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On the Stratonovich — Kalman - Bucy filtering algorithm application for
accurate characterization of financial time series with use of state-space

model by central banks

Dimitri O. Ledenyov and Viktor O. Ledenyov

Abstract — The central banks introduce and implement the monetary and financial
stabilities policies, going from the accurate estimations of national macro-financial indicators
such as the Gross Domestic Product (GDP). Analyzing the dependence of the GDP on the time,
the central banks accurately estimate the missing observations in the financial time series with
the application of different interpolation models, based on the various filtering algorithms. The
Stratonovich — Kalman — Bucy filtering algorithm in the state space interpolation model is used
with the purpose to interpolate the real GDP by the US Federal Reserve and other central banks.
We overviewed the Stratonovich — Kalman — Bucy filtering algorithm theory and its numerous
applications. We describe the technique of the accurate characterization of the economic and
financial time series with application of state space methods with the Stratonovich — Kalman -
Bucy filtering algorithm, focusing on the estimation of Gross Domestic Product by the Swiss
National Bank. Applying the integrative thinking principles, we developed the software program
and performed the computer modeling, using the Stratonovich — Kalman — Bucy filtering
algorithm for the accurate characterization of the Australian GDP, German GDP and the USA
GDP in the frames of the state-space model in Matlab. We also used the Hodrick-Prescott filter
to estimate the corresponding output gaps in Australia, Germany and the USA. We found that the
Australia, Germany on one side and the USA on other side have the different business cycles.
We believe that the central banks can use our special software program with the aim to greatly
improve the national macroeconomic indicators forecast by making the accurate characterization
of the financial time-series with the application of the state-space models, based on the

Stratonovich — Kalman — Bucy filtering algorithm.

JEL: C15, C32, C51, C52, E5, E31, E32.
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Introduction

The economic and financial principles by the Austrian school of economic thinking in
Menger (1871), von Bohm-Bawerk (1884, 1889, 1921), von Mises (1912, 1949), Hayek (1931,
1935, 1948, 1980, 2008), Hazlitt (1946), Rothbard (1962, 2004) had a considerable scientific
influence on the modern Monetarism theories by the American scientists of the Austrian origin at
the Chicago school of economic thinking in the XX — XXI centuries. In our time, the Chicago
school of economic thinking has a reputation of a world renowned expert in the finances,
influencing the US policymakers, governmental officials, congressmen, senators, who work on
the US Federal Reserve System governance policies introduction and execution. The central
bank of the United States, the US Federal Reserve System, was founded in the Federal Reserve
Act, passed by the US Congress in 1913 in Willis (1923), Meltzer (2003, 2009a, b), Bernanke
(2013). The main purpose of the US Federal Reserve System was: “provide a means by which
periodic panics which shake the American Republic and do it enormous injury shall be stopped”
in Owen (1919), Bernanke (2013). Analyzing the historical developments, Dr. Ben Shalom
Bernanke, Chairman of the US Federal Reserve System distinguishes the following historical
periods in the US Federal Reserve System operation in Bernanke (2013): 1) The Great
Experiment of the US Federal Reserve System founding in 1913; 2) The Great Depression in
1922-1933; 3) The Stable Inflation in 1950s — 1960s, Great Inflation in mid 1960s — end 1970s,
and Disinflation in 1979-1984; 4) The Great Moderation in 1984-2007; 5) The Great Recession
in 2008-until now. In Fig. 1, the first Federal Reserve System Board in 1914 is shown in Fox,
Alvarez, Braunstein, Emerson, Johnson, Johnson, Malphrus, Reinhart, Roseman, Spillenkothen,
Stockton (2005).

Fig. 1. The first Federal Reserve System Board in 1914 (after Fox, Alvarez, Braunstein,

Emerson, Johnson, Johnson, Malphrus, Reinhart, Roseman, Spillenkothen, Stockton (2005)).



As the principal monetary authority of a nation, the US Federal Reserve System (central
bank) performs the key functions towards the introduction and implementation of:

1. Monetary stability policy, aiming to stabilize the prices and increase the confidence in
the currency by setting and reaching the inflation target through the realization of
transparent effective programs on the interest rates and asset purchases in the money
markets, and

2. Financial stability policy, aiming to detect and reduce the systemic risks to the
national financial system by identifying and monitoring the possible systemic threats
to the financial stability and by taking an action to reduce those threats by improving
the financial infrastructure, by setting the banking capital requirements, by acting as
the lender of last resort.

Presently, the US Federal Reserve System’s main purpose is to provide the nation with a
safer, more flexible, and more stable monetary and financial system in Fox, Alvarez, Braunstein,
Emerson, Johnson, Johnson, Malphrus, Reinhart, Roseman, Spillenkothen, Stockton (2005).

The Federal Reserve System’s main duties are in Fox, Alvarez, Braunstein, Emerson,
Johnson, Johnson, Malphrus, Reinhart, Roseman, Spillenkothen, Stockton (2005):

1. Conducting the nation’s monetary policy by influencing the monetary and credit
conditions in the economy in pursuit of maximum employment, stable prices, and moderate
long-term interest rates.

2. Supervising and regulating the banking institutions to ensure the safety and soundness
of the nation’s banking and financial system and to protect the credit rights of consumers.

3. Maintaining the stability of the financial system and containing systemic risk that may
arise in financial markets.

4. Providing the financial services to depository institutions, the US Government, and
foreign official institutions, including playing a major role in operating the nation’s payments
system.

The implementation of the monetary policy by the US Federal Reserve System is a
challenging task in Fox, Alvarez, Braunstein, Emerson, Johnson, Johnson, Malphrus, Reinhart,
Roseman, Spillenkothen, Stockton (2005): “The Federal Reserve implements U.S. monetary
policy by affecting conditions in the market for balances that depository institutions hold at the
Federal Reserve Banks. The operating objectives or targets that it has used to effect desired
conditions in this market have varied over the years. At one time, the FOMC sought to achieve a
specific quantity of balances, but now it sets a target for the interest rate at which those balances

are traded between depository institutions—the federal funds rate. By conducting open market
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operations, imposing reserve requirements, permitting depository institutions to hold contractual
clearing balances, and extending credit through its discount window facility, the Federal Reserve
exercises considerable control over the demand for and supply of Federal Reserve balances and
the federal funds rate. Through its control of the federal funds rate, the Federal Reserve is able to
foster financial and monetary conditions consistent with its monetary policy objectives.”

In Fig. 2, the US Federal Reserve System is depicted in Fox, Alvarez, Braunstein,

Emerson, Johnson, Johnson, Malphrus, Reinhart, Roseman, Spillenkothen, Stockton (2005).
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Fig. 2. The US Federal Reserve System (after Fox, Alvarez, Braunstein, Emerson, Johnson,

Johnson, Malphrus, Reinhart, Roseman, Spillenkothen, Stockton (2005)).



In Tab. 1, the US Federal Reserve district banks and branches are shown in Fox, Alvarez,

Braunstein, Emerson, Johnson, Johnson, Malphrus, Reinhart, Roseman, Spillenkothen, Stockton

(2005).
Number Letter Bank Branch
1 A Boston
2 B MNew York Buftalo, New York
3 C Philadelphia
4 D Cleveland Cincinnati, Ohio
Pittsburgh, Pennsylvama
5 E Richmond Baltimore, Maryland
Charlotte, North Carolina
6 F Atlanta Birmingham, Alabama
Jacksonville, Florida
Miami, Florida
MNashville, Tennessee
New Orleans, Louisiana
7 G Chicago Detroit, Michigan
8 H St. Louis Little Roock, Arkansas
Louisville, Kentucky
Memphis, Tennessee
9 | Minneapolis Helena, Montana
10 ] Kansas City Denver, Colorado
Oklahoma City, Oklahoma
Omaha, Nebraska
11 K Dallas El Paso, Texas
Houston, Texas
San Antonio, Texas
12 L San Francisco Los Angeles, Califorma

Portland, Oregon
Salt Lake City, Utah
Seattle, Washington

Tab. 1. The US Federal Reserve district banks and branches (after Fox, Alvarez, Braunstein,

Emerson, Johnson, Johnson, Malphrus, Reinhart, Roseman, Spillenkothen, Stockton (2005)).



