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Abstract

In this article, a new approach for model specification is proposed. The
method allows to choose the correct order of a mixture model by testing
if a particular mixture component is significant. The hypotheses are set
in a new way, in order to avoid identification problems, which are typical
for mixture models. If some of the parameters are known, the distribution
of the LR statistic is χ2, with the degrees of freedom depending on the
number of components and the number of parameters in each component.
The advantage of the new approach is its simplicity and computational
feasibility.

JEL classification: C13, C33, C43
Keywords: Gaussian mixture; Likelihood ratio test; Order selection

1 Introduction

In the last decades, there has been a strong interest in finite mixture mod-
els. Applications of mixture models can be found in many disciplines such
as biology, medicine and engineering, among others. In economics, they have
been successfully used in marketing (Jedidi et al. (1997)), finance (Liesenfeld
(1998), Liesenfeld (2001), Perez-Quiros and Timmermann (2001)) and macroe-
conomics (Lanne (2006)). The development of computers and computational
techniques enables development of Maximum Likelihood (ML) estimation ap-
proaches (Day (1969)). However, it was the Expectation Maximization (EM)
algorithm described by Dempster et al. (1977) that significantly simplified the
estimation procedure and therefore helped to popularize this family of models.
Recently, mixture models have been expanded in various ways, in order to al-
low for the conditional heteroscedasticity (Zhang et al. (2006)) or time varying
mixing proportions (Wong and Li (2001)).

∗Katarzyna Maciejowska, ul. Wybrzeze Wyspianskiego 27, 50-370 Wrocaw, Poland,
katarzyna.maciejowska@pwr.wroc.pl
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Mixtures, with normal components, belong to a very flexible family of dis-
tributions, which can approximate any distribution to an arbitrary degree of
freedom (McLachlan and Peel (2000)). Therefore, they are suitable for mod-
eling processes that are bimodal, asymmetric or characterized by heavy tails.
They are also used for describing process, with several distinguishable patterns
of behavior, such as business cycle or fluctuations of financial assets character-
ized by periods of high and low volatility. It should be noticed that mixture
models are also special cases of Markov switching models, which are extensively
used in econometrics (Kim and Nelson (1999), Sims and Zha (2006), SMith
et al. (2006)), especially in business cycle analysis (Hamilton (1989), Goodwin
(1993), Diebold and Rudebusch (1996), Kim and Nelson (1998)).

An open problem that still needs to be solved, is a way to determine the
number of components in the mixture model. It is an important but very dif-
ficult issue. There are a few reasons, why tests based on Maximum Likelihood
(ML) estimation method do not behave well and have unknown distribution. As
discussed by McLachlan and Peel (2000) and Chen and Li (2009), the problem
arises because of: (i) lack of identifiability under the null of homogeneity, (ii)
unbounded likelihood function, (iii) infinite Fisher information, (iv) ML estima-
tors of a homogenous model being one of the local maxima of the likelihood of
a mixture model. Additionally, as shown by Hartigan (1985) and Liu and Shao
(2004), the traditional likelihood ratio (LR) statistic diverges to infinity as the
sample size increases.

A few different approaches were proposed in the literature to test for the
number of components. Starting with Wolfe (1971), who suggested that when
the components have common variance, the distribution of LR statistic can be
approximated with a χ2

2 distribution. When the variances are allowed to differ,
the distribution can be approximated with χ2

4. On the contrary, McLachlan
(1987) showed that in a case of mixtures with different means and variances,
the χ2

6 distribution should be used for the sample size N = 100.
In order to derive a correct distribution, some separation conditions were

imposed by Ghosh and Sen (1985). The restrictions were later relaxed by Garel
(2001) and Garel (2005). However, their approach requires heavy computations
and simulations of critical values. An alternative method was proposed by Chen
and Li (2009), King and Chen (2010) and Chen et al. (2012), who used an EM
test. Their test is based on the modified likelihood function, with a penalty
component added to ensure identifiability. Although the asymptotic distribu-
tion of the proposed test is fairly standard, computation of the EM statistic is
complicate and its properties depend on an arbitrary choices of additional pa-
rameters: number of EM iterations and parameters of penalty functions. Next,
Lo et al. (2001) introduced a test based on Kullback-Leibler information crite-
rion. However, Jeffrues (2003) showed that the regularity conditions used by Lo
et al. (2001) are not met under the null of homogeneity. Finally, a resampling
approach was proposed by McLachlan (1987), who presents a way to compute
the p-values of the LR test based on the bootstrap method.

