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Abstract 
 

This paper presents the dynamic behavior of a hybrid 
system comprising Fuzzy Cognitive Maps and Genetic 
Algorithms, and focuses on the behavior observed when 
the system reaches equilibrium at fixed points or limit 
cycle. More specifically, the present works examines the 
theoretical background of the equilibrium and limit 
cycle behaviors and proposes a defuzzification method 
to handle the latter case. The proposed method 
calculates the mean value of a limit cycle and uses this 
value in the defuzzification process along with a 
confidence rate, which indicates the reliability of the 
results. 

 
  

1. Introduction 
 

This paper examines the use of Fuzzy Cognitive 
Maps (FCMs) as a technique for modeling real-world 
problems and supporting the decision-making process. 
More specifically, it focuses on handling the limit cycle 
phenomenon and proposing an improvement in the 
decision-making process.  

FCMs use notions borrowed from artificial 
intelligence and neural networks to combine concepts [1, 
17] and causal relationships, aiming at creating dynamic 
models that describe a given cognitive setting [9]. The 
concepts are represented as nodes, and the causal 
relationships between these concepts are represented as 
directed arrows (weights). The development of the FCM 
is based on the utilization of domain experts’ knowledge 
that defines the active concepts and the degree of 
influence between them in the form of numerical values 
[5]. The activation level of the nodes participating in an 
FCM model can be calculated using specific updating 
equations in a series of iterations, after which the model 
can either reach equilibrium at fixed points in a direct 
way with activation levels ranging in the interval [-1, 1] 
(figure 1) or, instead, exhibit a limit cycle behavior 
(figure 2) [11]. 

Recently, an enhancement of the classic FCM was 
introduced [3, 4], which combines FCMs with Genetic 
Algorithms to facilitate the study of hypothetical 
scenaria describing the real-world problem under study 
and provide new and more powerful means for decision-
making.  

 

 
Figure 1.  Equilibrium reached by various 
concepts of an FCM 

 

 
Figure 2.  Limit-cycle reached by various 
concepts of an FCM 

 
The most important difference between the 

Genetically Evolved Fuzzy Cognitive Map (GEFCM) 
and the simple FCM model lies with the recalculation of 
all weights involved in the simulation process. The 
importance of GEFCMs to decision-makers is 
underlined by the fact that the domain experts will not 
base their decision only on the experts’ evaluation, but 
also on the optimal weights that lead a concept to be 
activated to a certain predefined degree. Thus, decision-



makers are able to introduce hypothetical cases in the 
model which can be reflected through a target activation 
level for a certain concept and consider the 
corresponding weights and activation levels for the rest 
of the concepts, thus compatible with the predetermined 
target activation level.  

Once the system reaches equilibrium, the decision-
makers use this information in order to take decisions 
leading to the desired simulated solution. In cases, 
however, in which the system reaches limit cycle 
decision-making is practically impossible. Once in a 
simple FCM environment, one approach to overcome 
this problem is to consult once again with the experts to 
estimate the external factor which influences one or 
more concepts and causes the instability of the system. 
When a GEFCM is used, though, domain experts are not 
able to help since the weight recalculation is performed 
with the involvement of Genetic Algorithms (GAs), thus 
creating a hybrid model. This paper proposes an 
extension of Genetically Evolved Fuzzy Cognitive Maps 
(GEFCMs) aiming at increasing their reliability by 
overcoming the aforementioned weakness appearing in 
cases of a limit cycle behavior.  
 
2. Genetically Evolved Certainty Neuron 
Fuzzy Cognitive Maps  

 
The Fuzzy Cognitive Map (FCM) theory was 

developed recently [8, 10] as an extension to cognitive 
maps [2], providing a graphical knowledge 
representation language that describes a given decision 
basis in the form of an acyclic graph. The concepts 
(propositions or states) used by an individual decision-
maker, are represented as nodes, while directed arrows 
denote the causal relationships (interactions) between 
these concepts. Each arrow is characterized by a weight, 
a real value that indicates the effect of the causal 
relationship between nodes. Each concept node 
possesses a numeric state, which denotes the qualitative 
measure of its presence in the conceptual domain.  

