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Abstract 
Starting from the failure of the R&D-patents traditional relationship, when time-series and/or within 

industry dimensions are included in the empirical analysis, the present work tries to contribute to 

the empirical literature in two directions. Firstly, it perform a Granger causality test on the 

theoretical presumption of a reverse patents→R&D link as an explanation of the failure of the 

traditional relationship. Second, assuming the reverse patents-R&D causality, we test and interpret 

the lag structure of such a relationship as showing the effective patent life which firms expect in the 

two Schumpeterian patterns of innovations they belong to. To the light of the effective patent life, 

we offer a further explanation of innovation persistence which overturns the findings of the existing 

literature on persistence.  
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1. Introduction 

R&D activity is the base for the production of innovation that, in its turn, drives economic growth. 

The innovative process is made of R&D investments, the input of the process, and the innovation, 

the output. The most common measure of the innovation output is patents. The traditional direction 

of causality in the R&D-patents relationship (hereafter R&D→patents) assumes that patents are the 

natural output of the R&D activity in the sense that more investment in R&D will result in more 

innovations and more patenting (Jaffe, 1986; Griliches, 1990). The empirical literature, performed 

on cross-sectional data, confirmed a strong and highly significant (contemporaneous) correlation 

between R&D inputs and different patent measures across firms: the greater the R&D investments, 

the greater the patents (Pakes and Griliches, 1980; Hall et al., 1986; Griliches, 1988; Beneito, 

2006). 

Recent theoretical and empirical papers underlined some drawbacks in the R&D-patents traditional 

relationship. New theoretical approaches showed that, even if in the 1990s there was an increase in 

patent’s applications, the tendency to extend patent protections may be counterproductive in terms 

of R&D investments (Shapiro, 2001; Hunt, 2006; Bessen and Hunt, 2007). From an empirical point 

of view, when time-series and/or within industry dimensions are included in the empirical analysis, 

the positive correlation between R&D and patent almost vanishes (Hall et al., 1986; Hausman et al., 

1984; Czarnitzki et al., 2009). Some explanations have been advanced in order to justify the failure 

of the R&D→patents causality’s direction, in terms of a weaker orientation towards patent 

protection of some industries (Levin et al. 1987) and of patent data as a “wrong” indicators of 

innovative activity (Griliches, 1990). 

We argue that a reverse causality in the R&D-patents relationship may hold leading to the failure of 

the traditional R&D→patents: patent applications occur at an early point in the development 

process and most of the R&D expenditures occur after the application of patents is made. Only 

recently the research in this fields is starting to explore the reverse causality in the R&D-patents 

relationship (hereafter patents→R&D). If patents are considered as a policy instrument aimed at 

fostering and stimulating R&D investment and innovation, it becomes of utmost importance the 

analysis of patents→R&D (Encaoua et al., 2006). The mainstream of the theoretical literature that 

addresses the reverse causality in the patent-R&D relationship assumes a positive correlation; 

empirical studies lack in corroborating this conclusion: they tend to be unclear or in disfavor of the 

positive correlation assumption.  

The aim of this work is twofold: firstly, it try to enrich the empirical literature based on the 

theoretical presumption of a reverse patent→R&D link. Differently from the very few empirical 

studies that precede, we do not impose the reverse causality relationship between patent and R&D 

but we perform a Granger causality test whose results corroborates the possibility that a reverse 
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causality in the patent-R&D relationship may exist. Indeed, the Granger causality test confirmed 

that past values of patents contain information that are relevant for forecasting R&D: patents cause, 

in the Granger sense, R&D expenditure. Therefore, we can assume that the productivity of the R&D 

activity, in terms the share of inventions firms are willing to patent, occurs at an early stage of the 

innovation process, driving the future timing and intensity of the R&D expenditure. 

Secondly, we ask: 1) If the reverse causality holds, are there lags between patents and R&D 

expenditure?; 2) How does the reverse causality relationship differ in different patterns of 

innovations?  

