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ABSTRACT 

We study the effect of different information sources on diffusion between and within companies.  

Our model of economically optimising farmers replicates results from dual process persuasion 

theory, and predicts that inter-firm diffusion will be primarily affected by reliable, easily accessible 

information while intra-firm diffusion will be influenced by technical information.  The results are 

tested on UK farming data.  Consistent with our model, information from agents, suppliers, farmers, 

and agricultural magazines influences inter-firm adoption, from buyers influences intra-firm 

adoption, and from crop consultants, academics, government, and an industry body influences both. 
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1. Introduction 

Inter-firm technology diffusion is the process of technological spread between companies, while 

intra-firm diffusion is the process of spread within companies.  Recent studies in the industrial 

economics literature have compared determinants of the two (Battisti et al, 2007; Battisti and 

Stoneman, 2003; Battisti et al, 2005; Fuentelsaz et al, 2003; Hollenstein and Woerter, 2008).  A 

promise of the work is that it can illuminate the mechanisms driving intra-firm diffusion by contrast 

with the more extensively investigated inter-firm diffusion. 

 

A determinant neglected in the industrial economics literature is the role of sources providing 

information about technology.  The determinant is important for many reasons.  Information 

provision is a primary means of governmental influence on technology adoption (Stoneman and 

David, 1986).  UK companies spent an estimated UK£7.6 billion in 2005 on management 

consultancy, with a fifth on IT-related consultancy alone (Marrano and Haskel, 2006).  The 

management consultancy industry employs tens of thousands of UK workers (Marrano and Haskel, 

2006). Prominent theories of intra-firm diffusion emphasise how information acquisition can 

explain diffusion (Mansfield, 1968; Stoneman, 1981), and the potential role of learning is 

recognised in the empirical intra-firm literature even when it is not a primary concern (Battisti and 

Stoneman, 2005). 

 

Unlike the industrial economics literature, the agricultural economics literature has treated the issue 

to an extent, reflecting the debates on governmental extension programs (Anderson and Feder, 2004; 

Evenson, 2001), the large expenditures on information acquisition (Ortmann et al, 1993), the sizable 

advertising and outreach budgets by input suppliers (Gloy et al, 2000), and the large number of 

information providers (the UK Association of Independent Crop Consultants website 

www.aicc.org.uk reports 244 members in August 2013).  The literature has treated the choice of 

information by farmers (Foltz et al, 1996; Gloy et al, 2000; Wolf et al, 2001), the role of 

information in initial adoption (Garcia-Jimenez et al. 2011; Lapple and Van Rensberg, 2011; 

Wozniak, 1993), and determinants of sequential adoption (Aldana et al, 2011; Khanna, 2001).  

Yaron et al (1992) look at how extension services affect an index including thoroughness of 

adoption of five farming technologies.  Most relevant to our paper is Genius et al (2006), who look 

at partial or full adoption of organic farming with active or passive information collection as 

determinants of the extent of adoption, and as jointly determined variables. 
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The prior work in both the industrial and agricultural literature leaves much unknown about how 

information affects inter-firm and intra-firm diffusion.  In this paper, we examine the comparative 

impact of information sources on inter and intra diffusion in more detail.  We aim to distinguish the 

impact by the amount and character of the information, with our results formulated in comparative 

terms between the two types of diffusion. 

 

We start by presenting our theoretical model.  It describes learning about, and how to use, a 

technology through information acquisition.  Learning is Bayesian, following the normal-normal 

updating in Stoneman (1981), Young (2009), and Aldana et al (2011), and with information 

characterised by its updating parameters.  The model identifies an inter-firm stage where the 

company learns that a new technology is profitable and an intra-firm stage where the company 

learns how to use it profitably.  Information sources are costly to use and their selection is based on 

profit maximisation. 

 

Our model produces results similar to those in dual process persuasion theory (Petty and Cacioppo, 

1986; Chaiken, 1980; Kruglanski and Thompson, 1999).  It implies that different sources of 

information will be influential at the inter-firm and intra-firm stages.  In inter-firm diffusion, 

information’s value arises from small increases in expected returns from undertaking a 

technological trial.  As its value is often low prior to adoption, it will be used to assess the value of 

a trial if it does not require expensive processing to use.  Thus, reliable or readily accessible 

information from sources like suppliers, government, farmers, and agricultural magazines will be 

influential on inter-firm adoption. 

 

For intra-firm adoption, information’s value can be large if it significantly improves the use of the 

technology, and so the extent of adoption.  An expensive but value-creating source will be 

preferentially used to evaluate levels of intra-firm adoption over an inexpensive but non-informative 

one.  Such value-creating sources plausibly include buyers, consultants, academics, and government. 

 

We test our model using a cross section 574 UK farmers surveyed in 2007, looking at the extent of 

their adoption of organic farming technologies.  It also contains demographic data, and description 

of the information sources that they use.  Our empirical specifications allow both for information 

exogeneity and endogeneity.  In the former case, we run probit and linear models, and in the latter 

case we use bivariate probit and treatment effect models.  We find that our theoretical results on 

inter-firm and inter-firm technology adoption hold.  Specifically, we find that information from 
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agents, suppliers, farmers, and agricultural magazines is mainly influential on inter-firm adoption.  

Information from buyers is largely used for intra-firm adoption, while information from crop 

consultants, academics, government, and an industry body is used for both forms of diffusion. 

 

We make a number of theoretical contributions.  The paper presents a new model of inter-firm and 

intra-firm diffusion including information usage.  Unlike previous models of technology adoption 

using dual process persuasion theory (Angst and Agarwal, 2009; Bhattacherjee and Sanford, 2006; 

Bhattacherjee and Sanford, 2009; Moser and Mosler, 2008), we derive its results as an outcome of 

optimising economic behaviour prior to testing them.  The model is the first of which we aware to 

allow prediction of the disaggregated information sources used in technological adoption, and it 

demonstrates qualitative differences in information sources used in the two diffusion stages. 