In Fig. 3, the market for balances at the US Federal Reserve is shown in Fox, Alvarez,

Braunstein, Emerson, Johnson, Johnson, Malphrus, Reinhart, Roseman, Spillenkothen, Stockton

(2005).
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Fig. 3. The market for balances at the US Federal Reserve (after Fox, Alvarez, Braunstein,

Emerson, Johnson, Johnson, Malphrus, Reinhart, Roseman, Spillenkothen, Stockton (2005)).

The central bank’s monetary policy is usually guided by the basic principles and needs to
be flexible enough to respond to the financial fluctuations in the capital markets in Ferguson
(2003). In the researched case of the Swiss National Bank (SNB), the SNB’s ““best-practice”
monetary policy framework is based on the following important principles in Baltensperger,
Hildebrand, Jordan (2007):

1. Priority given to long-term price stability as a firm nominal anchor, with an explicit
quantitative definition of what is meant by price stability;

2. A medium-term orientation in the pursuit of this objective, giving scope for short-run
flexibility to dampen real economic fluctuations;

3. A forward-looking approach in the pursuit of its objectives, through the use of an
inflation forecast as its main indicator;

4. Flexible implementation of monetary policy, through the announcement of a target
range for the three-month CHF Libor as an operational target;

5. Transparency and accountability as central principles of a successful policy concept.



Let us explain that the central banks introduce the changes into the monetary stability
policy and the financial stability policy, going from the estimated economic and financial
indicators such as the Gross Domestic Product (GDP) in Taylor (1999). Aiming to complete the
accurate characterizations of the different economic and financial indicators, the central banks
estimate the missing observations in the various economic time series with the application of the
different interpolation models, including the state-space model, in Bernanke, Gertler, Watson
(1997), Cuche, Hess (2000). The Stratonovich — Kalman — Bucy filtering algorithm in
Stratonovich (1959a, b, 1960a, b), Kalman, Koepcke (1958, 1959), Kalman, Bertram (1958,
1959), Kalman (1960a, b, 1963), Kalman, Bucy (1961) represents one of the possible
interpolation models, which has been effectively used to interpolate the real Gross Domestic
Product (GDP) by the Federal Reserve in the USA, Swiss National Bank in Switzerland and
by some other central banks in various countries in Bernanke, Gertler, Watson (1997), Cuche,
Hess (2000), Proietti, Luati (2012a).

The other macroeconomic applications of the state-space interpolation models may also
include in Proietti, Luati (2012a):

* The extraction of signals such as trends and cycles in macroeconomic time series: see
Watson (1986), Clark (1987), Harvey and Jaeger (1993), Hodrick and Prescott (1997), Morley,
Nelson and Zivot (2003), Proietti (2006), Luati and Proietti (2011).

» The dynamic factor models, for the extraction of a single index of coincident indicators, see
Stock and Watson (1989), Frale et al. (2011), and for large dimensional systems Jungbacker,
Koopman and van der Wel (2011).

» The stochastic volatility models: see Shephard (2005) and Stock and Watson (2007) for
applications to US inflation.

» The time varying auto-regressions with stochastic volatility: see Primiceri (2005), Cogley,
Primiceri and Sargent (2010).

* The structural change in macroeconomics: see Kim and Nelson (1999).

» The class of dynamic stochastic general equilibrium (DSGE) models: see Sargent (1989),
Fernandez-Villaverde and Rubio-Ramirez (2005), Smets and Wouters (2003), Fernandez-
Villaverde (2010).

In this research article, we intend to continue our scientific investigations on the
nonlinearities in the finances, which have been conducted over the recent years in Ledenyov V O,
Ledenyov D O (2012a, b), Ledenyov D O, Ledenyov V O (2012c, d), Ledenyov D O, Ledenyov V
0 (20134, b, c, d, e, f).



Stratonovich — Kalman — Bucy filtering algorithm and its applications

The Stratonovich — Kalman — Bucy filtering algorithm was invented in the science of
radio-physics, hence let us make a brief overview of the analogue and digital signals
processing techniques with the purpose to understand an essence of the Stratonovich — Kalman
— Bucy filtering algorithm in Stratonovich (1959a, b, 1960a, b), Kalman, Koepcke (1958, 1959),
Kalman, Bertram (1958, 1959), Kalman (1960a, b, 1963), Kalman, Bucy (1961).

Discussing the analogue signal processing, it is worth to say that, in the theory of
electrodynamics and the theory of radio-physics, it is a well known fact that the analogue signal
with the encoded information can be transmitted by the signal carrier over the wireless, wireline
or optical channels in Wanhammar (1999), Ledenyov D O, Ledenyov V O (2012¢). This analogue
signal can be accurately characterized by its changing amplitude, frequency, phase and power
over the certain time period in Ledenyov D O, Ledenyov V O (2012e). The encoding of the
information into the analogue signal can be done with the help of various modulation processes
by changing the analogue signal’s parameters such as the amplitude (amplitude modulation),
frequency (frequency modulation), phase (phase modulation) and power (pulse code modulation)
over the time in Ledenyov D O, Ledenyov V O (2012e). The analogue signal can be continuously
transmitted over the transmission channel for some time period (the continuous wave (CW)
signal) or it can be discretely transmitted over the transmission channel for some time(the
discrete signal). In the last case, the analogue signal can be represented as a sequence of the
discrete magnitudes of  physical parameters of the analogue signal in
Ledenyov D O, Ledenyov V O (2012e). The analogue signals filtering with the frequency
selective signal filters is needed in the cases, when it is necessary to transmit or receive the
selected analogue signal over the certain frequency in the frequency domain only in Ledenyov D
O, Ledenyov V O (2012e). The analogue signals filtering is well described in the book:
“Nonlinearities in microwave superconductivity” in Ledenyov D O, Ledenyov V O (2012e): “The
High Temperature Superconducting (HTS) microwave electromagnetic signal filter is one of the
essential microwave components in modern wireless communication systems in which the
complete and independent measurement of the entire signal space to identify and decode the
information in the spectral transmission sequences over the wireless channel is made. The main
functions of microwave filter are to select the information signal carrier in the frequency domain
and amplify its amplitude by the resonance.”

Discussing the digital signal processing techniques, it makes sense to explain that the
analogue signal can also be uniformly sampled over the time, using the Nyquist theorem, with
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the help of the Analogue to Digital (A/D) converter to obtain the digital signal; or the digital
signal can be de-sampled over the time with the help of the Digital to Analogue (D/A) converter
to obtain the analogue signal in Wanhammar (1999). The analogue signal processing can be
performed, using the analogue signal processing algorithms such as the Fourier transform,
Laplace transform, etc. in Wanhammar (1999). The digital signal processing can be performed,
using the digital signal processing algorithms such as the Discrete Fourier transform (DFT),
Fast Fourier transform (FFT), Cooley-Turkey Fast Fourier transform (CT FFT), Sande-Tukey
Fast Fourier transform (ST FFT), Inverse Fast Fourier transform (Inverse FFT), Discrete
Cosine transform (DCT), Wavelet transform, z-transform, etc. in Wanhammar (1999). As
explained in Wanhammar (1999): “The main purpose of a signal processing system is generally
to reduce or retain the information in a signal.” The digital signal processing is usually done for
the Linear Shift Invariant (LSI) systems, which are linear and time-invariant in Wanhammar
(1999). The frequency response of the Linear Shift Invariant (LSI) system can be characterized
by the frequency function, magnitude function, attenuation function, phase function, group delay
function, and transfer function in Wanhammar (1999). The digital filters can also be classified in
the Finite-length Impulse Response (FIR) filters and Infinite-length Impulse Response (IIR)
filters, depending on their response functions characteristics in Wanhammar (1999).