Answering those questions allowed us to offer a further explanation of the innovation persistence in 

terms of Schumpeterian patterns of innovations that overturns the findings of the existing literature 

in this topic. Indeed, the traditional approach states that the “creative accumulation” (as in 

Schumpeter Mark II) leads to innovation persistence, while the “creative destruction” (as in 

Schumpeter Mark I) is used to explain the absence of persistence in innovation activities. Instead, 

given that firms in different industries of the economy face a distinct set of opportunities, 

constraints and conditions, we argue that those industry-specific characteristics play a fundamental 

role in explaining how and when patents stimulate R&D activity for firms. In this light, according to 

the characteristics of the technological regimes (Schumpeter Mark I and Schumpeter Mark II) firms 

belong to, we interpret the lag structure in the patents→R&D relationship. We may expect that in 

sectors characterized by a high appropriability of innovations, low barriers to entry and the 

dominance of large established firms (the Schumpeter Mark II), firms which decide to patent their 

innovations are more likely to believe that the effective patent life (as the expected time until a 

patent product is replaced in the market) will be long (O’Donoghue et al., 1998). Therefore, they 

tend to enjoy the monopoly rent patent gave them and postpone the R&D activity just before their 

expectation that this monopoly rent will be expired. In other words, they do not persist in their R&D 

investment. At odds, in sectors with opposite features (the Schumpeter Mark I), firms believing in a 

shorter effective patent life may tend to persist in the innovative effort. Therefore, the cause of the 

innovation persistence on R&D we spoke above refers and depends on the effective patent life 

which is defined by the lag structure in the patents→R&D relationship.  

The empirical analysis is conducted at the micro level on an original dataset of 6490 Italian firms 

surveyed from 1998 to 2004. We have specified and estimated a log-linear dynamic regression 

model of the (log of) R&D expenditure on the number of patent applications of firms in the two 

Schumpeterian patterns.  

The estimation results confirmed our prediction. They showed positive and statistically significant 

coefficient of one year lagged dependent variable (R&D effort) and also positive and statistically 

significant contemporaneous coefficient of the patent applications in Schumpeter Mark I. It means 
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that there is persistence in the R&D expenditure and such persistence is path dependent because 

other factors, especially the patenting activity we are interested in, affected the innovation process. 

Otherwise, in Schumpeter Mark II, neither the lagged dependent variable coefficient nor the patent 

applications coefficients (contemporaneous and until two years lagged) are significant, meaning the 

absence of persistence due to the longer effective patent life firms expect in this pattern (as the 

estimated lag structure in the patents→R&D showed). Unfortunately, despite of the wideness of the 

cross-sectional dimension of the panel, the lack of a reasonable time lag between patents and R&D 

expenditure may challenge the validity of our results in Schumpeter Mark II. We try to give 

robustness to the analysis by showing that controlling for lots of aspect affecting the patent-R&D 

relationship, none of such controls grasps the variance of R&D expenditure for firms in Schumpeter 

Mark II. 

The paper is organized as follows. Section 2 reviews the literature that provides the background and 

foundation for our study; section 3 describes the Schumpeterian patterns of innovations where our 

hypotheses will be tested; section 4 comprises the econometric specifications and results and 

section 5 concludes.      

 

2. The literature  

The main idea that we want to put forward in this paper is that the lag structure of patent 

coefficients in the reverse causality between patents and R&D affects the innovation persistence of 

R&D expenditure (in the two Schumpeterian regimes) through the effective patent life. This 

overlaps two literature: the patents-R&D relationship and the innovation persistence literature. 

Patents-R&D relationship literature 

The traditional direction of causality in the R&D-patents relationship assumes that patents are the 

natural output of the R&D activity in the sense that more investment in R&D will result in more 

innovations and patenting (Jaffe, 1986; Griliches, 1990). The empirical literature confirmed this 

positive relationship (Pakes and Griliches, 1980; Griliches, 1988; Beneito, 2006). Several papers on 

cross-sectional data of firms, estimated the elasticity of patents with respect to R&D to be around 1 

(Hausman et al. 1984, Jaffe 1986, Duguet and Kabla 1998, Crepon et al. 1998, Brouwer and 

Kleinknecht 1999 or Cincera 1997). Hall et al. (1986) examine the existence of lags in the 

R&D→patent finding that, contrary to what would be intuitive, only the contemporaneous relation 

is statistically significant, not the lags.
1
 Similar results emerged in cross-country (de Rassenfosse 

and van Pottelsberghe, 2009) and cross-region (Bottazzi and Peri, 2003) estimates.  