 

Empirically, the paper demonstrates the validity of the theoretical model in the case of UK organic 

farming adoption, and determines which information sources affect diffusion to a more detailed 

degree than in prior work.  The results readily lead to contrasts and complementarities with existing 

literature, and implications for further work and policy. 

 

Section two looks at our theoretical framework and section three describes our data.  Section four 

presents our estimation procedure, results are in section five, and section six concludes. 

 

2. Theoretical framework 

In this section we present our theoretical framework on adoption in the presence of information, and 

the hypotheses that follow from it.  Our model is based on Bayesian learning, as is common in the 

literature (Baerenklau, 2005; Bandiera and Rasul, 2006; Conley and Udry, 2001; Foster and 

Rosenzweig, 1995; Grossman et al, 1977; Leathers and Smale. 1991; Kihlstrom, 1976).  In 

particular we use the normal-normal updating of Stoneman (1981), Young (2009), and Aldana et al 

(2011).  Different types of information are characterised by their updating effects.   Our model 

allows for prediction of which information types influence inter-firm and intra-firm adoption. 

 

Our results are similar to those produced in dual approach persuasion theory, such as the 

Elaboration Likelihood Model (Petty and Cacioppo, 1986; Petty and Wegener, 1999) and the 

Heuristic-Systematic Model (Chaiken, 1980; Chen and Chaiken, 1999).  Broadly, in these dual 

process models people may be persuaded by either rational processing or heuristic cues.  Rational 

processing requires more effort, and greater personal involvement in the outcomes is more likely to 
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result in it (Johnson and Eagly, 1989; Petty et al, 1983).  Heuristic cues include perceptions of 

message source reliability, and are followed when there is less receiver involvement in the outcome.  

In our model, inter-firm diffusion necessitates less information processing for cost reasons, and 

sources are heuristically selected based on their perceived reliability.  Intra-firm diffusion involves 

higher returns and the company is more involved in the outcomes, so spends more time undertaking 

rational processing and analysing source information. 

 

Figure 1: Flowchart of information use and adoption decisions 
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The framework is given in two sections, with the first describing inter-firm adoption and the second 

describing intra-firm diffusion.  The scheme is shown in the flowchart in Figure 1. 

 

Inter-firm adoption 

There is a risk neutral, profit maximising company which can produce a good by using a new 

technology.  The expected profit from use of the first copy of the technology is P, net of technology 

acquisition and other costs. 

 

The company is unaware of the expected profit P, and thinks that it has a distribution ),( 2spN , 

where p << 0.  It receives information about P from a source which costs c to use. The information 

does not allow the company to evaluate the expected profit P perfectly.  The company takes the 

information to be a sample X from the distribution ),( 2SPN .  When information is received, the 

company updates its subjective distribution of P by Bayes’ rule for each piece of information.  After 

evaluating the information, the company can adopt one copy of the technology on a trial basis.  The 

trial costs k and reveals the value of P. 

 

The company has a prior distribution for P of ),( 2spN , and a sample X from a likelihood 

distribution of ),( 2SPN .  Using standard results on Bayesian updating, the posterior mean is 
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It follows that, after inclusion of information, the expected income from production using the 

technology has a distribution )),(( 2 XN .  A trial will result in investment if the expected income 

is revealed to exceed zero.  Using standard results on censored normal distributions (see Greene 
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(2008), pp.870-1), the expected value to the company from a trial is 

)/)(()/)(()(  XXX  . 

 

A trial will be undertaken if the expected profit exceeds k, the cost of a trial.  The value of the 

option to undertake a trial is thus  )0,)/)(()/)(()(max( kXXX   , taking the value of 

X as given.  Integrating over the distribution of X gives the expected value of the information as 

  dXssPXkXXX 222 2/)2/)(exp()0,)/)(()/)(()(max(  .  The value of the 

information is strictly positive as for sufficiently large X, the value of the first term is certain to 

exceed k.  The information will be used if its value exceeds its cost, c, so any information that is 

sufficiently cheap will be used.  We expect information that can be used without much effort 

validating it will be inexpensive to use.  Such information may come from reliable sources whose 

information is accepted without extensive checking.  We may expect reliable sources to include 

crop consultants, extension agents, academics, government agencies, and professional bodies.  

Readily accessible (and therefore inexpensive) information may also be expected from sources 

including farmers and agricultural magazines. 

 

Intra-firm diffusion 

We next present our model of information’s effect on intra-firm diffusion.  For notational 

convenience, we recycle the English and Greek letters used in the inter-firm model. 

 

During the trial, the company learns how to use the technology and decides on the appropriate 

adoption level.  The company uses the technology by selecting numbers to form an m-vector 

),...,( 1 mvvV  .  Each combination can be used to produce the first copy of the good at vector 

specific cost, ),...,( 1 mvvC .  Subsequent copies are subject to rising marginal costs, so that the cost 

Cn of the n
th

 good satisfies 1)( CnkCn   for some set of constants k(n), where 

1)1()(  nnknk .  The minimal starting cost K is attained for an optimal technology use 

corresponding to setting ),...,(~
1 mV   . 

 

Once the trial starts, the company is initially unsure of the optimal use of the technology and 

assumes that it has a multivariate normal distribution )),...,(,~(
22

1 mssdiagrN , where ),...,(~
1 mrrr   

and ),...,(
22

1 mssdiag  is the square m by m matrix with diagonal elements ),...,(
22

1 mss  and zeros 
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elsewhere.  When the company sets the i
th

 technology component at ri when there is uncertainty 

measured by variance si
2
, it expected to incur additional inefficiency costs equal to the variance.  

Thus, the total expected costs are 
i

isK
2

. 

 

An information source provides evidence about the optimal use, giving technical information about 

one or more of the vector components.  The source costs c to use.  A source giving information 

about the i
th

 component generates a single sample distributed around the optimal value of i .  The 

information does not itself allow exact evaluation, but only reviews i  with an error.  The company 

perceives the sample as drawn from a distribution ),(
2

iiN  .  On receiving it, the company 

updates its subjective view of the distribution of i  using Bayes’ rule.  It then decides how much of 

the technology to adopt based on the available information, and a fixed market price for the product 

of P. 

