
MPRA
Munich Personal RePEc Archive

Is Pakistan Stock Market moving
towards Weak-form efficiency? Evidence
from the Karachi Stock Exchange and
the Random Walk Nature of free-float of
shares of KSE 30 Index.

Ushna Akber and Nabeel Muhammad

Lahore University of Management Sciences

2013

Online at http://mpra.ub.uni-muenchen.de/49128/
MPRA Paper No. 49128, posted 19. August 2013 11:31 UTC

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Munich Personal RePEc Archive

https://core.ac.uk/display/213948446?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://mpra.ub.uni-muenchen.de/
http://mpra.ub.uni-muenchen.de/49128/


Is Pakistan Stock Market moving towards Weak-form efficiency? Evidence from the 

Karachi Stock Exchange and the Random Walk Nature of free-float of shares of KSE 30 

Index. 

 

Ushna Akber
1
 & Nabeel Muhammad

2
 

Lahore University of Management Sciences 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Ushna Akbar <ushna@lums.edu.pk> is a Teaching Fellow in the Department of Economics at Lahore University of Management 

Sciences, Lahore, Pakistan. 

 

2. Nabeel Muhammad <nabeel_muhammad1@hotmail.com> is BSc Economics graduate from Lahore University of Management 

Sciences, Lahore, Pakistan. 
 

 

Acknowledgements: We would like to thank Dr. Hammad Siddiqui and Dr. Syed Muhammad Hussain of Department of Economics at 

Lahore University of Management Sciences, and Dr. Gideon Saar of Johnson Graduate School of Management at Cornell University 

for their valuable feedback and support. Special thanks to Muhammad Awais Zahoor for his research assistance. Both Authors have 

contributed equally to this paper and are equally responsible for any errors in this paper.  



 

 

ABSTRACT 

 

In this study, we have attempted to seek evidence for weak-form of market efficiency for KSE 100 Index. Index returns have been 

studied from 1st January, 1992 to 30th April, 2013. For further analysis, return series has been divided into these groups: 1992-2012, 

1992-1994, 1995-1997, 1998-2000, 2001-2003, 2004-2006, 2007-2009, 2010-2012 and 2013. The paper has made use of both Non-

Parametric tests (Kolmogrov-Smirnov goodness of fitness test, Runs test and Phillips-Perron test) and Parametric tests (Auto-

correlation test, Box-Pierce (Q) statistic test, Ljung and Box (Q) Statistic test, Augmented Dickey-fuller test, Dickey-fuller GLS test, 

Jarque-Bera test,  Kwiatkowski, Phillips, Schmidt and Shin test, Auto-regression and ARIMA model). For further analysis, Runs test 

has also been run on 20 companies return series for comparison purpose with the results of index return series. In addition, from KSE 

30 Index, 20 companies return series based on the free-float of shares have also been analyzed through Runs test to check if increase 

in numbers of floating shares does increase the randomness in return series or not. To our knowledge, this paper is the first one on 

KSE 100 Index to study the overall time frame of return series of KSE 100 Index of 22 years with the several random walk and weak-
form efficiency tests to ensure the consistency of results; and to compare the results of runs test of index return series with the results 

of runs test on companies return series from KSE 100 and KSE 30 Indexes. Overall KSE 100 Index has found to be weak-form 

inefficient, but the last 4 years have shown some signs of efficiency. Companies return series from KSE 30 Index are found to be more 

random than companies return series from KSE100 Index. 
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1. INTRODUCTION 

 

During the last few decades, stock markets have played a major role in the progress of any economy, 

especially for underdeveloped economies as it is considered to be one of the most crucial leading indicators of 

an economy. In this paper, we aim to test the weak-form of market efficiency for Karachi Stock Exchange by 

checking for randomness in return series. We have studied a large index return series of 22 years from 1st 

January, 1992 to 30th April, 2013 to test the weak-form of market efficiency for KSE 100 Index. For further 

analysis, data has also been divided into 9 groups: 1992-2012, 1992-1994, 1995-1997, 1998-2000, 2001-2003, 

2004-2006, 2007-2009, 2010-2012 and 2013. To our knowledge, no study with such large data has been done to 

check for weak-form of market efficiency for Karachi Stock Exchange.  For comparison purpose, we have used 

the return series of 20 randomly selected active stocks from KSE 100 Index to apply runs test to check if their 

results are consistent with the results of runs test for index returns. Moreover, 20 companies return series from 

KSE-30 Index is also studied to see if the free-floating of shares does increase the chances for prices to follow a 

random walk or not. 

 

A large amount of research has been carried out on the topic of efficiency of markets. Its need has been 

felt in both the developed and emerging economies because of the necessary precondition that only efficient 

markets allow for funds to be allocated to the most efficient and highest-valued projects. Informationally 

efficient market can enhance the allocative efficiency of investments by effectively channeling the domestic and 

foreign investments in market (Vives, 1995; Chowdhury, 1995), something which is consistent with the basic 

aim of any investor. Inefficient stock markets can allow some investors to make abnormal profits at the expense 

of others, thus stock market efficiency is the basic need of every investor. Hence, to find the best answer, we 

have studied the overall time frame for KSE-100 Index from 1992 to 2013. KSE-100 Index started in 1991, but 

we have left 1991 because of very low activity in that year.  

 

Efficient Market Hypothesis (EMH) or Joint Hypothesis Problem states that financial markets are 

"informationally efficient". In other words, market efficiency asserts that the stock prices reflect all pertinent 

and accessible information and quickly adjust all the new information (Adam, 2004); while inefficiency of 

markets suggests that stock prices do not include all the available and concerned information. 

 

The concept of EMH was first developed by Professor Eugene Fama in his Ph.D. thesis in mid 1960s. 

His idea states that quick and fast incorporation of available information in stock prices does not allow investors 

to beat the market (Fama, 1965). Hence, it is impossible to make abnormal profits because stocks always trade 

at their fair value on stock exchanges. This theory has been opposed by many proponents of technical analysis 

who believe that stock prices are largely based on the behaviors and expectations of investors who seem to 

believe that past prices influence future prices. Technical analysis is based on the expectations of past prices, 

past earnings, past volume, track records and other indicators. 

 

Random Walk Hypothesis (RWH) states that stock prices follow a random walk and thus cannot be 

forecasted. A random walk is a formalization of a pathway that includes a series of random steps. For instance, 

the trail traced by a molecule of gas, the price of a fluctuating stock and the financial position of a gambler can 

all be represented as random walk (Pearson, 1905). A random walk in the stock prices can be characterized as 

price changes being independent of each other. Hence the change in stock prices cannot be forecasted. The 

Random Walk Model is a non-stationary process. For financial markets data, a random walk having a step size 

differs according to a normal distribution and is commonly known as the Gaussian random walk model. 

Therefore, stationarity and normality of data are the two pre-requisites for data having a random walk.   

 

The idea of Random Walk is consistent with the EMH. It is commonly observed that the more random 

the prices, higher the chances for market to be efficient.  The concept of randomness of stock prices was first 

put forward by Jules Regnault in 1863 and then by Bachelier (1900), in his Ph.D. thesis, "The Theory of 

Speculation". The same idea was further developed by Kendall (1953) and Cootner (1964). Later on, the idea 

http://en.wikipedia.org/wiki/Eugene_Fama


was further carried on by Fama (1970) in his empirical research that stock prices tend to follow a random walk. 

Fama (1970, 1991) evaluated both the theoritical and empirical evidence for EMH. He postulated that market 

can be of three forms in EMH: weak-form efficiency, semi-strong efficiency and strong-form efficiency. 

 

Weak-form efficiency assumes that present security prices reflect all the historical information of past 

prices, past volume and past returns (Bodie, Kane & Marcus, 2007). Thus, future prices cannot be predicted by 

looking at past information as it has already been incorporated in current prices. Therefore, technical analysis 

fails to beat the market (though some forms of fundamental analysis can generate abnormal profits). 