In this article, an alternative approach for testing of a number of components
is presented. It is based on a new hypotheses specification, which allows to
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overcome the identification problem. The hypotheses use only these parameters,
which can be consistently estimated with the ML method, without imposing
any separation conditions or adding penalty to the log likelihood function. A
likelihood ratio test statistic is proposed, which is fairly simple to compute and
bounded under the null.

The article is structured as follows. In Section 2, a new set of hypotheses
is presented and its equivalence to the traditional hypotheses formulation is
proved. Next, Section 3 introduces a simple likelihood ratio test and discusses
its basic properties. Finally, in Section 4, the asymptotic distribution of the
LR statistic for models, in which some parameters are known, are presented
and validated with a simulation studies. Section 5 ends the article with some
discussion and conclusions.

2 Alternative hypothesis formulation

Let f(y;β, σ2) be the normal density function with a mean β and a variance
σ2. Lets summarize the parameters with a vector θ = [β, σ2], θ ∈ Θ. The finite
normal mixture model of order m, has the following density function

fm(y; θ(m), p(m)) =

m∑
i=1

pif(y; θi) (1)

where θ(m) = [θ1, ..., θm], p(m) = [p1, ..., pm] and pi denotes the mixing propor-
tions with the properties: pi ≥ 0 and

∑m
i=1 pi = 1.

2.1 Testing normality against a mixture of two normal
densities

Suppose, we want to test, if the underlaying process is normal versus the alter-
native that it follows a mixture of two normal distributions. Under the null,
yt ∼ N(β0, σ

2
0), whereas under the alternative

yt ∼ pN(β1, σ
2
1) + (1− p)N(β2, σ

2
2)

Lets denote θ0 = [β0, σ
2
0 ], θ1 = [β1, σ

2
1 ] and θ2 = [β2, σ

2
2 ].

In the traditional setup, hypotheses are stated in the form of restrictions on
the parameters of the mixture model. As mentioned by Garel (2001) and Garel
(2007), the null hypothesis is represented by three curves:

• p = 0 and θ2 = θ0

• p = 1 and θ1 = θ0

• θ1 = θ2 = θ0

Because, in the mixture model, the ordering of the components doesn’t affect
the distribution function, we can assume, without loss of generality, that the
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first component is significant, meaning that p ≥ 0.5. Then the null is reduced
to two curves: p = 1, θ1 = θ0 and θ1 = θ2 = θ0. The hypotheses can be stated
as follows (Chen and Li (2009)):

H0 : (1− p)(θ1 − θ2) = 0

H1 : (1− p)(θ1 − θ2) 6= 0

Under the null, some of the parameters are not identifiable. For example,
when p = 1 then the parameter vector θ2 can take any value form Θ without
changing the overall density function (1). Similarly, when θ1 = θ2 then the
mixing proportion p can’t be identified. It leads to some serious problems,
when the mixture model is estimated and the null hypothesis is tested.

At the same time, it can be noticed that when the true model is normal, then
adding insignificant components doesn’t change parameters of the significant
one. Hence, regardless of the number of redundant components, there should
be θ0 = θ1. We will use this property to develop a new set of hypotheses.