Going to the discussion on the Stratonovich — Kalman — Bucy filtering algorithm, it is
interesting to highlight the fact that, since the beginning of the XX century, the nonlinearities
and nonlinear physical systems represented the subjects of strong research interest in the natural
sciences, including the radio-physics (the analogue signal processing) in Mandel’shtam (1948-
1955), Andronov (1956), Rytov (1957); the nuclear physics in Fermi, Pasta, Ulam (1955), Femi
(1971-1972). The nonlinearities in the microwave superconductivity were comprehensively
researched in Ledenyov D O, Ledenyov V O (2012e).

Analyzing the time series, Ruslan L. Stratonovich created the optimal non-linear
filtering theory in 1959 in Stratonovich (1959a, b, 1960a, b). During next few years, the optimal
non-linear filtering theory has been extensively complemented by the various research findings;
and its foundational principles have been used to develop the Stratonovich — Kalman — Bucy
filtering algorithm in 1959-1963 in Stratonovich (1959a, b, 1960a, b), Kalman, Koepcke (1958,
1959), Kalman, Bertram (1958, 1959), Kalman (1960a, b, 1963), Kalman, Bucy (1961).

The Stratonovich — Kalman — Bucy filter is clearly defined as in Wikipedia (2013): “The
Kalman filter, also known as Linear Quadratic Estimation (LQE), is an algorithm that uses a
series of measurements observed over time, containing noise (random variations) and other

inaccuracies, and produces estimates of unknown variables that tend to be more precise than
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those based on a single measurement alone. More formally, the Kalman filter operates
recursively on streams of noisy input data to produce a statistically optimal estimate of the
underlying system state. The filter is named for Rudolf (Rudy) E. Kalméan, one of the primary
developers of its theory.”

The Stratonovich — Kalman — Bucy filtering algorithm is also described in Wikipedia
(2013): “The algorithm works in a two-step process. In the prediction step, the Kalman filter
produces estimates of the current state variables, along with their uncertainties. Once the
outcome of the next measurement (necessarily corrupted with some amount of error, including
random noise) is observed, these estimates are updated using a weighted average, with more
weight being given to estimates with higher certainty. Because of the algorithm's recursive
nature, it can run in real time using only the present input measurements and the previously
calculated state; no additional past information is required.”

Athans (1974) write: "The Kalman filter represents one of the major contributions in
modern control theory. Since its original development (references [I] and [2]), it has been
rederived from several points of view bringing into focus its properties from both a probabilistic
and optimization viewpoint (references [3] to [9]). Its importance in stochastic control can be
appreciated in view of the numerous applications (references [5], [6], [9] to [16])."

Kleeman (1995) explains: “A Kalman filter is an optimal estimator — i.e. it infers
parameters of interest from indirect, inaccurate and uncertain observations. The process of
finding the “best estimate” from noisy data amounts to “filtering out” the noise. If all noise is
Gaussian, the Kalman filter minimizes the mean square error of the estimated parameters.
However a Kalman filter also doesn’t just clean up the data measurements, but also projects
these measurements onto the state estimate.”

Welch, Bishop (2001) notes: “The Kalman filter is essentially a set of mathematical
equations that implement a predictor-corrector type estimator that is optimal in the sense that it
minimizes the estimated error covariance—when some presumed conditions are met.”

Pasricha (2006) states: “The Kalman filter is a recursive linear filter, first developed as a
discrete filter for use in engineering applications and subsequently adopted by statisticians and
econometricians. The basic idea behind the filter is simple - to arrive at a conditional density
function of the unobservables using Bayes’ Theorem, the functional form of relationship with
observables, an equation of motion and assumptions regarding the distribution of error terms.
The filter uses the current observation to predict the next period’s value of unobservable and then

uses the realization next period to update that forecast. The linear Kalman filter is optimal, i.e.
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Minimum Mean Squared Error estimator if the observed variable and the noise are jointly
Gaussian.”

Proietti, Luati (2012a) come up with the explanation: “The Kalman filter (Kalman, 1960;
Kalman and Bucy, 1961) is a fundamental algorithm for the statistical treatment of a state space
model. Under the Gaussian assumption, it produces the minimum mean square estimator of the
state vector along with its mean square error matrix, conditional on past information; this is used
to build the one-step-ahead predictor of y; and its mean square error matrix. Due to the
independence of the one-step-ahead prediction errors, the likelihood can be evaluated via the
prediction error decomposition.”

It is possible to think about the Stratonovich — Kalman — Bucy filter as a device, which
can estimate the state of a dynamic system from a series of incomplete and noisy measurements.
It can be used to predict a current state by using the previous one, or estimate an updated state by
using the previous state and current measurement. The predicted and estimated measurements
are calculated from their corresponding states as discussed in Matlab (R2012).

The Stratonovich — Kalman — Bucy filtering algorithm is extensively used in the
following types of signal processing filters in Wikipedia (2013): the alpha beta filter, ensemble
Kalman filter, extended Kalman filter, iterated extended Kalman filter, fast Kalman filter,
invariant extended Kalman filter, kernel adaptive Kalman filter, non-linear Kalman filter,
Schmidt—Kalman filter, hybrid Kalman filter, and Wiener filter as explained in Jazwinski (1970),
Bozic (1979), Bar-Shalom, Maybeck (1990), Xiao-Rong Li (1993).

There is a big number of practical technical applications of the Stratonovich — Kalman —
Bucy filtering algorithm, for example: the Fast Stratonovich — Kalman — Bucy adaptive filter is
implemented in the equalizers with the short training times in Wanhammar (1999). In the general
case, the equalization of wireless channel is achieved by the application of the digital filters such
as the Recursive Least Square (RLS) lattice filters with the aim to compensate for the various
distortions in the wireless channel and to eliminate the inter-symbol interference in the chips
sequence during the spread spectrum communication over the wireless channel, because of the
Ritz RF signal fading model or the Raleigh RF signal fading model, for instance, in the cases of
both the Wideband Code Division Multiple Access (WCDMA) communication or the Direct
Sequence Spread Spectrum (DSSS) communication over the constantly fading wireless channel
in Wanhammar (1999), Ledenyov D O, Ledenyov V O (2012e).

Some other technical applications of the Stratonovich — Kalman — Bucy filtering
algorithm include in Wikipedia (2013): the attitude and heading reference systems, autopilots,

battery state of charge estimators, brain-computer interface systems, equalizers in receivers for
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spread spectrum signals communications, tracking and vertex fitting of charged particles in
particle detectors systems, tracking of objects in computer vision systems, GDP interpolation in
macroeconomics, Volterra series interpolation in economics, inertial guidance systems in on
board navigation systems, radar tracking systems, GPS satellite navigation systems, systems for

sensor-less control of AC motor variable-frequency drives.