 

Semi-strong form efficiency uses the assumption that stock prices reflect all publically obtainable 

information of past prices, past volume, past returns, earnings, dividends, P/E ratios, book value ratios, market 

value ratios, relevant economical and political news and other relevant indicators. Here both the fundamental 

and technical analyses fail to earn abnormal returns as the publically available information is already 

incorporated in the stock prices. If market is efficient in semi-strong form, then it is also efficient in the weak-

form (Dixon & Holmes, 1992).  

 

Strong-form efficiency assumes that stock prices reflect all public and private information available. 

This form integrates both the weak and semi-strong forms and hence the investor cannot beat the market based 

on technical, fundamental or insider information (Brealey, Myers & Marcus, 1999).   

 

Weak-form efficiency can be tested by carrying out simple regression of the form:  

 

𝑅𝑡 =  𝛽0 +   𝛽𝑖𝑅1−𝑖   

𝑝

𝑖=1

+  𝑒𝑡  

 

where 𝑅𝑡   is the rate of return of an index at time t. This form entails that 𝛽𝑖   = 0, i > 0 and this equation can be 

run using OLS or GLM with relevant tests (Dwyer & Wallace, 1992). 

 

Free float is also known as float or public float. Free float are the shares that are held by investors and 

are available for trading unlike restricted shares which are not traded that often. Free float can be understood as: 

 

Free Float = Outstanding Shares - Restricted Shares 

 

It has been observed that the companies with larger free float of shares are less volatile because it takes a 

large number of trades, shares per trade, or both to raise or lower the stock price. A low volatility means that the 

stock price would not swing dramatically but would vary at a stable pace over a phase of time. An empirical 

study by K. Chan, Y.C. Chan and Fong (2004) found out that the substantial decrease in the free float of shares 

negatively affected the market liquidity in the Hong Kong market.  

 

The remaining paper is divided in these parts: section 2 analyzes the previous studies and findings on 

weak-form of EMH, section 3 explains the different sets of data for KSE 100 index and companies return series 

from KSE 100 and KSE 30 Indices, section 4 lays out the research methods and hypotheses used in this paper 

and section 5 analyzes the tests‟ results. Finally section 6 presents conclusions and suggestions for future 

studies.  

 

 

 

 

 

 

 



2. LITERATURE REVIEW 
 

Stock prices following a random walk are closely linked to the theory of EMH. Kendall (1953) was the 

first one to incorporate random walk in finance literature. He examined 22 British stocks and commodity price 

series and found out that prices do not follow any cycles and they seem quite random.  Fama (1965) found 

evidence that technical analysis cannot be used to predict the prices in long term. Lo and MacKinley (1999) 

suggested that there exists autocorrelation in stock prices in short run. Lo, Mamaysky and Wang (2000) 

suggested that some sophisticated statistical techniques can surely give us some predictive power. It is observed 

that the more random the prices, the more efficient the market is. Malikiel (2003) also found out the evidence 

that it is not possible to make abnormal profits in stock prices in long term. Cuthbertson and Nitzsche (2004) 

identify a random walk with drift (= µ) for some series xt as:  

 

 

𝑥𝑡  =  𝜇 +  𝑥𝑡−1  +  𝑒𝑡                             𝑒𝑡  ~ 𝑖𝑖𝑑 (0, 𝜎𝑒
2) 

 

According to Jensen (1978), there has been evidence of strange price behaviors where certain price 

series are found to be predictable as they appeared to follow a certain path. Hence, it is important to carefully 

analyze both the concepts of EMH and the procedures and tests. 

Michel and Hawawini (1984), Hudson, Dempsey and Keasey (1994) and Nicolaas (1997) found out that 

prices are hard to predict. They maintained that prices follow a random walk, hence market is efficient. 

Empirical study by Dickinson and Muragu (1994) supported that Nairobi Stock market is efficient.  

 

Borges (2010) studied the stock markets of UK, France, Spain, Germany, Greece and Portugal for the 

period of 1993 to 2007. By using runs test and variance ratio test, he observed that only Germany and Spain are 

the weak-form of efficient markets; otherwise all others are not efficient stock markets. 

 

Magnusson and Wydick (2000) tested the RWH for African countries and amazingly found out greater 

support for random walk for African Stock markets as compared to other emerging stock markets.   

 

Early studies used serial correlation and runs test to check for random walk and weak-form market 

efficiency and they discovered that market is weak-form efficient (Cowles, 1960; Osborne, 1959, 1962; 

Cootner, 1962; Fama and Blume, 1966). Other papers have also used variance ratio test, such as Lo and 

MacKinlay (1988), and Lee (1992).  

 

Further tests like serial correlation test, Q-test, and variance ratio test  have been adopted by many 

empirical studies (Abeysekera, 2001; Groenwold, Sam & Wu, 2003) while (Alam, Tanweer & Kadapakkam, 

1999; Chang & Ting, 2000; Abraham, Seyyed & Alsakran, 2002;  Lima & Tabak, 2004 ) have applied variance 

ratio test as the main test to check for the weak-form of market efficiency in their studies. 

 

Asma and Keavin (2000) used both parametric tests (Auto-regression, Auto-correlation test, ARIMA 

model) and non-parametric tests (Kolmogrov-Smirnov normality test and Runs test) and detected that share 

return series do not follow a random walk, thus rejecting the weak-form of efficiency hypothesis for Dhaka 

Stock Exchange.  

 

Chen and Hong (2003) used a powerful spectral derivative test to check for EMH in presence of 

volatility clustering and rejected EMH for both Shanghai and Shenzhen stock markets. However, these markets 

were seen to become more efficient at later stages.  

 

Dorina & Simina (2007) looked for weak-form of market efficiency in 8 emerging stock markets. Their 

examination included developing countries of Poland, Slovenia, Hungary, Lithuania, Turkey, Romania, 



Slovakia, and Czech Republic. They used Q-test, Serial correlation LM test, Runs test and BDS test (applied on 

residuals generated by ARMA models) and found out that there are linear and non-linear dependencies in most 

of these stock markets.   

 

In a very remarkable paper, Ball (2009) negatively commented on too much faith in market efficiency 

and held it responsible as one of the major reasons for the demise of Lehman Brothers and other large financial 

institutions. Hence market efficiency needs to be studied very carefully for each country because of its 

imperative for investors. C.C. Lee, J.D. Lee, & C.C. Lee, (2010) examined the stationarity of real stock prices 

for 32 developed and 26 developing countries from  January 1999 to May 2007 and suggested that stock 

markets are not efficient. 

 

An empirical study by Cox, Brammer and Millington (2004) investigated more than 500 UK companies 

to check for the relationship between institutional shareholding and socially responsible behavior. Their results 

showed that there does exist a positive correlation between corporate social performance and long-term 

institutional investment. They expected a positive relationship between free float and institutional investment 

and this turned out to be true in results.  

 

For the case of market efficiency in Pakistan, few detailed studies have been done to test the market 

efficiency and to check for free-float of shares randomness in return series. Husain (1997) concluded that KSE 

100 Index does not follow a Random Walk Model. Hussain and Uppal (1999) made use of ARCH and GARCH 

models to examine the stock market volatility in Pakistan. They found out that volatility have declined 

drastically after the liberalization of the capital markets. Chakraborty (2006) used variance ratio and serial 

correlation tests to check for the weak-form efficiency from 1996 to 2000. They rejected the random walk 

hypothesis. 

 

The Securities Exchange Commissions of Pakistan's installations of circuit breakers has dampened the 

return volatility, but with a very small magnitude. Weak form efficiency for KSE-100 has been rejected, with 

returns demonstrating persistence and volatility clustering (Hameed & Ashraf, 2009). Empirical studies found 

out that KSE 100 index is not a weak-form efficient (M. Irfan, M. Irfan & M. Awais, 2010; M. Irfan, M. Saleem 

& M. Irfan, 2011). Recently, Rabbani, Kamal and Salim (2013) tested the weak-form efficiency for KSE-100 

from 1999 to 2012 by employing four tests (Augmented Dickey-fuller test, Auto-correlation function test, 

Phillip-perron test and Runs test) to analyze the data. All these tests except the Runs test rejected the EMH. 

However, they suggested market efficiency for only these two periods (1999-2001 and 2005-2007). They 

proposed that investors can make abnormal profits in Karachi Stock Market.  