First, lets denote β̃ and σ̃2 the first two central moments of y : β̃ = E(y)
and σ̃2 = V ar(y), respectively. Then

β̃ = pβ1 + (1− p)β2 (2)

σ̃2 = pσ2
1 + (1− p)σ2

2 + p(1− p)(β1 − β2)2 (3)

Under the null, either p = 1 and θ1 = θ0 or θ1 = θ2 = θ0. In both cases
θ0 = θ1. Moreover, the moments are equal to the parameters of the normal
distribution and θ̃ = θ0 = θ1. Under the alternative, the second component is
significant. It means that both p 6= 1 and θ1 6= θ2. From equations (2)-(3), it
can be easily shown that also θ̃ 6= θ1. Therefore, we can write the hypotheses
in the alternative way

H∗0 : θ̃ = θ1

H∗1 : θ̃ 6= θ1

Both sets of hypotheses (H0, H1) and (H∗0 , H
∗
1 ) are equivalent.

Note that when the new pair of hypotheses is considered, no distinction
between the two curves p = 1 and θ1 = θ2 is needed. Moreover, under the null,
parameters θ̃, θ0 and θ1 are unique, even when the remaining parameters of the
mixture model are not identifiable.

2.2 Testing normality against a mixture of two normal
densities with equal variances

The hypotheses can be simplified, when equal component variances are assumed.
Lets consider a case, when under the null yt ∼ N(β0, σ

2
0), whereas under the

alternative there is

yt ∼ pN(β1, σ
2) + (1− p)N(β2, σ

2)
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In the traditional setup, the hypotheses are

H0 : (1− p)(β1 − β2) = 0

H1 : (1− p)(β1 − β2) 6= 0

Under the null, some of parameters of the mixture model are not identifiable
(either β2 or p). In order to solve this problem, the second central moment of
the sample can be used. Similarly to the previous case, the variance , σ̃2, of the
variable y is equal to (Chen and Li (2009))

σ̃2 = σ2 + p(1− p)(β1 − β2)2 (4)

It is straightforward that the two conditions (1− p)(β1 − β2) = 0 and σ̃2 = σ2

are equivalent. Hence, the hypotheses can be reformulated as follows

H∗0 : σ̃2 = σ2

H∗1 : σ̃2 6= σ2

Moreover, under the null the variance of the variable y is equal to the variance
of the normal distribution, σ̃2 = σ2

0 , and therefore also σ2
0 = σ2.

The hypotheses could be also based on the comparison of the mean of the
significant component and the mean of the process. When the mean depends
on some other factors, for example in regression models, then this approach
requires more degrees of freedom than the variance comparison. Therefore, I
found the hypotheses based on variances simpler and more suitable, especially
when some prior information about σ2 is available.

2.3 Testing m-component against (m+1)-component mix-
ture

The approach can be easily extended to the case, in which the significance of
the last component in the (m + 1)-component mixture is tested. Lets assume
that under the null, the data is described by m-component mixture.

yt ∼
m∑
i=1

pif(y; θi) (5)

whereas under the alternative, there are m+ 1 significant components

yt ∼
m+1∑
i=1

qjf(y; θj) (6)

The last component is said to be insignificant, if either its probability is zero,
qm+1 = 0 or its parameters are equal to parameters of some other component,
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∃i ∈ {1, ...,m} : θm+1 = θi. These conditions are typically described in the form
of restrictions on the parameters of the (m+ 1)-component mixture.

H0 : qm+1

m∏
i=1

(θm+1 − θi) = 0

H1 : qm+1

m∏
i=1

(θm+1 − θi) 6= 0

Similarly to the previous case, in which m = 1, some of the parameters of the
model (6) are not identifiable under the null. When qm+1 = 0 then θm+1 may
take any value from Θ. On the other hand, when there exists i ∈ {1, ...,m} such
that θm+1 = θi, then both qi and qm+1 are not identifiable.