Stratonovich — Kalman - Bucy filtering algorithm theory

Let us begin with the comprehensive discussion on the Stratonovich — Kalman — Bucy
filtering algorithm theory by bringing some interesting facts on the history of science to our
close attention. Wiener (1949) completed a research on the extrapolation, interpolation and
smoothing of stationary time series. Stratonovich (1959a, b) made a research on the selection of
the useful signals from the noise in the nonlinear systems, attempting to create the theory of
optimal non-linear filtering of random functions. Stratonovich (1960a, b) applied the Markov
processes theory to the theory of optimal non-linear filtering. Kalman, Koepcke (1958a, 1959b),
Kalman, Bertram (1958b, 1959a), Kalman (1960a) conducted the innovative researches on the
theory of linear sampling control systems. At later date, Kalman (1960b) focused on the linear
filtering and prediction research problems, formulating and solving the Wiener problem from
the “state” point of view. Kalman (1963) accented his research attention on the development of
new methods in the Wiener filtering theory. Let us emphasis that Kalman (1960b) considered
some theoretical aspects of both the general linear continuous-dynamic system and the general
linear discrete-dynamic system.

The block diagram of the general linear continuous-dynamic system is shown in Fig. 4
and the block diagram of the general linear discrete-dynamic system is depicted in Fig. 5 in
Kalman (1960b).
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Fig. 4. Matrix block diagram of the general linear continuous-dynamic system
(after Kalman (1960b)).
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The block diagram of optimal filter is shown in Fig. 6 and the block diagram of optimal

controller is represented in Fig. 7 in Kalman (1960b).
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Fig. 6. Matrix block diagram of optimal filter (after Kalman (1960b)).
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Fig. 7. Matrix block diagram of optimal controller (after Kalman (1960b)).

Let us learn more on the theory of the Stratonovich — Kalman — Bucy filtering in
Wikipedia (2013): “The Kalman filters are based on linear dynamic systems discretized in the
time domain. They are modeled on a Markov chain built on linear operators perturbed by
Gaussian noise. The state of the system is represented as a vector of real numbers. At each
discrete time increment, a linear operator is applied to the state to generate the new state, with
some noise mixed in, and optionally some information from the controls on the system if they
are known. Then, another linear operator mixed with more noise generates the observed outputs
from the true ("hidden") state. The Kalman filter may be regarded as analogous to the hidden
Markov model, with the key difference that the hidden state variables take values in a continuous
space (as opposed to a discrete state space as in the hidden Markov model). Additionally, the
hidden Markov model can represent an arbitrary distribution for the next value of the state
variables, in contrast to the Gaussian noise model that is used for the Kalman filter. There is a
strong duality between the equations of the Kalman Filter and those of the hidden Markov
model”.

The Kalman filter model assumes the true state at time k is evolved from the state at
(k—1) according to in Wikipedia (2013)

X, =FX, ., +Bu, +w,

where Fy is the state transition model, which is applied to the previous state Xy—i;

B is the control-input model which is applied to the control vector u;
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Wy is the process noise which is assumed to be drawn from a zero mean multivariate normal

distribution with covariance Q.

- N(O’Qk)

At time k an observation (or measurement) z, of the true state xx is made according to in
Wikipedia (2013)

z, =H/X, +V,
where Hy is the observation model, which maps the true state space into the observed space and

vy IS the observation noise, which is assumed to be zero mean Gaussian white noise with

covariance Ry.

~N(ORy)

The initial state, and the noise vectors at each step {xo, Wi, ..., Wi, V1 ... V} are all
assumed to be mutually independent.

In Fig. 8, the model, underlying the Kalman filter is shown in Wikipedia (2013).

Time= k-1 Time=k Time=k+1
Observed fi‘" z, ff”
' @ R | | o or @, R |
upplie ,
by user *** _ ' gq ! | 0.Q 0Q see
0 0\ Y\ e \Jm
Hidden \\x\‘?'l \i(-!-'./} “1‘ ‘}L' \x\“-?ci-l vki-.l.-': //
\1&"‘-_ "-:z/ _‘*" \‘ﬁ‘ —
I?".:I_i-lppj:s:[,-' xj; ,Pj;'. .II“_ l'li*'l

Fig. 8. Model underlying the Kalman filter. Squares represent matrices. Ellipses represent
multivariate normal distributions (with the mean and covariance matrix enclosed). Unenclosed
values are vectors. In the simple case, the various matrices are constant with time, and thus the
subscripts are dropped, but the Kalman filter allows any of them to change each time step (after

Wikipedia (2013)).
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“The Kalman filter is a recursive estimator. This means that only the estimated state from
the previous time step and the current measurement are needed to compute the estimate for the
current state. In contrast to batch estimation techniques, no history of observations and/or
estimates is required. In what follows, the notation )A(n‘m represents the estimate of x at time n
given observations up to, and including at time m,” as explained in Wikipedia (2013).

R The state of the Kalman filter is represented by the two variables in Wikipedia (2013):
1.Xk\k , the a posteriori state estimate at time k given observations up to and including at time k;
2. Pk‘k , the a posteriori error covariance matrix (a measure of the estimated accuracy of the state
estimate).

“The Kalman filter can be written as a single equation, however it is most often
conceptualized as two distinct phases: "Predict” and "Update". The predict phase uses the state
estimate from the previous timestep to produce an estimate of the state at the current timestep.
This predicted state estimate is also known as the a priori state estimate because, although it is
an estimate of the state at the current timestep, it does not include observation information from
the current timestep. In the update phase, the current a priori prediction is combined with current
observation information to refine the state estimate. This improved estimate is termed the a
posteriori state estimate.

Typically, the two phases alternate, with the prediction advancing the state until the next
scheduled observation, and the update incorporating the observation. However, this is not
necessary; if an observation is unavailable for some reason, the update may be skipped and
multiple prediction steps performed. Likewise, if multiple independent observations are available
at the same time, multiple update steps may be performed (typically with different observation

matrices Hy),” as explained in Wikipedia (2013).

Predict phase:

Predicted (a priori) state estimate: )A(k‘k_l = Fk)A(k_l‘k_l +B, U,

Predicted (a priori) estimate covariance: Pk\k—l = FkPk—]Jk—leT + Qk
Update phase:

Innovation or measurement residual: V=2, — Hk)A(k‘k_1

Innovation (or residual) covariance: Sk = HkPk‘k_lHI + Rk
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Optimal Kalman gain: K, = |:>k‘k_lHIS;l
Updated (a posteriori) state estimate: )A(k‘k_l = )A(k\k_l + K, Yy
Updated (a posteriori) estimate covariance: Pk‘k = (I — Kka) F’k‘kf1

Invariants:

“If the model is accurate, and the values for >A<O‘O and Po‘o accurately reflect the
distribution of the initial state values, then the following invariants are preserved: (all the

estimates have a mean error of zero),” see in Wikipedia (2013)

E[xk — )“(kk] = E[xk — kkk_l] =0

where E[&] is the expected value of &, and the covariance matrices accurately reflect the

covariance of estimates in Wikipedia (2013)

Let us express a general opinion in Wikipedia (2013): “Practical implementation of the
Kalman filter is often difficult due to the inability in getting a good estimate of the noise
covariance matrices Qx and Rg. Extensive research has been done in this field to estimate these
covariances from data. One of the more promising approaches to do this is the Autocovariance
Least-Squares (ALS) technique that uses autocovariances of routine operating data to estimate
the covariances in Rajamani (2007), Rajamani, Rawlings (2009).”

Let us provide an additional comment in Wikipedia (2013): “It is known from the theory
that the Kalman filter is optimal in case that

a) the model perfectly matches the real system,
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b) the entering noise is white, and

c) the covariances of the noise are exactly known.

