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We demonstrate how a non-nested statistical test developed by Vuong [1989] can be used to 
assess the suitability of alternate order-of-entry assumptions used for identification purposes in 
empirical entry models. As an example, we estimate an entry model of McDonald’s and Burger 
King restaurant outlets in United States. The data set focuses on relatively small ‘isolated’ 
markets. For these markets, the non-nested tests suggest that order-of-entry assumptions that give 
Burger King outlets a first-mover advantage are statistically preferred. Last, a Monte Carlo 
experiment provides encouraging results suggesting that the Vuong-type test yields reliable 
results within the entry model framework. 
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I.   Introduction 

STATIC ECONOMETRIC ENTRY MODELS WITH HETEROGENEOUS FIRMS often pose 

estimation challenges due to the presence of multiple Nash equilibria. One way researchers have 

dealt with these challenges is to invoke one of many alternate equilibrium selection assumptions 

to render identification and estimation feasible. While econometrically convenient, such 

equilibrium selection assumptions are not always easy to justify. However, at a minimum it may 

provide more comfort to readers of this type of research if researchers provide statistical 

evidence that discriminate among alternate equilibrium selection assumptions. As such, the main 

contribution of this paper is to show how Vuong-type non-nested tests (see Vuong [1989]) can 

be used to choose between alternate equilibrium selection assumptions that are commonly made 

when using static entry models. To illustrate the implementation of non-nested tests, we use data 

on the presence of Burger King and McDonald’s restaurant outlets in a cross-section of local 

markets in the United States. We also use the opportunity to provide inference on competition 

between Burger King and McDonald’s restaurant outlets in the United States, which is another 

contribution of our paper. 

Static entry models can be divided into two categories: (1) entry models of complete 

information; and (2) entry models of incomplete information. The complete information 

assumption in entry models implies that all parts of each firm’s profit function are common 

knowledge to rival firms. In contrast, an incomplete information assumption implies that part of 

each firm’s profit function is private information for the firm. Multiple Nash equilibria in the 

entry game can occur irrespective of whether complete or incomplete information is assumed for 
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the profit functions of firms.1 However, in this paper we focus on static entry games of complete 

information.2 

Researchers have used various methods to deal with the challenges posed by multiple Nash 

equilibria in static entry models of complete information. For example, Bresnahan and Reiss 

[1991] proposed that the model be restricted to predict the total number of entering firms but not 

firm identities. However, a caveat with this approach is that the researcher will not be able to 

make use of information that captures the heterogeneity of firms. Berry [1992], Mazzeo [2002], 

Tamer [2003], Einav [2010], and Cleeren et al. [2010], among others,3 provide an alternative 

method to obtain unique equilibrium while still allowing for firm heterogeneity. In particular, 

these papers exploit the fact that a unique equilibrium of the entry model can be obtained by 

assuming that firms enter the relevant market sequentially. Since first-movers preempt other 

players in an entry game, an order-of-entry assumption essentially is an equilibrium selection 

assumption when multiple equilibria differ based on the identity of firms that ultimately enter. It 

must be noted however, that while the sequential entry assumption may be used to obtain a 

unique equilibrium of the entry model, the order-of-entry assumption does not further imply that 

price and output determination follow this assumed order. 

An alternative estimation strategy that can handle situations of multiple equilibria, and does 

not require invoking an order-of-entry assumption, is the ‘bounds-type’ approach outlined in 

Ciliberto and Tamer [2009]. However, the bounds-type estimation approach has its own 

challenges. For example, parameters might only be set identified rather than point identified 

                                                 
1 In a dynamic entry/exit game setting, Doraszelski and Satterthwaite [2010] argue that an equilibrium might not 

exist when firms are not allowed to choose mixed entry/exit strategies in an entry/exit game of complete 
information. The authors further show that, instead of allowing mixed strategies, an incomplete information 
assumption is an alternate way to guarantee that an equilibrium exists in the entry/exit game.   

2 For examples of entry models of incomplete information, see Seim [2006], Einav [2010] and Yang [2012]. 
3 See Berry and Reiss [2007] for an excellent review of this literature. 
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when using the bounds-type estimation approach, but invoking an order-of-entry assumption 

approach makes it possible to point identify parameters. So some researchers may still opt to go 

the route of invoking an order-of-entry assumption to estimate parameters of the entry model. 

Our paper illustrates to these researchers one way to formally test competing order-of-entry 

assumptions if their preferred estimation strategy is to invoke an order-of-entry assumption. 

First, we use the empirical entry model framework developed by Cleeren et al. [2010] to 

identify a unique equilibrium in a multi-player, multi-equilibrium, entry game. This framework 

easily allows for estimation of the entry model under alternate order-of-entry assumptions. We 

then focus on statistical selection of the most appropriate order-of-entry assumption for the entry 

model. The basic framework for the non-nested maximum likelihood statistical selection test is 

developed by Vuong [1989], but we implement it in the context of long-run strategic entry 

decisions of firms, while Gasmi et al. [1992] implement it to distinguish between different 

assumptions about the nature of short-run product market competition between firms. 

Across the types of markets in the McDonald’s-Burger King data set we use, we find that 

order-of-entry assumptions that give Burger King outlets first-mover advantage are statistically 

favored. Furthermore, there is evidence that order-of-entry assumptions matter for the resulting 

parameter estimates of the type of entry model we consider, which can prove crucial in settings 

where policy conclusions need to be drawn based on estimated parameters. In the data section we 

discuss the characteristics of markets present in our data set. We also run a small-scale Monte 

Carlo experiment to assess the power of the test in distinguishing between alternate order-of-

entry assumptions. The experiment reveals that the test gives correct results in 77 out of 100 

simulations. 
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Since our econometric analysis is applied to data on Burger King and McDonald’s restaurant 

outlets in United States, it is instructive to briefly review previous work on the fast-food 

industry. Most papers in this literature conclude that there is significant difference between 

McDonald’s and Burger King’s response to various market characteristics and therefore these 

two chains are not considered perfectly substitutable. Some researchers such as Lafontaine 

[1995] and Kalnins and Lafontaine [2004] focus on the franchising feature of the industry. They 

identify different factors that affect franchisee and franchisor’s decision-making. Graddy [1997] 

focuses on price discrimination within the fast-food industry, while Stewart and Davis [2005] are 

more generally concern about price dispersion of different fast-food chains. Kalnins [2003] 

applies spatial econometrics to hamburger price data to assess the degree of substitutability of 

products and locations of spatially dispersed franchised chains. Thomadsen [2005] uses spatial 

econometric models to analyze how ownership structure and market geographic characteristics 

jointly influence the pricing decision of McDonald’s and Burger King restaurant outlets and 

found that McDonald’s outlets give a statistically significant higher utility to consumers than do 

Burger King outlets. Thomadsen [2007] examines the optimal product positioning decision of 

McDonald’s and Burger King restaurant outlets and finds that the equilibrium depends crucially 

on market size. 