In order to solve the identification problem, the hypotheses need to be re-
formulated. The new hypotheses are based on the observation that adding in-
significant components does’t change parameters of significant ones. Lets denote
g(y; θ̃) a density function that is either normal or a mixture of two components,
with the first two moments described as before by θ̃ = [β̃′, σ̃2]. Then

yt ∼
m−1∑
i=1

p̃jf(y; θ̃j) + p̃mg(y; θ̃m)

Lets denote θ
(m+1)
1:m the parameters of the first m, significant components of

the model (6). Under the null, the g(y) component is normally distributed and

the parameter vectors θ
(m+1)
1:m and θ̃(m) are equal, up to the permutation of the

components. Lets order the components in θ(m) and θ
(m+1)
1:m in such a way that

β1 ≤ ... ≤ βm and σ2
i ≤ σ2

i+1 for βi = βi+1. Then, under the null

H∗0 : θ
(m+1)
1:m = θ̃(m) (7)

On the other hand, it can be easily shown that when H∗0 holds then also
H0 is true. It follows directly from the Section 2.1 and the fact that the finite
mixture of normal distributions is uniquely identified up to the permutation of
its components. Hence, the two null hypotheses, H0 and H∗0 , are equivalent.

Lets set the alternative hypothesis as follows

H∗1 : θ
(m+1)
1:m 6= θ̃(m) (8)

then (H0, H1) can be replaced by (H∗0 , H
∗
1 ). It should be noticed that under

H∗0 , parameter vectors θ
(m+1)
1:m and θ̃(m) are identifiable. This property simplifies

the testing procedure significantly.
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3 Test for the significance of a component in a
normal mixture model

Lets start the construction of the test by describing the log-likelihood function
of the mixture of m normal distributions

lm,T (θ(m), p(m)) =

T∑
t=1

ln fm(yt; θ
(m), p(m))) (9)

where fm(yt; θ
(m), p(m)) is defined by (1). In a traditional setup, the following

likelihood ratio test is considered

LR = 2
(
lm+1,T (θ̂(m+1), p̂(m+1))− lm,T (θ̂(m), p̂(m))

)
with θ̂(m), p̂(m), θ̂(m+1) and p̂(m+1) being the ML estimators of parameters of
models with m and (m+ 1) components, respectively.

It has been discussed by many authors (Hartigan (1985), McLachlan and
Peel (2000), Liu and Shao (2004), Chen and Li (2009) among others) that
the LR statistic doesn’t have a standard χ2 distribution. Although the model
seems relatively simple, the likelihood function and ML estimators suffer serious
problems.

First, as discussed in the previous section, parameters of a mixture model
are not identifiable under the null. It has important implications for the asymp-
totic distribution of the LR statistic. The problem has been discussed by Davies
(1977), Andrews and Ploberger (1994) and Hansen (1996). They showed that
when there are nuisance parameters, which can’t be identified under the null,
then critical values of the LR statistic can’t be tabulated and need to be sim-
ulated for each application separately. Unfortunately, their approach requires
some regularity conditions, which are not satisfied in the MN context. There-
fore, their method should be used with much caution. There are a few other
papers, which try to solve the identification problem. For example, King and
Shively (1993) reparametrized the non-identifiable model using a transformation
involving polar coordinates, Ghosh and Sen (1985) imposed some separation
conditions on component parameters. In Chen and Li (2009), the identification
is achieved by assuming known mixing proportion parameter. These approaches
are difficult to generalize and sometimes hard to justify.

Second, the log likelihood function (9) is unbounded and diverges to infinity,
when the variance of one component approaches 0, see Hathaway (1985) and
Chen and Li (2009) for discussion. It means that the model parameters can’t
be consistently estimated with the ML method, even when the true underlaying
model is a mixture of distributions. The problem can be solved by imposing
restrictions on the components relative variances, as proposed by Hathaway
(1985), or adding penalty function to the log likelihood (Chen and Li (2009),
Chen et al. (2012)). It was shown by Redner and Walker (1984) that when the
parameter space is compact and contains the true parameter values, then the ML
estimator is super consistent. Unfortunately, placing constraints on variances
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doesn’t ensure that the LR statistic is well behaved. As shown by Hartigan
(1985) and confirmed by Liu and Shao (2004), when the mean parameters are
not bounded, then the LR statistic diverges to infinity even for a model with
equal component variances.