A FCM works in discrete steps [10]. When a strong 
positive correlation exists between the current state of a 
concept and that of another concept in a preceding 
period, we say that the former exercises a positive 
influence on the latter, this being indicated by a 
positively weighted arrow directed from the causing to 
the influenced concept. By contrast, when a strong 
negative correlation exists, it reveals the existence of a 
negative causal relationship indicated by an arrow 
charged with a negative weight. Once the activation 
levels of the system nodes as well as the weighted 
arrows are set to a specific value based on experts’ 
assessment, the system is free to interact [14]. This 
interaction continues until the model reaches a stable 
equilibrium, or presents a limit cycle or, even, a chaotic 
behavior [6]. 

The introduction of Certainty Neuron Fuzzy 
Cognitive Maps (CNFCMs) [15] in 1997 provided 
additional fuzzification to FCMs, by allowing for 

various activation levels of each concept between the 
two extreme cases, i.e. activation or not. More 
specifically, an updating function f() was used to revise 
the certainty factor of a concept after receiving new 
evidence concerning previous beliefs based on the 
present certainty factor. The updating function of a 
CNFCM is given in equation (1) as follows:  
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and Ai is the activation level of concept Ci at 
times (t+1) or (t). Equation (2) is the sum of the 
weighted influences that concept Ci receives at time step 
t from all other concepts, di is a decay factor and f() is 
the function used for the aggregation of certainty factors 
[3, 4, 16] : 
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The meaning of equation (3-a,b,c) is that the external 
influence can affect the activation of a concept just to a 
certain degree. The activation levels given by the model 
are related with the values stored in the fuzzy knowledge 
base yielding the meaning of each concept in terms of 
output [7]. 

It is observed that modifications of the weight matrix 
of the map lead to different dynamic behavior of the 
system. In the Genetically Evolved Certainty Neuron 
Fuzzy Cognitive Map (GECNFCM) the optimal weight 
matrix corresponding to a desired activation level for a 
given concept is calculated in order to overcome the 
main weakness of the CNFCM model, namely the need 
to recalculate the weights corresponding to each concept 
every time a new strategy is adopted [3, 4]. More 
specifically, the Genetic Algorithm (GA) [12] evolves a 
population of individuals, each of which consists of a 
weight matrix describing the degree of causal 
relationships between the concepts participating in the 
map. The activation level of a certain concept in focus 
denoted by Ad,i  is used to calculate the fitness of each 
individual-weight matrix WMi according to the 
following function: 

fitness(WMi)=1/(1-abs(Ad,i – 
mean50(Aa,i)) 

(4) 

     where Ad,i is the target (desired) value of the 
activation level for the concept in focus Ci and 
mean50(Aa,i) is the mean value of the last fifty actual 
activation levels of concepts Ci as these are computed by 
the CNFCM (t variable in equation (3)). 

The dynamic behavior of the GECNFCM system is 
identical to that of a classic FCM model, thus the system 
can reach equilibrium or present a limit cycle behavior. 



When a GECNFCF hybrid system enters into limit cycle 
[9] the experts cannot identify the external influences 
that drive the system to this behavior as in the case of the 
simple FCM, due to the fact that these influences are 
controlled automatically by the optimization process of 
the Genetic Algorithm. Thus, the only alternative is to 
turn to a method that will attempt to smoothen the limit 
cycle observed and reliably defuzzify the resulted 
smoothened value.  
 
3. The Limit Cycle case 

 
A GECNFCM can reach equilibrium at fixed points 

in a direct way with the activation to be decimals in the 
interval [-1, 1]. It can also reach a limit cycle behavior in 
which the system falls in a loop of specific period, and 
after a certain number of steps, it reaches the same state 
[18]. A Limit Cycle phenomenon is encountered in cases 
in which a dynamic system falls into periodic 
oscillations, failing to reach equilibrium. Oscillations 
can occur in neural systems due to properties of single 
neurons [11] and properties of synaptic connectivity 
among neurons.  

