, the test in Chan (1990) is not

a LR test any more and may be less powerful in this case. Motivated by this, we

consider an alternative LR test for (2.2).

Denote Y = (yp, · · · , yN)′ and Zγ = (X,Xγ) =
(
xp(γ), xp+1(γ), · · · , xN(γ)

)′
,

where

X = (xp, xp+1, · · · , xN)′,

Xγ =
(
hp(γ), hp+1(γ), · · · , hN(γ)

)′
.

Let n = N − p + 1 be the effective number of observations. Following Chan (1990),

we know that for any fixed value of γ, the LR test statistic is

LRn(γ) =
n [σ2

n − σ2
n(γ)]

σ2
n

,
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where

σ2
n =

1

n
{Y ′Y − (Y ′X)(X ′X)−1(X ′Y )},(2.4)

σ2
n(γ) =

1

n
{Y ′Y − (Y ′Zγ)(Z

′
γZγ)

−1(Z ′
γY )}.(2.5)

Since the exact value of γ is unknown under H0, it is natural to construct the LR

test by using the maximum of LRn(γ) over the range of γ; see Davis (1977, 1987).

Thus, our LR test statistic is defined as

LRn = sup
γ∈Γ

LRn(γ),

where Γ ≡ {(rL, rU); a ≤ rL ≤ rU ≤ b} and [a, b] is a predetermined interval. Here,

we truncate the full range of γ, since LRn may diverge to infinity in probability as

n →∞; see Andrews (1993a).

Let Kγδ = E[xt(γ)xt(δ)
′]. To study the asymptotic theory of LRn, we need the

following three technical assumptions:

Assumption 2.1. yt is strictly stationary, ergodic and absolutely regular with

mixing coefficients β(m) = O(m−A) for some A > v/(v − 1) and r > v > 1;

E|yt|4r < ∞, E|εt|4r < ∞; and Kγγ is positive definite.

Assumption 2.2. yt has a bounded and continuous density function.

Assumption 2.3. There exists an A0 > 1 such that 2A0rv/(r − v) < A.

Assumptions 2.1-2.2 are from Hansen (1996), in which the weak convergence of

empirical process is derived by using the method in Doukhan, Massart, and Rio

(1995). When
∑p

i=1 |φi| < 1 and
∑p

i=1 |φi + ψi| < 1, Li, Guan, Li, and Yu (2012)

showed that model (2.1) is strictly stationary and ergodic. Assumption 2.3 is needed

to prove Lemma A.1 in the Appendix. When A > v/(v − 1), a sufficient condition

for Assumption 2.3 is that v < 3r/(2r +1), which is stronger than v < r as required

in Assumption 2.1. Particularly, when εt is a sequence of i.i.d. random variables with

a bounded and continuous density function, β(m) decays exponentially under H0 as

shown in Pham and Tran (1985). Thus, the mixing condition of yt in Assumption

2.1 and also Assumptions 2.2-2.3 hold in this case.

Furthermore, we state two key lemmas, under which a uniform expansion of

LRn(γ) can be derived.
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Lemma 2.1. If Assumptions 2.1-2.3 hold, then (i) it follows that

sup
γ∈Γ

∣∣∣∣∣∣∣





X ′
γXγ

n
− X ′

γX

n

(
X ′X

n

)−1
X ′Xγ

n





−1

−(Σγ − ΣγΣ
−1Σγ)

−1
∣∣∣ = op(1);

(ii) furthermore, under H0 it follows that

sup
γ∈Γ

∣∣∣∣∣Tγ −
(
− ΣγΣ

−1, I
) 1√

n
Z ′

γε

∣∣∣∣∣ = op(1),

where ε = (εp, · · · , εN)′, Tγ = n−1/2
{
X ′

γ −X ′
γX(X ′X)−1X ′

}
Y , Σ = E(xtx

′
t), and

Σγ = E[xtx
′
tRt(γ)].

Proof. See the Appendix in Zhu, Yu, and Li (2013).

Lemma 2.2. If Assumptions 2.1-2.3 hold, then it follows that

1√
n

Z ′
γε ⇒ σGγ

as n →∞, where Gγ is a Gaussian process with zero mean function and covariance

kernel Kγδ.

Proof. See the Appendix in Zhu, Yu, and Li (2013).

Note that
1√
n

Z ′
γε =

1√
n

N∑

t=p

(x′t, x
′
tRt(γ))′εt.

We call {n−1/2Z ′
γε} a marked empirical process as in Stute (1997), where each yt−i−d

in Rt(γ) is a marker. In view of (2.3), we know that {n−1/2Z ′
γε} involves infinitely

many markers, and this is also the case when Ling and Tong (2005) studied the

LR test for TMA models. However, their method seems hard to be implemented in

our case. Compared with the proof of Lemma 2.1 in Chan (1990) or Ling and Tong

(2005), the proofs of Lemmas 2.1-2.2 in the Appendix are not standard and can be

used in other non-linear time series models.

We are now ready to present our main result as follows:

Theorem 2.1. If Assumptions 2.1-2.3 hold, then under H0 it follows that

LRn →d sup
γ∈Γ

G′
γΩγGγ

as n →∞, where Ωγ = (−ΣγΣ
−1, I)

′
(Σγ − ΣγΣ

−1Σγ)
−1

(−ΣγΣ
−1, I).
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Proof. By (2.4)-(2.5) and a direct calculation, we have

n
[
σ2

n − σ2
n(γ)

]

= T ′
γ





X ′
γXγ

n
− X ′

γX

n

(
X ′X

n

)−1
X ′Xγ

n





−1

Tγ.(2.6)

By Lemmas 2.1-2.2, the conclusion follows directly from the same argument as for

Theorem 2.3 in Chan (1990).

Remark 2.1. Note that

G′
γΩγGγ = ξ′γ

(
Σγ − ΣγΣ

−1Σγ

)−1
ξγ,

where ξγ = (−ΣγΣ
−1, I) Gγ. Then, by a direct calculation, we can easily show that

for each γ ∈ Γ, G′
γΩγGγ follows a χ2 distribution, namely, for fixed γ, the test

statistic LRn(γ) is asymptotically pivotal under H0.