 

However, these studies have proposed their results on the basis of very few tests which can create 

spurious results. None of them has attempted to analyze the overall time frame of return series to get a clearer 

picture of Pakistani stock market and none has attempted to compare the index return series with companies 

return series from KSE-100 and KSE-30 Indices for further analysis on the stock market. 

 

 It has been a widespread observation through empirical studies that emerging economies are not weak-

form efficient. An empirical study by Ahmad, Daud and Azman-Saini (2010), covering 15 emerging markets 

for the period 1985 to 2006 suggested that historical information can be used to guess future prices, thus 

rejecting the weak-form efficient market hypothesis for these markets. Majority of stock prices in emerging 

markets show a mean reverting process. Another empirical study by Malkiel and Taylor (2007) shows that 

emerging markets like China (Shanghai and Shenzhen markets) are not efficient, unlike United States.  He 

further pointed out the problems of manipulation but still he asserted that investors can make profits from 

China's booming economy. A study by Khawja and Mian (2005) found out that in Pakistani Stock Market, 

brokers can collude to artificially raise prices and attract positive-feedback trades. Manipulation is another big 

issue in Pakistani Stock Market. 



 

3. DATA 
 

3.1. Index Data: 
 

To test the weak-form of market efficiency for KSE 100, we have used KSE 100 Index daily closing 

values from 1
st
 January, 1992 to 30

th
 April, 2013 (almost 22 years). Total observations are 5214. Daily market 

index returns have been calculated by this method: 

 

(Rt ) = Ln ( It / I t-1), 

 

 

Where, Rt = market return, in period t; 

It = price index at day t; 

It-1= price index at period t-1 and 

Ln = natural log. 

 

For further analysis of market in different periods, the data has been divided into 9 groups of years: 

(1992-2012), (1992-1994), (1995-1997), (1998-2000), (2001-2003), (2004-2006), (2007-2009) and (2010-2012) 

and (2013). For instance, (1992-1994) means data from 1st January, 1992 to 31st December, 1994. This is the 

same for all groups except 2013, which means the return series from 1st January, 2013 to 30th April, 2013.  

3.2. Companies Data: 

To compare the results of Runs test on index return series, we have calculated daily returns of 20 

randomly selected active stocks from KSE 100 Index and companies return series has been used from 1st 

January, 2005 to 1st December, 2011.  

20 other companies have been taken from KSE 30 Index to check whether the companies with more 

free-float of shares follow a random walk or not. 

Top 30 companies participate in KSE 30 Index. The difference between KSE 30 Index and other indices 

is that other indices represent the total return on the market, while KSE 30 Index only represents the free float 

of shares rather than paid up capital, and KSE 30 Index is also adjusted for dividends and right shares. 

 

4.  METHODOLOGY AND HYPOTHESES 
 

 

Time series univariate regression analysis has been adopted in this paper. We have used both parametric 

and non-parametric tests to avoid the bias resulting from non-normal distribution of the data. 

 

Non- Parametric tests include Kolmogrov-Smirnov goodness of fit test, Runs test and Phillips-perron 

test. 

Parametric tests include Autocorrelation coefficient test, Box and Pierce (Q) Statisitc,  Ljung and Box 

(Q) Statistic test, Augmented Dickey-fuller test, Augmented Dickey Fuller GLS test,  Kwiatkowski, Phillips, 



Schmidt and Shin (KPSS) (1992) test, Auto-regression test and Auto-regressive Integrated Moving average 

model (ARIMA) model.  

We would be testing for two hypotheses in this paper.  

 

Hypothesis no.1:  To test for the weak-form of the EMH by examining the Random Walk Model in KSE 100 

Index, we have these hypotheses:  

 

H0: KSE 100 Index returns follow random walk, thus weak-form efficient. 

 

H1: KSE 100 Index returns do not follow random walk, thus weak-form inefficient. 

 

 

Hypothesis no.2: It has been observed widely that companies with larger free-float of shares are less volatile 

than companies with few free-float of shares. We aim to check if the free-float of shares of KSE 30 Index 

increases the randomness or not in the return series of these companies: 

 

 

H0
    : Free-float of shares does increase the randomness in return series.  

 

H1
    : Free-float of shares does not increase the randomness in return series.  

 

 

5. TESTS AND ANALYSIS 

 

5.1. Descriptive Statistics: 

To check for the normality of data , we have primarily looked at skewness and kurtosis. 

Skewness measures the direction and degree of asymmetry. Skewness is defined as:   

 

𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =   
 (𝑅𝑖 −  𝑅 𝑁

𝑖=1  )3

 𝑁 −  1 𝑠3
 

 

where R1,R2...RN is log return series and 𝑅  is the mean. For normal distribution, skewness is 0. For the negative 

values of skewness, data is skewed left; and for the positive values, data is skewed right. Skewed left means that 

left tail is long relative to right tail and vice versa.  

Kurtosis can be described as the distribution of observed data around mean. It measures the heaviness of 

the tails of a distribution. And for data to be normally distributed, kurtosis value should be of 3 or excess 

kurtosis value should be of 0 (Blanda & MacGillivray, 1988). Kurtosis is defined as: 

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =  
 ( 𝑌𝑖 −  𝑌 )4𝑁

𝑖=1

(𝑁 − 1)𝑠4
 

 



where 𝑌  is the mean, s is the standard deviation, and N is the number of data points.  

 

Table 1: Descriptive Statistics for KSE 100 Index return series. 

 
Data Variable 

 

Obs. Mean Std.Dev Minimum Maximum Skewness Kurtosis 

1992-2012 Returns 5090 .00004528 0.0156884 -0.1321329 0.1276223 -0.2546651 8.343427 

1992-1994 Returns 707 0.000275 0.0114085 -0.0552722 0.0445279 0.0734457 4.954591 

1995-1997 Returns 691 -0.0002322 0.0149703 -0.091453 0.0529832 0.0134106 5.387882 

1998-2000 Returns 731 -0.0002011 0.0232289 -0.1321329 0.1276223 -0.2464907 7.378018 

2001-2003 Returns 733 0.0014739 0.0153867 -0.0774138 0.0850712 -0.0579424 6.605036 

2004-2006 Returns 738 0.0010956 0.0159255 -0.0604175 0.0581842 -0.4753279 4.474391 

2007-2009 Returns 738 -0.0000947 0.0160049 -0.0513486 0.0825469 -0.2068831 5.105811 

2010-2012 Returns 746 0.0007814 0.0090456 -0.0405779 0.0306944 -0.3041446 5.012562 

2013 Returns 82 0.0017166 0.0078137 -0.0320903 0.0197936 -1.23098 7.4911 

 

 

For distribution to be perfectly normally distributed, skewness and kurtosis value needs to be 0 and 3 

respectively. It can be observed from table 1 that many of the return series are negatively skewed with negative 

values for skewness and kurtosis values are much higher than 3 which indicate the positive excess kurtosis and 

this kurtosis is called leptokurtic. Negative values of skewness and leptokurtic kurtosis of frequency distribution 

of KSE 100 Index indicate that all groups of return series are not normal. 

The non-normal distribution of log return series deviates from the basic condition of Random Walk 

Model, thus not weak-form efficient.  

 

5.2. Non-Parametric Tests: 

5.2.1. Kolmogorov-Smirnov Goodness of Fit Test: 

Kolmogorov-Smirnov goodness of fit test (K-S test) is a non-parametric test that is used to decide if the 

randomly selected data comes from hypothesized continuous distribution (Chakravarti, Laha & Roy, 1967). K-S 

test is used to check for normality of data. The advantage of using this test is that it does not make any 

assumption about the distribution of data as it is based on the empirical cumulative distribution function 

(ECDF). Given N ordered data points R1, R2, ..., RN, and the ECDF is defined as:  

𝐸𝑁  =  𝑛(𝑖)/𝑁 

where n(i) is the number of points less than R(i); R(i) is the return series for index and the R(i)  are ordered from 

smallest to the largest values. This is a step function that increases by 1/N at the value of each ordered data 

point (Nist/sematech e-handbook, 2012). 

K-S test is a widely used test to check for random walk hypothesis such as Poshakwale (1996),  F.M. 