Several methods for the noise covariance estimation have been proposed during past
decades. One, ALS, was mentioned in the previous paragraph. After the covariances are
identified, it is useful to evaluate the performance of the filter, i.e. whether it is possible to
improve the state estimation quality. It is well known that, if the Kalman filter works optimally,
the innovation sequence (the output prediction error) is a white noise. The whiteness property
reflects the state estimation quality. For evaluation of the filter performance it is necessary to
inspect the whiteness property of the innovations. Several different methods can be used for this
purpose. Three optimality tests with numerical examples are described in Matisko, Havlena
(2012).”

We would like to explain that there are many types of algorithms for the recursive
estimation, including the Stratonovich — Kalman — Bucy filtering algorithm, the forgetting factor
algorithm, the unnormalized and normalized gradient algorithm, which have been used to solve
the different mathematical tasks in the system identification problem in Ljung (1999). The
following set of equations summarizes the Stratonovich — Kalman — Bucy filtering algorithm in
Matlab (R2012):

P(t-1)
R+ W (t) P(t-1)%¥(t)
p(1)=p(1_1)+ R PU-D PO PE-1)

R, +¥(t) P(t-1)¥(t)

This formulation assumes the linear-regression form of the model in Matlab (R2012):

y(t)="" (1)6,(t) +e(t)

The Stratonovich — Kalman — Bucy filter is used to obtain Q(t).
This formulation also assumes that the true parameters @ (t) are described by a
random walk in Matlab (R2012):
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0, (1) =6, (t 1)+ w(t)

where w(t) is the Gaussian white noise with the following covariance matrix, or drift matrix Ry in
Matlab (R2012):

Ew(t)w(t) =R

Rz is the variance of the innovations e(t) in the following equation in Matlab (R2012):

y(t)="¥" ()0, (t)+e(t)

The Stratonovich — Kalman — Bucy filtering algorithm is entirely specified by the
sequence of data y(t), the gradient ‘P(t) R1, Ry, and the initial conditions G(t = O)(initial
guess of the parameters) and P (t = 0) (covariance matrix that indicates parameters errors in
Matlab (R2012).

Summarizing the above research statements, we would like to say that the Stratonovich —
Kalman — Bucy filtering is used to predict or estimate the state in the dynamic system. The
Wiener filtering, Stratonovich — Kalman — Bucy filtering and related scientific problems have
been extensively researched in the numerous scientific articles in Wiener (1949), Bartlett (1954),
Tukey (1957), Stratonovich (1959a, b, 1960a, b), Kalman, Koepcke (1958, 1959), Kalman,
Bertram (1958, 1959), Kalman (1960a, b, 1963), Kalman, Bucy (1961), Friedman (1962),
Bryson, Ho (1969), Bucy, Joseph (1970), Jazwinski (1970), Sorenson (1970), Chow, Lin (1971,
1976), Maybeck (1972, 1974, 1990), Willner (1973), Leondes, Pearson (1973), Akaike (1974),
Dempster, Laird, Rubin (1977), Griffiths (1977), Schwarz (1978), Falconer, Ljung (1978),
Anderson, Moore (1979), Bozic (1979), Priestley (1981), Lewis (1986), Proakis, Manolakis
(1988), Caines (1988), de Jong (1988, 1989, 1991), de Jong, Chu-Chun-Lin (1994), Bar-Shalom,
Maybeck (1990), Franklin, Powell, Workman (1990), Brockwell, Davis (1991), Jang (1991),
Brown, Hwang (1992, 1997), Xiao-Rong Li (1993), Gordon, Salmond, Smith (1993), Farhmeir,
Tutz (1994), Grimble (1994), Lee, Ricker (1994), Ricker, Lee (1995), Fuller (1996), Hayes
(1996), Haykin (1996), Golub, van Loan (1996), Julier, Uhlmann (1997), Ljung (1999),
Wanhammar (1999), Welch, Bishop (2001), Litvin, Konrad, Karl (2003), de Jong, Penzer
(2004), van Willigenburg, De Koning (2004), Voss, Timmer, Kurths (2004), Capp’e, Moulines,
Ryd en (2005), Misra, Enge (2006), Rajamani (2007), Andreasen (2008), Rajamani, Rawlings
(2009), Xia Y, Tong H (2011), Matisko, Havlena (2012), Proietti, Luati (2012a, b), Durbin,
Koopman (2012).
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Accurate characterization of economic and financial time series models with
application of state space models, using the Stratonovich - Kalman - Bucy
filtering algorithm

Let us explain that, going from the consideration of the modern financial systems
properties, it is possible to conclude that the financial systems can normally be classified as the
diffusion systems, which can be accurately described by the drift and diffusion coefficients in
Bernanke (1979), Shiryaev (1998a), Ledenyov D O, Ledenyov V O (2013f). The financial
variables, including the drift and diffusion coefficients, can have the nonlinear time dependences.
Xiaohong Chen, Hansen, Carrasco (2009) state: “Nonlinearities in the drift and diffusion
coefficients influence temporal dependence in scalar diffusion models.” Moreover, the accurate
characterization of the modern financial system may result in a need to interpolate the values of
financial data with the missing or unobservable parameters, in the case of the incomplete data
sets over the certain observation period. The application of the Stratonovich — Kalman — Bucy
filtering algorithm can solve these financial engineering problems.

Athans (1974) write: “"In spite of the recent interest in modern control theory by
mathematical economists the potential advantages of Kalman filtering methods have not been
fully appreciated by economists and management scientists. One of the reasons is that the
straightforward application of Kalman filtering methods involves estimation of state variables,
whenever the actual measurements are corrupted by white noise. In most economic applications,
the measurements of the endogenous and exogenous variables are assumed exact. In this paper,
we shall indicate that the Kalman filtering algorithm does have potential use for an important
class of economic problems, namely those involving the refinement of the parameter estimates
(arid of their variances) in an econometric model. Right at the start we should like to emphasis
that the use of the Kalman filtering techniques is viewed not as a replacement, but rather as a
supplement, to traditional econometric methods. We visualize that the Kalman filtering methods
should become useful only after an econometrician has constructed the mathematical model of a
microeconomic or macroeconomic systems. Thus it may represent a final "tune-up™ of the
econometric model."

Pasricha (2006) explains: ““The Kalman Filter is a powerful tool and has been adapted
for a wide variety of economic applications. It is essentially a least squares (Gauss Markov)
procedure and therefore gives Minimum Mean Square Estimators, with the normality
assumption. Even where the normality assumption is dropped, the Kalman filter minimizes any

symmetric loss function, including one with kinks. Not only is it used directly in economic
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problems that can be represented in state-space forms, it is used in the background as part of
several other estimation techniques, like the Quasi-Maximum Likelihood estimation procedure
and estimation of Markov Switching models.”

There are many applications of the Stratonovich — Kalman — Bucy filtering in finances
and economics in Pasricha (2006):

1. The evaluation of the international reserves demand by estimating the time varying
parameters in a linear regression, using the Kalman Filter: “Another application of the filter is
to obtain GLS estimates for the model Yt =P X¢ + Uy | where the error term uy is Gaussian
ARMA(p,q) with known parameters.” “The classical regression model, Y, = [3'Xt + U, , where
Ut IS white noise, assumes that the relationship between the explanatory and explained variables
remains constant through the estimation period. When this assumption is an unreasonable one
(for example, while studying macroeconomic relationships for countries that have undergone
structural reforms during the sample period), and the model is specified as one with fs, the
Kalman filter can be used to estimate the parameters.”