There are two main drawbacks in the traditional direction of causality in the R&D→patent. First, if 

a time-series dimension is included in the analysis, the positive correlation between R&D and 

                                                
1
 It is more likely to hypothesize a lag structure in the relationship between R&D expenditure and patents. 
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patent almost vanishes: the estimated parameters of the reaction of patents to changes in R&D 

expenditures (over years) fall sharply and become less significant (Hall et al. 1986, Hausman et 

al.1984, Czarnitzki et al. 2009). Furthermore, the above correlation becomes almost absent when 

the analysis is at the industry level. Levin et al. (1987), in justifying the previous evidence, say that, 

in spite of some industries have a high propensity to patent, they patent much fewer than other 

industries with a weaker orientation towards patent protection.  

Griliches (1990) offers two kinds of explanations why the estimated R&D→patent elasticity is so 

weak. Firstly, patent data are not a “right” indicator of innovative activity because they reflect a 

propensity behaviour, rather than innovation performance or research productivity.
2
 Second, patent 

series are very random because they greatly vary in their value with most patents having low value 

and a few patents having very high value.
3
 

Here we argue that the failure in the empirical evidence of the R&D→patents relationship when 

within-industry and/or time-series dimensions are taken into account may be due to a reverse 

causality in that relationship: patents aimed at stimulating the R&D investment; patents encourage 

investment in R&D and thus the production of knowledge and innovation.  

The first that theoretically examined the reverse causality link between patents and R&D was 

Nordhaus (1969). He asserted that the extent of patent protection, enhancing the expected return on 

an innovation, leads to incentivize the R&D investments. Pakes (1985) suggested a reverse 

Granger-causality from patents to R&D on the grounds that patents could contain information on 

technological opportunity that would lead to R&D in the future. Neither Pakes (1985) nor Hall et al. 

(1986) found evidence of causality in this direction. Using two successive four-year apart 

innovation survey data, Van Ophem et al. (2002) find little evidence of a Granger-causality from 

R&D to patents but clear-cut evidence of a causality in the opposite direction.  

Theoretically, the expectations of the signs of such a reverse causality relationship are twofold. 

Intuitively, the broader the patent scope or the greater the patent length is, the more the R&D effort 

will be (Denicolo, 1996). But, if the nature of innovations is considered (sequential or independent, 

complementary or isolated) the results may change (Bessen and Maskin, 2009; Hunt, 2006; Gallini, 

2002; Bessen and Hunt, 2007).
4
    

Shapiro (2001) reinforces the possibility of a negative link between patent accumulation (instead of 

patent scope or length) and R&D expenses in industries like semiconductors, software or 

                                                
2
 Griliches (1990) writes that it would be “misleading to interpret such [patent] numbers as indicators of either the 

effectiveness of patenting or the efficiency of the R&D process”. 
3 In response to the first point raised by Griliches, de Rassenfosse and van Pottelsberghe (2009) produce cross-country 

empirical evidence in favor of patent statistics: the latter are still intensely used nowadays to measure firms’ or 

countries’ innovation performance.  
4
 Indeed, if innovation is the outcome of a cumulative process, extending patent protections may be counterproductive 

in terms of R&D investments and consequently innovation. This result holds for high tech, semiconductors and 

software industries characterized by a continuous process of cumulative learning and innovations. Instead, in industries 

characterized by a slower innovative rhythm, the effect of patenting on R&D may be positive. 
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biotechnology, speaking of a patent thicket (as a dense web of overlapping intellectual property 

rights).  

Even if theoretical literature found justifications and conditions under which the reverse causality in 

the patent→R&D relationship holds, empirical works lack in confirming both a positive or negative 

sign (Kortum and Lerner, 1999; Hall and Ziedonis, 2001; O’Donoghue et al., 1998; Kingston, 2001; 

Sakakibara and Branstetter, 2001).  

Innovation persistence literature 

The persistence of firms in innovative activities occurs when a firm which has innovated in one 

period innovates once again in the subsequent period; it is, therefore, linked to the success firms 

have in the research area (Malerba et al, 1997; Cefis and Orsenigo, 2001). Theoretical literature 

provides three explanations of the persistence of innovation at the firm level: 1) sunk cost: it is 

stressed that R&D decisions are subject to a long time horizon, and if a firm decides to take up 

R&D activities, it has to incur start–up costs in building up an R&D department or hiring and 

training R&D staff. These fixed outlays, once made, are usually not recoverable and can therefore 

be considered as sunk costs (see Sutton 1991 or Manez Castillejo et al. 2004);
5
 2) financial 

constraints: they force firms to retain earning as a source of funds. Therefore, as in the “success-

breeds-success” processes (Nelson and Winter, 1982), innovative success yields profits that can be 

reinvested in R&D, thereby, increasing the probability to innovate again; 3) learning-by-doing: 

knowledge that has been used to produce past innovations can be used to produce current and even 

future innovations.  