Standard models of entry, which include the type of entry model we use in this paper, capture 

the competitive effects of entry, i.e. reduction in profits due to additional entry, but not the 

effects of learning. Toivanen and Waterson [2005] constructed an entry model designed to 

capture the effects of learning. Specifically, they design their entry model to identify a positive 

spillover effect between competitors when there is at least one store of the competing firm 

already present in the market. The authors estimate their model using panel data on the presences 
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of McDonald’s and Burger King restaurant outlets in local markets in the United Kingdom 

(U.K.). They find that existing rival presence in a market increases the probability of entry by 

increasing expected market size. This result suggests that a potential entrant can learn about the 

profitability of a market by observing the existing rival’s performance. 

Yang [2012] uses the same dataset as Toivanen and Waterson [2005] and further explored 

the learning aspects of firms’ entry strategy, but in contrast, Yang [2012] uses a framework in 

which firms have incomplete information about each other’s profitability. The positive spillover 

effect result persists even under incomplete information. Importantly, Yang [2012] distinguishes 

between hidden information on cost or demand. He finds that significant positive spillover 

effects for both restaurant chains can only be found in the hidden cost specification, while a 

learning effect is significant and positive for Burger King under all specifications. 

The rest of the paper is organized as follows: Section II outlines the econometric model as 

well as the non-nested test procedure used for selecting the appropriate order-of-entry 

assumption. In Section III we discuss our data and descriptive statistics. Section IV presents 

estimation results from our model as well as results of the non-nested test. The last section 

concludes. 

 

II.   The Model 

Let the numbers of McDonald’s (M or MAC) and Burger King (B or BK) restaurant outlets in a 

market be denoted by MN  and BN , respectively. Profit for an outlet of chain type  ,f M B  is 

given by a latent variable f  such that 

(1)    , ,f M B f M B fN N N N    , 
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where  ,f M BN N  is the deterministic part, and f  is the part that is unobservable to 

researchers but observed by all firms (complete information assumption) and therefore we 

assume this part of profit is random. We assume that outlets of the same brand/chain are 

homogeneous.4 

Three standard assumptions are employed here for the deterministic part of restaurant outlets’ 

profit: 

ASSUMPTION 1 

    1, ,M M B M M BN N N N    

    BMBBMB NNNN ,1,    

ASSUMPTION 2 

    , 1 ,M M B M M BN N N N    

    BMBBMB NNNN ,,1    

ASSUMPTION 3 

    1, 1 ,M M B M M BN N N N     

    BMBBMB NNNN ,1,1   . 

Assumptions 1 and 2 are derived from the fact that restaurant outlets within any particular 

market, either of the same chain or not, compete with each other and thus a new entrant lowers 

the profitability of existing outlets of either chain. Assumption 3 states that the negative profit 

impact due to the new entry of within chain restaurant outlet is greater than the negative profit 

impact due to entry of a different type chain outlet. In other words, intra-chain competition is 

more intensive than inter-chain competition. As mathematically shown and proven in Cleeren et 

                                                 
4 See Thomadsen [2005] for a discussion of the justification of this homogenous assumption.  
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al. [2010],5 each of these three assumptions is needed to derive a generalized probability 

expression (see equation (3) below) that deals with all the possible cases in which multiple Nash 

equilibria might arise. In other words, together, these three assumptions are necessary to ensure a 

well defined probability space on which to build the likelihood function. 

With these assumptions, an observed market structure  ,M Bn n  is a Nash equilibrium if 

(2) 
   
   BMBBBMB

BMMMBMM

nnnn

nnnn

,1,

,,1







. 

Conditions in (2) will admit multiple Nash equilibria without additional structure on the entry 

game. Furthermore, these conditions will yield a unique Nash if we assume that outlets enter 

according to a certain sequence. In addition, Cleeren et al. [2010] argue that when looking at a 

market structure with totally n competing firms, ‘only the number of players of each type during 

these first n  moves matters, and their exact order of entry is otherwise irrelevant (p.462).’  

Let Mn  be the number of McDonald’s outlets during the first n moves in the assumed 

sequence of entry, the probability of observing market structure  ,M Bn n  as a Subgame Perfect 

Nash Equilibrium (SPNE) is given by: 
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where  I x  is an indicator function that takes the value 1 if 0x  , and 0 otherwise.     

denotes the standard bivariate normal density function specified as: 

                                                 
5 In Cleeren et al. [2010], see Assumptions 1, 2A and 2B on page 460, Claims 1, 2 and 3 and the discussion of 

these claims on page 461, as well as the formal proofs of these claims in the Appendix. 
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(4)  
2 2

22

21 1
, exp

2 12 1
M B

M B M B
M B

u u

u u u u
u u


  

   
      

, 

where   is a parameter that measures the correlation of shocks across chain-type profits with 

1 1   . When 0  , equations (3) and (4) together yield a bivariate ordered probit model 

with endogenous variables  ,M Bn n . However, if we impose the restriction 0  , then shocks 

to chain-type profits are assumed independent and the model reduces to two separate ordered 

probit models - one for each chain-type. 

Suppose in a market there are two McDonald’s outlets and two Burger King outlets. If the 

assumed sequence of entry for up to 6 outlets is given either by MBMBMB, MMBBMB, or 

BBMMMB, based on equation (3) the probability of observing market structure 

   , 2,  2M Bn n   is given by the same expression, 
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     . 