 The equations that are applied at equilibrium points 
can be calculated by means of equation (1). For the 
equilibrium state we have 
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This is true only when  and are of the same sign 
[15]. In equation (3) the equilibrium point is reached by 
the use either of the first or the second rule (equation 
(3a) and (3b) respectively).  
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When both  and  take positive values, using the 
first rule of equation (3), we can calculate the 
equilibrium value as follows: 
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When both  and  take negative values, using the 
second rule of equation (3) we can calculate the 
equilibrium value as follows: 
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In case that  and are of opposite signs, using 
the third rule of equation (3) we can conclude that 

 cannot be satisfied:  
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In the above case (  and  of opposite signs) the 
system enters into limit cycle behavior and values of the 
various concept activation levels change periodically, 
something that reveals the existence of strong 
interactions between the concepts [15].  
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3.1 Smoothening and defuzzification 
technique for handling limit cycle behavior 
  

The structure of a limit cycle must be first 
investigated before applying any smoothening 
technique. The functioning of an oscillation is 
characterized by three parameters: (i) frequency, (ii) 
phase and (iii) amplitude [13]. Equilibrium can be 
described as the case in which all oscillatory units of an 
ensemble stabilize their frequency to a constant value 
and their phase and amplitude difference to a constant 
point within the interval [–1, 1]. The stability of an 
equilibrium oscillation can be described as follows: 

∞→→ tforFconsttFk ,)(  
                   (10) ∞→→− + tfortPtP kk ,0|)()(| 1

for  every  1,...,2,1 −= nk
where is the frequency of the k)(tFk

th oscillator, at 
time t in the ensemble of n oscillators, and is its 
phase at time t. 

)(tPk

In our case the oscillation is not continuous, as in the 
case of a sinus wave; it emerges in discrete steps as the 
activation levels are computed for a certain number of 
iterative steps (t variable in equation (1)). Our 
smoothening method, therefore, is based on a simple and 
straightforward approach which computes the mean 
value of the discrete oscillation as follows: Let us 
assume that the model runs for N iterations (t=1...N) 
presenting a limit cycle behavior. In each iteration the 
new values for the activation levels are calculated. Once 
the model completes the Nth iteration, the smoothening 
and defuzzification process begins. For a certain 
activation level the process calculates the Maximum, 
Minimum and Mean values of the limit cycle using a 
specific number T of subsequent activation level values, 
where N’≤T≤N and N’ is the number of iterations 
indicating the time required for the activation level to 
stabilize its oscillation. The Mean value, considered as 
the smoothened value of the limit cycle, will then be 



considered as a possible reliable input for inference 
purposes by the defuzzification process. 

Before moving to describing how a limit cycle may 
be defuzzified based on its Mean value, it is necessary to 
outline some basic notions of fuzzy sets. The use of 
fuzzy sets provides a basis for a systematic way of 
manipulating vague and imprecise concepts and as such 
they are often treated as representing linguistic variables. 
A linguistic variable can be regarded either as a variable, 
the value of which is a fuzzy number, or as a variable 
assuming values defined in linguistic terms.  A linguistic 
variable may be described by the quintuplet (x, T(x),U, 
G, M) in which x is the name of variable, T(x) is the 
term set of x, that is, a set of linguistic values of x each 
of which corresponds to a fuzzy number defined in a set 
of real values U, G is a syntactic rule for generating the 
linguistic of values of x from their numerical 
counterpart, and M is a semantic rule for associating 
with each value its meaning [5]. Each term u in T(x) can 
be classified in a certain fuzzy set A using a membership 

function which provides a real 
number in the interval [0, 1] indicating the degree to 
which u belongs to set A. A value of 0 means that the 
term is not a member of the set while a value of unity 
denotes entire set membership. 