Zahid, S. Ramzan and S. Ramzan (2012), Elbarghouthi, Yassin, and Qasim (2012) have used it to check for 

normality in data. 

The Kolmogorov-Smirnov test statistic is:  

 



𝐷 =  max
1≤𝑖≤𝑁   

   𝐹(𝑌𝑖    −   
𝑖 − 1

𝑁
 ,

𝑖

𝑁
  −  𝐹(𝑌𝑖)   ) 

 

where F is the theoretical cumulative distribution of  a continuous distribution (Nist/sematech e-handbook, 

2012). 

We have used One-sample Kolmogorov-Smirnov test. The Kolmogorov-Smirnov one sample test 

evaluates the cumulative distribution function for a variable with a uniform or normal distribution and tests 

whether the distribution is homogeneous (Poshakwale, 1996). 

The null hypothesis for this test is that return series are normally distributed and we inspect combined 

K-S and if the p-value ≤ 0.05, we reject the null of normality at 5% significance level. 

Results of Kolmogrov-Smirnov test in table 2 show that for all data sets probability of Z is less than 

0.05. So we can reject the null of normality at 5% significance level except for the year 2013. All data sets are 

not normally distributed except 2013. 

 

 

Table 2: Results of Kolmogrov-Smirnov test for KSE 100 Index return series.  

Data Combined K-S (Z) Z-Tailed (P-value) Results 

1992-2012 0.0827 0.000 Not Normal 

1992-1994 0.0602 0.012 Not Normal 

1995-1997 0.0587 0.017 Not Normal 

1998-2000 0.0907 0.000 Not Normal 

2001-2003 0.0708 0.001 Not Normal 

2004-2006 0.1045 0.000 Not Normal 

2007-2009 0.1032 0.000 Not Normal 

2010-2012 0.0681 0.002 Not Normal 

2013 0.01138 0.239 Normal 

 

5.2.2. Runs Test: 

The benefit of the Runs test is that it can be used to check for randomness which may not be perceived by Auto-

correlation test. The runs test is a non-parametric test and it is also known as Wald–Wolfowitz test or Geary 

test. More precisely, it can also be used to check whether the elements of the chain are mutually independent. 

Each market indices change is designated as a plus (+) sign if it represents an increase or a minus (-) sign if it 

represents a decrease in index. A run is considered when there is no difference between these two sign changes 

and if the sign changes differ, then an existing run ends and a new run begins. The null hypothesis is that the 

observed return series is a random series. The test statistic is defined as (Nist/sematech e-handbook, 2012): 

 

𝑍 =  
𝑅 −  𝑅 

𝑆𝑅
 

 

where R is the observed number or Runs, 𝑅  is the expected number of runs and  𝑆𝑅  is the standard deviation of 

the number of runs: 



Where  

 

R = Total number or runs 

𝑅  = 
2𝑛1𝑛2  + 1

𝑛1+𝑛2
 

 

n1 = Number of Positive Runs 

n2 = Number of Negative runs 

𝜎 =  
2 n ln2 (2 n ln2 −  n) 

 n2  n − 1 
  

n = n1 + n2 

z = normal variate 

 

 

At the 5% significance level, if a  test statistic (Z-value) is more than -1.96 and less than +1.96, then the 

data is random or mutually independent (Sharma & Kennedy, 1977). 

 

The results for Runs test in table 3 show randomness and non-randomness for different groups of data. 

KSE 100 Index seems like a random market for year 1998-2000 and 2001-2003 and then for 2010-2012 and 

2012. Other return series are not random. 

 

Table 3: Results of Runs test for KSE 100 Index return series. 

 
Return Series Total Observations Total Number 

of Runs 

Z-Value Prob (Z) Results 

1992-2012 5090 2244 -8.47 0.000 Non-Random 

1992-1994 707 242 -8.46 0.000 Non-Random 

1995-1997 691 293 -4.07 0.000 Non-Random 

1998-2000 731 347 -1.44 0.150 Random 

2001-2003 733 347 -.152 0.130 Random 

2004-2006 738 353 -1.25 0.210 Random 

2007-2009 738 322 -3.54 0.000 Non-Random 

2010-2012 746 362 -0.88 0.380 Random 

2013 82 41 -0.22 0.820 Random 

 

To compare the index return series of KSE 100 Index with the companies return series of KSE 100 and 

KSE 30 Indices, Runs test has also been run on KSE 100 index return series from 2005-2012, as the data for 

individual company returns was only available for this time period. 

Table 4: Result of Runs test for KSE 100 Index return series (2005-2011). 

 
Return Series Total Observations Total Number 

of Runs 

Z-Value Prob (Z) Result 

2005-2011 1726 796 -3.27 0.000 Non-Random 

 

In table 4, return series from year 2005-2012 has a z-value of -3.27, which indicates that this return 

series is not random. 

20 actively traded securities from KSE 100 Index have been randomly selected and we have used 

maximum volume criterion to signify company as actively traded (Eun & Sabherwal, 2003).  



 

Table 5: Results of Runs test for KSE 100 Index return series (2005-2011). 

 
Individual 

Companies Return  

Series, Serial no. 

Total Number of 

Runs 

Z-Value Prob (Z) Results 

1 738 -4.08 0.000 Non- random 

2 758 -3.58 0.000 Non- random 

3 794 1.73 0.08 Random 

4 890 2.87 0.000 Non-Random 

5 749 -3.77 0.000 Non- Random 

6 860 1.45 0.15 Random 

7 649 -0.2 0.84 Random 

8 257 -6.35 0.000 Non- random 

9 747 -1.43 0.15 Random 

10 893 3.30 0.00 Non- Random 

11 691 -6.06 0.00 Non- Random 

12 744 2.01 0.04 Non-Random 

13 795 -1.77 0.08 Random 

14 829 -0.07 0.94 Random 

15 760 -3.46 0.00 Non-Random 

16 831 -0.05 0.96 Random 

17 702 -6.02 0.00 Non-Random 

18 885 4.59 0.00 Non-Random 

19 779 4.54 0.00 Non-Random 

20 844 2.14 0.00 Non-Random 

 

The results of runs test in table 5 are showing that out of 20 randomly selected companies, 13 are 

showing signs of no random behavior in their return series from year 2005-2012, which is consistent with the 

results of index return series from year 2005-2012. Both series are showing signs of non-randomness in return 

series. This is not weak-form efficient. 

In table 6, 14 out of 20 companies daily return series from KSE 30 Index are random, which is 

consistent with the general theory and observation that the companies with more free floating stocks tend to 

have a random walk in their return series as found out in previous empirical study by K. Chan, Y.C. Chan and 

Fong (2004) on Hong King Stock Market.  

  



 

Table 6: Result of Runs test for KSE 30 Index return series (2005-2011). 

 
Individual 

Companies Return  

Series, Serial no. 

Total Number of 

Runs 

Z-Value Prob (Z) Results 

1 730 -4.87 0.00 Non-Random 

2 797 -1.57 0.12 Random 

3 827 -0.03 0.98 Random 

4 749 -3.77 0.00 Non- Random 

5 798 -1.59 0.11 Random 

6 773 -2.62 0.01 Non- Random 

7 820 -0.64 0.53 Random 

8 831 0.18 0.86 Random 

9 785 -1.94 0.05 Random 

10 691 -6.06 0.00 Non- Random 

11 800 -1.28 0.2 Random 

12 788 -2.01 0.04 Non-Random 

13 756 -2.47 0.01 Non-Random 

14 797 -1.72 0.09 Random 

15 760 -3.46 0.00 Non- Random 

16 807 -0.98 0.32 Random 

17 826 -0.42 0.67 Random 

18 834 0.17 0.86 Random 

19 852 1.16 0.25 Random 

20 830 0.08 0.94 Random 

 

We have found out that index return series from 2005-2011 is not random and this is consistent with the 

majority of non-random return series of 20 companies from KSE 100 Index. 13 out of 20 companies from KSE 

100 Index have shown signs of non-randomness while 14 out of 20 companies from KSE 30 Index have shown 

signs of randomness. The results are consistent with the general theory that the companies with larger free float 

of shares tend to be less volatile.  