Remark 2.2. Although the result in Theorem 2.1 nests the one in Theorem

2.3(ii) of Chan (1990) as a special case, it is necessary to mention some difference

between our LR test and that in Chan (1990). First, the denominator of LRn(γ) in

our case is different from that in Chan (1990), but we can easily show that these two

denominators are asymptotically equivalent; see also Ling and Tong (2005). Second,

since the region of Γ is larger than that in Chan (1990), our LR test needs more

computational efforts than that in Chan (1990).

Remark 2.3. As Chan (1990), we only obtained the result under the condition

that V ar(εt) = σ2. The case that the threshold effect happens in the variance of εt

needs a further study in the future.

Next, we study the asymptotical local power of LRn by considering the following

local alternative hypothesis:

H1n : ψ0 =
h√
n

for a constant vector h ∈ Rp+1.

Theorem 2.2. If Assumptions 2.1-2.3 hold, then under H1n it follows that

LRn →d sup
γ∈Γ

{
G′

γΩγGγ + h′µγγ0h
}

,

as n →∞, where Mγγ0 = E[xtx
′
tRt(γ)Rt(γ0)] and

µγγ0 =
1

σ2

(
Mγγ0 − ΣγΣ

−1Σγ

)′ (
Σγ − ΣγΣ

−1Σγ

)−1 (
Mγγ0 − ΣγΣ

−1Σγ

)
.
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Proof. Note that Y = Xφ0 + Xγ0h/
√

n + ε under H1n. Thus,

Tγ =
1√
n

{
X

′
γ −X

′
γX(X ′X)−1X ′} ε +

1

n

{
X

′
γ −X

′
γX(X ′X)−1X ′} Xγ0h

=
1√
n

(
− (X ′

γX)(X ′X)−1, I
)
Z ′

γε +
1

n

{
X

′
γ −X

′
γX(X ′X)−1X ′} Xγ0h.

By (2.6) and Lemmas 2.1-2.2, the conclusion follows directly from the same argument

as for Theorem 2.3 in Chan (1990).

In practice, the values of a and b can be set to empirical quantiles of {yt}N
t=0 as in

Chan (1991) and Andrews (1993b), although so far how to choose the optimal a, b

remains unclear in theory. In this case, we can always find a smallest n0 ≥ p such that

yn0−d stays outside the region [a, b], where the integer n0 depends on data sample

{y0, · · · , yN}. This means that we can observe Rn0(γ), and then further calculate

{Rt(γ)}N
t=n0+1 iteratively by

Rt(γ) = I(yt−d ≤ rL) + Rt−1I(rL < yt−d ≤ rU).

For the remaining observations {yt}n0−1
t=0 whose regions are not well identified, we

then set their regions to be 0. Thus, we can only use R̃t(γ) rather than Rt(γ) in

practice, where

R̃t(γ) =





0 for t = 0, · · · , n0 − 1,

Rt(γ) for t = n0, · · · , N.
(2.7)

Let L̃Rn be defined in the same way as LRn with Rt(γ) being replaced by R̃t(γ). The

following corollary shows that L̃Rn and LRn have the same asymptotic property.

Corollary 2.1. If Assumptions 2.1-2.3 hold, then (i) under H0 it follows that

L̃Rn →d sup
γ∈Γ

G′
γΩγGγ as n →∞;

(ii) under H1n it follows that

L̃Rn →d sup
γ∈Γ

{
G′

γΩγGγ + h′µγγ0h
}

as n →∞.

Proof. See the Appendix in Zhu, Yu, and Li (2013).
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3. Bootstrapped critical value. In this section, we use a bootstrap method

to obtain the critical value for our LR test; see also Hansen (1996) and Li and Li

(2011). First, we let

ε̂t = yt − xt(γ)′λn(γ)(3.1)

with

λn(γ) ≡ arg min
λ∈Λ

N∑

t=p

ε2
t (λ, γ) =

[
Z ′

γZγ

]−1 [
Z ′

γY
]
,

where Λ is a compact parametric space of λ, and εt(λ, γ) = yt − xt(γ)′λ. Next, we

set

L̂Rn(γ) =
Ẑ
′
n(γ)(X1n(γ), I)′[X2n(γ)]−1(X1n(γ), I)Ẑn(γ)

σ2
n

,(3.2)

where ε̂ = (ε̂pvp, · · · , ε̂NvN)′, {vt}N
t=p is a sequence of i.i.d. N(0, 1) random variables,

and

Ẑn(γ) =
1√
n

Z
′
γ ε̂, X1n(γ) = −X

′
γX

n

(
X

′
X

n

)−1

,

and X2n(γ) =
X

′
γXγ

n
− X

′
γX

n

(
X

′
X

n

)−1
X

′
Xγ

n
.

Define

L̂Rn ≡ sup
γ∈Γ

L̂Rn(γ).(3.3)

The asymptotic theory of L̂Rn is stated in the following theorem:

Theorem 3.1. If Assumptions 2.1-2.3 hold, then under H0 or H1n, it follows

that

L̂Rn|y0, · · · , yN →d sup
γ∈Γ

G′
γΩγGγ in probablity as n →∞.

Proof. See the Appendix in Zhu, Yu, and Li (2013).

Remark 3.1. In practice, L̂Rn is calculated with Rt(γ) being replaced by R̃t(γ).

However, by using the same argument as for Corollary 2.1, we can show that it does

not affect the asymptotic property of L̂Rn.
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Note that the conditional limiting distribution in Theorem 3.1 is the same as the

null distribution in Theorem 2.1. Then, conditional on the data sample {y0, · · · ,

yN}, for any given significance level α, we use the following bootstrap procedure to

obtain our critical value:

(i) generate i.i.d. N(0,1) samples {vt}N
t=p, and then calculate L̂Rn via (3.1)-(3.3);

(ii) repeat step (i) for J times to get {L̂R
(1)

n , · · · , L̂R
(J)

n };
(iii) choose cJ

n,α be the α-th upper percentile of {L̂R
(1)

n , · · · , L̂R
(J)

n }.
From now on, we choose cJ

n,α as the critical value for our LR test, i.e., at the signif-

icance level α, if LRn ≥ cJ
n,α, we reject H0; otherwise, we accept it. In Section 4, we

shorten cJ
n,α as cn for brevity.