 

The company has a prior distribution ),(
2

ii srN  for the i
th

 technology component, and receives 

information giving a sample with a likelihood function ),(
2

iiN  .  From standard Bayesian 

posterior results, the posterior variance is 
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Thus, the variance falls after including the information.  The expected costs for the first copy of the 

good also fall to 



ij

ji sSK
22

, and because 1)( CnkCn   the costs of all later produced goods 

fall proportionately.  Thus, the level of production (and hence adoption) at which costs equal the 

constant profit (that is, the n at which Cn = P) rises as information is included. 

 

If the source is highly informative about how to use one or more technological component, then the 

decline in production costs may be large enough to offset even quite large implementation costs, c.  

Such sources will affect the level of intra-firm adoption, whereas cheap sources that do not provide 

implementation information will not affect intra-firm adoption.  Expensive, informative sources are 

likely to include consultants, academics, buyers, and possibly government and professional bodies. 
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3. Data 

The data used in this study is from a survey of pest management practices by UK farmers (Bailey, 

2012) as part of the Rural Economy and Land Use Programme under sponsorship by the Economic 

and Social Research Council, the Biotechnology and Biological Sciences Research Council, and the 

Natural Environment Research Council.  The survey asked farmers about their use of pesticide and 

alternative pest control technologies, their sources of information about farm management, their 

business and personal characteristics, and their attitudes to the technologies.  The survey was sent in 

2007 to 7,500 randomly selected names drawn from a list of UK recipients of a farming newsletter, 

from which there were 574 usable responses.  We are unaware of any specific bias in the responses 

although it may exist. 

 

The survey contains questions on the extent of use of seventeen pest control technologies, besides 

pesticide.  The technologies can be functionally grouped as in Bailey (2009) and Bailey et al (2009).  

They classify them into portfolios belonging to “intra-crop bio-controllers”, “chemical ‘users’ / 

conservers”, “extra-crop conservation bio-controllers”, and “weed focussed farmers”.  There is 

overlap between the first two portfolios, with pheromone monitoring / control and different varieties 

in different fields occurring in both
1
.  The groupings are shown in Table 1. 

 

                                                 
1
 Bailey (2009) reports the overlap between groups, and we use it here.  However, the source research Bailey et al (2009) 

does not have overlap, and we are likely to remove it in future drafts. 



 10 

Table 1 

Alternative pest control technologies and their portfolio groupings, with abbreviations in brackets 

Intra-crop bio-controllers (Intracrop) 

i) Using a trap crop (TRAPCROP) 

ii) Using mixed varieties in each field (MIXEDVAR) 

iii) Introducing predators/parasites of insect pests (INTROBUG) 

iv) Using pheromones for monitoring insects (PHRMONIT) 

v) Using pheromones for controlling insects (PHRCNTRL) 

vi) Using different varieties in different fields (DIFFRVAR) 

Chemical ‘users’ / conservers (Chemical) 

i) Using pheromones for monitoring insects (PHRMONIT) 

ii) Using pheromones for controlling insects (PHRCNTRL) 

iii) Using different varieties in different fields (DIFFRVAR) 

iv) Planting disease- or insect-resistant varieties (RESISVAR) 

v) Spot or patch spraying (SPOTSPRA) 

vi) Treating seeds/seedlings to protect crop in early stages (TRTSEEDS) 

vii) Rotating pesticide classes to avoid resistance (ROTACLAS) 

Extra-crop conservation bio-controllers (Extracrop) 

i) Improving field margins to encourage beneficial insects (FIELDMAR) 

ii) Using flower strips to encourage beneficials (FLOWERST) 

iii) Using beetle banks (BEETBANK) 

Weed focussed farmers (Weed) 

i) Cultivation or using rotary hoe for weeds (CULTWEED) 

ii) Rotating crops specifically to prevent pest problems (ROTACROP) 

iii) Adjusting time of planting or other practices specifically to avoid pests 

         (TIMEPLAN) 

iv) Hand rogueing (HANDROGU) 
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Table 2 

Commitment to use of alternative pest control technologies 

1 = Not adopted and will not adopt 

2 = Not adopted but will consider adoption 

3 = Adopted but not currently used 

4 = Adopted and currently used 

 

For each practice, the commitment to use by each farmer is measured on scale of one to four.  The 

meanings of each number are shown in Table 2.  There are 39 farmers who omit any statement 

about their commitment to use the technologies and a further seven who do not code for at least one 

of the technologies.  We exclude them from our analysis.  It is possible that they are uncertain about 

their past or future behaviour.  Another possibility is that they have never adopted and never intend 

to, and should be classified as unity for all technologies.  However, the possibility is less plausible 

if we examine the numbers of technologies that each farmer has committed to never using, where 

the data is not entirely missing.  Table 3 shows the distribution of farmers by technology exclusion.  

Most farmers rule out relatively few technologies, with almost a quarter ruling out no technologies 

and half excluding two or less.  Only 14 percent exclude more than half of the technologies.  So it 

seems unlikely that many farmers who omit their data would exclude all of the technologies.  We 

also exclude a further six farmers who have missing data on other variables used in our analysis.  

There remain 522 observations. 

 

Table 3 

Distribution of farmers by the number of technologies they have not used and never intend on using 

Number Frequency   Number Frequency 

0 23.9  9 2.6 

1 14.1  10 2.3 

2 11.1  11 1.9 

3 10.6  12 2.8 

4 6.1  13 1 

5 5.2  14 1.6 

6 5.9  15 1.2 

7 5.6  16 0.2 

8 3.8       
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For each pest control portfolio and farmer, inter-firm adoption is calculated as one if the farmer has 

ever adopted any of the technologies in the portfolio and zero otherwise.  The level of adoption is 

shown in Table 4.  The chemical user and weed focussed portfolios are most widely adopted with 

95 percent and 93 percent adoption respectively.  The intra-crop bio-controller and extra-crop bio-

controller adoption rates are a little lower at 75 and 78 percent.  Thus, there is a widespread inter-

firm adoption of the portfolios. 