2. Modeling of economic regime changes by the Markov switching models in the state-
space form, using the Kalman Filter: "A number of macroeconomic and financial variables can
plausibly be modeled to have different statistical and dynamic properties depending on the state
of the nature and for the probabilities of moving from one state of nature to another to be well
defined and constant. For example, the persistence of shocks to stock returns may be different
during boom times than during recessions. These can be modeled using Markov Switching model
if we assume that the switch between the boom and recession is governed by a Markov chain
(and could alternatively be modeled using the Stochastic Volatility models discussed in Section
3.5 below).” "In the unobserved components models (see Section 3.4 below), for example where
GDP is decomposed into trend and cyclical components, the trend component of the GDP may
be modeled as a random walk with drift, where the latter evolves according to a Markov chain.
Models of Markov Switching that can be put in state-space form can be estimated using the
Kalman Filter."

3. Estimation of the exchange rate risk premia by applying the Kalman filter with the
correlated error terms: “...in the market for exchange rates, where new information that causes
the spot rate to jump may also cause the risk premium to change. Examples of such new
information include shocks to money supply and interest rates, a switch in currency regime, a
repudiation of debt by the country or announced change in currency’s convertibility.” Cheung

(1993) uses the Kalman filter algorithm to solve this problem.”
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4. Analysis of the unobserved components model by using the extended Kalman filter:
"Extended Kalman filter is simply the standard Kalman filter applied to a first order Taylor’s
approximation of a non-linear state-space model around its last estimate. This technique can be
used, for example, to decompose the trend and cyclical components of the GDP when the
parameters are also allowed to be time-varying."”

5. Analysis of the stochastic volatility models, using the Kalman filter: “Financial data
have been observed to have certain regularities in statistical properties, including leptokurtic
distributions, volatility clustering (clustering of high and low volatility episodes), leverage
effects (higher volatility during falling prices and lower volatility during stock market booms)
and persistence of volatility. The financial econometrics literature spawns econometric models
that seek to capture many of these stylized facts of the data. The most popular approach uses
GARCH models, where the variance is postulated to be a linear function of squared past
observations and variances. Another approach is Stochastic Volatility (SV) models, first proposed
by Taylor (1986), where log of the volatility is modeled as a linear, unobserved stochastic AR
process.” The Stochastic Volatility (SV) models incorporate the Stratonovich — Kalman — Bucy
filtering algorithm.

As mentioned above, the Stratonovich — Kalman — Bucy filtering algorithm can be used
in the process of precise estimation of the GDP. The Stratonovich — Kalman — Bucy filtering
algorithm can be described as in Cuche, Hess (2000): “A useful method for extracting signals is
to write down a model linking the unobserved and observed variables in a state-space
representation according to Kalman (1960, 1963). The multivariate Kalman filter is an algorithm
for sequentially updating a linear projection on the vector of interest.”

Cuche, Hess (2000) write a general state-space representation in the form of a system of
the two vector equations (1) and (2), explaining that the first state equation describes the
dynamics of the state vector (&;) with the unobserved variables to estimate, and the second

measurement equation links the state vector to the vector with the observed variables (y ™)

§t+l = FtE.’t + C;Xt+1 + Rtut+l’ (1)
y'[+ = A;X: + H;};t + Ntvt' (2)

wheret=1, ... ,T; T is the number of monthly observations.
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Cuche, Hess (2000) clarify: “In addition to the unobserved and the observed variables of
interest, vector equations (1) and (2) contain the so-called related series (x;) and (x*;) as

exogenous variables in each equation. Both equations have multinormally distributed error terms

u, N O.QO

~

V, 0)|0 G

Premultiplied by matrices Rt and N, these orthogonal disturbances transform into nonorthogonal
residuals within each vector equation. The coefficients matrices F;, C';, Ry, A’y, H't, N;, and the
two variance-covariance matrices Q and G are estimated by maximizing the log-likelihood
function of this system.”

Cuche, Hess (2000) evaluated the alternative interpolation models for Swiss GDP and
produced a monthly deseasonalized real GDP available for researchers and practitioners. Cuche,
Hess (2000) write that a method, based on the Stratonovich — Kalman — Bucy filtering algorithm,
allows to create a setup with a wide range of interpolation models.

Let us point out that Cuche, Hess (2000) adapted the general state-space representation in
equations (1) and (2) to the considered problem by making an inclusion of related series and by
assuming a presence of stochastic processes for the monthly GDP. Cuche, Hess (2000) explain
that the state vector equation (3) describes the vector dynamics of the unobserved variable,
monthly GDP y; , stacked in the state vector 5= (yt Y ytz) : and the equation (4) relates
the state vector to the observed quarterly GDPy™; .

gt+1 = tht + C;Xt+1 + Rtut+1’ (3)

y: = a;X: + h;&t. (4)

In Fig. 9, the overview of various interpolation models is presented in Cuche, Hess
(2000).
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Fig. 9. Overview of interpolation models (after Cuche, Hess (2000)).

It is necessary to note that the Models 1a, 1b, 1c, le are designed without the related
series. Cuche, Hess (2000) write: “We assume that there is enough information in the
autocovariance function of the quarterly series and in the assumed low-order autoregressive (AR)
process of monthly GDP.” The Models 2a-b, 2c-d are designed with the related series in order to
extract information for the interpolation of monthly GDP. Cuche, Hess (2000) comment:
“Within this group, we distinguish between the assumptions that monthly GDP does not follow
an autoregressive process (Models 2a-d) and that it does (Models 2e-f).”

Tab. 2 provides the basic summary statistics of the quarterly and monthly series, which
are used for the interpolation in Cuche, Hess (2000). Fig. 10 shows the GDP and related series in
Cuche, Hess (2000).Tab. 3 presents the interpolation results in Cuche, Hess (2000).

As it can be seen, Cuche, Hess (2000) evaluated the alternative interpolation models for
the Swiss GDP, suggesting that the approach with the four related series, including the exports,
imports, retail sales, and non-utilized construction loans, is a best approach for the interpolation
of Swiss GDP.
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Descriptive Statistics

N c AR(l) JB  ADF
gedp 1.33 295 0.5 0.05  -4.38%
" 320 4629  -0.65* 77.88*% -11.04*
N 097 2139 0.25% 199.18%  -2.08%
& 409 4903  -0.57* 53.17% .7.01%
M 420 5111 -0.61* 85.52%  -8.06%
P 140 2173  -0.43* 1370.58*  .6.26*
ki 131 1317 -0.22*  6.71%  -5.30%
o 152 1216  -0.32* 68.53*  .5.63*

Cross-correlations with gdp

-3 -2 -1 0 1 2 3
L 001 012 -001 0.0 013 0.12 0.02
¥ 030 037 030 023 023 014 0.16
X 0.10  0.15 0.18 026 025 -0.02 -0.07
o 016 017 020 009 026 -0.05 0.03
A 003 012 034 025 035 021 0.14
ki 003 009 017 005 -0.01 -0.09 -0.17
FFomip 005 018 041 027 030 019 0.09

Tab. 2. Data description, where GDP is the Gross Domestic Product, x” is the value of retail
sales to proxy for private consumption, x" is the value of non-utilized construction loans to proxy
for investment, X" is the value of exports, x is the value of imports, x?" is the composite IP index

of the Germany, x““" is the composite IP index of the UK, ™" is the composite IP index of the

Switzerland, 4 is the mean, o is the standard deviation, AR(1) is the first order autoregressive

coefficient, JB is the Jarque-Bera test, ADF is the augmented Dickey-Fuller test (after Cuche,