In the end, we give a critical corollary as follows:

Corollary 3.1. If Assumptions 2.1-2.3 hold, then (i) under H0 it follows that

lim
n→∞ lim

J→∞
P

(
LRn ≥ cJ

n,α

)
= α;

(ii) under H1n it follows that

lim
h→∞

lim
n→∞ lim

J→∞
P

(
LRn ≥ cJ

n,α

)
= 1.

Proof. See the Appendix in Zhu, Yu, and Li (2013).

Corollary 3.1 guarantees that our bootstrapped critical value cJ
n,α is asymptotically

valid, and our LR test has power to detect H1n. This method is also feasible to obtain

the critical value for the LR test in Chan (1990) by setting γL ≡ γU . Moreover, since

L̂Rn(γ) is a step-function, the amount of computation on cJ
n,α depends only on the

effective sample size n and the bootstrapped sample size J . Hence, this will reduce

our computational burden significantly in application.

4. Simulation and one real example. In this section, we first compare the

performance of our LR test (LRn) and Chan’s (1990) LR test (LR∗
n) in the finite

sample. We generate 1000 replications of sample size n = 200 from the following

BAR model:

yt = yt−1 − 0.09yt−2 + (ψ1yt−1 + ψ2yt−2)Rt(γ) + εt,(4.1)

where Rt(γ) is defined as in (1.2) with d = 1, εt has N(0, 1) distribution, and

the initial values y0 = y1 = R1(γ) = 0. We choose γ = (0, 0), (0, 0.5), (0, 1.5) or

(0, 2), and use the significance level α = 0.05. Since the pair of characteristic roots
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is (0.1, 0.9) in the regime of Rt(γ) = 0, we choose (ψ1, ψ2) = (0, 0), (0.1,−0.09),

(0.3,−0.27), (0.5,−0.45) or (0.7,−0.63) such that the pair of characteristic roots

in the regime of Rt(γ) = 1 is (0.1, 0, 9), (0.2, 0.9), (0.4, 0.9), (0.6, 0.9) or (0.8, 0.9),

respectively. For each replication, the value of a and b for the interval [a, b] are set to

be the empirical 10th and 90th quantiles of data sample, the critical value for LRn

is calculated by the bootstrap method in Section 3 with J = 1000, and the critical

value for LR∗
n is either calculated in the same way as the one for LRn or taken as

15.18 according to Table 2 in Chan (1991).

Table 1
Rejection rates

ψ γ LR∗n
ψ1 ψ2 rL rU LRn LR∗1n LR∗2n

0.0 0.0 — — 4.9 4.9 3.4
0.1 -0.09 0.0 0.0 7.7 7.7 3.8

0.0 0.5 7.5 7.4 3.7
0.0 1.5 7.6 6.5 3.2
0.0 2.0 7.5 7.0 5.4

0.3 -0.27 0.0 0.0 31.9 34.2 14.3
0.0 0.5 30.6 30.3 16.5
0.0 1.5 33.4 29.6 15.4
0.0 2.0 32.0 27.1 15.6

0.5 -0.45 0.0 0.0 64.7 69.1 54.0
0.0 0.5 76.0 79.6 55.2
0.0 1.5 76.1 75.5 56.0
0.0 2.0 75.2 72.6 53.9

0.7 -0.63 0.0 0.0 95.8 97.1 86.4
0.0 0.5 89.4 90.1 89.5
0.0 1.5 96.0 96.0 87.8
0.0 2.0 95.9 95.9 89.9

Table 1 lists the rejection rates of LRn and LR∗
n with different values of ψ and

γ. The results for LR∗
n based on the bootstrapped critical value and Chan’s (1991)

critical value are denoted by LR∗
1n and LR∗

2n, respectively. The sizes of these tests

correspond to the case when (ψ1, ψ2) = (0, 0). From Table 1, we find that the sizes

of LRn and LR∗
1n are close to their nominal ones, but the size of LR∗

2n is very

conservative. Although the power of all tests becomes larger as the two regimes for

Rt(γ) = 0 and Rt(γ) = 1 are more distinguishing, the power of LR∗
2n is less than

that of LRn or LR∗
1n in all cases. This suggests that the bootstrapped critical values

may be more precise than the critical values in Chan (1991) for LR∗
n test. When the

distance between rL and rU is small, LRn is less powerful than LR∗
1n, and its power

is greater than the power of LR∗
1n as the distance between rL and rU becomes large.

As we expected, this is because LRn (or LR∗
n) is the LR test when rL and rU are far
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from (or closed to) each other. Overall, the simulation results show that LRn has a

good performance especially when the buffering region is wide.

Next, we study the quarterly U.S. real GNP (in 1982 dollars) from the first quarter

of 1947 to the first quarter of 1991. Its 100 times log-return, denoted by {yt}, has

a total of 176 observations; see Figure 1. We apply our test LRn and the LR test

LR∗
n in Chan (1990) to this data set. The results with different values of p and

d are reported in Table 2. From Table 2, we find that a marginal threshold effect

can be detected at the 5% significance level in either BAR or TAR model with

p = d = 2. Our finding is consistent to the ones in Potter (1995) and Hansen (1996),

in which they also detected a marginal threshold effect in the TAR model by using

the sup-LM test. Hence, we fit {yt} by the following two specifications:

0 20 40 60 80 100 120 140 160
−3

−2

−1

0

1

2

3

4

Time

y t

Fig 1. 100 times log-return of quarterly U.S. real GNP (in 1982 dollars) from the first quarter of
1947 to the first quarter of 1991.