Finally, the log likelihood is so irregular (θ̂(m) is one of the local maxima of
the lm+1,T (θ, p), the Fisher information matrix is not well defined) that even
under strong parameter constraints, the distribution of LR is nonstandard and
very difficult to simulate (Chen and Li (2009)).

Alternatively, we can construct a test statistic, which will verify the hypoth-

esis (7). If the true model is (5) then θ
(m+1)
1:m = θ̃(m) and θ̃(m) = θ(m). So under

the null θ
(m+1)
1:m = θ(m). Therefore, in order to test whether the last component

of the (m + 1)-mixture is insignificant, we propose to compare the parameter

vectors θ
(m+1)
1:m and θ(m). It can be done with the likelihood ratio test based on

likelihood function of the m-component mixture model

LR∗ = 2(lm,T (θ̂(m))− lm,T (θ̂
(m+1)
1:m )) (10)

Small values of the LR∗ statistic indicates that θ(m) and θ
(m+1)
1:m don’t differ

significantly. Hence, the last component in the (m+ 1)-mixture is insignificant.

On the other hand, when the true underlaying model is (6) then θ(m) 6= θ
(m+1)
1:m

and LR∗ will rise with the sample size and will lead to the rejection of null.

Unlike the traditional setup, parameters θ(m) and θ
(m+1)
1:m are identifiable

under the null. When some constraints, similar to those proposed by Hathaway
(1985), are imposed, then both parameter vectors can be consistently estimated

with the ML method. The estimators θ̂(m) and θ̂
(m+1)
1:m converges, with the same

rate,
√
T , to the true vector of parameters θ(m). Hence also

√
T (θ̂(m) − θ̂(m+1)

1:m ) = Op(1)

Moreover, it can be shown that the test statistic LR∗ is bounded in the
probability, that is LR∗ = Op(1). It follows from the fact that under the null,
the Fisher information matrix of the m-component mixture is well behaved.
The same can be said about the variance-covariance matrix, Σ(θ(m)), of the

estimator θ̂(m). Therefore,

LR∗ ' T (θ̂(m) − θ̂(m+1)
1:m )Σ−1(θ(m))(θ̂(m) − θ̂(m+1)

1:m ) = Op(1)

Hence, the LR∗ statistic doesn’t diverge to infinity, both for m = 1 and m > 1.
Unfortunately, the distribution of LR∗ is nonstandard. First, when no re-

strictions on parameter space are imposed, then the difference between the es-
timators is op(1) and it converges to zero, for σ2

m+1 → 0 . Second, when some
constraints are added, both vectors of parameters are still estimated and the
variance-covariance matrix of their difference is different than Σ(θ(m)). Hence,
LR∗ doesn’t have a χ2 distribution. However, it can be shown that in those
cases, when some of the parameters are known, the LR∗ test statistic will have a
standard distribution and will follow χ2 with the number of degrees of freedom
depending on the number of components under the null and the model setup.
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4 Results

4.1 Known parameters of significant components

Suppose, we want to test if the data is normally distributed against the alterna-
tive that it follows a mixture of two normal densities. In the following section,
it is assumed that parameters of the significant component are known and equal
to: β1 = 0 and σ2

1 = 1. Hence the hypothesis are

H0 : yt ∼ N(β0, σ
2
1)

H1 : yt ∼ pN(0, 1) + (1− p)N(β, σ2)

This specification was considered by many authors, for example by Chen and
Chen (2001), Liu and Shao (2004), Garel (2001) and Garel (2007). In some of
the papers, additional restrictions on parameters are imposed, such as equal and
known variances (Garel (2001), Liu and Shao (2004)). Although, the problem
seems simple, it is very difficult to verify in the traditional setup. Under the
null, the LR statistic has a nonstandard distribution and its critical values have
to be simulated. Lets consider the new pair of hypotheses, which are based
on the comparison of parameters of the significate component and the first two
central moments of the sample. Under the null, the moments are known and
the hypotheses are trivial