 

Table 4 

Numbers of farmers who have ever adopted at least one technology from each pest control portfolio 

Portfolio Not adopted Adopted Total Adoption rate 

Intracrop 128 394 522 75% 

Chemical 27 495 522 95% 

Extracrop 117 405 522 78% 

Weed 35 487 522 93% 

 

We calculate the extent of intra-firm adoption within each portfolio by summing the number of 

technologies within the portfolio that the farmer has ever adopted (so have commitments to use of 

three or four).  We summarise the extent of use in Table 5.  Distributional statistics are shown for 

each portfolio, with percentages showing the statistics divided by the number of technologies in the 

portfolio.  Mean intra-firm adoption rates are lower than inter-firm rates, ranging from 26 percent 

for the intra-crop bio-controller portfolio to 67 percent for the weed focussed portfolio.  Thus, 

internal adoption is typically less than complete after initial adoption, as is found in Battisti and 

Stoneman (2003).  The other statistics indicate a wide dispersion of use.  Dispersion is higher 

relative to the mean for less adopted portfolios. 

 



 13 

Table 5 

Descriptive statistics for intra-firm use of pest control portfolios based on sums of adoptions of 

component technologies 

Portfolio Mean Median StDev Skewness Min Max 

Intracrop 1.56 1 1.38 0.95 0 6 

 26%  23%  0% 100% 

Chemical 3.94 4 1.91 -0.36 0 7 

 56%  27%  0% 100% 

Extracrop 1.4 1 1.04 0.21 0 3 

 47%  35%  0% 100% 

Weed 2.67 3 1.17 -0.71 0 4 

  67%   29%   0% 100% 

Percentages below the statistics are the statistics divided by the total number of technologies in the portfolio. 

 

As an alternative method of intra-firm use, we could perform factor analyses on the portfolios and 

construct linear measures of adoption from the components that explain most of the variation in the 

data (Battisti and Iona, 2009).  This approach would have advantages and disadvantages.  It would 

recognise the different technological values between portfolios and synergies in adoption, as 

revealed by variation in adoption preferences.  However, interpretations would be made less clear 

by the overlap between the intra-crop bio-controller and chemical user portfolios.  Furthermore, 

between-portfolio variation is allowed by the method but variation within-portfolio is not permitted, 

and we are unsure whether such constraints are valid. 

 

We additionally extract survey data on information sources for the farmers.  The survey asks what 

sources farmers use for anything related to farm management in general, and presents various 

options shown in Table 6.  For each source, farmers respond either never (coded as one), rarely 

(coded as two), occasionally (three), or frequently (four). 
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Table 6 

Farmer information sources and abbreviations 

Independent crop consultants (ICC) 

Land agents or similar professional persons (AGENTS) 

University / academic researchers (ACADEME) 

Suppliers (of seed, equipment, chemicals, …) (SUPPLIER) 

Buyers (e.g. supermarkets, bread-makers, …) (BUYERS) 

Other farmers (FARMERS) 

DEFRA publications and/or website (DEFRA) 

http://www.voluntaryinitiative.org.uk/ (VIWEB) 

Farmers Weekly (FWEEKLY) 

Farmers Guardian (FGUARD) 

Other 

 

We reduce the measures of information use to two levels, zero and one.  The use measure equals 

zero if the source usage is coded as “never” or “rarely”, and one if it is coded as “occasionally” or 

“frequently”.  Table 7 summarises the use for each information source.  There is considerable 

variation in the rates of use across sources.  The sources with the lowest rates of use are academics 

(26 percent) and the Voluntary Initiative website (31 percent).  The most consulted sources are 

suppliers (82 percent) and independent crop consultants (80 percent).  Buyers are less consulted (37 

percent), and other farmers are often used (70 percent) as is government (64 percent).  Reliance on 

agricultural magazines is mixed (65 percent and 37 percent for Farmers Weekly and Farmers 

Guardian respectively), while about half of farmers use information from land agents and other 

professionals. 
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Table 7 

Numbers of farmers who use information sources occasionally or frequently 

Source Not used Used Total Use rate 

ICC 106 416 522 80% 

Agents 279 243 522 47% 

Academe 385 137 522 26% 

Supplier 96 426 522 82% 

Buyers 331 191 522 37% 

Farmers 158 364 522 70% 

DEFRA 189 333 522 64% 

VIweb 361 161 522 31% 

FWeekly 181 341 522 65% 

FGuard 331 191 522 37% 

 

We also use various questions from the data to construct ancillary determinants for our equations.  

These are both discrete and continuous variables.  They are described in Table 8 and are separated 

into general data and data on pesticide use, in preparation for their later econometric use. 
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Table 8 

Adoption and use determinants other than general information sources 

 

General data 

Arable farming dummy, Livestock farming dummy, Total agricultural area farmed in 

hectares, Wheat grown dummy, Barley grown dummy, Other cereal grown dummy, Other 

combinable crop grown dummy, Conventional crop cultivation dummy, Organic crop 

cultivation dummy, Area sprayed for barley yellow dwarf virus, Area sprayed for autumn 

OSR, Area sprayed for spring aphids, Area sprayed for orange blossom midge, Area sprayed 

for summer OSR, Importance of environmental safety for a new pest management strategy, 

Dummy if the most negative thing about pesticide is it increases costs, Dummy if the most 

negative thing about pesticide is it kills non target species, Dummy if the most negative 

thing about pesticide is it contaminates the environment, Dummy if the most negative thing 

about pesticide is it has possible health risks, Tenant farmer dummy, Full time farming 

dummy, Part time farming dummy, Sex, Years of farm experience, Formal education, 

Participation in the Countryside Stewardship Scheme, Participation in entry level 

Stewardship, Participation in higher level Stewardship, Participation in the Organic Farming 

Scheme, Participation in the Environmentally Sensitive Areas Scheme, Participation in the 

Voluntary Agreement on Pesticides Scheme, Participation in the Single Farm Payments 

Scheme, Crops contracted with buyers dummy 

 

Data on the most important source of pesticide advice 

Dummy for an independent adviser / agronomist, Dummy for a decision support system, 

Dummy for another farmer who is applying pesticides, Dummy for government advice, 

Dummy for a pesticide salesperson who recommends action, Dummy for another source 

(The omitted reference is own experience / observations) 

 

 

4. Estimation procedure 

In this section we describe our estimation procedure.  Our theory proposes which sources of 

information will be associated with inter-firm and intra-firm adoption.  There are a number of 

considerations that guide our empirical formulation and estimation.  Firstly, it is likely that common 

included and omitted factors will influence both information use and technology choice.  We 
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therefore adopt a system of equations allowing for shared covariates and correlated error terms.  