This is because for all three of these assumed entry sequences, there are exactly two McDonald’s 

outlets in the first 4 M Bn n   entries, i.e. 2Mn  , which implies that the indicator function  I  

in equation (3) yields the following:      2 2 0M M M MI n n I n n I       .6 However, for 

those same assumed sequences of entry, the probability of observing market structure 

   1 ,1, BM nn  is computed using a different expression in each case. 

Considering market structure    1 ,1, BM nn  and assumed order-of-entry MBMBMB, there 

is only 1 McDonald’s outlet in the first BM nn 2  entries, which implies, 1Mn   and the 

indicator function  I  in equation (3) yields the following: 

                                                 
6 Since our exposition draws heavily from Cleeren et al. [2010], the reader is referred to that paper for additional 

examples and discussion. 
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     1 1 0M M M MI n n I n n I       . Therefore, assuming entry sequence MBMBMB, the 

appropriate probability expression for the    1 ,1, BM nn  market structure that is implied by 

equation (3) is: 
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Considering market structure    1 ,1, BM nn  and assumed order-of-entry MMBBMB, there 

are 2 McDonald’s outlets in the first 2 entries, which implies 2Mn  ;    2 1 1M MI n n I    ; 

and    1 2 0M MI n n I    . Therefore, assuming entry sequence MMBBMB, the appropriate 

probability expression for the    1 ,1, BM nn  market structure that is implied by equation (3) is: 
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Last, considering market structure    1 ,1, BM nn  and assumed order-of-entry BBMMMB, 

there is 0 McDonald’s outlet in the first 2 entries, which implies 0Mn  ; 

   0 1 0M MI n n I    ; and    1 0 1M MI n n I    . Therefore, assuming entry sequence 

BBMMMB, the appropriate probability expression for the    1 ,1, BM nn  market structure that 

is implied by equation (3) is: 
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Once the probability expression for each market structure is constructed, we can easily 

compile these market structure probabilities to construct a well-defined log likelihood function: 
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 (5)    ,,log
1
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0,0

maxmax
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where superscript t  indexes markets and t

NN t
B

t
M

D
,

 is a zero-one indicator variable that equals one 

if t
M

t
M nN   and t

M
t
M nN   but zero otherwise. Note that the log likelihood function in equation 

(5) is a function of the correlation parameter,  , via equations (3) and (4). Additional parameters 

will be introduced once the profit function is specified. 

 

II(i). Specification of Profit Function 

For any given market with market structure  ,M BN N , the deterministic part of profit is 

specified as: 

(6)  
1

, ,
1 1

,
f fN N

f M B f f i f j
i j

N N X   


 

    , 

where X  is a vector of market-specific characteristics including population and other socio-

demographic variables, while f  is the associated chain-specific vector of parameters that 

capture how the profit of a restaurant outlet of a given chain-type is affected by a marginal 

change in the relevant market-specific characteristic. f  measures the marginal profit effect due 

to entry of same chain-type restaurant outlets (intra-chain competition), while f  measures the 

marginal profit effect due to entry of different chain-type restaurant outlets (inter-chain 

competition). f , f , and f  are chain-specific parameters to be estimated. 

Note that we assume 0f   when 0fN  . Thus there are only 1fN   intra-chain marginal 

competitive effect parameters starting from the second same chain-type restaurant outlet in the 

particular market. Also, from Assumptions 1-3, we must have, 
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0f  ; 0f  ; f f  ; , , 1f i f i   ; , , 1f i f i   ,  ,f M B . 

In our estimation, we impose these restrictions. 

Given the functional form specification of the profit function in equation (6) and the log 

likelihood equation in equation (5), we estimate the parameters of the model via Maximum 

Likelihood, that is, we estimate the parameters by solving the following optimization problem:7 

(7)  


,,,;
,,,

XLLMax . 

 

II(ii). Non-nested Test Procedure 

The non-nested test procedure we use in this paper is an application of tests developed by Vuong 

[1989]. Gasmi et al. [1992] also applied the non-nested test procedures in a different setting. For 

each pair of assumed order-of-entry model specifications  ,p qS S , the likelihood ratio statistic 

is: 

(8)  1

T p q
t tt

LR LL LL


  , 

where T is the total number of observations in the sample, while p
tLL  and q

tLL  are the optimal 

values at observation t taken by the log likelihood functions for order-of-entry model 

specifications pS  and qS , respectively. Vuong [1989] argues that the likelihood ratio statistic in 

equation (8) can be normalized by its variance: 

(9)    
222 1 1

1 1

T Tp q p q
t t t tT Tt t

LL LL LL LL
 

       , 

so that the following non-nested test statistic: 

                                                 
7 We numerically optimize the log likelihood function over the parameter space using the fminsearch algorithm in 

the MATLAB computer software. 
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(10) 0.5 LR
NNT T


 , 

is asymptotically distributed standard normal under the null hypothesis of equal fit.8 

A one-tale statistical test at the 5% significance level for the standard normal distribution has 

critical values 1.64 . If 1.64 1.64NNT   , we conclude the data are unable to discriminate 

between the two order-of-entry models, and therefore the null hypothesis cannot be rejected. If 

1.64NNT   , we conclude that order-of-entry specification qS  better explains the data 

compared to specification pS , but if 1.64NNT  , we conclude that specification pS  better 

explains the data compared to specification qS . 

One of the very important features of this type of non-nested normalized likelihood ratio test 

is that, as noted by Gasmi et al. [1992], it can be used to test between two different models even 

though one or both of them are mis-specified. In other words, without committing to declare a 

‘true’ model, the test allows the researcher to conclude which, if any, of the two models being 

compared better fits the data. 

 

III.   Data 

We obtained our dataset via the Internet in the spring of 2011. For store location information, we 

rely on McDonald’s and Burger King online restaurant locator on their homepage. We collect 

market structure data for the 48 contiguous states of the United States. Local ‘markets’ are 

delineated at the city level. Socio-demographic characteristic data of each city are obtained from 

the U.S. Census Bureau Census 2000 Summary File 3. Google Map is used to ensure each city in 

our sample can reasonably be treated as a ‘single local market.’ A single local market is defined 

                                                 
8 The equations used here for the LR statistic; the variance of the LR statistic; and the non-nested test statistic, 

correspond to equations (3.1), (4.2) and (5.6) on pages 312, 314 and 318 respectively in Vuong [1989]. 
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as an ‘isolated city’ that is more than 10 miles away from the closest neighboring city. It is well 

known in the literature that static entry models of the type we consider in this paper are better 

suited for data with a cross-section of individually ‘isolated markets.’ 