]1,0[)( →=Α Uuµ

A rather straightforward example will clarify the 
matter: If we interpret Temperature, for example, as a 
linguistic variable we may have a term set 
T(temperature)={Low, Medium, High} and each term in 
the term set may be characterized by a fuzzy set in a 
universe of discourse U=[0oC, 40oC]. The three crisp 
variables may be defined as Low=10oC, Medium=20oC 
and High=30oC. This definition, though, does not cover 
values between the crisp variables, e.g. when 
temperature ranges between 0oC and 10oC, 10oC and 
20oC, 20oC and 30oC. This is the reason why the 
classical set operations must be extended from ordinary 
set theory to fuzzy set theory. The values that extend the 
crisp concepts reduce to their meaning when the fuzzy 
subsets have membership degrees. For example we may 
interpret Low as “Temperature below 10oC”, Medium as 
“Temperature close to 20oC” and High as “Temperature 
above 30oC”. The terms can then be characterized as 
fuzzy sets whose membership functions are: 
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The fuzzification of the three crisp values as shown 
in figure 3 causes the distribution of the variables 
according to a certain profile that reflects the problem 
under study. It is obvious that this distribution produces 
two overlapping areas. Despite the fact, however, that 
overlapping is both common and even desirable on 
certain occasions, there is a problem with allocating 
values that fall within an overlapping area. For example, 
if temperature is equal to 17.5oC then this temperature 
belongs to both the Low and the Medium fuzzy sets, 
with membership values 0.25 and 0.75 respectively. 
Thus, we may infer that this temperature value may be 
considered as low with confidence level 25% and 
medium with 75%. It is quite important to note in this 
case that we do not rule out the Low set membership of 
this temperature value just because its confidence level 
is significantly lower compared to that of the Medium 
set. The reason is that the fuzzy interpretation of a 
linguistic variable within overlapping areas is usually 
highly subjective. In cases in which this fuzzy structure 
is used for decision-making, in particular, the two 
alternative classifications of the linguistic variables are 
equally important as indicating that more than one 
approach (decisions) must be taken into consideration.  

 
 
 
 
 
 
 
 
 

 
Figure 3.  Membership Function of Linguistic 

Variable Temperature 
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In Fuzzy Cognitive Maps the term set consists of 

specific linguistic variables describing the activation 
levels of the concepts participating in the model. These 
variables are associated with values within the range [–1, 
+1].  The number of linguistic variables depends on the 
complexity of the real-world problem described by the 
model and the desired model accuracy. The general 
structure of the fuzzification of the crisp variables 
describing the activation levels is given in figure 4.  

Having described in brief the basic fuzzification 
notions, we return now to the defuzzification task. The 
defuzzification process calculates a single numerical 
value for a fuzzy output variable on the basis of the 
inferred resulting membership function for this variable. 
This process, though, becomes extremely difficult when 
a dynamic system falls into periodic oscillations [9]. We 
shall attempt to improve inference in this case by 
attaching a confidence rate to the resulting smoothened 
activation levels.  The reliability of the system may thus 
be increased and the fault rate decreased. The essence of 
the proposed defuzzification after performing the 
smoothening of the limit cycle lies with attaching a 

0 

0.75 

0.25 

17.5 10 20 30 40 
Temperature in Celsius 



degree of confidence to the results that will suggest 
whether the smoothened values found are reliable 
enough to be used in the decision making process. 

 
 
 
  
 
 
 
 

Figure 4.  Example of fuzzification in the interval [-1, 1] 
 
The proposed defuzzification process for a certain 

activation level under limit cycle consists of two basic 
steps: 