Those three causes of innovation persistence become relevant in the context of the two 

Schumpeterian patterns of innovations. Indeed, in Schumpeter Mark I, the “creative destruction” 

explains absence of persistence, whereas, in Schumpeter Mark II, the existence of significant 

degrees of persistence would contribute to generate processes of “creative accumulation”. 

Empirical studies provides mixed results about such a persistence (Geroski et al., 1997; Cefis, 2003; 

Roper and Hewitt-Dundas, 2008; Peters, 2009; Raymond et al., 2010; Clausen et al., 2012). Most 

work that have focused on patenting data, identify weak elements of persistency. On the contrary, 

empirical analyses based on survey data find stronger evidence of innovation persistence, but 

highlight that results are sensitive to the indicator chosen (Duguet and Monjon, 2004). 

 

Once summarized the two relevant theoretical and empirical literature, we advance the hypothesis 

that the lag structure of the reverse relationship between patents and R&D may offer another 

explanation of the innovation persistence of R&D expenditure in terms of the effective patent life. 

We hypothesize that the latter is related to the different characteristics of appropriability, barriers to 

                                                
5
 However, even if firms experience sunk costs due to innovations, there are several theoretical explanations that 

persistence may not emerge (see, for example, Schmookler 1966). 
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entry and dominance of large established firms of markets and industrial sectors. We base this 

argument on the concept of technological regimes in which firms operate. A technological regime 

is defined as the technological environment in which innovative activities take place in each sector 

of the economy (Nelson and Winter, 1982; Winter, 1984 and 2006; Malerba, 2002). We can 

identify the technological regime according to four dimensions: 1) Level of technological 

opportunities; 2) Appropriability conditions; 3) Cumulativeness conditions; 4) External sources of 

opportunities.
6
  

Those characteristics provide a set of opportunities and constraints for firms which shape their 

innovative activities (Cohen and Levin, 1989; Malerba and Orsenigo, 1995; Lee and Lim, 2001)  

The patterns of innovations, originally pointed out by Schumpeter (1934 and 1943), were modeled 

on the properties of technological regimes. The high ease of entry in the market and the low 

concentration of innovative activity make the Schumpeter Mark I very dynamic, with new and more 

productive innovators replacing the exit firms. Opposite features show the Schumpeter Mark II; it is 

characterized by high barriers to entry for new innovators, high concentration of innovative activity 

and a stable population mainly formed by large and well-established firms. Table 2 displays the 

characteristics of the two Schumpeterian patterns of innovations. 

Table 2: Schumpeterian patterns 

Schumpeter Mark I Schumpeter Mark II 

High technological opportunities Low technological opportunities 

Low appropriability High appropriability 

Low cumulativeness High cumulativeness 

Low concentration of innovative 

activities 

High concentration of innovative 

activities 

Low barriers to entry High barriers to entry 

High instability in the hierarchy of 

innovators 

Low instability in the hierarchy of 

innovators 

We argue that the lag structure of the patent→R&D relationship is related to the characteristics of 

the technological regime in which the enterprise operates. In the Schumpeter Mark II regime, high 

cumulativeness and appropriability conditions create strong technological entry barriers for new 

innovators. This implies that R&D activity is made by well-established oligopolistic innovators, 

which may patent their innovations and enjoy the monopoly rent patent gave them; they expect a 

longer effective patent life and, therefore, they may postpone the successive R&D activity just 

before the monopoly rent will be expired.
7
 In terms of the interpretation of the lag structure of the 

regression of patents on R&D expenditure, we should expect negative/no contemporaneous and 

delayed (of at least 2-3 years, depending on the effective patent life) relation among them. The 

consequence of such a longer effective patent life is the absence of R&D effort persistence.   

                                                
6 Table 1 in Appendix provides a detailed description of those dimensions.  
7
 Generally the legal protection of innovations ensured by patents lasts longer than the effective patent life, which, 

instead, depends on the market conditions in terms of possibility to imitate. 



8 

 

In a Schumpeter Mark I pattern, on the other hand, low cumulativeness and appropriability 

conditions tend to facilitate the frequent entry of new innovative firms. In this highly competitive 

environment, the ability of firms to continuously innovate becomes a crucial factor. Given the 

expected shorter effective patent life, firms who decide to protect their innovation with patents, 

persist in their innovative effort. In this pattern therefore, we expect a contemporaneous relationship 

among patents and R&D expenditure. 