Hess (2000)).
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Model 1. 1a 2. 1c 3, 2a 4, 2a
Series - - B A"
AIC 8.05 10.08 14.66 17.31
logL -562.56 -573.41 -636.59 -733.33
n 1.32 1.33 1.20 1.25
o 4.30 5.11 9.93 5.22
AR(1) 0.21% 0.06 -0.37% -0.02
IB 308.06% 15.59% 12.09%%* 192.13%
ADF -5.47% -5.96% -5.79% -5.30%
MSE le 3307.38 4146.21 18659.04 7123.27
MSE AQ 196862.53 14409519 206864.52 20818495
Model 5, 2a 6. 2b 7.2b 8.2b
Series 5 X M xEomip R S L S
AIC 13.06 15.89 17.32 13.34
logL -575.38 -681.65 -733.97 -585.70
L 1.27 1.29 1.30 1.41
o 14.13 6.42 3.49 12.21
AR(1) -0.53% -0.14%* 0.73% -0.53%
IB 2.77 17.93% 16.83# 0.52
ADF -6.40% -5.53% -4.20% -0.85%
MSE le 32328.09 8884.46 424559 23601.90
MSE AQ 248244 08 129891.30 97166.50 221468.03
Model 9, 2¢ 10, 2¢ 11, 2¢ 12. 2d
Serice oy N rs il XM
AIC 15.63 14.42 14.38 15.27
logL -(677.97 -627.11 -623.52 -664.89
n 1.30 1.30 1.34 1.27
o 3.65 3.51 4.66 6.80
AR(1) 0.63% 0.72% 0.14%* -0.23%
IB 6.58%* 15.03% 0.62°% 13.45%
ADF -4.30% -4.17%* -5.57% -4.91%*
MSE le 4394.56 4287.16 5674.41 10947 .86
MSE AQ 139871.77 102001.75 79448.95 120193.62
Model 13.2d 14, 2d 15, 2e 16, 2e
Series R R e B R A
AIC 14.30 14.09 8.05 8.04
logL -622.86 -614.83 -562.55 -562.55
n 1.28 1.35 1.28 1.29
a 4.69 7.96 4.30 4.58
AR(1) 0.10 -0.36% 0.22% 0.11
IB 332.03% 15.08%* 306.50% 156.83 %
ADF -4.02% -5.63%* -5.45% -5.56*
MSE le 6696.91 11778.87 3282.52 3701.94
MSE AQ 151188.26 141821.70 147968.33 163693.19

Tab. 3. Interpolation results (after Cuche, Hess (2000)).
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The application of the Stratonovich — Kalman — Bucy filtering algorithm and related
scientific problems in the economics and finances have been researched in Athans (1974),
Fernandez (1981), Geweke, Singleton (1981), Litterman (1983), Meinhold, Singpurwalla (1983),
Engle, Watson (1983), Harvey, Pierse (1984), Engle, Lilien, Watson (1985), de Jong (1991),
Doran (1992), Tanizaki (1993), Venegas, de Alba, Ordorica (1995), Hodrick, Prescott (1997),
Krelle (1997), Cuche, Hess (2000), Durbin, Koopman (2000), Morley, Nelson, Zivot (2002),
Bahmani, Brown (2004), Broto, Ruiz (2004), Fernandez-Villaverde, Primiceri (2005),
Fernandez-Villaverde, Rubio-Ramirez (2005, 2007), Ozbek, Ozale (2005), Proietti (2006),
Ochoa (2006), Horvath (2006), Cardamone (2006), Pasricha (2006), Bignasca, Rossi (2007),
Dramani, Laye (2007), Paschke, Prokopczuk (2007), Roncalli, Weisang (2008), Proietti (2008),
Osman, Louis, Balli (2008), Gonzalez-Astudillo (2009), Bationo, Hounkpodote (2009), Mapa,
Sandoval, Yap (2009), Chang, Miller, Park (2009), Fernandez-Villaverde (2010), Theoret, and
Racicot (2010), Lai, Te (2011), Jungbacker, Koopman, van der Wel (2011), Proietti, Luati
(2012a, b), Darvas, Varga (2012), Hang Qian (2012).

Stratonovich — Kalman — Bucy filtering algorithm for accurate
characterization of financial and economic time-series with use of state-

space model in Matlab: Gross Domestic Product

Let us begin with the consideration of the steady state filter and the time varying filter,
which are designed and simulated in Matlab (R2012).

Problem description:

Let us use the following discrete plant:
x(n+1) = Ax(n) + Bu(n),
y(n) = Cx(n) + Du(n),

where
A=1[1.1269 -0.4940 0.1129,
1.0000 0 0,
0 1.0000 0];
B =[-0.3832
0.5919
0.5191];
C=[100];
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D=0.
Let us design the Stratonovich — Kalman — Bucy filter to estimate the output y based on

the noisy measurements yv[n] = C x[n] + v[n]

The steady-state Stratonovich-Kalman-Bucy filter design:

Let us use the function KALMAN to design a steady-state Stratonovich — Kalman — Bucy
filter. This function determines the optimal steady-state filter gain M based on the process noise
covariance Q and the sensor noise covariance R. First, let us specify the plant + noise model. Let
us set the sample time to -1 to mark the plant as discrete:

Plant = ss(A,[B B],C,0,-1,"inputname’,{'u’ 'w'},'outputname’,'y").

Let us specify the process noise covariance (Q):

Q = 2.3; % A number greater than zero.
Let us specify the sensor noise covariance (R):
R =1; % A number greater than zero.

Let us now design the steady-state Stratonovich — Kalman — Bucy filter with the

equations:

Time update:

X[n+1|n] = Ax[n|n-1] + Bu[n],
Measurement update:

x[n|n] = x[n|n-1] + M (yv[n] - Cx[n|n-1]),
where M = optimal innovation gain,

using the KALMAN command:
[kalmf,L,~,M,Z] = kalman(Plant,Q,R);

The first output of the Stratonovich — Kalman — Bucy filter KALMF is the plant output
estimate y_e = Cx[n|n], and the remaining outputs are the state estimates. Let us keep only the
first output y_e:
kalmf = kalmf(Z1,:);

M, % innovation gain
M =

0.5345

0.0101

-0.4776

To see how this filter works, let us generate some data and compare the filtered response
with the true plant response in Fig. 11:
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Fig. 11. Stratonovich — Kalman — Bucy filter scheme (after Matlab (R2012).

To simulate the system above, let us generate the response of each part separately or
generate both together. To simulate each separately, first let us use LSIM with the plant and then
with the filter. The following example simulates both together.

% First, build a complete plant model with u,w,v as inputs and

% y and yv as outputs:

a=A;

b = [B B 0*B];

¢ = [C;CI;
d=[000;001];

P =ss(a,b,c,d,-1,'inputname’,{'u’ 'w' 'v'},'outputname’ {'y' 'yv'});

Next, let us connect the plant model and the Stratonovich — Kalman — Bucy filter in
parallel by specifying u as a shared input:
sys = parallel(P,kalmf,1,1,[1.[D;

Finally, let us connect the plant output yv to the filter input yv. Note: yv is the 4™ input of
SYS and also its 2™ output:
SimModel = feedback(sys,1,4,2,1);
SimModel = SimModel([1 3],[1 2 3]); % Delete yv form 1/0O

The resulting simulation model has w,v,u as inputs and y,y_e as outputs:
SimModel.inputname

ans =

SimModel.outputname

ans =

y
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Let us simulate the filter behavior. Let us generate the sinusoidal input vector (known):

t = (0:100)";
u =sin(t/5)
Let us generate the process noise and sensor noise vectors:
rng (10, twister");
w = sqrt(Q)*randn(length(t),1);
v = sgrt(R)*randn(length(t),1);
Let us now simulate the response using LSIM:
clf;
out = Isim(SimModel,[w,v,u]);

y =out(:,1); % true response
ye = out(:,2); % filtered response

yv=y+vV; % measured response

Let us compare the true response with the filtered response:

clf

subplot(211), plot(t,y,'b",t,ye,'r--"),
xlabel("No. of samples'), ylabel('Output")
title('Kalman filter response")
subplot(212), plot(t,y-yv,'qg',t,y-ye,'r--",
xlabel('No. of samples’), ylabel(‘Error’)
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Kalman filter response
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Fig. 12. Stratonovich — Kalman — Bucy filter response (after Matlab (R2012).