H∗0 : θ0 = θ̃ = [0, 1]

H∗1 : θ̃ 6= [0, 1]

The null can be easily tested with the LR∗ statistic

LR∗ = 2(l1,T (θ̂0)− l1,T ([0, 1])

Under the null, the statistic has a χ2(2) distribution.
The empirical size and a power of the test are evaluated on the basis of a

Monte Carlo experiment. In order to asses the size of the test, 10000 normally
distributed, N(0, 1), random samples are generated for different sample sizes,
T = 50, 100, 500, 1000. The results are presented in the Table 1. The empirical
size is close to the nominal significance level. It is not surprising, since the
testing procedure collapses to a well known statistical problem: verification of
the hypothesis that a sample comes from a normal distribution with zero mean
and an unit variance.

The observed power of the test was estimated on the basis of 10000 samples
drawn from a two-component normal mixture. 15 different scenarios were con-
sidered, based on three values of mixing proportions p = 0.5, 0.7 and 0.9 and
different combinations of parameters (β2, σ

2
2). The empirical power of the test

for the significance level α = 0.05 are presented in Table 2. First, it can be
observed that the power of the test is larger than 50% for all T and the mixing
proportion p = 0.5, 0.7. For all parameter specifications, it increases with T and
reaches 100% for T = 1000. Moreover, the further are the components from
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Table 1: Simulated size for testing a single normal versus a mixture of two nor-
mals with known parameters of the significant state; based on 10000 replications
for each sample size

T/α 0.1 0.05 0.01
50 0.1038 0.0526 0.0108
100 0.1033 0.0513 0.0100
500 0.1011 0.0503 0.0101
1000 0.0989 0.0501 0.0100

each other, the higher is the empirical power. For example, when the alterna-
tives with parameters (0, 4) and (0, 9) are compared, the latter is detected more
often, especially for short samples or large p. On the other hand, the mixing
proportion, p, has an adverse effect on the power. Models with p close to 1
require much larger samples to detect the nonlinearity.

The results are in line with previous findings of Mendell et al. (1991) and
Garel (2001), who showed, with much more demanding techniques, that the
bigger is the distance between the components, the larger is the power of LR
statistics. Moreover, values of p close to 1 required larger samples to reach the
power level of 50% (Mendell et al. (1991)). When LR∗ is compared with the
traditional LR statistic, it can be seen that the LR∗ test exhibits larger power
than, for example, the approximation used by Mendell et al. (1991). The results
of Garel (2001) are hard to compare, because in his paper a one sided test is
used, with β2 > 0 and σ2

2 = 1 under the alternative.

4.2 Unknown means, equal and known variances

Finally, lets consider a case of a null hypothesis that a variable is normally dis-
tributed and the alternative that is follows a mixture of two normal distributions
with equal and known variances, σ2 = 1. Then under the alternative there is

yt ∼ pN(β1, 1) + (1− p)N(β2, 1)

This problem has been discussed by Ghosh and Sen (1985), Chen and Chen
(2001), Garel (2001) and King and Chen (2010). Different approaches to the
estimation of mixture model parameters and approximation of critical values
were proposed. In this paper, a new pair of hypotheses, which follows from
Section 2.2, is considered. They are formulated as follows:

H∗0 : σ̃2 = 1

H∗1 : σ̃2 6= 1

with σ̃2 = σ2
0 under the null. H∗0 can be tested with the LR∗ statistic, which

verifies if the linear model has a unit variance. It has a standard, χ2(1) distri-
bution.
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Table 2: Simulated powers for testing a single normal versus a mixture of two
normals with known parameters of the significant state; based on 10000 repli-
cations under each alternative

(β2, σ
2
2)

T (1,1) (2,1) (0,4) (0,9) (1,4)
p = 0.5

50 0.897 0.999 0.965 0.999 0.993
100 0.995 1.000 0.999 1.000 1.000
500 1.000 1.000 1.000 1.000 1.000
1000 1.000 1.000 1.000 1.000 1.000
p = 0.7