 

 

Figure 1 
Geographical Distribution of Markets 

 
 

In our data, we have included 2,506 isolated city areas. Figure 1 shows a geographical 

distribution of the cities/markets in our sample throughout the 48 contiguous states of the United 

States, where each market is designated with a black dot on the map. These cities each have at 

least one McDonald’s or Burger King restaurant outlet, but neither restaurant chain has more 

than 3 outlets. The total number of McDonald’s restaurants in our sample is 3083, while the total 
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number of Burger King restaurants is 2004.9 The observed numbers of occurrences of each 

market structure in the data are reported in Table I, while Table II presents definitions and simple 

descriptive statistics of all socio-demographic variables that we use in the analysis. 

 
 

TABLE I 
OBSERVED MARKET CONFIGURATIONS 

Market Structure:  
 ,M BN N  

Number of Markets Percent of Total (%) 

(1, 0) 728 29.05 

(2, 0) 39 1.56 

(3, 0) 7 0.28 

(0, 1) 219 8.74 

(1, 1) 924 36.87 

(2, 1) 261 10.42 

(3, 1) 99 3.95 

(0, 2) 6 0.24 

(1, 2) 34 1.36 

(2, 2) 76 3.03 

(3, 2) 70 2.79 

(0, 3) 0 0 

(1, 3) 1 0.04 

(2, 3) 10 0.4 

(3, 3) 32 1.28 

Total 2506 100 

 

Static entry models better fit industries that can reasonably be described as being in a long-

run equilibrium state. According to the U.S. Securities and Exchange Commission (SEC) filings 

of McDonald’s and Burger King, McDonald’s outlets in the United States has gone from 13492 

to 14157 between 2002 and 2012, an increase of less than 5% in 10 years, while Burger King 

                                                 
9 By year-end of 2011, McDonald’s and Burger King have 14098 and 7204 outlets, respectively, in the United 

States. Thus our sample has 21.9% of all McDonald’s outlets and 27.8% of all Burger King outlets in the U.S. 
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outlets in the U.S. and Canada has gone from 7534 to 7476, a decrease of less than 1% in 6 

years.10 These numbers show that there are minimal changes in McDonald’s and Burger King 

restaurant outlets over this 10-year period, and therefore it is reasonable to argue that during this 

period the industry in North America is approximately in a long-run equilibrium state. 

 

TABLE II 
DEFINITION AND DESCRIPTIVE STATISTICS FOR VARIABLES USED IN OUR 

ANALYSIS 
Name Definition Mean Min Max S. D.

Pop Population (in 1K) 9.923 0.112 117.083 11.318

PCI Per Capita Income (in 1K$) 17.645 6.967 62.131 4.711

White Percentage of Pop that is white (%) 83.16 1.67 100 18.15

Male Percentage of Pop that is male (%) 47.71 33.51 68.62 2.87

Family a Percentage of households reported as 

family (%) 

65.91 27.47 97.25 7.96

BA Percentage of population that has 

Bachelor’s degree or above (%) 

17.97 0.48 69.19 9.4 

a From the definition of U.S. Census Bureau, ‘A family includes a householder and one or more 
other people living in the same household who are related to the householder by birth, marriage, or 
adoption…Thus, the number of family households is equal to the number of families.’ See 
documentation for Census 2000 Summary File 3 for detail. 

 

Information in Table I provides some support for the three assumptions outlined in the model 

section of the paper. One challenge to those assumptions is the idea that restaurant outlets 

already present in a market can positively influence subsequent entry, an effect Toivanen and 

Waterson [2005] refer to as a positive spillover effect, which they found when analyzing the 

expansions of McDonald’s and Burger King outlets in the United Kingdom. If there are strong 

positive spillover effects in our U.S. data set, we should expect the vast majority of markets to 

                                                 
10 The SEC filing documents are available only back to 2006 for Burger King when it first went IPO in that year. 

In addition, from 2006 to 2012, Burger King’s K10 annual reports only provide numbers of outlets for U.S. and 
Canada combined. 
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contain both McDonald’s and Burger King outlets, and the correlation between outlets of both 

chain-types being in a given market should be high. However, only 60.14% of the markets in our 

sample contain both McDonald’s and Burger King outlets. Moreover, the correlation between the 

presence of both in a given market is only 0.3618.11 These characteristics of our data are 

appropriate for the model framework we use. 

Judging from the standard deviations of the variables in Table II, one can see that socio-

demographic variations across our sample cities are not trivial. Not surprisingly, consistent with 

population density, Figure 1 shows that more markets are concentrated in the eastern and western 

regions of the United States compared to the central region. 

We follow Mazzeo [2002] and transform socio-demographic variables in the following 

manner: 









 



T

t
ttt x

T
xx

1

* 1
ln , 

where T is the total number of observations of the full sample (2506 in our paper). This 

transformation implies that when the untransformed variable takes on a value equal to its mean, 

the associated transformed variable will take on a value of zero. These transformations should 

not affect the qualitative impact of variables since each variable’s ordinal property is preserved. 

So for example, the transformed population variable still remains a valid index of market size. 

As discussed in Mazzeo [2002] and confirmed by our own experience, the advantage of such a 

transformation of the variables helps with making estimation of the nonlinear entry model easier.  

In Table III, we present three reduced-form regression specifications in which number of 

McDonald’s restaurant outlets, number of Burger King restaurant outlets, and the total number of 

                                                 
11 After putting information in Table I into a 2506-by-2 matrix, we calculate the correlation of the two columns to 

obtain the correlation of 0.3618. 



 
 

18

McDonald’s and Burger King restaurant outlets are dependent variables respectively. Table III 

demonstrates that the number of restaurant outlets is positively related to population, and 

negatively related to percentage of households reported as family. The variable ‘Highway’ is a 

zero-one dummy variable that equals to 1 when a city/market is within 6 miles of driving 

distance to an interstate highway. Not surprisingly, locations close to inter-state highways attract 

both restaurants. 