5.2.3. Phillips-Perron Test: 

The Phillips-Perron (1988) test is a non-parametric test that is used to check whether data has a unit root 

or not. The advantage of using this test is that it does ask for any level of serial correlation like the Augmented 

Dickey Fuller test. It is free of parametric errors and it corrects the statistics to accommodate for 

autocorrelations and heteroskedasticity (Davidson & MacKinnon, 2004).  The null hypothesis for this test is that 

the data has a unit root. If there is a unit root, then it means that the return series is non-stationary. The Phillips-

Perron test is based on the following equation:  

 

∆𝑅𝑡  =  𝛼 +  𝛽 𝑅𝑡−1  + 𝑒𝑡  

 

where ∆ is the difference operator, R is the index return , α is a constant, β is the slope, ε is the error term and t 

is the transcript for time. 

Results below in table 7 for Phillips-Perron test show that all groups of data have no unit root, which 

means that all return series are stationary and do not follow random walk.  



Table 7: Results of Phillips-Perron test for KSE 100 Index return series. 
 

 

 

 

 

 

5.3. Parametric Tests: 

We have also applied parametric tests to confirm the consistency of results from the non-parametric tests.  

5.3.1. Autocorrelation Test: 

Autocorrelation test is a consistent measure for testing the dependence or independence for random variables in 

a series. It is a widely used test to check for randomness. Autocorrelation coefficient measures the correlation 

degree between the existing stock return and the one which is separated by k lags (Campbell, Lo & MacKinlay, 

1997). 

 

Many studies have made use of autocorrelation test to check for dependence or independence in series such as 

Asma et al. (2000), Elbarghouthi et al. (2012) and Nikita & Soekarno (2012). It can be computed as: 

 

 

 

𝜌 𝑘 =  
𝐶𝑜𝑣   𝑟𝑡  ,   𝑟𝑡−𝑘      

 𝑉𝑎𝑟 𝑟𝑡   𝑉𝑎𝑟 (𝑟𝑡−𝑘)

 =  
𝐸    𝑟𝑡 −  𝜇  𝑟𝑡−𝑘  −  𝜇   

𝐸    (𝑟𝑡 −  𝜇 )2   
 

 

 

where 

 

 𝜌 (𝑘) Autocorrelation coefficient of time series. 

𝑟𝑡 The return at time t 

𝑟𝑡−𝑘  The return after k lags. 

Cov ( 𝑟𝑡 , 𝑟𝑡−𝑘  ) The covariance between the two returns. 

Var  𝑟𝑡  , Var (𝑟𝑡−𝑘) the variance on returns over time period (t, t-k) 

 

 

Auto-correlation coefficient under the null hypothesis of random walk will not be significantly different from 

zero.  

H0: p  = 0  

H1: p  ≠ 0 

 

Return Series Z (t) 5% Critical 

Value 

P-value Results 

1992-2012 -63.736 -2.86 0.0000 No Unit Root 

1992-1994 -18.41 -2.86 0.0000 No Unit Root 

1995-1997 -23.038 -2.86 0.0000 No Unit Root 

1998-2000 -25.037 -2.86 0.0000 No Unit Root 

2001-2003 -25.914 -2.86 0.0000 No Unit Root 

2004-2006 -24.797 -2.86 0.0000 No Unit Root 

2007-2009 -22.045 -2.86 0.0000 No Unit Root 

2010-2012 -26.090 -2.86 0.0000 No Unit Root 

2013 -9.777 -2.905 0.0000 No Unit Root 



We have also looked at Box-pierce (Q) statistic to look for correlation between return series. Box-Pierce (1970) 

Q statistic is a portmanteau test that is used to examine the whole set of return series for correlation up to k lags. 

For instance, return series for 10 lags will examine r1 to r10 all at once. We have used maximum lag as 22. Here 

is the Box-Pierce formula: 

𝑄 = 𝑛  𝑟𝑘
2

ℎ

𝑘=1

 

The results in Table 8 show that for return series 1992-2012, autocorrelation coefficients are significant and 

positive even for higher lags. Furthermore, the coefficients are mostly positive for the sub-periods except for 

sub-period 2013. This is consistent with empirical findings on stock price movements. 
 

Box-Pierce (Q) statistic tests the null hypothesis that all correlations up to lag „h‟ are equal to 0. If Prob>Q is 

less than 0.05, we can reject the null that all lags are not auto-correlated.  

 

Results of Box-Pierce (Q) statistic in table 8 are showing that there is significant autocorrelation for years 1992-

2012, 1992-1994, 1995-1997, 1998-2000 and 2007-2009. No significant autocorrelation is observed for the 

years 2001-2003, 2004-2006, 2010-2012 and 2013.  

 

 

Table 8: Results of Autocorrelation and Box-Peirce (Q) Statistic test for KSE 100 Index return series. 

  

Lag Autocorrelation 

(1992-2012) 

Box-

Pierce 

Q 

Statistic 

Prob>Q Autocorrelation 

(1992-1994) 

Box-

Pierce 

Q 

Statistic 

Prob>Q Autocorrelation 

(1995-1997) 

Box-

Pierce Q 

Statistic 

Prob>Q 

1 0.1261 80.996 0.0000 0.3649 94.556 0.0000 0.1415 13.901 0.0002 

2 0.0563 97.17 0.0000 0.1679 114.61 0.0000 0.0646 16.804 0.0002 

3 0.0492 109.52 0.0000 0.0763 118.75 0.0000 0.0761 20.84 0.0001 

4 0.0208 111.71 0.0000 0.0959 125.31 0.0000 0.0466 22.35 0.0002 

5 0.0352 118.02 0.0000 0.1081 133.66 0.0000 0.0269 22.855 0.0004 

6 0.0166 119.42 0.0000 0.0142 133.8 0.0000 0.0155 23.023 0.0008 

7 0.0212 121.71 0.0000 0.0354 134.7 0.0000 -0.0069 23.057 0.0017 

8 0.0336 127.46 0.0000 0.0001 134.7 0.0000 0.0494 24.77 0.0017 

9 0.0488 139.59 0.0000 0.0517 136.62 0.0000 -0.0107 24.851 0.0031 

10 0.0075 139.88 0.0000 0.0492 138.36 0.0000 -0.0044 24.865 0.0056 

11 0.0123 140.65 0.0000 0.0131 138.48 0.0000 0.0101 24.936 0.0093 

12 0.0139 141.63 0.0000 0.0093 138.55 0.0000 0.0059 24.96 0.0150 

13 0.0134 142.55 0.0000 0.0868 143.99 0.0000 -0.0108 25.043 0.0228 

14 0.0106 143.13 0.0000 0.1383 157.82 0.0000 -0.0138 25.178 0.0328 

15 0.0168 144.56 0.0000 0.0337 158.65 0.0000 0.0165 25.371 0.0452 

16 0.0151 145.72 0.0000 0.0327 159.42 0.0000 -0.0118 25.469 0.0620 

17 0.0484 157.69 0.0000 0.0736 163.35 0.0000 0.0435 26.811 0.0609 

18 0.0400 165.85 0.0000 0.2039 193.61 0.0000 -0.0113 26.901 0.0809 

19 0.0080 166.71 0.0000 0.1657 213.62 0.0000 -0.0546 29.024 0.0656 

20 0.0075 166.46 0.0000 0.1382 227.55 0.0000 -0.0008 29.024 0.0873 

21 -0.0232 169.2 0.0000 0.0475 229.2 0.0000 -0.0845 34.127 0.0351 

22 -0.0196 171.17 0.0000 -0.0740 233.21 0.0000 0.0081 34.2175 0.0471 



 

 

  

Lag Autocorrelation 

(1998-2000) 

Box-

Pierce 

Q 

Statistic 

Prob>Q Autocorrelation 

(2001-2003) 

Box-

Pierce 

Q 

Statistic 

Prob>Q Autocorrelation 

(2004-2006) 