 

3. Data description 

For the empirical analysis we have used an original dataset of about 6500 firms investing in R&D 

during the period 1998-2004.
8
 Firms included in the panel are those declaring a positive amount of 

intramural R&D expenditure; firms spending only in extramural research activities are excluded 

from the dataset. The panel is strongly unbalanced because of how it is created. Indeed, to be 

included in the dataset, it is enough for a firm to declare a positive amount of intramural 

expenditure in at least one year. Therefore, enterprises investing in intramural expenditure only in 

one year between 1998 and 2004, show missing values for other years. 

Information about the economic activity of firms comes from firms’ balance sheets.  

Table 3 below shows the distribution of the number of patent applications in the whole sample of 

firms and in the two Schumpeterian patterns from 1998 to 2004.
9
 More than 50% of firms do not 

apply for patent, this percentage raises to 61% for firms in the Schumpeter Mark II (hereafter 

SMII). As the number of patent applications increases, the number of firms reduces; the percentage 

of firms raises again in the range 6-10 patent applications with almost 9% of firms apply for at least 

6 patents. This trend is confirmed looking at the Schumpeterian patterns. It is interesting to notice 

that the number of firms applying for a small number of patents in a year (from 0 to 10) is greater in 

Schumpeter Mark I (hereafter SMI), while the reverse happens for more than 10 patent applications. 

This confirms the dynamic nature of SMI pattern, made of small innovators which continuously  

patent a narrow number of innovations. 

 

 

 

 

 

 

 

 

 

 

 

 

                                                
8 The dataset has been realized by ISTAT; it is based on a survey of private R&D activity. 
9
 In order to eliminate outliers, in table 2, such as in the empirical analysis, we dropped firms that have applied for more 

than 50 patents in a year. 
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Table 3 – Number of patent applications, 1998-2004 

 
Pooling SMI SMII 

N. Patent 

 applications 
N. firms Percentage N. firms Percentage N. firms Percentage 

0 3902 52.03 2530 48.19 1372 61.00 

1 1380 18.40 1047 19.94 333 14.81 

2 788 10.51 641 12.21 147 6.53 

3 410 5.47 314 5.98 96 4.27 

4 206 2.75 153 2.92 53 2.36 

5 185 2.47 141 2.69 44 1.96 

6 to 10 338 4.51 249 4.74 89 3.96 

11 to 20 175 2.33 121 2.30 54 2.40 

>20 and <50 115 1.53 54 1.03 61 2.71 

Total 7499 100 5250 100 249 100 

 

Figure 1 shows the mean of the number of patent applications during 1998-2004, in percentage; it 

has an increasing trend, with a peak in 2003. This tendency does not change when we split firms in 

the two technological patterns. However, firms in SMI have patented more than those in SMII, with 

a mean difference of more than 9%. 

Fig. 1 – Percentage of mean number of patent applications, 1998-2004 

 

Figure 2 displays the mean, over firms, of the R&D intensity (as the ratio between R&D 

expenditure and employees in R&D division)
10

 over the period 1998-2004, pooling and for the two 

Scumpeterian patterns of innovations. It is decreasing: overall, the mean value goes from about 

4100 euros (per employee in R&D) in 1998 to about 3950 euros in 2004; firms in SMII have 

invested, on average, about 93 euros per employee more than those in SMI.  

Thus, this sample analisys seems to show that firms in SMI have patented more and invested in 

R&D less than firms in SMII. 

 

 

 

 

 

 

 

 

 

 

                                                
10

 R&D expenditure includes only the intramural expenses made by firms. 
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Fig. 2 – Mean of the R&D intensity, 1998-2004 

 

 

4. Econometric specifications and results 

4.1 Granger causality test 

Most of the results in the R&D-patents traditional relationship do not take into account the issue of 

causality in the Granger sense. In recent years significant improvements in econometric modeling of 

Granger causality relationship have been made. Starting from the work of Granger (1969), a lot of 

studies offer new approaches for testing Granger causality in panel data.
11

 Relying on previous 

studies, we have attempted to assess the direction of the causality, in the Granger sense, for the 

R&D-patent relationship. Thus, we have performed a Granger causality test on the relationship 

between firms’ R&D investment and firms’ patenting activity, using the sample of Italian firms 

(during the period 1998-2004) just mentioned above.  