Table 2
Results of tests applied to data set {yt}†

BAR model TAR model
p d LRn c0.1 c0.05 c0.01

§ LR∗n c∗0.1 c∗0.05 c∗0.01
§

1 1 4.29 13.66 16.51 23.29 4.29 9.69 11.79 18.58
2 1 9.08 17.97 22.07 30.76 5.83 14.57 17.75 24.92
2 2 21.08‡ 18.53 21.36 29.58 13.69‡ 12.47 14.52 18.82
3 1 7.18 20.88 23.93 31.63 6.46 15.60 19.10 26.02
3 2 18.15 21.34 24.62 31.70 13.84 14.59 16.70 21.92
3 3 14.38 20.07 23.67 32.50 8.16 17.02 20.83 30.15
† The value of a and b are set to be the 10th and 90th quantiles of {yt}.
‡ The p-values for LRn and LR∗n are 0.053 and 0.064, respectively.
§ cα (or c∗α) is obtained by the bootstrap method in Section 3 with J = 1000.
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



yt =





1.2211 + 0.1597yt−1 + 0.4017yt−2 + εt if Rt = 1

(0.1979) (0.1236) (0.1656)

0.0704 + 0.3754yt−1 + 0.3031yt−2 + εt if Rt = 0

(0.1245) (0.0856) (0.0954)

,

where

Rt =





1 if yt−2 ≤ −0.617

0 if yt−2 > 1.237

Rt−1 otherwise

(4.2)

and




yt =





−0.4515 + 0.3924yt−1 − 0.8379yt−2 + εt if Rt = 1

(0.2620) (0.1400) (0.2628)

0.3971 + 0.3241yt−1 + 0.1822yt−2 + εt if Rt = 0

(0.1503) (0.0845) (0.1129)

,

where

Rt =





1 if yt−2 ≤ −0.008

0 otherwise
,

(4.3)

where models (4.2) and (4.3) are estimated by the least squares method with the

standard errors in parentheses, and their estimated values of σ2
ε are 0.85 and 0.90,

respectively. For model (4.2), the first 20 autocorrelations or partial autocorrelations

of the residuals {ε̂t} or {ε̂2
t} are not significant at the 5% level; see Figure 2. Similar

results hold for model (4.3), and hence they are not reported here. Thus, it may imply

that both models are adequate to fit {yt}. Moreover, the values of log-likelihood for

models (4.2) and (4.3) are -233.1 and -237.3, respectively, and hence a BAR(2) model

is more suitable than TAR(2) model to fit {yt}.
It is interesting to see that models (4.2) and (4.3) basically tell us different stories.

Following Tiao and Tsay (1994), if we treat a negative growth in GNP as ‘contrac-

tion’ and a positive growth as ‘expansion’, model (4.2) shows that the region of

yt does not shift unless we have experienced a big ‘contraction’ or ‘expansion’ two

years before, while model (4.3) indicates that the region of yt almost fully relies on

the kind of economic status that we have at that time. To our best knowledge, the

society or government may not have a big or quick response to a moderate growth in
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Fig 2. (a) the autocorrelations for {ε̂t}; (b) the partial autocorrelations for {ε̂t}; (c) the autocor-
relations for {ε̂2

t}; and (d) the partial autocorrelations for {ε̂2
t}.

GNP, and hence the region of yt is most likely unchanged in this case. Thus, based

on these facts, it is fair to conclude that a BAR(2) model is more reasonable than

TAR(2) model to fit {yt}.
In the end, it is also of interest to fit {yt} by a three-regime TAR model as follows:

yt =





−0.4969 + 0.3735yt−1 − 0.8500yt−2 + εt if yt−2 ≤ −0.288

(0.3649) (0.1399) (0.3193)

−3.3614 + 1.1691yt−1 − 15.872yt−2 + εt if− 0.288 < yt−2 ≤ −0.058

(1.2807) (1.0193) (4.3454)

0.3837 + 0.3233yt−1 + 0.1908yt−2 + εt if yt−2 > −0.058

(0.1439) (0.0818) (0.1083)

,(4.4)

where model (4.4) is estimated by the least squares method with the standard errors

in parentheses, and the estimated value of σ2
ε is 0.84. As model (4.2), model (4.4) may

also be adequate to fit {yt} by looking at the first 20 autocorrelations and partial

autocorrelations of the residuals {ε̂t} and {ε̂2
t}. However, the number of effective

observations for these regimes from lower to upper are 25, 10 and 139, respectively.

Thus, although the value of log-likelihood for model (4.4) is -231.6 greater than that

for model (4.2), a model with two regimes for {yt} seems more likely. Therefore,
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compared to model (4.4), we prefer to fit {yt} by a BAR(2) model in view of this

point.
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APPENDIX: PROOFS

In this appendix, we first give the proofs of Lemmas 2.1-2.2. Denote C as a generic

constant which may vary from place to place in the rest of this paper. The proofs

of Lemmas 2.1-2.2 rely on the following three basic lemmas:

Lemma A.1. Suppose that yt is strictly stationary, ergodic and absolutely regular

with mixing coefficients β(m) = O(m−A) for some A > v/(v−1) and r > v > 1; and

there exists an A0 > 1 such that 2A0rv/(r−v) < A. Then, for any γ = (rL, rU) ∈ Γ,

we have
∞∑

j=1



E




j∏

i=1

I(rL < yt−i ≤ rU)








(r−v)/2A0rv

< ∞.

Proof. First, denote ξi = I(rL < yt−i ≤ rU). Then, ξi is strictly stationary,

ergodic and α-mixing with mixing coefficients α(m) = O(m−A). Next, take ι ∈(
[2A0rv/(r − v) + 1]/(A + 1), 1

)
, and let p = bjιc and s = bj/jιc, where bxc is the

largest integer not greater than x. When j ≥ j0 is large enough, we can always find

{ξkp+1}s−1
k=0, a subsequence of {ξi}j

i=1.