Secondly, the direct effects of information on technology choice are of interest, not just the indirect 

effect of shared influences.  Thus, information should enter as a recursive determinant in the 

technology choice equations, as in Genius et al (2006) who use a trivariate ordered probit.  As 

information is correlated with the technology error term through the correlation with the error term 

in its own use equation, it is endogenous in the adoption equation.  Greene (2008, p823) shows that 

in the case of a recursive bivariate probit model, the endogeneity can be ignored in maximum 

likelihood estimation.  An alternative to obtain parameter consistency would be use a two step 

procedure (as in Koundouri et al (2006)).  In the case of a bivariate probit-linear model with an 

endogenous variable, the well known Heckman correction can be applied to the second step of a 

treatment model (Greene, 2008 p.886f and p.889f).  A third consideration in estimation is the 

number of parameters to be estimated.  A system in which use of each information variable is 

simultaneously determined would proliferate parameters.  One solution to this problem is to 

consider aggregates of information sources as is common in the literature (Genius, 2006; Wozniak, 

1993; Wozniak, 1987).  However, as we wish to determine the effect of individual sources, this 

approach is not followed here.  A related consideration also concerns feasibility of identification 

and estimation.  The data allows for ordering of use and adoption.  A multivariate ordered system 

would again have many parameters and it is also unclear if variable endogeneity can be ignored as 

in the bivariate probit model. 

 

Given these considerations, we adopt two broad approaches.  One is to estimate linear models 

containing all information variables as determinants and neglecting their endogeneity (as in 

Wozniak (1987)).  This approach makes allowance for their simultaneous effect.  The other 

approach is to treat the individual information sources as endogenous in bivariate systems with 

technology adoption as the other determined variable.  For the inter-firm model, a bivariate probit is 

used with information endogenous in the technology adoption equation.  For the intra-firm model, a 

probit-linear model is used with technology as a treatment effect and a Heckman correction. 

 

Influences on inter-firm adoption are tested through the following equations for technology 

adoption 

 

1111 ''   ixz , 1t  if 01 z  and 0 otherwise,    (1) 
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where z1 is a latent variable, x1 is a column vector of non-information determinants of technology 

adoption, i is a column vector of dummies equal to one for each information source used and zero 

otherwise, β1 and γ are column vectors of coefficients with the same dimensions as x1 and i 

respectively,  ε1 is a standard normal error term, and t is a dummy for inter-firm adoption for one of 

the technology portfolios. 

 

We initially estimate equations (1) assuming that the determinant variables are all exogenous.  We 

then introduce an information adoption equation 

 

2222 '   xz , 1i  if 02 z  and 0 otherwise    (2) 

 

where x2 is a vector of determinants that may overlap with x1, β1 is its coefficient vector, and ε2 is an 

error term.  ε1 and ε2 are bivariate normal with zero means and a covariance matrix 








1

1




.  We 

further constrain the i and γ vectors to be one dimensional.  The models are estimated by maximum 

likelihood. 

 

The effects of information sources on intra-firm diffusion are tested using a linear model of 

technology adoption 

 

111 ''   ixT          (3) 

 

where T is a measure of intra-firm adoption for one of the portfolios. x1, i, β1, and γ are the same as 

for equation (1), and ε1 is a zero mean error term.  Initial estimation is by OLS assuming 

determinant endogeneity.  We then introduce the information use equation which is the same as 

equation (2) and in the parametric constraint, except for the joint distribution of the error terms.  

Now ε1 and ε2 are bivariate normal with zero means and a covariance matrix 










1
.  The model 

is estimated by full information maximum likelihood. 

 

The set x1 of non-information determinants of technology adoption is taken to be the general data 

variables in Table 8, while the set of determinants of general information usage is taken to be the 

pesticide information variables in the table.  Our reasoning for the latter choice is that pesticide 
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information will have a much greater influence on the choice of general information sources than on 

organic technology adoption. 

 

Our STATA code is to appear at our website with the next draft of this paper.  The data used cannot 

be provided as its dissemination is restricted; nevertheless it is freely available to researchers at the 

UK Data Service website
2
. 

 

5. Empirical results 

Table 9 shows estimated coefficients for the inter-firm technology adoption under the assumption of 

determinant exogeneity, and Table 10 shows the marginal effects.  We comment on the latter. 

 

For the intra-crop bio-controller portfolio, academic information has a large and significantly 

significant effect on adoption.  The effect is moderately large and less significant for independent 

crop consultant and supplier information, and less for buyer information with ten percent 

significance.  All of these information sources increase adoption.  The strongest effects are due to 

reliable or supply side information sources. 

 

The chemical user portfolio estimates are shown in the next column.  Independent crop consultants 

have a moderately sized and highly significant positive effect on technology adoption.  Agents have 

a smaller, moderately significant negative effect, while suppliers also have a small, but weakly 

significant and negative, impact. 

 

The third column has coefficients for informational influences on adoption by extra-crop bio-

controllers.  Agent information has moderate positive economic and statistical effects on technology 

adoption.  The agricultural magazine Farmers Weekly has a similar, but negative effect. 

  

Coefficients for influential information sources on weed focussed farmers are shown in the final 

column.  Academics have an economically small and weakly significant negative effect on adoption.  

Farmer information has a similar, but positive effect.  Information from the Voluntary Initiative 

website is associated with a moderately large, five percent significant effect. 

 

In summary, we do find evidence for reliable, supply side information having an effect on adoption. 