 

TABLE III 
REDUCED-FORM REGRESSIONS 

Variables MAC BK MAC+BK 
Constant 1.447** 1.171** 2.618** 

(0.226) (0.207) (0.315) 
Pop 0.0391** 0.0289** 0.0680** 

(0.0023) (0.0018) (0.0036) 
PCI -0.0065 -0.0018 -0.0083 

(0.0041) (0.0039) (0.0059) 
White -0.0711 -0.274** -0.345* 

(0.0963) (0.0904) (0.135) 
Male -0.0764 0.465 0.389 

(0.414) (0.360) (0.563) 
Family -0.778** -1.080** -1.858** 

(0.180) (0.173) (0.257) 
BA 0.232 -0.016 0.216 

(0.207) (0.193) (0.299) 
Highway 0.141** 0.174** 0.315** 

(0.0255) (0.0230) (0.0362) 
Observations 2,506 2,506 2,506 

R-squared 0.411 0.323 0.511 
Notes: The reduced-form regressions are estimated using Ordinary Least Squares (OLS). We have 
included state dummies. Robust standard errors are in parentheses. ** indicates statistical 
significance at the 1% level; * indicates statistical significance at the 5% level. 
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IV.   Results 

Recall that in our sample, there are maximum 3 McDonald’s and 3 Burger King restaurant 

outlets in any given market. Thus there could be up to 20 different possible entry orders for these 

6 restaurants. We begin by focusing on the following four order-of-entry specifications: 

(1) McDonald’s outlets move first: MMMBBB 

(2) Burger King outlets move first: BBBMMM 

(3) Alternate moves starting with M: MBMBMB 

(4) Alternate moves starting with B: BMBMBM 

In Table IV, we report profit function parameter estimates for both chain-type firms under 

each of the four distinct assumed entry orders. Several results can be drawn from these parameter 

estimates. First, among the socio-demographic variables we consider, the most robust 

determinants of entry are the size of population in a particular market (Pop), the percentage of 

family households (Family), and if city is within six miles of driving distance to an interstate 

highway (Highway). These results are consistent with those from the reduced-form regressions 

reported in Table III. A location that is within six miles of the nearest interstate highway, which 

has a relatively large population and a small proportion of family households, appears to be most 

conducive for fast food entry. Both large local population and a nearby highway imply a larger 

market size. The positive signs from these two variables are consistent with previous literature. 

On the other hand, family households are more likely to cook on their own or go to a finer dining 

restaurant, which is suggested by the negative sign on the Family variable. 
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TABLE IV 
ESTIMATION RESULTS FOR THE STATIC ENTRY MODEL 

MMMBBB BBBMMM MBMBMB BMBMBM 

MAC BK MAC BK MAC BK MAC BK 

Constant 
 

0.6401** 0.3868** 1.0072** 0.4214** 0.7182** 0.3662** 1.0298** 0.4187** 

(0.0581) (0.1085) (0.0675) (0.0793) (0.0730) (0.1153) (0.0644) (0.0742) 

Pop 
 

0.3664** 0.3593** 0.3772** 0.3702** 0.3763** 0.3664** 0.3803** 0.3795** 

(0.0210) (0.0266) (0.0209) (0.0250) (0.0207) (0.0247) (0.0201) (0.0231) 

PCI 
 

-0.1123 0.0439 -0.1093 -0.0624 -0.0808 0.0492 -0.1216 -0.0500 

(0.0861) (0.0955) (0.0749) (0.0821) (0.0862) (0.0961) (0.0748) (0.0843) 

White 
 

-0.0282 -0.1536* -0.0357 -0.0893 -0.0444 -0.1593* -0.0323 -0.0998 

(0.0594) (0.0599) (0.0536) (0.0527) (0.0600) (0.0585) (0.0543) (0.0534) 

Male 
 

-0.1712 -0.2707 -0.1284 -0.1674 -0.1343 -0.2526 -0.1380 -0.2017 

(0.3034) (0.3266) (0.2840) (0.3105) (0.2981) (0.3163) (0.2847) (0.3109) 

Family 
 

-0.6026** -0.8639** -0.5401** -0.6879** -0.6453** -0.8876** -0.5889** -0.7523** 

(0.1223) (0.1301) (0.1083) (0.1171) (0.1189) (0.1273) (0.1122) (0.1163) 

BA 
 

0.0001 -0.0467 -0.0001 -0.0288 0.0016 -0.0393 -0.0041 -0.0328 

(0.0441) (0.0461) (0.0381) (0.0400) (0.0451) (0.0461) (0.0386) (0.0397) 

Highway 
 

0.1423** 0.1455** 0.0868** 0.0973** 0.1619** 0.1570** 0.1065** 0.1164** 

(0.0321) (0.0336) (0.0290) (0.0301) (0.0318) (0.0329) (0.0299) (0.0318) 

1  

-1.8296** -1.5484** -1.7625** -1.5270** -1.8511** -1.4784** -1.7883** -1.5448** 

(0.0666) (0.0703) (0.0730) (0.0528) (0.0790) (0.0684) (0.0695) (0.0521) 

2  

-0.5825** -0.7901** -0.6490** -0.8781** -0.5862** -0.8346** -0.6576** -0.8281** 

(0.0326) (0.0748) (0.0354) (0.0742) (0.0554) (0.0750) (0.0345) (0.0697) 

1  

-0.0048 -0.0001 -0.4500** -0.0001 -0.0867* -0.0001 -0.4589** -0.0001 

(0.0044) (0.0986) (0.0508) (0.0783) (0.0368) (0.1166) (0.0499) (0.0737) 

2  

-0.0001 -0.0001 -0.0001 -0.1245 -0.0001 -0.0380 -0.0001 -0.1391 

(0.1019) (0.1230) (0.0546) (0.0640) (0.0713) (0.1006) (0.0546) (0.0825) 

3  

-0.0001 -0.7901** -0.2654* -0.8781** -0.0001 -0.8346** -0.1573 -0.8281** 

(21.3754) (0.1160) (0.1299) (0.0670) (42.9599) (0.1129) (0.1355) (0.0885) 


 

0.9687** 0.9887** 0.9741** 0.9841** 

(0.0123) (0.0027) (0.0092) (0.0032) 

Log likelihood -3585.5543 -3493.7479 -3571.5353 -3500.7303 
 
Notes: Models are estimated using Maximum Likelihood. Standard errors are in parentheses. ** indicates statistical 
significance at the 1% level; * indicates statistical significance at the 5% level. 
  