Furthermore, let Fn
m = σ(ξi,m ≤ i ≤ n). Then, ξkp+1 ∈ Fkp+2

kp+1 . Note that

E [ξkp+1] < P (a ≤ yt ≤ b) , ρ ∈ (0, 1). Hence, by Proposition 2.6 in Fan and

Yao (2003, p.72), we have that for j ≥ j0,

E




j∏

i=1

ξi


 ≤ E

[
s−1∏

k=0

ξkp+1

]

=

{
E

[
s−1∏

k=0

ξkp+1

]
−

s−1∏

k=0

E [ξkp+1]

}
+

s−1∏

k=0

E [ξkp+1]

≤ 16(s− 1)α(p) + ρs

≤ Cbj/jιcbjιc−A + ρbj/jιc.

1



2

Therefore, since (r − v)/2A0rv > 0, by using the inequality (x + y)k ≤ C(xk + yk)

for any x, y, k > 0, it follows that

∞∑

j=1



E




j∏

i=1

ξi








(r−v)/2A0rv

≤ (j0 − 1) +
∞∑

j=j0



E




j∏

i=1

ξi








(r−v)/2A0rv

≤ (j0 − 1) + C
∞∑

j=j0

[
bj/jιcbjιc−A

](r−v)/2A0rv

+ C
∞∑

j=j0

ρbj/jιc(r−v)/2A0rv.(A.1)

Since ι > [2A0rv/(r − v) + 1]/(A + 1), we have (ιA + ι− 1)(r − v)/2A0rv > 1, and

hence
∑∞

j=1 j−(ιA+ι−1)(r−v)/2A0rv < ∞, which implies that

∞∑

j=j0

[bj/jιc
bjιcA

](r−v)/2A0rv

≤
∞∑

j=1

[
j

jι(jι − 1)A

](r−v)/2A0rv

< ∞.(A.2)

On the other hand, since
(
ρbj/jιc(r−v)/2A0rv

)1/j
< 1, by Cauchy’s root test, we have

∞∑

j=j0

ρbj/jιc(r−v)/2A0rv <
∞∑

j=1

ρbj/jιc(r−v)/2A0rv < ∞.(A.3)

Now, the conclusion follows directly from (A.1)-(A.3). This completes the proof.

Lemma A.2. Suppose that the conditions in Lemma A.1 hold, and yt has a

bounded and continuous density function. Then, there exists a B0 > 1 such that for

any γ1, γ2 ∈ Γ, we have

‖Rt(γ1)−Rt(γ2)‖2rv/(r−v) ≤ C|γ1 − γ2|(r−v)/2B0rv.

Proof. Let γ1 = (r1L, r1U) and γ2 = (r2L, r2U). Since Rt(γ) = I(yt−d ≤ rL) +

Rt−1(γ)I(rL < yt−d ≤ rU), we have

Rt(γ1)−Rt(γ2) = ∆t(γ1, γ2) + I(r1L < yt−d ≤ r1U) [Rt−1(γ1)−Rt−1(γ2)] ,

where

∆t(γ1, γ2) = I(r2L < yt−d ≤ r1L)

+ Rt−1(γ2) [I(r1L < yt−d ≤ r1U)− I(r2L < yt−d ≤ r2U)] .
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Thus, by iteration we can show that

Rt(γ1)−Rt(γ2)

= ∆t(γ1, γ2) +
∞∑

j=1

∆t−j(γ1, γ2)
j∏

i=1

I(r1L < yt−i−d ≤ r1U).(A.4)

Next, for brevity, we assume that r2L ≤ r1L ≤ r2U ≤ r1U , because the proofs for

other cases are similar. Note that for any j ≥ 0, Rt−j−1(γ2) ≤ 1 and

I(r1L < yt−j−d ≤ r1U)− I(r2L < yt−j−d ≤ r2U)

= I(r2U < yt−j−d ≤ r1U)− I(r2L < yt−j−d ≤ r1L).

Let f(x) be the density function of yt. Since supx f(x) < ∞ and |∆t−j(γ1, γ2)| ≤ 2,

by Hölder’s inequality and Taylor’s expansion, it follows that for any s ≥ 1,

E|∆t−j(γ1, γ2)|s ≤ 2s−1E|∆t−j(γ1, γ2)|
≤ 2s−1

[
2 sup

x
f(x)|r1L − r2L|+ sup

x
f(x)|r1U − r2U |

]

≤ C|γ1 − γ2|.(A.5)

Let A0 > 1 be specified in Lemma A.1, and choose B0 such that 1/A0 + 1/B0 = 1.

By Hölder’s inequality and (A.5), we can show that

E

∣∣∣∣∣∣
∆t−j(γ1, γ2)

j∏

i=1

I(r1L < yt−i−d ≤ r1U)

∣∣∣∣∣∣

2rv/(r−v)

≤
{
E[∆t−j(γ1, γ2)]

2B0rv/(r−v)
}1/B0

×


E




j∏

i=1

I(r1L < yt−i−d ≤ r1U)








1/A0

≤ 2[2B0rv/(r−v)]−1 {E|∆t−j(γ1, γ2)|}1/B0

×


E




j∏

i=1

I(r1L < yt−i−d ≤ r1U)








1/A0

≤ C|γ1 − γ2|1/B0



E




j∏

i=1

I(r1L < yt−i−d ≤ r1U)








1/A0

.(A.6)

By (A.4)-(A.6), Minkowski’s inequality, Lemma A.1 and the compactness of Γ, we
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have

‖Rt(γ1)−Rt(γ2)‖2rv/(r−v)

≤ C|γ1 − γ2|(r−v)/2rv + C|γ1 − γ2|(r−v)/2B0rv

×
∞∑

j=1



E




j∏

i=1

I(r1L < yt−i−d ≤ r1U)








(r−v)/2A0rv

≤ C|γ1 − γ2|(r−v)/2B0rv.

This completes the proof.

Lemma A.3. Suppose that the conditions in Lemma A.2 hold and Ey4
t < ∞.

Then,

sup
γ∈Γ

∣∣∣∣∣
X

′
γX

n
− Σγ

∣∣∣∣∣ → 0 a.s. as n →∞.

Proof. For brevity, we only prove the uniform convergence for n−1 ∑n
t=1 φt(γ),

the last component of n−1X
′
γX, where

φt(γ) = y2
t−pRt(γ).