For each firm i at time t we consider two variables: yit, that measures the R&D intensity (proxied by 

the ratio between R&D intramural expenditure and the employees in R&D activities at the firm 

level) and xit, that measures the number of patent applications of firms (over the employees in R&D 

division). The Granger causality test will answer the following question: is R&D intensity that 

causes, in the Granger sense, patent applications or the reverse is true? More generally, variable x is 

said to Granger cause variable y if, given the past values of y, past values of x are useful to predict y. 

This means that, in order to predict current value of the dependent variable, the relevant information 

is contained solely in the time dimension of the regressors. 

Therefore, testing Granger causality implies to regress variable y on its own lagged values and on 

lagged values of x, and to test the null hypothesis that the estimated coefficients of the lagged values 

of x are jointly equal to zero. Here it is important the choice of lags. We checked the order of the 

autoregressive process of the variables of interest: both are AR(2) processes. Firstly, the estimation 

of model (1)
12

 will allow to establish whether xit Granger causes yit: 

��,� = �� + ∑ 	
,���,��
�
� + ∑ �
,���,��
�
� + �� + �� + ��,�     (1) 

                                                
11

 See Sims (1972), Holz-Eakin, Newey and Rosen (1988), Hurlin and Venet (2001), Hurlin (2005), Arellano and Bond 

(1991), Arellano and Bover (1995) and Blundell and Bond (1998). 
12

 It should be noted that there is a trade-off in the choice of lags. From one hand, small number of lags increases the 

number of degrees of freedom; from the other, large number of lags decreases autocorrelation. 

3.9
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where n is number of lags (n=2), i is number of firms in each year, t is time period (1998-2004). 

According to Baltagi (2005) the random error term is made of an unobservable firm specific (µ i), 

time specific (λt), and a random error term (νit) which represents measurement errors in the 

dependent variable and omitted explanatory variables. It is assumed to be independently and 

identically distributed with zero mean and constant variance. The firm and time specific effects, µ i 

and λt, capture firms’ heterogeneity and exogenous technological change respectively and are 

assumed to be independent of each other and of regressors. 

If xit will Granger cause yit, the following null hypothesis  

��: �
,� = 0	∀� = 1, 2	���	∀� ∈ [1998,… . , 2004] 
must be rejected. If the null is not rejected, estimate model (1) is the same as estimate the restricted 

model  

  ��,� = �� + ∑ 	
,���,��
�
� + �� + �� + ��,�. 

That is, past values of patents applications do not help to forecast R&D intensity. 

At the same time, we will specify the same model as in (1) in order to study whether yit Granger 

causes xit: 

��,� = '� + ∑ (
,���,��
�
� + ∑ )
,���,��
�
� + �� + �� + ��,�                   (2)  

If R&D intensity will Granger cause patents, the following null hypothesis  

��: )
,� = 0	∀� = 1, 2	���	∀� ∈ [1998,… . , 2004] 
must be rejected. 

In dealing with panel data analysis, a crucial issue is the cross-sectional variation; this type of 

variation may be addressed with a fixed effects model because it is captured by distinctive 

intercepts (Hsiao, 1986; Holtz-Eakin, Newey, and Rosen, 1988). This procedure is appropriate for 

panels with particularly short time dimension (t<10). We take this aspect into account in the 

estimation techniques. Once models (1) and (2) have been estimated, we calculate a Wald statistic 

in order to assess the causality, as in Dumitrescu and Hurlin (2012). They propose a Granger test for 

heterogenous panel data models in which, under the null hypothesis of homogeneous non causality, 

there is no causal relationship for any of the cross-section units of the panel. Under the alternative, 

there are two subgroups of cross-section units: one characterized by causal relationships from x to y 

and another subgroup for which there is no causal relationship from x to y. The test statistic is 

defined as the cross-section average of individual Wald statistics associated with the standard 

Granger causality tests based on single time series. The author show that this statistic has normal 

semi-asymptotic distribution even for small T samples.  

Results are reported in table 3. The estimates of model (1) are in the first two columns; those of 

model (2) are in the last two. We have estimated both a fixed effects and a dynamic panel data 

model (respectively depicted as FE and GMM in table 3). The last raw of table 3 shows the F-
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statistic of the Wald test and the relative p-value in parenthesis. Since our sample is highly 

unbalanced, we have restricted it to the enterprises that have applied for patents in, at least, five 

years. As concerns model (1), we may conclude that patents cause, in the Granger sense, R&D: the 

Wald statistics is such that we reject the null hypothesis of non causality at 5% level of significance. 