Second, intra-chain competitive effects ( 1  and 2 ) are strong and statistically significant, 

while inter-chain competitive effects ( 1 , 2  and 3 ) seem to be relatively weak. There could be 

several factors that contribute to these competitive effects results, one of which may be that 
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differentiation across the chains are sufficiently strong and brand-loyal customers comprise a 

significant segment of the market. It is also possible that the weak inter-chain competitive effects 

result could in part be due to some market characteristics that we the researchers cannot observe, 

and therefore cannot fully control for in the models.12   

Despite the relatively small values for most inter-chain competitive effects, two results stand 

out. First, the negative and statistically significant values of 3  in BK profit functions suggest 

that the presence of a third MAC outlet has a distinctively negative impact on the profit of BK 

outlets. Second, when the assumed entry order is either BK moves first or alternate moves that 

begin with BK, i.e. either BBBMMM or BMBMBM, the presence of the first BK outlet has a 

distinctively negative impact on the profit of MAC outlets ( 1  in MAC profit function). 

While the magnitudes of coefficients on population are consistent across order-of-entry 

specifications in Table IV, the magnitudes of other coefficients that are statistically significant 

vary across order-of-entry specifications. Interestingly, coefficients of ‘Family’ and ‘Highway’ 

are the largest for both chains under the entry order assumption MBMBMB, followed by 

MMMBBB, then BMBMBM, with BBBMMM the smallest. Such result shows that different 

entry order assumptions imply different types of response to changes in socio-demographic 

variables.  

Both the magnitudes and statistical significance of intra and inter-chain competitive effects 

parameters vary across order-of-entry specifications. For example, the entry of a second 

McDonald’s outlet reduces the profit of the existing McDonald’s outlet by a larger amount under 

entry order MMMBBB ( 1 1.8296   ) compared to BBBMMM ( 1 1.7625   ). So there is 

evidence that order-of-entry assumptions matter for the resulting parameter estimates, which can 

                                                 
12 We thank an anonymous referee for suggesting this possibility. 
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prove crucial in settings where policy conclusions need to be drawn based on estimated 

parameters.  

Overall, the intra and inter-chain competitive effects parameters seem more sensitive across 

order-of-entry assumptions compared to the sensitivity of parameters associated with the 

demographic variables. This result makes sense since the order-of-entry assumptions directly 

relate to strategic interactions between the restaurant outlets.  

Last, the unobserved portion of the profit function of McDonald’s and Burger King are 

highly cross-correlated as indicated by the estimates of  . Note that the estimates of   are close 

to 1, but statistically different from 1. 

As mentioned before, the non-nested likelihood ratio test can be used to test competing 

model specifications even if the models are mis-specified. The results of the test are reported in 

Table V. The non-nested test statistics show that entry orders BBBMMM and BMBMBM are 

statistically indistinguishable at conventional levels of statistical significance, but each of these 

entry orders is statistically preferable to MMMBBB and MBMBMB. In addition, MBMBMB is 

statistically preferred to MMMBBB. In summary, among the four entry orders considered thus 

far, entry orders that give Burger King outlets first-mover advantage seem to be statistically 

preferable across the sample of markets in our data set. 

 

TABLE V 
RESULTS OF NON-NESTED TEST 

q 
p BBBMMM MBMBMB BMBMBM

MMMBBB -5.2165 -2.4345 -5.4747 
BBBMMM - 3.7443 1.5503 
MBMBMB - - -3,8405 
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To further investigate whether the first-mover advantage of Burger King outlets persists 

across a comprehensive set of alternate entry order assumptions, we estimate the entry model 

under each of the possible order-of-entry assumptions and test them against each other.13 There 

are a total of 20 entry orders when at most 3 MAC and 3 BK outlets are present in a given 

market. We report the results of these non-nested tests in Table A.I in Appendix A.14  

A positive number in Table A.I suggests that the entry order assumption in the row is either 

statistically indistinguishable from the column entry order or statistically dominates the column 

entry order, while a negative number suggests that the column entry order is either statistically 

indistinguishable from the row entry order or statistically dominates the row entry order. An 

examination of the row that has the BBBMMM entry order reveals that BBBMMM is never 

dominated by any of the 19 alternate entry orders, and it strictly dominates 11 of the 19 alternate 

entry orders. In addition, MMMBBB is statistically dominated by BBBMMM; MBMBMB; 

BMBMBM; MBMMBB; MBBMMB; BMMMBB; BMMBMB; BMMBBM; BMBMMB; 

BBMMMB; and BBMBMM, each of which gives Burger King outlets better first-mover 

advantage than the MMMBBB entry order. In general, the results in Table A.I suggest that entry 

orders that give Burger King outlets a first-mover advantage are most often statistically 

preferable.   

As a cautionary note, the reader is reminded that our sample of markets exclude major 

metropolitan areas, as well as markets that cannot reasonably be considered as ‘isolated.’ 

Therefore, we cannot say whether our findings extend to all markets in the United States. We can 

                                                 
13 We thank anonymous referees for pointing out the importance of estimating and testing all entry orders, as well 

as the Monte Carlo experiment below. 
14 In the interest of space, we do not report the regression estimates of the entry model under the 20 different 

order-of-entry assumptions. However, we are happy to provide these estimates upon request. 
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only claim that our results suggest Burger King outlets have a first-mover advantage over 

McDonald’s outlets in relatively small isolated markets.  

Last, we use a small-scale Monte Carlo experiment to assess the power of the Vuong [1989] 

test within the context that we use it in this paper. Details on how we construct and implement 

the experiment are provided in Appendix B. The following discussion only provides a ‘big 

picture’ description of the experiment and its results.  