                                                 
2
 http://www.ukdataservice.ac.uk/ 
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Table 9 

Estimated coefficients on information variables for inter-firm diffusion with determinants taken as 

exogenous 

  Intracrop Chemical Extracrop Weed 

ICC 0.33** 0.65*** 0.17 0.23 

 0.16 0.24 0.16 0.2 

Agents 0.12 -0.5** 0.31** -0.18 

 0.14 0.24 0.15 0.2 

Academe 0.51*** 0.23 -0.19 -0.42* 

 0.17 0.29 0.16 0.22 

Supplier 0.35** 0.46* 0.23 0.15 

 0.17 0.26 0.18 0.22 

Buyers 0.27* 0.36 -0.07 0.33 

 0.15 0.29 0.15 0.22 

Farmers -0.04 0.1 0.14 0.34* 

 0.15 0.23 0.16 0.2 

DEFRA 0 0.23 0.2 0.06 

 0.15 0.23 0.15 0.19 

VIweb 0.27 0.19 0.23 0.7** 

 0.18 0.32 0.18 0.28 

FWeekly -0.06 -0.38 -0.36** -0.15 

 0.15 0.24 0.16 0.2 

FGuard -0.08 0.13 -0.04 0.17 

 0.14 0.24 0.15 0.2 

     

Pseudo R
2
 0.24 0.46 0.24 0.3 

Standard errors are shown below the coefficients.  * denotes ten percent significance, ** denotes five percent 

significance, and *** denotes one percent significance. 
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Table 10 

Estimated marginal effects on information variables for inter-firm diffusion with determinants taken 

as exogenous 

  Intracrop Chemical Extracrop Weed 

ICC 0.09** 0.07*** 0.04 0.03 

 0.04 0.02 0.04 0.03 

Agents 0.03 -0.05** 0.08** -0.02 

 0.04 0.02 0.04 0.03 

Academe 0.13*** 0.02 -0.05 -0.06* 

 0.04 0.03 0.04 0.03 

Supplier 0.09** 0.05* 0.06 0.02 

 0.04 0.03 0.05 0.03 

Buyers 0.07* 0.04 -0.02 0.05 

 0.04 0.03 0.04 0.03 

Farmers -0.01 0.01 0.04 0.05* 

 0.04 0.02 0.04 0.03 

DEFRA 0 0.02 0.05 0.01 

 0.04 0.02 0.04 0.03 

VIweb 0.07 0.02 0.06 0.1** 

 0.05 0.03 0.04 0.04 

FWeekly -0.01 -0.04 -0.09** -0.02 

 0.04 0.03 0.04 0.03 

FGuard -0.02 0.01 -0.01 0.02 

  0.04 0.02 0.04 0.03 

Standard errors are shown below the coefficients.  * denotes ten percent significance, ** denotes five percent 

significance, and *** denotes one percent significance. 

 

In Table 11 we see estimated information coefficients for inter-firm diffusion when the 

determinants are taken as endogenous, and the marginal effects are in Table 12.  The first column in 

Table 12 shows the marginal effects on adoption in the intra-crop bio-controller portfolio.  

Independent crop consultants have a moderately positive, and highly significant effect on adoption.   

The effect of agents is similar.  Academics have a large, positive, and highly significant effect on 

adoption.  Suppliers have little effect.  Buyer information has a large, positive, and highly 

significant effect on adoption, as does the Voluntary Initiative website.  Information from the 
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Farmers Guardian is associated with a small and positive increase in adoption, at one percent 

significance. 

 

The effect of information sources on chemical user adoption is shown in the second column.  

Independent crop consultants have a small but highly significant positive effect.  Agent information 

has a similar but negative effect, while suppliers have a very small, negative, and one percent 

significant effect.  The effect of farmer information is the same.  Information from DEFRA has a 

small and weakly significant positive effect.  Both the Farmers Weekly and Farmers Guardian print 

publications reduce adoption slightly, with one percent significance. 

 

The third column shows information’s effect on adoption in the extra-crop bio-controller portfolio.  

Agents have a moderately large and highly significant positive effect.  DEFRA information has a 

smaller positive effect, which is also highly significant, and the Voluntary Initiative website impact 

is the same.  Information from Farmers Weekly moderately reduces adoption at one percent 

significance, while Farmers Guardian information increases it moderately with five percent 

significance. 

 

Column four shows coefficients for information’s influence on weed-focussed adoption.  

Independent crop consultants have a small, positive effect that is one percent significance.  A very 

small, highly significant reduction in adoption is due to use of agent information, and a slightly 

larger reduction with five percent significance is attributable to academic information.  Farmers 

have a small, positive, highly significant influence, as does DEFRA.  The Voluntary Initiative 

website is associated with a moderate economical and statistical positive effect, while Farmers 

Weekly has a weak negative effect. 

  

In summary, we have again found evidence that reliable, accessible information increases inter-firm 

adoption. 
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Table 11 

Estimated coefficients on information variables for inter-firm diffusion with determinants taken as 

endogenous 

  Intracrop Chemical Extracrop Weed 

ICC 0.87** 0.79 1.18*** 0.27 

 0.36 0.57 0.31 0.44 

Agents 1.65*** 1.49*** 1.52*** 1* 

 0.09 0.14 0.19 0.56 

Academe 1.89*** 1.28** -1.18** 0.63 

 0.12 0.6 0.53 0.51 

Supplier 1.95*** 2.02*** -0.95*** 1.58*** 

 0.1 0.31 0.35 0.47 

Buyers 1.73*** 1.83*** 1.32*** 1.75*** 

 0.1 0.28 0.21 0.25 

Farmers 1.7*** 1.76*** 1.83*** 1.17 

 0.08 0.26 0.09 0.72 

DEFRA 1.49*** 1.24** 1.29*** 0.72 

 0.26 0.49 0.39 0.56 

VIweb 1.77*** 1.87*** 0.97* 1.59*** 

 0.12 0.21 0.56 0.38 

FWeekly 1.63*** 1.4*** 1.3*** 1.22** 

 0.09 0.34 0.27 0.6 

FGuard 1.5*** 1.75*** 1.5*** 1.75*** 

  0.08 0.14 0.09 0.12 

Coefficients shown are for estimations with a single information source shown in the left column, and are stacked by 

column.  Standard errors are shown below the coefficients.  * denotes ten percent significance, ** denotes five percent 

significance, and *** denotes one percent significance. 
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Table 12 