As shown in the 2" plot in Fig. 12, the Stratonovich — Kalman — Bucy filter reduces the
error y-yv due to measurement noise. To confirm this, let us compare the error covariances:
MeasErr = y-yv;

MeasErrCov = sum(MeasErr.*MeasErr)/length(MeasErr);
EStErr = y-ye;
EstErrCov = sum(EstErr.*EstErr)/length(EStErr);

The covariance of error before filtering (measurement error):
MeasErrCov
MeasErrCov =

0.9871

The covariance of error after filtering (estimation error):
EstErrCov
EstErrCov =

0.3479
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The time-varying Stratonovich-Kalman-Bucy filter design:

Let us design a time-varying Stratonovich — Kalman — Bucy filter to perform the same
task. A time-varying Kalman filter can perform well even when the noise covariance is not
stationary. However, in this demonstration, let us use the stationary covariance.

The time varying Stratonovich — Kalman — Bucy filter has the following update
equations.

Time update:

X[n+1|n] = Ax[n|n] + Bu[n];

P[n+1|n] = AP[n|n]A" + B*Q*B';

Measurement update:

X[n|n] = x[n|n-1] + M[n](yv[n] - Cx[n|n-1])
-1

M[n] = P[n|n-1] C' (CP[n|n-1]C'+R)

P[n|n] = (I-M[n]C) P[n|n-1]

First, let us generate the noisy plant response:
sys = ss(A,B,C,D,-1);

y = Isim(sys,u+w); % w = process noise
yW=y+v; % v = measurement noise

Next, let us implement the filter recursions in a FOR loop:
P=B*Q*B'; % Initial error covariance
x=zeros(3,1); % Initial condition on the state
ye = zeros(length(t),1);
ycov = zeros(length(t),1);
errcov = zeros(length(t),1);

for i=1:length(t)
% Measurement update
Mn = P*C'/(C*P*C'+R);
X = X + Mn*(yv(i)-C*x); % x[n|n]
P = (eye(3)-Mn*C)*P; % P[n|n]

ye(i) = C*x;

errcov(i) = C*P*C;
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% Time update

X = A*x + B*u(i); % x[n+1|n]

P = A*P*A' + B*Q*B'; % P[n+1|n]
end
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Fig. 13. Time-varying Stratonovich — Kalman — Bucy filter response (after Matlab (R2012).

Now, let us compare the true response with the filtered response as shown in Fig. 13:
subplot(211), plot(t,y,'b",t,ye,'r--",
xlabel(*No. of samples'), ylabel('Output’)
title('Response with time-varying Kalman filter")
subplot(212), plot(t,y-yv,'g',t,y-ye,'r--"),
xlabel('No. of samples'), ylabel("Error")

The time varying filter also estimates the output covariance during the estimation. Let us
plot the output covariance to see, if the filter has reached the steady state (as we would expect

with the stationary input noise):
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subplot(211)

plot(t,errcov), ylabel('Error Covar’),

title("Output covariance estimated by time-varying Kalman filter')
subplot(212), plot(t,y-yv,'g',t,y-ye,'r--",

xlabel('No. of samples’), ylabel(‘Error’)

From the covariance plot in Fig. 13, it can be seen that the output covariance did reach a
steady state in about 5 samples. From then on, the time varying filter has the same performance
as the steady state version.

Let us compare the covariance errors:

MeasErr = y-yv;

MeasErrCov = sum(MeasErr.*MeasErr)/length(MeasErr);
EStErr = y-ye;

EstErrCov = sum(EstErr.*EstErr)/length(EStErr);

The covariance of error before the filtering (measurement error):
MeasErrCov
MeasErrCov =

0.9871

The covariance of error after the filtering (estimation error):
EstErrCov
EstErrCov =

0.3479

Let us verify that the steady-state and final values of the Kalman gain matrices coincide:
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Dutput covariance estimated by time-varying Kalman filter
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Fig. 14. Output covariance estimated by time-varying Kalman filter (after Matlab (R2012).

We developed the original software program and performed the computer modeling,
using the Stratonovich — Kalman — Bucy filtering algorithm for the accurate characterization of
the Australian GDP, German GDP and the USA GDP in the frames of the state-space model in
Matlab in Ledenyov D O, Ledenyov V O (2013g). We also used the Hodrick-Prescott filter to
estimate the corresponding output gaps in Australia, Germany and the USA in Ledenyov D O,
Ledenyov V O (2013g), because as it is discussed in Osman, Louis, Balli (2008): “The output gap
is considered to be an important indicator of the cyclical position of the economy and the
identification of changes in the pattern of business cycle evolution. Hence, knowledge of this
variable together with other macroeconomic variables play a key role in explaining future
economic forecasts particularly in the level of real GDP, price and wage inflation.” It is
necessary to explain that: “The output gap is measured by decomposing the actual output (real
GDP) into structural and conjunctural components using different methodological techniques.
The structural component is usually described as the trend component or the “potential output”,
while the latter is termed as the *“output gap” which is the irregular components of the actual
output and it includes temporary elements that are shaped by business cycle and other very short-
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run fluctuations” as explained in Osman, Louis, Balli (2008). We found that the Australia,
Germany and the USA have the different business cycles, because the Australian and Germany
economies are in the period of economic growth and the USA economy is in the contraction

phase, caused by the economic recession.

Conclusion

We explained the fact that the central banks introduce and implement the monetary and
financial stabilities policies, going from the accurate estimations of national macro-financial
indicators such as the Gross Domestic Product (GDP). Analyzing the dependence of the GDP on
the time, the central banks accurately estimate the missing observations in the financial time
series with the application of different interpolation models, based on the various filtering
algorithms. We highlighted the fact that that the Stratonovich — Kalman — Bucy filtering
algorithm was applied in the state space interpolation model with the purpose to interpolate the
real GDP by the US Federal Reserve for the first time. Therefore, we decided to overview the
Stratonovich — Kalman — Bucy filtering algorithm theory and its numerous applications, focusing
on the precise characterization of various time series. We describe the technique of the accurate
characterization of the economic and financial time series with the application of state space
methods with the use of the Stratonovich — Kalman - Bucy filtering algorithm, focusing on the
recent data on the estimation of the Gross Domestic Product by the Swiss National Bank.
Applying the integrative thinking principles, we developed the software program and performed
the computer modeling, using the Stratonovich — Kalman — Bucy filtering algorithm for the
accurate characterization of the Australian GDP, German GDP and the USA GDP in the frames
of the state-space model in Matlab in Ledenyov D O, Ledenyov V O (2013g). We also used the
Hodrick-Prescott filter to estimate the corresponding output gaps in Australia, Germany and the
USA in Ledenyov D O, Ledenyov V O (2013g). We found that the Australia, Germany on one
side and the USA on other side have the different business cycles, because the Australian,
Germany economies are in the period of economic growth and the USA economy is in the
contraction phase, caused by the economic recession. We believe that the central banks can use
our special software program with the aim to greatly improve the national macroeconomic
indicators forecast by making the accurate characterization of the financial time-series with the
application of the state-space models, based on the Stratonovich — Kalman — Bucy filtering

algorithm.
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