Box-

Pierce Q 

Statistic 

Prob>Q 

1 0.0799 4.6819 0.0305 0.0419 1.2907 0.2559 0.0890 5.8735 0.0154 

2 0.0608 7.4018 0.0247 -0.0398 2.4602 0.2923 -0.0052 5.8937 0.0525 

3 0.0388 8.5094 0.0366 0.0276 3.0229 0.3881 0.0536 5.0263 0.0455 

4 -0.0297 9.1575 0.0573 0.0144 3.1752 0.5290 -0.0094 5.0914 0.0883 

5 0.0543 11.335 0.0451 0.0397 4.3391 0.5017 -0.0469 5.7288 0.0833 

6 0.0226 11.711 0.0687 0.0095 4.4064 0.6218 -0.0159 9.917 0.1282 

7 0.0086 11.765 0.1085 0.0865 9.9597 0.1909 0.0147 10.078 0.1842 

8 0.0803 16.547 0.0352 0.0829 15.072 0.0578 -0.0370 11.102 0.1960 

9 0.0556 18.843 0.0266 0.0526 17.131 0.0467 0.1312 23.987 0.0043 

10 -0.0618 21.683 0.0168 0.0148 17.294 0.0681 0.0570 26.425 0.0032 

11 0.0205 21.997 0.0244 0.0527 19.369 0.0548 -0.0395 27.598 0.0037 

12 0.0190 22.266 0.0346 -0.0303 20.055 0.0660 0.0217 27.953 0.0056 

13 -0.0342 23.138 0.0401 0.0153 20.231 0.0896 0.0432 29.357 0.0058 

14 0.0146 23.297 0.0556 -0.0555 22.537 0.0682 -0.0090 29.418 0.0092 

15 0.0076 23.339 0.0772 -0.0306 23.24 0.0792 -0.0556 31.757 0.0069 

16 -0.0158 23.527 0.1004 0.0411 24.509 0.0790 -0.0407 33.011 0.0074 

17 0.0633 26.537 0.0652 0.0212 24.849 0.0981 0.0416 34.324 0.0076 

18 -0.0039 26.579 0.0879 0.0268 25.391 0.1145 0.0454 35.888 0.0073 

19 -0.0095 26.617 0.01139 -0.0441 26.859 0.1080 0.0274 36.459 0.0093 

20 -0.02309 27.047 0.1339 -0.0064 26.89 0.1384 -0.0425 37.83 0.0093 

21 -0.0556 29.384 0.1051 -0.0286 27.51 0.1546 0.0581 40.404 0.0066 

22 -0.0114 29.482 0.1316 0.0301 28.199 0.1692 -0.0596 43.113 0.0046 

Lags Autocorrelation 

(2007-2009) 

Box-

Pierce 

Q 

Statistic 

Prob>Q Autocorrelation 

(2010-2012) 

Box-

Pierce 

Q 

Statistic 

Prob>Q Autocorrelation 

(2013) 

Box-

Pierce 

Q 

Statistic 

Prob>Q 

1 0.2234 36.997 0.0000 0.0496 1.84277 0.1746 -0.0981 0.81895 0.3655 

2 0.1261 48.796 0.0000 0.0530 3.9516 0.1386 0.0388 0.9483 0.6224 

3 0.0623 51.676 0.0000 -0.0144 4.1066 0.2502 -0.0037 0.94947 0.08135 

4 0.0782 56.227 0.0000 0.0516 6.1122 0.1909 -0.0179 0.9779 0.9131 

5 0.0597 58.881 0.0000 -0.0534 8.263 0.1423 -0.0162 1.0014 0.9624 

6 0.0289 59.506 0.0000 0.02233 8.638 0.1950 0.0058 1.0045 0.9854 

7 0.0275 60.072 0.0000 -0.0546 10.888 0.1436 -0.0329 1.1036 0.9930 

8 -0.0383 61.168 0.0000 0.0248 11.353 0.1825 -0.0765 1.6489 0.9900 

9 0.0180 61.412 0.0000 -0.0282 11.956 0.2158 0.0257 1.7114 0.9953 

10 0.0545 63.644 0.0000 0.0878 17.806 0.0583 -0.0929 2.5365 0.9903 

11 0.0359 64.614 0.0000 -0.0780 22.429 0.0213 -0.0193 2.5728 0.9953 

12 0.0242 65.054 0.0000 0.0564 24.845 0.0156 -0.0246 2.6326 0.9976 

13 0.0581 67.6 0.0000 -0.0227 25.238 0.0215 -0.0332 2.7423 0.9987 

14 0.0195 67.887 0.0000 0.0388 26.385 0.0231 0.0956 3.669 0.9971 

15 0.1264 79.949 0.0000 0.0078 26.431 0.0337 -0.0258 3.7373 0.9985 

16 0.1059 88.435 0.0000 0.0331 27.27 0.0386 -0.0053 3.7402 0.9993 

17 0.0368 89.462 0.0000 0.0387 28.416 0.0403 -0.0974 4.7461 0.9984 

18 0.0786 94.148 0.0000 0.0589 31.074 0.0282 -0.1233 6.3819 0.9944 

19 0.0517 96.18 0.0000 -0.0269 31.629 0.0344 -0.0159 6.4095 0.9968 

20 0.0613 99.035 0.0000 0.0488 33.459 0.0300 -0.0517 6.7068 0.9975 

21 -0.0267 99.577 0.0000 -0.0058 33.485 0.0411 0.0442 6.9724 0.9983 

22 -0.0440 101.05 0.0000 0.0228 33.887 0.0504 0.0152 6.954 0.9990 



 

5.3.2. Ljung and Box (Q) Statistic Test:  

Ljung and Box (1978) is a statistical test to test for autocorrelation in a group of time series. Instead of testing 

for randomness at each lag like Autocorrelation function test it tests the overall randomness based on the total 

number of lags. The test statistic (Ljung & Box, 1978):  

𝑄 = 𝑛  𝑛 + 2  
𝑝 𝑘

2

𝑛 − 𝑘

ℎ

𝑘=1

 

where n is the sample size, 𝑝 𝑘  is the sample auto-correlation at lag k and h is the number of lags being tested. 

Ljung and Box (Q) statistic tests the null that the data is independently distributed. If p-value is less than 0.05, 

then we can reject the null of no autocorrelation and return series has autocorrelation at 5% significance level. 

Table 9 shows the results of Ljung and Box (Q) statistic test and they indicate that all return series have 

autocorrelation except 1998-2000, 2001-2003 and 2013.  

 

Table 9: Results of Ljung and Box (Q) Statistic test for KSE 100 Index return series. 

 
Return Series Q statistic Prob Result 

1992-2012 203.4126 0.0000 Autocorrelation 

1992-1994 253.4550 0.0000 Autocorrelation 

1995-1997 57.6131 0.0352 Autocorrelation 

1998-2000 48.8482 0.1592 No Autocorrelation 

2001-2003 44.5521 0.2861 No Autocorrelation 

2004-2006 73.2243 0.0010 Autocorrelation 

2007-2010 127.2396 0.000 Autocorrelation 

2010-2012 57.7562 0.0342 Autocorrelation 

2013 18.0297 0.9984 No Autocorrelation 

 

5.3.3. Augmented Dickey-Fuller Test: 

Augmented Dickey-Fuller (Dickey & Fuller, 1981) is an augmented version of Dickey-Fuller test. Augmented 

Dickey-Fuller test is the most extensively used and popular stationarity test. It was first devised by David Alan 

Dickey and Wayne Arthur Fuller in 1979 and 1981. ADF tests for unit root in the data. Null hypothesis says that 

data has a unit root. 

The augmented Dickey-Fuller (ADF) statistic is a negative number. More negative the test statistic, stronger the 

rejection of the hypothesis that there is a unit root in the data. The Null Hypothesis is that data has a unit root 

and it can be estimated by using the following equation through OLS:  

∆𝑃𝑡 =  𝑎0 +  𝑎1𝑡 +  𝜌0𝑃𝑡−1 +   𝜌𝑖

𝑞

𝑖=1

∆𝑃𝑖𝑡−𝑖 + ∈𝑖𝑡  

where Pt  is the price at time t, ∆ 𝑃𝑡 =  𝑃𝑡 −  𝑃𝑡−1 ,   𝜌𝑖  are coefficients to be estimated, q is the number of lagged 

terms, t is the trend term, a1 is the estimated coefficient for the trend, a0 is the constant and ∈i is white noise.  