Estimated marginal effects on information variables for inter-firm diffusion with determinants taken 

as endogenous 

  Intracrop Chemical Extracrop Weed 

ICC 0.08*** 0.04*** -0.01 0.03*** 

 0.03 0.02 0.02 0.01 

Agents 0.1*** -0.04*** 0.1*** -0.01*** 

 0.03 0.02 0.02 0 

Academe 0.21*** 0.02 -0.01 -0.03** 

 0.03 0.01 0.03 0.01 

Supplier -0.04 -0.01*** 0.09 0 

 0.09 0 0.05 0.01 

Buyers 0.16*** 0.01 0.01 0.04 

 0.03 0.02 0.01 0.03 

Farmers 0.02 -0.01*** 0.08 0.06*** 

 0.06 0 0.06 0.01 

DEFRA 0.03 0.02* 0.06*** 0.03*** 

 0.03 0.01 0.02 0.01 

VIweb 0.17*** -0.02 0.06*** 0.07** 

 0.03 0.01 0.02 0.03 

FWeekly -0.01 -0.03*** -0.09*** -0.01* 

 0.05 0.01 0.02 0.01 

FGuard 0.05*** -0.04*** 0.05** 0.01 

  0.02 0.01 0.02 0.05 

Coefficients shown are for estimations with a single information source shown in the left column, and are stacked by 

column.  Standard errors are shown below the coefficients.  * denotes ten percent significance, ** denotes five percent 

significance, and *** denotes one percent significance. 

 

Table 13 shows estimated coefficients for information’s influence on intra-firm diffusion when 

information is taken as exogenous.  In the first column, we see that independent crop consultants 

have a moderate economic and statistical positive effect.  Buyers have a larger effect with the same 

significance.  No other variables are significant. 
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Column two shows results for the chemical user portfolio.  Independent crop consultants have a 

large, positive effect on adoption with five percent significance.  Academic information has a larger 

effect at the same significance, while supplier information has a large positive effect that is weakly 

significant.  Buyer information has big positive effect at one percent significance.  DEFRA’s impact 

is large, positive, and moderately significant, as is the impact of the Voluntary Initiative website. 

 

Results for extra-crop bio-controllers are shown in the third column.  Independent crop consultants 

have a moderately positive, weakly significant effect on adoption, with a similar, but negative effect 

for farmer information.  The same effect as for consultants is seen for Voluntary Initiative website 

and Farmers Guardian newspaper. 

 

Column four shows adoption influence for the weed-focussed farmer portfolio.  Buyers have a large 

positive economic and statistical influence.  A moderately positive effect significant at ten percent 

is due to DEFRA information, with a similar size effect due to the Voluntary Initiative website and 

Farmers Guardian newspaper, both at ten percent significance. 

  

To summarise, the results here broadly support our claim that intra-firm adoption will be influenced 

by technical information. 
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Table 13 

Estimated coefficients on information variables for intra-firm diffusion with determinants taken as 

exogenous 

  Intracrop Chemical Extracrop Weed 

ICC 0.12** 0.18** 0.08* 0.06 

 0.06 0.07 0.04 0.05 

Agents 0.07 -0.04 0.04 0.04 

 0.07 0.08 0.05 0.06 

Academe -0.02 0.23** -0.01 -0.02 

 0.07 0.09 0.05 0.06 

Supplier 0.06 0.16* 0.04 0 

 0.07 0.09 0.05 0.06 

Buyers 0.14** 0.26*** -0.02 0.23*** 

 0.06 0.08 0.05 0.05 

Farmers -0.1 -0.08 -0.08* -0.06 

 0.07 0.08 0.05 0.06 

DEFRA 0.08 0.2** 0.03 0.11* 

 0.07 0.08 0.05 0.06 

VIweb 0.08 0.17** 0.08* 0.13** 

 0.07 0.09 0.05 0.06 

FWeekly -0.01 -0.11 -0.05 -0.05 

 0.06 0.07 0.04 0.05 

FGuard 0.07 0.05 0.08* 0.1** 

 0.05 0.07 0.04 0.05 

     

R
2
 0.18 0.41 0.23 0.27 

Standard errors are shown below the coefficients.  * denotes ten percent significance, ** denotes five percent 

significance, and *** denotes one percent significance. 

 

Table 14 presents estimated coefficients for information sources’ effects on intra-firm diffusion 

when information is taken to be endogenous.  Marginal effects are shown in Table 15, and we 

comment on them.  The first column in Table 15 shows coefficients for information’s influence on 

adoption of the intra-crop portfolio.  Independent crop consultants have a large positive effect on 

adoption, with five percent significance.  Buyers also have a large positive impact on adoption, with 
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weak significance.  Similarly large positive impacts with five percent significance are due to 

information from DEFRA and the Voluntary Initiative website. 

 

Column two shows results for the chemical user portfolio.  Adoption is substantially increased by 

academic information with high significance, with similar findings for information from suppliers, 

buyers, DEFRA, and the Voluntary Initiative website. 

 

The next column presents the findings for the extra-crop bio-controller portfolio.  Independent crop 

consultants have a large, moderately significant positive effect on adoption, while the Farmers 

Weekly is associated with a similar but negative effect on adoption. 

  

Column four presents coefficients for information’s effect on weed-focussed portfolio adoption.  

Buyer information has a large, positive, and highly significant effect on adoption.  The same is true 

for information from DEFRA, the Voluntary Initiative website, and the Farmers Guardian. 