We first generate 100 data sets, each containing 1000 markets. Similar to our real data set, 

we allow a maximum of three outlets of each type in each market of a simulated data set. Each 

simulated data set consists of simulated variables that capture market characteristics. In each 

simulated data set we use: (1) the simulated market characteristic variables; (2) parameterized 

outlet profit functions; and (3) a specific order-of-entry assumption, to generate the equilibrium 

number of outlets of each type that will be present in each simulated market. Therefore, the 

advantage we have with each simulated data set relative to the real McDonald’s- Burger King 

data set is that, we actually know the ‘true’ order-of-entry that generates the equilibrium market 

structure in each simulated data set.  

Each simulated data set is generated assuming the entry order is MMMBBB. For each 

simulated data set we econometrically estimate the entry model under MMMBBB, the ‘true’ 

order-of-entry, as well as under MBMBMB, and then apply the non-nested test to see which of 

the two order-of-entry assumptions is statistically favored by the test. Given that there are 100 

simulated data sets, this process produces 100 non-nested test statistic values. Figure 2 

graphically illustrates the results of the non-nested tests. 
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 Figure 2 
Plot of Computed Non-nested Test Statistic Values from Monte Carlo Experiment 

 

The vertical axis in Figure 2 measures the computed value of the non-nested test statistic for 

each of the 100 test events. On the horizontal axis we rank test events by their computed test 

statistic value. A positive test statistic value that is greater that 1.64 (one-tale cutoff value at the 

5% level of significance) suggests that the MMMBBB order-of-entry assumption is statistically 

preferred to the MBMBMB order-of-entry assumption. Alternatively, a negative test statistic 

value that is less that -1.64 suggests that the MBMBMB order-of-entry assumption is statistically 

preferred to the MMMBBB order-of-entry assumption.  

Among the 100 test events the results are clear that, at the 5% level of significance, 

MBMBMB is never statistically preferred to MMMBBB, but MMMBBB is statistically 

preferred to MBMBMB in 77 test events. Therefore, at a 5% level of statistical significance, the 

test reveals the correct order-of-entry assumption 77% of the time. A similar result is obtained 
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when MMMBBB is the order-of-entry used to generate simulation data sets, and tested against 

the BBBMMM order-of-entry assumption.15 

 

V.   Conclusion 

In research that uses static empirical entry models of complete information, it is often convenient 

to assume that players enter sequentially, which makes it necessary to specify a suitable order of 

entry. In this paper, we show how a Vuong-type non-nested test can be used to statistically assess 

the suitability of entry order assumptions. As an example, we estimate and test alternate order-of-

entry assumptions in our entry model on McDonald’s and Burger King restaurant outlets. The 

data set we use focuses on relatively small ‘isolated’ markets in the United States. In these 

markets, the results suggest that the more suitable assumption for the entry model is that Burger 

King outlets have a first-mover advantage over McDonald’s. Furthermore, there is evidence that 

order-of-entry assumptions matter for the resulting parameter estimates of the type of entry 

model we consider, which can prove crucial in settings where policy conclusions need to be 

drawn based on estimated parameters.  

We also conducted a small-scale Monte Carlo experiment to assess the reliability of the 

Vuong-type statistical test to reveal the most suitable order-of-entry assumption. Results from 

the experiment are encouraging, suggesting that at a 5% level of significance the test reveals the 

‘true’ order-of-entry 77% of the time.  

The estimated entry model also provides some interesting results on the fast food burger 

industry. We find that, among the socio-demographic variables we consider, the most robust 

determinants of entry of either McDonald’s or Burger King restaurant outlets are: (1) the size of 

                                                 
15 When testing MMMBBB against BBBMMM at the 5% level of statistical significance, 76 out of 100 test events 

reveal that MMMBBB dominates BBBMMM, while the remaining 24 test events suggest these two order-of-entry 
assumptions are statistically indistinguishable. 
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population in a particular market; (2) the percentage of family households; and (3) if the city is 

within six miles of driving distance to an interstate highway. We also find that intra-chain 

competitive effects are strong and significant, while most inter-chain competitive effects seem to 

be relatively weak. There could be several factors that contribute to these competitive effects 

results, one of which may be that differentiation across the chains are sufficiently strong and 

brand-loyal customers comprise a significant segment of the market. Future research may want 

to explore the robustness of these findings in other sample markets. 
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APPENDIX A: COMPREHENSIVE SET OF NON-NESTED TEST RESULTS 

TABLE A.I 
COMPREHENSIVE SET OF NON-NESTED TEST RESULTS 

        q 
p 

BBBMMM BMBMBM BMMMBB BMMBMB BMMBBM BMBMMB BMBBMM BBMMMB BBMMBM BBMBMM 

MMMBBB -5.2165 -5.4747 -6.5797 -7.3589 -6.6357 -6.7501 0.7357 -6.0480 0.8132 -6.1224 

BBBMMM 1.5503 1.0555 1.3643 1.0649 1.0346 6.8355 1.2263 6.5804 1.2533 

MBMBMB -3.8405 -4.5121 -4.7561 -4.5361 -4.6022 1.9607 -4.2195 2.0114 -4.2567 

BMBMBM 0.2813 0.9771 0.2879 0.2794 7.0328 0.4329 6.8135 0.4605 

MMBMBB -10.0394 -9.4194 -10.0540 -10.1130 -5.8098 -9.8807 -5.6938 -9.9943 

MMBBMB -5.7297 -6.0404 -5.7741 -5.8507 1.2384 -5.3619 1.2466 -5.4275 

MMBBBM -4.4692 -4.2450 -4.5051 -4.5089 1.1647 -4.3395 1.1250 -4.3775 

MBMMBB -4.6521 -5.0794 -4.6736 -4.7549 1.8312 -4.3099 1.9307 -4.3428 

MBMBBM -8.1930 -8.7068 -8.2990 -8.4013 0.1701 -7.5289 0.0706 -7.6639 

MBBMMB -4.4984 -4.6331 -4.5216 -4.5836 1.9606 -4.2274 1.9783 -4.2652 

MBBMBM -8.2203 -8.6451 -8.3349 -8.4188 0.3937 -7.5771 0.2526 -7.7156 

MBBBMM -7.8578 -8.5559 -7.9500 -8.0642 0.4469 -7.1882 0.6313 -7.3040 

BMMMBB 1.3683 0.0473 0.1282 8.2552 0.3461 8.0156 0.4121 

BMMBMB -1.3534 -1.4838 8.4975 -0.8996 8.7859 -0.8693 

BMMBBM 0.0844 8.3715 0.3503 8.1127 0.4235 

BMBMMB 8.4488 0.2549 8.2282 0.3186 

BMBBMM -7.6621 -0.0710 -7.8166 

BBMMMB 7.3241 0.3987 

BBMMBM -7.4436 
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TABLE A.I 
COMPREHENSIVE SET OF NON-NESTED TEST RESULTS (CONT.) 