First, for fix ε > 0, we partition Γ by {B1, · · · , BKε}, where Bk = {(rL, rU); ωk <

rL ≤ ωk+1, νk < rU ≤ νk+1} ∩ Γ. Here, {ωk} and {νk} are chosen such that

(ωk+1 − ωk)
(r−v)/2B0rv < C1ε and (νk+1 − νk)

(r−v)/2B0rv < C1ε,(A.7)

where B0 > 1 is specified as in Lemma A.2, and C1 > 0 will be selected later.

Next, we set

fu
t (ε) = y2

t−pRt(ωk+1, νk+1) and f l
t(ε) = y2

t−pRt(ωk, νk).

By construction, since Rt(γ) is a nondecreasing function with respect to rL and rU ,

for any γ ∈ Γ, there is some k such that γ ∈ Bk and f l
t(ε) ≤ φt(γ) ≤ fu

t (ε).

Furthermore, since rv/(2rv − r + v) < 1, we have

∥∥∥y2
t−p

∥∥∥
2rv/(2rv−r+v)

<
∥∥∥y2

t−p

∥∥∥
2

< ∞.



TESTING FOR BAR PROCESSES 5

Thus, by Hölder’s inequality, Lemma A.2 and (A.7), we have

E
[
fu

t (ε)− f l
t(ε)

]

≤
∥∥∥y2

t−p

∥∥∥
2rv/(2rv−r+v)

‖Rt(ωk+1, νk+1)−Rt(ωk, νk)‖2rv/(r−v)

≤ C
[
(ωk+1 − ωk)

(r−v)/2B0rv + (νk+1 − νk)
(r−v)/2B0rv

]

≤ 2CC1ε.

By setting C1 = (2C)−1, we have E
[
fu

t (ε)− f l
t(ε)

]
≤ ε. Thus, the conclusion holds

according to Theorem 2 in Pollard (1984, p.8). This completes the proof.

Proof of Lemma 2.1. First, since Kγγ is positive definite by Assumption 2.1,

we know that both Σ and Σγ are positive definite. By using the same argument

as for Lemma 2.1(iv) in Chan (1990), it is not hard to show that for every γ ∈ Γ,

Σγ −ΣγΣ
−1Σ′

γ is positive definite. Second, by the ergodic theorem, it is easy to see

that

X ′X
n

→ Σ a.s. as n →∞.(A.8)

Third, by Lemma A.3 we have

sup
γ∈Γ

∣∣∣∣∣
X

′
γX

n
− Σγ

∣∣∣∣∣ → 0 and sup
γ∈Γ

∣∣∣∣∣
X

′
γXγ

n
− Σγ

∣∣∣∣∣ → 0 a.s.(A.9)

as n →∞. Note that if H0 holds, we have

Tγ =
1√
n

{
X

′
γ −X

′
γX(X ′X)−1X ′} ε

=
1√
n

(
− (X ′

γX)(X ′X)−1, I
)
Z ′

γε.

Then, (i) and (ii) follow readily from (A.8)-(A.9). This completes the proof. ¤

Proof of Lemma 2.2. Denote

Gn(γ) ≡ 1√
n

Z
′
γε =

1√
n

N∑

t=p

xt(γ)εt.

It is straightforward to show that the finite dimensional distribution of {Gn(γ)}
converges to that of {σGγ}. By Pollard (1990, Sec.10), we only need to verify the

stochastic equicontinuity of {Gn(γ)}. To establish it, we use Theorem 1, Application
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4 in Doukhan, Massart, and Rio (1995, p.405); see also Andrews (1993) and Hansen

(1996).

First, the envelop function is supγ |xt(γ)εt| = x̄t|εt|, where x̄t = supγ |xt(γ)|. By

Hölder’s inequality and Assumption 2.1, we know that the envelop function is L2v

bounded. Next, for any γ1, γ2 ∈ Γ, by Assumptions 2.1-2.3, Lemma A.2 and Hölder’s

inequality, we have

‖xt(γ1)εt − xt(γ2)εt‖2v = ‖ht(γ1)εt − ht(γ2)εt‖2v

≤ ‖xtεt‖2r‖Rt(γ1)−Rt(γ2)‖2rv/(r−v)

≤ C‖xt‖4r‖εt‖4r |γ1 − γ2|(r−v)/2B0rv

≤ C|γ1 − γ2|(r−v)/2B0rv

for some B0 > 1, where the last inequality holds since ‖xt‖4r‖εt‖4r < ∞.

Now, following the argument in Hansen (1996, p.426), we know that Gn(γ) is

stochastically equicontinuous. This completes the proof. ¤

Next, we give Lemmas A.4-A.6, in which Lemma A.4 is crucial for proving Lemma

A.5, and Lemmas A.5 and A.6 are needed to prove Corollary 2.1 and Theorem 3.1,

respectively.

Lemma A.4. Suppose that yt is strictly stationary and ergodic. Then, (i) n0 =

Op(1); (ii) furthermore, if E|yt|2 < ∞ and E|εt|2 < ∞, for any an = o(1), we have

sup
γ∈Γ

∣∣∣∣∣∣
an

n0−1∑

t=p

xtx
′
tRt(γ)

∣∣∣∣∣∣
= Op(1)(A.10)

and

sup
γ∈Γ

∣∣∣∣∣∣
an

n0−1∑

t=p

ht(γ)εt

∣∣∣∣∣∣
= Op(1).(A.11)

Proof. First, by the ergodic theory, we have that

1

M

M∑

t=p

I(a ≤ yt−d ≤ b) = P (a ≤ yt−d ≤ b) , κ > 0 a.s.

as M →∞. Thus, ∀η > 0, there exists an integer M(η) > 0 such that

P


 1

M

M∑

t=p

I(a ≤ yt−d ≤ b) <
κ

2


 < η.
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By the definition of n0, it follows that