Step 1. The first step involves classifying the activation 
level with respect to its Minimum and Maximum 
values as “BOUNDED LIMIT CYCLE”, or 
“UNBOUNDED LIMIT CYCLE – POSSIBLE 
CHAOS”. Since the range of values for the activation 
levels in our case is  [-1, 1] the Baseline Size of the 
interval is 2. Using the Minimum and Maximum 
values, we take the difference Diff=(Maximum-
Minimum) and calculate the percentage of this value 
with respect to the baseline size. If Diff is lower or 
equal to the 75% of the Baseline Size then the 
oscillation of the activation level is characterized as 
“BOUNDED LIMIT CYCLE” and inference is 
possible through the Mean value of step 2: The Mean 
Value is matched to the appropriate fuzzy interval and 
defuzzified. Otherwise, (Diff>0,75*Baseline Size) the 
oscillation is characterized as “UNBOUNDED LIMIT 
CYCLE – POSSIBLE CHAOS”. In this case the 
oscillation spans all the available space in the range 
[Minimum, Maximum] and thus the Mean value 
cannot be matched to a single fuzzy interval with 
confidence. Therefore, inference is not possible due to 
the low degree of reliability of the resulting Mean 
value. 
Step 2. This step is followed only in the case of a 
“BOUNDED LIMIT CYCLE”. The Mean value of the 
specific activation level presenting limit cycle is 
matched with a certain fuzzy set interval according to 
the analysis given for the specific concept. There are 
two possibilities here: 

(i) Either the Mean value falls in one interval only, 
and thus the confidence level of belonging to this 
fuzzy set is 100%, or, 

(ii) The Mean value falls between two overlapping 
fuzzy intervals, thus having two confidence 
levels, one for each interval. In this case, the 
confidence levels are calculated as the value of 
the membership function of the Mean value for 
each of the overlapping fuzzy intervals. The 
interval chosen for inference purposes is the one 
for which the Mean value has the highest 
membership value, or, equivalently, the highest 
confidence level. 

 

 

core core core core core core 

Figure 5. Limit Cycle before smoothening 
 

 
Figure 6.  Limit cycle and smoothening 

 
Figures 5 and 6 demonstrate the proposed 

smoothening method: The system ran for a total of 250 
iterations (N variable) presenting limit cycle behavior. 
After 100 iterations (N’ variable) the smoothening was 
completed. The Mean value of every activation level 
presenting limit cycle was first computed and then 
investigated for proper classification of each oscillation. 
According to this investigation, all limit cycles were 
classified as “BOUNDED”. Thus, smoothening was 
considered as being reliable and for the next 150 
iterations (T variable) the system was forced to stabilize 
and reach equilibrium at the fixed points of the 
smoothened values. The inference resulted from the 
defuzzification is out of the scope of this short method 
demonstration, and has therefore been omitted.. 
 
5. Conclusions 

 
This paper proposes an extension of Genetically 

Evolved Fuzzy Cognitive Maps (GEFCMs), aiming at 
increasing their reliability by overcoming a significant 
weakness appearing in cases of a limit cycle. In such a 
case domain experts are not able to help as the weight 
recalculation is performed with the involvement of 
Genetic Algorithms (GAs).  

The proposed method for handling the limit cycle 
case is divided into two parts: The first part calculates 
the mean value of the limit cycle oscillation of every 
activation level participating in the conceptual domain. 
The mean value of each activation level is considered as 
the equilibrium point of the corresponding smoothened 
limit cycle. The second part investigates the structure of 
a certain limit cycle and attaches a degree of confidence 
to the output suggesting whether the resulting 
smoothened activation level value is reliable enough to 

a2 b1a1=-1 a3 b2 b(n
a(n/2)+2 a(n/2)+3

b(n/2+2)
an

… … bn-1 bn=1



be used in the decision making process. In case the 
confidence level of the smoothened activation level is 
high, a defuzzification process is utilized to facilitate 
inference based on the fuzzy intervals defined for the 
concept of interest. In the opposite case involving a low 
confidence level, Otherwise, inference is not possible, or 
to be more precise, it is neither reliable nor accurate. 

This proposed technique increases the reliability of an 
FCM system by identifying optimal solutions with a 
degree of confidence when a system presents limit cycle 
behavior. Using a GECNFCM, decision-makers are able 
to introduce hypothetical cases in the model by using a 
target activation level for a certain concept and 
considering the corresponding weights and activation 
levels in cases of both equilibrium and limit cycles. 
Decision-makers are then able to use this information, 
with a certain degree of confidence, to make decisions 
leading to the desired simulated solution.  
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