        q 
p 

MBMBMB MMBMBB MMBBMB MMBBBM MBMMBB MBMBBM MBBMMB MBBMBM MBBBMM 

MMMBBB -2.4345 5.5128 -1.4576 -0.9849 -2.3956 0.7457 -2.2756 0.6460 0.5360 

BBBMMM 3.7443 9.5432 4.5962 3.9913 3.8157 6.7376 3.7179 6.8705 6.7009 

MBMBMB 5.2970 2.6657 0.5230 0.7593 1.9545 -0.4851 1.8806 1.7753 

BMBMBM 9.2869 4.7944 4.1695 3.9325 6.9552 3.8085 7.1039 6.8153 

MMBMBB -5.4698 -4.7864 -5.2435 -5.8346 -5.3426 -5.7321 -5.7830 

MMBBMB -0.6486 -2.1698 1.2142 -2.5413 1.1340 1.0031 

MMBBBM -0.3460 1.1257 -0.6349 1.1349 1.0218 

MBMMBB 1.8529 -0.7497 1.7764 1.7038 

MBMBBM -1.9435 -0.2759 -0.5235 

MBBMMB 1.8764 1.7639 

MBBMBM -0.3480 
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APPENDIX B: PROCEDURE OF THE MONTE CARLO EXPERIMENT 

In an effort to assess the reliability of the non-nested test in our context, we have implemented a 

small-scale Monte Carlo experiment. The following discussion describes the procedure we use. 

Simulated Market Characteristic Variables 

Our sample consists of 100 different simulated data sets. In each simulated data set there are 

1000 markets. Each simulated data set contain three independent variables that measure market 

characteristics, and the values taken by these independent variables vary across the 1000 markets 

and across the 100 data sets. A uniform probability distribution is used to generate the values of 

our simulated independent variables. The minimum and maximum values taken by the three 

simulated independent variables respectively correspond to variables Pop, PCI and Male in our 

real McDonald’s-Burger King sample markets. The simulated market characteristic variables are 

denoted: Pop_sim; CPI_sim; and Male_sim. 

Unobserved Part of Profit – Random Draws 

Similar to our real McDonald’s-Burger King data set, we assume there are two types of 

competing outlets, denoted M and B respectively, which can populate a simulated market. Each 

outlet has a profit function of the form specified in equations (1) and (6), i.e. 

 
1

, ,
1 1

,
f fN N

f M B f f i f j f
i j

N N X   


 

       for  ,f M B , where f  is the unobserved part of 

the profit function. Just as we did in our entry model, we continue to assume that the unobserved 

parts of outlet profit  ,M B   are distributed bivariate standard normal across outlets, with cross-

correlation parameter  . 

For each data set, we draw the unobserved part of outlets’ profit from a bivariate normal 

distribution with 0.6  , which yields a 1000-by-2 matrix of unobserved profit draws  ,M B   . 
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Each row of this matrix corresponds to a market in a simulated data set. Each simulated data set 

has a different 1000-by-2 matrix of unobserved profit draws. 

Creating a Complete Simulated Data Set 

Given the simulated market characteristic variables  Ones, Pop_sim, CPI_sim, Male_simX  , 

the unobserved profit draws  ,M B   , and the assumed profit function parameters in Table B.I 

 , ,, ,f f i f i     , we can use outlet profit functions to compute the equilibrium number of outlets 

of each type  ,M BN N   that will be present in each simulated market under a specific order-of-

entry assumption. In particular, let the simulated profit for outlet f be denoted by 

   , , , ,f M B f f f f fN N X            . Since outlets must have non-negative profits in 

equilibrium, we essentially solve for the vector of integer values  ,M BN N   such that 

 , 0f M BN N   . To obtain a unique solution vector  ,M BN N  , we impose the MMMBBB 

order-of-entry assumption. This specific order-of-entry assumption is imposed in all 100 

simulated data sets that we create. 

In the end each simulated data set has data on market characteristic variables, as well as 

number of outlets of each type in each market. Market structure configurations and their 

associated frequencies in a typical simulated data set are reported in Table B.II. 

Econometric Estimation and Non-nested Test 

Once we have all 100 simulated data sets established, we econometrically estimate the entry 

model on each data set under each of two distinct order-of-entry assumptions, where one of the 

two order-of-entry assumptions is the ‘true’ one used for generating the simulated data. In our 

experiment, the two distinct order-of-entry assumptions used for estimating the entry model are: 
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(1) MMMBBB; and (2) MBMBMB. As previously stated, the simulated data are generated under 

the MMMBBB order-of-entry assumption. 

TABLE B.I 
ASSUMED PARAMETERS 

MAC BK 
Constant 0.85 3 
Pop_sim 0.2 0.5 
CPI_sim 0.8 2 
Male_sim 0.6 0.06 

1   -0.8 -2 

2  -0.7 -1.8 

1  -0.2 -1.7 

2  -0.01 -0.06

3  -0.005 -0.03
 0.6 

 
TABLE B.II 

A TYPICAL SIMULATED DATA SET 
Mkt. Str. 0, 0 1, 0 2, 0 3, 0 0, 1 1, 1 2, 1 3, 1 0, 2 1, 2 2, 2 3, 2 0, 3 1, 3 2, 3 3, 3 

Obs. 43 107 54 37 143 121 86 64 110 53 65 87 14 0 6 10 

 

Once the entry model is econometrically estimated under each of the two order-of-entry 

assumptions for a given simulated data set, we then compute the non-nested test statistic 

according to equations (8), (9) and (10) in the paper. Since there are 100 simulated data sets, this 

process produces 100 computed non-nested test statistics. The number of cases in which the 

computed value of the non-nested test statistic suggests that MMMBBB is the statistically 

preferred order-of-entry assumption reveals the percentage of times that the test will yield the 

correct answer on average. 
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