P (n0 > M) = P




M∑

t=p

I(a ≤ yt−d ≤ b) = 0




= P


 1

M

M∑

t=p

I(a ≤ yt−d ≤ b) = 0




≤ P


 1

M

M∑

t=p

I(a ≤ yt−d ≤ b) <
κ

2




< η,(A.12)

i.e., (i) holds. Furthermore, by taking M̃ = M2, from (A.12) and Markov’s inequality,

it follows that ∀η > 0,

P


sup

γ∈Γ

∣∣∣∣∣∣
an

n0−1∑

t=p

xtx
′
tRt(γ)

∣∣∣∣∣∣
> M̃




= P


sup

γ∈Γ

∣∣∣∣∣∣
an

n0−1∑

t=p

xtx
′
tRt(γ)

∣∣∣∣∣∣
> M̃, n0 ≤ M




≤ P


 max

p≤k≤M
sup
γ∈Γ

∣∣∣∣∣∣
an

k−1∑

t=p

xtx
′
tRt(γ)

∣∣∣∣∣∣
> M̃




≤
M∑

k=p

P


an

k−1∑

t=p

|xt|2 > M̃




≤ an

M∑

k=p

k−1∑

t=p

E|xt|2
M̃

= O

(
anM

2

M̃

)
= O (an) < η(A.13)

as n is large enough. Thus, we know that equation (A.10) holds. Next, by Hölder’s

inequality and a similar argument as for (A.13), it is not hard to show that ∀η > 0,

P


sup

γ∈Γ

∣∣∣∣∣∣
an

n0−1∑

t=p

ht(γ)εt

∣∣∣∣∣∣
> M̃


 ≤ O (an) < η

as n is large enough, i.e., (A.11) holds. This completes the proof.
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Lemma A.5. If Assumptions 2.1-2.3 hold, then it follows that under H0 or H1n,

(i) sup
γ∈Γ

∣∣∣∣
1

n

(
Xγ − X̃γ

)′
X

∣∣∣∣ = op(1),

(ii) sup
γ∈Γ

∣∣∣∣
1

n

(
X

′
γXγ − X̃

′
γX̃γ

)∣∣∣∣ = op(1),

(iii) sup
γ∈Γ

∣∣∣Tγ − T̃γ

∣∣∣ = op(1),

where X̃γ and T̃γ are defined in the same way as Xγ and Tγ, respectively, with Rt(γ)

being replaced by R̃t(γ).

Proof. (i) Note that

1

n

(
Xγ − X̃γ

)′
X =

1√
n


 1√

n

n0−1∑

t=p

xtx
′
tRt(γ)


 .

Hence, we know that (i) holds by taking an = n−1/2 in equation (A.10).

(ii) By a similar argument as for (i), we can show that (ii) holds.

(iii) Note that when λ0 = (φ′0, h
′/
√

n)′, we have

Tγ − T̃γ =
1√
n

(
Xγ − X̃γ

)′
ε− 1√

n

(
Xγ − X̃γ

)′
X(X ′X)−1X ′ε

− 1

n

(
Xγ − X̃γ

)′
X(X ′X)−1X ′Xγ0h

− 1

n
X̃ ′

γX(X ′X)−1X ′ (Xγ0 − X̃γ0

)
h

+
1

n

(
X ′

γXγ0 − X̃ ′
γX̃γ0

)
h

, I1n(γ)− I2n(γ)− I3n(γ)− I4n(γ) + I5n(γ) say.

First, since

I1n(γ) =
1

n1/4


 1

n1/4

n0−1∑

t=p

ht(γ)εt


 ,

it follows that supγ |I1n(γ)| = op(1) by taking an = n−1/4 in equation (A.11). Next,

since

I2n(γ) =


 1

n

n0−1∑

t=p

xtx
′
tRt(γ)




(
X ′X

n

)−1
X ′ε√

n
,

we have that supγ |I2n(γ)| = op(1) from (i). Similarly, we can show that supγ |Iin(γ)| =
op(1) for i = 3, 4, 5. Hence, under H0 (i.e., h ≡ 0) or H1n, we know that (iii) holds.

This completes the proof.
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Lemma A.6. If Assumptions 2.1-2.3 hold, then it follows that under H0 or H1n,

sup
γ∈Γ

√
n|λn(γ)− λ0| = Op(1).

Proof. First, for any γ ∈ Γ, by Taylor’s expansion we have

N∑

t=p

[
ε2

t (λn(γ), γ)− ε2
t (λ0, γ)

]

= −(λn(γ)− λ0)
′



N∑

t=p

2εt(λ0, γ)xt(γ)




+ (λn(γ)− λ0)
′



N∑

t=p

xt(γ)xt(γ)′

 (λn(γ)− λ0).(A.14)

Next, when λ0 = (φ′0, h
′/
√

n)′, we can show that

1√
n

N∑

t=p

εt(λ0, γ)xt(γ) =
1√
n

Z ′
γε +

1√
n

N∑

t=p

xt(γ)[xt(γ0)− xt(γ)]′λ0

=
1√
n

Z ′
γε +

1

n

N∑

t=p


 xtx

′
t[Rt(γ0)−Rt(γ)]

xtx
′
t[Rt(γ)Rt(γ0)−Rt(γ)]


 h

, G∗
n(γ).(A.15)

Let λmin(γ) > 0 be the minimum eigenvalue of Kγγ . Then, by equations (A.14)-

(A.15), ∀η > 0, there exists a M(η) > 0 such that

P

(
sup
γ∈Γ

√
n|λn(γ)− λ0| > M

)

= P


√n|λn(γ)− λ0| > M,

N∑

t=p

[
ε2

t (λn(γ), γ)− ε2
t (λ0, γ)

]
≤ 0

for some γ ∈ Γ)

≤ P
(√

n|λn(γ)− λ0| > M, −2
√

n|λn(γ)− λ0||G∗
n(γ)|

+n|λn(γ)− λ0|2[λmin(γ) + op(1)] ≤ 0 for some γ ∈ Γ
)

≤ P
(
M <

√
n|λn(γ)− λ0| ≤ 2[λmin(γ) + op(1)]−1|G∗

n(γ)|
for some γ ∈ Γ)

≤ P (|G∗
n(γ)| > M [λmin(γ) + op(1)]/2 for some γ ∈ Γ)

≤ η,
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where the last inequality holds because G∗
n(γ) = Op(1) by Lemma 2.2 and Lemma

A.3. Hence, under H0 (i.e., h ≡ 0) or H1n, our conclusion holds. This completes the

proof.