  

In summary, the estimates support our theoretical finding that technical information sources will be 

influential on intra-firm adoption. 
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Table 14 

Estimated coefficients on information variables for intra-firm diffusion with determinants taken as 

endogenous 

  Intracrop Chemical Extracrop Weed 

ICC 1.06*** 2.19*** 0.6*** 0.46 

 0.26 0.49 0.23 0.33 

Agents 2.73*** 3.58*** 1.21*** 1.12** 

 0.22 0.33 0.33 0.45 

Academe 2.73*** 3.08*** 1.35*** 0.95** 

 0.15 0.42 0.3 0.38 

Supplier 0.64 3.18*** -0.36 1.62*** 

 0.41 0.37 0.6 0.38 

Buyers 2.62*** 3.62*** 1.88*** 2.61*** 

 0.2 0.35 0.19 0.39 

Farmers 0.91* 3.09*** 0.68 1.92*** 

 0.52 0.39 0.44 0.33 

DEFRA 1.91*** 3.14*** 0.87** 1.84*** 

 0.31 0.4 0.39 0.49 

VIweb 2.49*** 2.96*** 1.55*** 1.4*** 

 0.2 0.38 0.28 0.32 

FWeekly 1.59*** 2.95*** 0.53 1.94*** 

 0.33 0.32 0.33 0.3 

FGuard 2.41*** 3.12*** 1.53*** 1.44*** 

  0.22 0.37 0.3 0.44 

Coefficients shown are for estimations with a single information source shown in the left column, and are stacked by 

column.  Standard errors are shown below the coefficients.  * denotes ten percent significance, ** denotes five percent 

significance, and *** denotes one percent significance. 
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Table 15 

Estimated marginal effects on information variables for intra-firm diffusion with determinants taken 

as endogenous 

  Intracrop Chemical Extracrop Weed 

ICC 0.27** 0.27 0.24** 0.19 

 0.12 0.19 0.11 0.14 

Agents 0.17 0.11 0.12 0.14 

 0.12 0.16 0.09 0.11 

Academe 0.08 0.66*** -0.02 0.1 

 0.11 0.16 0.1 0.14 

Supplier 0.13 0.51*** 0.15 0.18 

 0.16 0.2 0.11 0.16 

Buyers 0.2* 0.66*** -0.1 0.43*** 

 0.12 0.16 0.08 0.11 

Farmers -0.05 0.17 -0.05 0.12 

 0.12 0.15 0.09 0.11 

DEFRA 0.23** 0.55*** 0.12 0.3*** 

 0.11 0.16 0.09 0.11 

VIweb 0.32** 0.72*** 0.16 0.58*** 

 0.15 0.22 0.12 0.12 

FWeekly -0.09 -0.23 -0.22** -0.15 

 0.13 0.16 0.09 0.11 

FGuard 0.08 0.15 0.13 0.34*** 

  0.12 0.16 0.09 0.11 

Coefficients shown are for estimations with a single information source shown in the left column, and are stacked by 

column.  Standard errors are shown below the coefficients.  * denotes ten percent significance, ** denotes five percent 

significance, and *** denotes one percent significance. 

 

We summarise our findings compared with our expectations in Table 16.  The observed column is 

constructed by counting significance stars on the marginal effects in the inter-firm and intra-firm 

tables, and summing across the exogenous and endogenous totals for each diffusion type.  There is 

broad agreement with our expected results.  Sources that provide information on technological 

feasibility that may be used without much expense are found to influence inter-firm adoption, while 
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sources of more detailed technological information that probably require more processing effort are 

revealed to influence intra-firm adoption. 

 

Table 16 

Sources of information, the expected types of diffusion that they influence, and the diffusion types 

they are empirically found to influence 

Source Expected Observed 

ICC Both Both 

Agents Both / inter Inter 

Academe Both Both / inter 

Supplier Inter Inter (weak effect) 

Buyers Intra Intra 

Farmers Inter Inter 

DEFRA Both Both 

VIweb Both Both 

FWeekly Inter Inter 

FGuard Inter Inter / both 

 

6. Conclusions 

We have presented a model of the effect of information sources on inter-firm and intra-firm 

diffusion and tested it with UK farming data.  Consistent with our model, we found evidence that 

inter-firm adoption is often driven by reliable and accessible information, while intra-firm adoption 

is often driven by technical information. 

 

We find that information from farmers affects inter-firm adoption, but not intra-firm adoption.  The 

result contrasts with Conley and Udry (2010)’s finding that such information adjusts the intra-farm 

level of adoption in Ghanaian pineapple growers.  They find close response by farmers to 

communication within the farmers’ information neighbourhoods, so it is unlikely that farmer 

information is just proxying for other forms of information that we have included but that they 

exclude.  It is possible that different forms of information are suitable in Ghana for reasons omitted 

from our model.  Verbal communication may be relatively ineffective for transfer of UK intra-firm 

farming information, or Ghanaians may be more willing to share information.  Alternatively, as an 

extension to our model, Ghanaian farmer information may be more suitable for analytical 
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processing than UK farmer information.  Baerenklau (2005) looks at US farmers and finds that 

neighbourhood effects are not significant in their intra-firm adoption of new types of forage grasses, 

so conceivably the difference can be generalised to farmers in developing and developed countries. 

 

Our theoretical and empirical models could be investigated further.  The relative role of education 

in inter-firm and intra-firm diffusion could be assessed, and the comparative importance of 

economic and information determinants.  The disclosure value associated with intra-firm diffusion 

could be examined, and the extent to which influences on inter-firm and intra-firm adoption cross-

over to each other.  The extent to which information changes technology’s effect on profitability 

could be examined. 

 

We have lost some statistical content in forming dummies for informational use and technological 

adoption.  We could investigate alternative econometric models in which the ordering of the 

original data is retained.  As noted previously, the retention will create challenges in estimation for 

reasons of identification and consistency. 

 

Our work has a number of policy implications.  One is that information encouraging initial adoption 

without support for detailed implementation is not likely to promote full technological use.  Another 

implication is that government information has a role in both inter-firm and intra-firm diffusion, 

although whether it is cost-effective is another issue.  A further implication is that although UK 

farmers have some role in inter-firm adoption, their role in intra-firm adoption is not significant so 

network construction will not necessarily lead to much fuller diffusion. 
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