50 0.521 0.985 0.765 0.982 0.891
100 0.819 1.000 0.951 1.000 0.992
500 1.000 1.000 1.000 1.000 1.000
1000 1.000 1.000 1.000 1.000 1.000
p = 0.9

50 0.115 0.441 0.256 0.605 0.358
100 0.173 0.704 0.391 0.823 0.566
500 0.640 0.999 0.924 1.000 0.988
1000 0.910 1.000 0.997 1.000 1.000

Similarly as before, the empirical size and the power are estimated on the
basis of 10000 randomly drawn samples. When the size is considered, the sam-
ples are normally distributed, N(0, 1), whereas for power analysis six different
scenarios are used. The scenarios are characterized by the mixing proportion
parameter, p, which is either 0.5, 0.7 or 0.9 and the normalized difference be-
tween the mean parameters of two components D = (β1 − β2)/σ; β1 is set to 0
and σ is set to 1. The results are presented in Table 3 and Table 4.

Table 3: Simulated size for testing a single normal versus a mixture of two
normals with equal and known variances; based on 10000 replications for each
sample size

T/α 0.1 0.05 0.01
50 0.1066 0.0536 0.0113
100 0.1030 0.0517 0.0110
500 0.1011 0.0506 0.0097
1000 0.0992 0.0495 0.0098

The empirical size of the test is close to the nominal significance levels, for
all sample sizes. Moreover, the observed power of the test approaches 100%, for
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Table 4: Simulated powers for testing a single normal versus a mixture of two
normals with equal and known variances; based on 10000 replications for each
sample size

D 1 2
T/p 0.5 0.7 0.9 0.5 0.7 0.9
50 0.174 0.139 0.071 0.943 0.856 0.325
100 0.336 0.259 0.090 0.999 0.991 0.565
500 0.941 0.847 0.277 1.000 1.000 0.996
1000 0.998 0.987 0.489 1.000 1.000 1.000

long samples, with T = 500 and 1000, and almost all parameter configuration.
Only, when the mixing parameter is 0.9 and the components are not well sepa-
rated (D = 1), the power doesn’t exceed 50% for T = 1000. It can be observed
that our results are still superior to the outcomes of Mendell et al. (1991).

5 Conclusions

In this article, an alternative approach to hypotheses formulation, when testing
for the number of components in a mixture model, is presented. The new set of
hypotheses doesn’t involve non-identifiable parameters, such as parameters of
an insignificant component or mixing proportions. Hence, it overcomes one of
the crucial problems associated with verification of mixture models. Moreover,
a simple LR∗ statistic is proposed, which is based on a well behaved likelihood
function. When the parameter space is compact, then the ML parameter esti-
mators converge to the true ones and the LR∗ statistic , unlike the traditional
LR statistic, is bounded. No further assumptions or separation conditions are
needed.

The simulation studies suggest that the test work well for cases, when some
of parameters are known. It is shown that the test has a correct size, when
parameters of the significant component are known or when components have
equal and known variances. These examples were previously analyzed by many
authors, for example by Chen and Chen (2001), Garel (2001), Garel (2007) and
King and Chen (2010), who used much more demanding approaches and simu-
lation techniques to verify the null of normal distribution against the alternative
of a mixture of two normal distributions. The simulation results indicate that
the test has a good power, when compared with a traditional testing procedure
and therefore seems promising.

It would be of interest to extend the simulation studies to models with
unknown parameters, similarly to Lo et al. (2001) and Chen and Li (2009).
This requires deriving a consistent estimator of the variance-covariance matrix

of the the difference between parameters θ̂(m) and θ̂
(m+1)
1:m . It could be also

checked, what are the losses of power and size, when the incorrect assumption

12



of the χ2 distribution of LR∗ is used.
The proposed approach is very simple and relatively easy to apply. It has

an intuitive interpretation and therefore could be extended to other cases and
model setups. It would be interesting to further develop it, in order to cover
more general model specification, such as linear regression models and multi-
dimensional normal distribution models.
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