Proof of Corollary 2.1. The conclusion follows directly from Theorems 2.1-

2.2 and Lemma A.5. ¤

Proof of Theorem 3.1. We use the method in the proof of Theorem 2 in

Hansen (1996). Let W denote the set of samples ω for which

lim
n→∞

1

n

N∑

t=p

sup
γ∈Γ

|xt(γ)|ε2
t < ∞ a.s.,(A.16)

lim
n→∞ sup

γ,δ∈Γ

∣∣∣∣∣∣
1

n

N∑

t=p

xt(γ)xt(δ)
′ε2

t − σ2Kγδ

∣∣∣∣∣∣
→ 0 a.s.(A.17)

Since supγ∈Γ |xt(γ)| ≤ √
2|xt| and E|xt|ε2

t < ∞ due to Assumption 2.1, by the

ergodic theorem we have

lim
n→∞

1

n

N∑

t=p

sup
γ∈Γ

|xt(γ)|ε2
t ≤ lim

n→∞

√
2

n

N∑

t=p

|xt|ε2
t < ∞ a.s.,

i.e., (A.16) holds. Furthermore, by Assumptions 2.1-2.3 and a similar argument as

for Lemma A.3, it is not hard to see that

lim
n→∞ sup

γ,δ∈Γ

∣∣∣∣∣∣
1

n

N∑

t=p

xt(γ)xt(δ)
′ε2

t − σ2Kγδ

∣∣∣∣∣∣
→ 0 a.s.,

i.e., (A.17) holds. Thus, P (W ) = 1. Take any ω ∈ W . For the remainder of the proof,

all operations are conditionally on ω, and hence all of the randomness appears in

the i.i.d. N(0, 1) variables {vt}.
Define

Z∗
n(γ) =

1√
n

N∑

t=p

xt(γ)εtvt.

By using the same argument as in Hansen (1996, p.426-427), we have

Z∗
n(γ) ⇒ σGγ a.s. as n →∞.(A.18)

Note that

sup
γ∈Γ

|Ẑn(γ)− Z∗
n(γ)| ≤ sup

γ∈Γ

∣∣∣∣∣∣
1

n

N∑

t=p

xt(γ)xt(γ)′vt

∣∣∣∣∣∣
sup
γ∈Γ

∣∣∣
√

n(λn(γ)− λ0)
∣∣∣ .
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Using the same argument as for (A.18) (see, e.g., Hansen (1996, p.427)), we have

1

n

N∑

t=p

xt(γ)xt(γ)′vt ⇒ 0 a.s. as n →∞.(A.19)

Now, by Lemma A.6 and (A.19), it follows that under H0 or H1n,

Ẑn(γ)− Z∗
n(γ) ⇒ 0 in probability as n →∞.(A.20)

Thus, by (A.18) and (A.20), we know that under H0 or H1n,

Ẑn(γ) ⇒ σGγ in probability as n →∞.(A.21)

Next, we consider the functional

L : x(·) ∈ D2p+2(Γ) → 1

σ2
sup
γ∈Γ

x(γ)′Ωγx(γ),

where D2p+2(Γ) denotes the function spaces of all functions, mapping R2(Γ) into

R2p+2, that are right continuous and have right-hand limits. Clearly, L(·) is a con-

tinuous functional; see e.g., Chan (1990, p.1891). By the continuous mapping theory

and (A.21), it follows that under H0 or H1n,

L(Ẑn(γ)) ⇒ L(σGγ) in probability as n →∞.(A.22)

Furthermore, since σ2
n → σ2 a.s. and (X1n(γ), I)′[X2n(γ)]−1(X1n(γ), I) → Ωγ uni-

formly in γ by Lemma A.3, we have that

sup
γ∈Γ

L̂Rn(γ) = L(Ẑn(γ)) + op(1).(A.23)

Finally, the conclusion follows from (A.22)-(A.23). This completes the proof. ¤

Proof of Corollary 3.1. Conditional on the sample {y0, · · · , yN}, let F̂n,J

and F̂n be the conditional empirical c.d.f. and c.d.f. of L̂Rn, respectively. Then,

P
(
LRn ≥ cJ

n,α

)

= E
[
P

(
LRn ≥ cJ

n,α|y0, · · · , yN

)]

= E
[
P

(
F̂n,J(LRn) ≥ 1− α|y0, · · · , yN

)]
.
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By the Glivenko-Cantelli Theorem and Theorem 3.1, it follows that under H0 or

H1n,

lim
n→∞ lim

J→∞
P

(
LRn ≥ cJ

n,α

)

= lim
n→∞E

[
P

(
F̂n(LRn) ≥ 1− α|y0, · · · , yN

)]

= lim
n→∞E [P (F0(LRn) ≥ 1− α|y0, · · · , yN)]

= lim
n→∞P (F0(LRn) ≥ 1− α) ,(A.24)

where F0 is the c.d.f. of supγ∈Γ G′
γΩγGγ. Thus, by (A.24) and Theorem 2.1, under

H0 we have

lim
n→∞ lim

J→∞
P

(
LRn ≥ cJ

n,α

)
= P

(
sup
γ∈Γ

G′
γΩγGγ ≥ F−1

0 (1− α)

)
= α,

i.e., (i) holds. Furthermore, by (A.24) and Theorem 2.2, under H1n we have

lim
h→∞

lim
n→∞ lim

J→∞
P

(
LRn ≥ cJ

n,α

)
= lim

h→∞
P

(
Bh ≥ F−1

0 (1− α)
)

= 1,

where Bh , supγ∈Γ

{
G′

γΩγGγ + h′µγγ0h
}

and the last equation holds since Bh →∞
in probability as h →∞. Thus, (ii) holds. This completes the proof. ¤
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