Augmented Dickey-fuller test results in table 10 show that all groups of return series have no unit root. It means 

that all series are stationary and not behaving according to the random walk model.  

 

Table 10: Results of Augmented Dickey-fuller test for KSE 100 Index return series. 

 

Return 

Series 

Test 

Statistic 

1% Critical 

Value 

5% Critical 

Value 

10% Critical 

Value 

P-value Results 

1992-2012 -26.432 -3.430 -2.860 -2.570 0.0000 No Unit Root 

1992-1994 -9.257 -3.430 -2.860 -2.570 0.0000 No Unit Root 

1995-1997 -9.502 -3.430 -2.860 -2.570 0.0000 No Unit Root 

1998-2000 -10.113 -3.430 -2.860 -2.570 0.0000 No Unit Root 

2001-2003 -10.342 -3.430 -2.860 -2.570 0.0000 No Unit Root 

2004-2006 -11.219 -3.430 -2.860 -2.570 0.0000 No Unit Root 

2007-2009 -9.438 -3.430 -2.860 -2.570 0.0000 No Unit Root 

2010-2012 -10.785 -3.430 -2.860 -2.570 0.0000 No Unit Root 

2013 -3.486 -3.544 -2.909 -2.590 0.0084 No Unit Root 

 

5.3.4. Dickey-fuller GLS Test:  

Elliott, Rothenberg and Stock proposed an efficient test after modifying the Dickey-Fuller test statistic using a 

generalized least squares (GLS) rationale (Elliott, Rothenberg and Stock, 1996). According to Elliot et al. 

(1996), their test has superior power when there exists an unknown trend or mean in data.  

In STATA, maximum lag order selection is specified or default value is calculated as provided by Schwert 

(1989) criterion. For optimal lag order selection, Ng-Perron (1995) sequential test criterion is used. Lag length 

chosen by Ng-Perron is generally preferred. The null hypothesis is that the data has unit root. Results are quoted 

using optimal lag selection via Ng-Perron criterion.  

DF-GLS test results in table 11 shows that the data has no unit root for all groups of series except 2010-2012 

and 2013. All return series are stationary except 2010-2012 and 2013.  

 

Table 11: Results of Dickey-fuller GLS test for KSE 100 Index return series. 

 

Return 

Series 

Test Statistic Optimal lag 

length (Ng-

Perron seq t) 

1% Critical 

Value 

5% Critical 

Value 

10% Critical 

Value 

Result 

1992-2012 -10.932 32 -3.480 -2.834 -2.546 No Unit Root 

1992-1994 -4.053 19 -3.480 -2.825 -2.541 No Unit Root 

1995-1997 -4.209 16 -3.480 -2.832 -2.547 No Unit Root 

1998-2000 -7.222 9 -3.480 -2.849 -2.562 No Unit Root 

2001-2003 -6.321 13 -3.480 -2.840 -2.554 No Unit Root 

2004-2006 -5.924 16 -3.480 -2.833 -2.548 No Unit Root 

2007-2009 -3.149 17 -3.480 -2.830 -2.546 No Unit Root 

2010-2012 -1.920 19 -3.480 -2.826 -2.541 Unit Root 

2013* -2.479 11 -3.648 -2.739 -2.465 Unit Root 
*For 2013, optimal lag length via Ng-Perron criterion was 0, so we have used max lag length via Schwert criterion to quote results.  

  



 

5.3.6. Kwiatkowski, Phillips, Schmidt and Shin (KPSS) Test 

 

Kwiatkowski-Phillips-Schmidt-Shin test (KPSS test) is introduced by Kwiatkowski, Phillips, Schmidt and Shin 

(1992) in their paper, “Testing the Null Hypothesis of Stationarity against the Alternative of a Unit Root”. The 

null of the test says that series is stationary around deterministic trend. The KPSS test statistic is the Lagrange 

Multiplier test which holds the hypothesis that random walk has zero variance (Kwiatkowski, Phillips, Schmidt 

& Shin, 1992).  In KPSS test, the series of observations is sum of three elements: deterministic trend, a random 

walk, and a stationary error term. The test statistic is defined as:  

KPSS =   T−2   S t
t

T

t=1

 / λ2 

where S t =   u j  , u t  t
j=1 is the residual of a regression of of yt  on Dt  (deterministic trend), and  λ 2 is a consistent 

estimate of the long-run variance of ut  using u t  (Kwiatkowski et al., 1992). 

Table 13 summarizes the results of the KPSS test. With the exception of time periods 1992-1994 and 2007-

2009, all sub-periods, as well as the overall period was giving statistic values less than the critical values for all 

lags. Hence, the null was failed to be rejected for these periods, depicting a trend stationarity and no unit roots 

at 5% and 1% significance levels. 

 

Table 13: Results of KPSS test for stationarity of return series. 

 
 

Data Result   

1992-2012 Trend stationary (No unit root)   

1992-1994 Unit root   

1995-1997 Trend stationary (No unit root)   

1998-2000 Trend stationary (No unit root)   

2001-2003 Trend stationary (No unit root)   

2004-2006 Trend stationary (No unit root)   

2007-2009 Unit root   

2010-2012 Trend stationary (No unit root)   

2013 Trend stationary (No unit root)   
Critical values for H0: returns is trend stationary 

 10%: 0.119, 5%: 0.146, 2.5%: 0.176, 1%: 0.216 

 

 

5.3.6. Auto-regression Test: 

We have next applied an autoregressive model with two lags to check if there exists a non-zero significant 

relation between current return series with first and second lag of return series. An autoregressive model of 

order p (denoted AR (p)) can be defined as: 

𝑅𝑡 = 𝑐 + 𝛽0𝑅𝑡−1 +  𝛽1𝑅𝑡−2  
 



where Rt is the Index return series, Rt-1 is the first lag of return series, Rt-2 is the second lag of the same return 

series, B0 is the coefficient of the first lag and B1 is the coefficient of the second lag. If the coefficient is 

significantly different from zero, then share return can be predicted from the past information.  

 

To check for the overall significance of first two lags on the current return series, we are going to look at the 

Prob(F). If Prob(F) is less than  0.05 , then we can reject the null of no significance at 5% significance level. 

The results of auto regression model of order 2 (AR(2)) in table 13, shows overall significance for first two lags 

on the current return series at 5% significance level for return series 1992-1994, 199-2012, 1995-1997 and 

2007-2009 and no overall significance for return series 1998-2000, 2001-2003,2004-2006, 2010-2012 and 2013.  

 

Moreover, the first lag is also statistically significant for return series 1992-2012, 1992-1994, 1995-1997, 1998-

2000, 2004-2006 and 2007-2009, while first lag is of no significance for 2001-2003, 2010-2012 and 2013; 

though the second lag is not significant for all except 1992-2012 and 2007- 2009. 

 

Therefore, overall analysis postulates that for the return series 2001-2003, 2010-2012 and 2013, the lags of 

return series do not cause the current return series. Therefore only in these years, market seems weak-form 

efficient because of the independency of lags.  

 

 

 

 

Table 13: Results of Auto-regression for KSE 100 Index return series. 

 
Return series 
(1992-2012) 

Coefficients SE T-value Prob (t) F-value Prob (F) Result 

L1 0.1209425 0.0140113 8.63 0.000 45.47 0.0000 Significant 

L2 0.0419053 0.0140113 2.93 0.003    

Constant 0.0003804 0.0002182 1.74 0.081    

        

Return series 

(1992-1994) 

       

L1 0.3506628 0.0377135 9.30 0.000 54.70 0.0000 Significant 

L2 0.0398573 0.0377492 1.06 0.291    

Constant 0.0001743 0.0004008 0.43 0.664    

        

Return series 

(1995-1997) 

       

L1 0.1348827 0.038149 3.54 0.000 7.72 0.0005 Significant 

L2 0.0457024 0.0381509 1.20 0.231    

Constant -0.0002078 0.0005656 -0.37 0.713    

        

Return series 

(1998-2000) 

       

L1 0.0752352 0.0370697 2.03 0.043 3.42 0.0332 Not 

Significant 

L2 0.0548875 0.0371092 1.48 0.140    

Constant -0.000147 0.0008584 -0.17 0.864    

        

Return series 
(2001-2003) 

       

L1 0.0434985 0.0370004 1.18 0.240 1.27 0.2810 Not 

Significant 

L2 -0.041661 0.0370009 -1.13 0.261    

Constant 0.0014465 0.0005742 2.52 0.012    

        

  



Return series 

(2004-2006) 
       

L1 0.0902387 0.0369311 2.44 0.015 3.00 0.0506 Not 

Significant 

L2 -0.0132618 0.0369312 -0.36 0.720    

Constant 0.0010055 0.0005887 1.71 0.088    

        

Return series 

(2007-2009) 

       

L1  
0.206075 

 
0.0368365 

5.59 
 

0.000 21.84 0.0000 Significant 

L2 0.0800258 0.0368332 2.17 0.030    

Constant -0.0000792 0.0005745 -0.14 0.890    

        

Return series 

(2010-2012) 

       

L1  

0.0450894 

 

0.0366822 

 

1.23 

 

0.219 

 

1.81 

 

0.1641 

Not 

Significant 

L2 0.0507976 0.0365348 1.39 0.165    

Constant 0.000669 0.0003326 2.01 0.045    

        
Return series 

(2013) 

       

L1  

-0.0985165 

 

0.1142888 

 

-0.86 

 

0.391 

 

0.43 

 

0.6512 

Not 

Significant 

L2 0.030556 0.1145942 0.27 0.790    

Constant 0.0017428 0.0009317 1.87 0.065    

        

 

 

5.3.7 ARIMA (Auto-Regressive-Integrated-Moving Average) model: 

Enders (2004) considers an ARIMA model of the U.S. Wholesale Price Index (WPI) using quarterly data from 

the first quarter of 1960 to the fourth quarter of 1990. ARIMA models form a vital division of the Box-

Jenkins approach to time-series modeling and they are helpful for non-stationary data. 

As we know from the theory that ARIMA (0,1,0) supports the random walk model where future price can be 

determined from the past information. 
 

𝑅  𝑡 −  𝑅  𝑡 − 1 = 𝜇 

where 𝑅  𝑡  is the current return series and 𝑅  𝑡 − 1  is the first lag of return series.  

We have tried to fit in the relevant ARIMA models. We have used ARIMA instead of ARMA because it also 

makes use of the integration process. The regression has been run on the return series from 1st January, 1992 to 

30th April, 2013 to analyze the entire dataset (5214 observations).   

 

  

https://en.wikipedia.org/wiki/Box-Jenkins
https://en.wikipedia.org/wiki/Box-Jenkins


 

 

Table 14: Results of ARIMA models for KSE 100 Index return series. 
 

ARIMA 

(0,1,0) 

Coefficient SE Z-value Prob (Z) AIC BIC 

Constant 1.06e-06 0.0002892 0.00 0.997 -25463.12 -25450.02 

       

ARIMA 

(1,0,0) 

      

AR(L1) 0.1251669 0.0082973 15.09 0.000 -28442.38 -28422.73 

Constant 0.0004682 0.0002511 1.86 0.062   

       

ARIMA 

(1,0,1) 

      

AR(L1) 0.6363774 0.0372153 17.10 0.000 -28457.3 -28431.1 

MA(L1) -0.5293785 0.0417881 -12.67 0.000   

Constant 0.0004684 0.0002914 1.631 0.108   

       

ARIMA 

(2,0,1) 

      

AR (L1) 0.9667974 0.0385789 25.06 0.000 -28464.51 -28431.76 

AR(L2) -0.0683735 0.0117752 -5.81 0.000   

MA(L1) -0.8506271 0.0373949 -22.75 0.000   

Constant 0.0004678 0.0003309 1.41 0.157   

       

ARIMA 

(2,0,2) 

      

AR(L1) 1.078932 0.1821216 5.92 0.000 -28462.67 -28423.37 

AR(L2) -0.1629264 0.147156 -1.11 0.268   

MA(L1) -0.9632032 0.1830158 -5.26 0.000   

MA(L2) 0.0870675 0.1337364 0.65 0.515   
Constant 0.0004675 0.0003323 1.41 0.159   

       

 

Results of ARIMA modeling in table 14 are showing that ARIMA (0,1,0), which supports the random walk 

model, is not significant with Prob(Z) of 0.997. In diagnostic checking, the residuals autocorrelations are 

significant for all models up to 20 lags except for ARIMA (2,0,1). Through AIC and BIC criteria, ARIMA 

(2,0,1) also has the minimum AIC and BIC values, so our best fitted model is ARIMA (2,0,1). 

 

5.3.8. Building a predictive model: 

We have attempted to make a predictive model to see if we can predict the future values based on the past 

values or not. Our best fitted model is ARIMA (2,0,1) because it is with the lowest AIC and BIC values. We 

have divided the data of return series into two parts to examine if one set of data can be used to predict the 

future. 



Observations have been divided into two groups, 1992-2001(2370 observations) and 2002-2011(2471 

observations). We have treated 1992-2001 as the historical data and have used these values to predict the future 

observations of  2002-2011. We have attempted to look at the pattern in historical and future data by looking at 

the scatter plot and line of trend.  

 

1992-2001(2370 observations)-Historical data 

 

 

2002-2011(2471 observations)-Future data 

 



 

The graphs for historical data and future data show the same patterns for return series providing the evidence 

that prediction for return series is possible.  

 

 

6. Conclusion 

 

After analyzing the results of parametric and non-parametric tests, we have considered the overall market 

performance of KSE 100 Index from 1st January 1992 to 30th April 2013. We can say that the overall market is 

not weak-form efficient. However, from 2001-2003, the market has shown some signs of weak-form efficiency 

and over the last four years (2010-2012 and 2013), the results of different tests have showed that the market is 

moving towards efficiency.  

In this paper, we have attempted to test for weak-form efficient market hypothesis in KSE 100 Index by 

checking for random walk hypothesis. We found that KSE 100 does not follow random walk hypothesis and 

investors can make abnormal profits by forecasting prices on the basis of historical data. Thus overall market is 

not weak-form efficient. 

 

For 1998-2000, 2001-2003 and 2004 -2006, results of Runs test and Autocorrelation test provide evidence of 

randomness and independency in return series, as well as stationarity. For 2010-2012 and 2013, results of Runs 

test, Autocorrelation test and Dickey-fuller GLS show evidence of randomness, independency and non-

stationarity of return series. The KPSS test shows trend stationarity overall, as well as in all sub-periods except 

1992-1994 and 2007-2009. Runs tests for actively traded companies showed that companies with a larger free-

float tend to display more signs of random walk. Results of Auto-regression show that lags have significant 

impact on the current return series for years 2001-2003, 2010-2012 and 2013. Thus some of the tests have 

provided evidence of randomness in the KSE-100 Index from 2001-2003 and from 2010 onwards, hence 

leading to weak-form of market efficiency.     

 

However, the results in this paper have some limitations too. To our notice, we have not considered the profit 

making strategies of traders and we have not adjusted for transaction costs (such as brokerage commission, bid-

ask spread, and time lag of settlement procedures between different parties).  Many of these have significant 

impact on liquidity considerations, which in turn impact autocorrelations, as suggested by Jegadeesh (1990) and 

Lehmann (1990). 

 

KSE 100 Index is a backbone of Pakistani stock exchange. Pakistan, as an emerging economy, still has a lot to 

develop in its stock markets for individual and institutional investors. Inefficiency of KSE 100 Index market can 

be due to many reasons such as working of the colluding brokerages (Khawaja and Mian, 2005), lack of 

sophisticated communication and information dissipation technology, lack of market regulations, monopolistic 

trends and insider information. However recently, Stock Exchange Commission of Pakistan (SECP) has taken 

significant steps to make our markets more efficient and our investors more responsible. In July, 2012, SECP 

has directed stock exchanges to introduce certification programs. Since October 15th, 2012, KSE is a free-float 

Index and recently, KSE has been demutualized. 



Future studies can suggest ways as to how KSE 100 Index can become more efficient by adopting certain 

practices and getting rid of others and the causes behind some tests showing signs of weak-form efficiency in 

particular groups of years. 
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