Looking at the Wald test for model (2), we cannot reject the null: R&D does not Granger cause 

patent.
13

 

To sum up, the Granger causality shows that past values of patents are important in forecasting 

R&D intensity, but the reverse is not true. Although Granger causality differs from causality, we 

argue that those findings corroborate our main hypothesis that there may be reverse causality in the 

R&D-patents relationship. 

Table 4: Granger causality 

 Dep. Var.: ln(R&D) Dep. Var.: Patent 

 FE GMM FE GMM 

ln(R&D) (-1) 
0.1416*** 

(2.75) 

-0.2345*** 
(-5.12) 

0.0813 
(0.92) 

0.0518 
(0.61) 

ln(R&D) (-2) 
-0.1332*** 

(-2.60) 
-0.2064*** 

(-4.32) 
-0.0409 

(-0.83) 
-0.0588 

(-0.73) 

Patent (-1) 0.0134 
(0.59) 

0.0206 
(0.79) 

-0.0700 
(-1.02) 

-0.5213*** 
(-9.33) 

Patent (-2) 
0.0415** 

(2.48) 
0.0533*** 

(2.57) 
0.0829 

(0.85) 
-0.1125 

(-0.87) 

N. obs. 890 627 820 566 

Wald test 
3.18 
(0.04) 

7.28 
(0.02) 

1.16 
(0.31) 

3.28 
(0.19) 

Notes. FE stands for fixed effects, GMM is the Arellano-Bond estimator. All regressions contain 
calendar year dummies (results not reported) and heteroskedasticity corrected standard errors; the 

time span is 1998-2004.  Significant coefficients are indicated by * (10% level), ** (5% level) and 

*** (1% level).  

 

4.2 Persistence estimation results 

In order to check our hypothesis that patents→R&D relationship may offer a further explanation of 

innovation persistence in terms of Schumpeterian patterns, we have estimated the following log-

linear dynamic panel data regression model (see Malerba et al., 1997) 

log(.&0)�,� = (log(.&0)�,��� + 2�3
4

3�
5��6���,��3 + 27 89��:9;<�,� + 	� + �� + =�,� 					(3) 

for firm i at year t. log(R&D), the dependent variable, is the natural logarithm of the intramural 

expenditure in R&D activity and Patent is the number of patent applications of firms, both 

standardized by the number of employees in R&D division.
14

 The former is a measure of the R&D 

intensity, since it captures how much a firm invests in R&D per employees in the R&D division; 

the latter is a standard measure of patents. γ, the auto-regression coefficient, represents our measure 

of persistence. We have also introduced contemporaneous and until two lags of Patent; we cannot 

                                                
13

 We cannot perform unit root tests because of the panel is strongly unbalanced. We run an autoregression estimation 

of ln(R&D) with FE and GMM; the coefficient of the ln(R&D)(-1) is about -0.04 with FE and about -0.3 with GMM. 

This result makes us confident with the absence of an unit root for the variable ln(R&D).    
14

 The definition of each variable in equation (3) and its construction is detailed in table 5 in the appendix. Table 6 

shows the correlations among them. 
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add further lags of patent applications because of the many missing value in the panel; increasing 

the number of lags should drastically reduce the number of observations making inference 

impossible to do. Equation (3) has been estimated by the Arellano-Bond technique.
15

 We have 

performed the estimation on the two Schumpeterian patterns of innovation, Schumpeter Mark I and 

Schumpeter Mark II.
16

 Time after time, for each pattern, we have introduce control variables in 

order to check the robustness of the our hypothesis. Control variables are:   

• the natural logarithm of sales as measure of the firm’s size (ln(Sales)); 

• the ratio between employees in the R&D division and the total of the employees (in 

percentage), as a measure of the size of the firm’s R&D division (R&D size); 

• the percentage of graduated employees in the R&D activities, that captures the level of 

education of the R&D employees (Education); 

• two variables that control for firm’s specific characteristic relative to: the financial structure 

(Leverage) and efficiency (Labour cost). 

There are not economic reasons that account for lags in the relationship between R&D investment 

and control variables; thus we have estimated them contemporaneously. 

Following Antonelli (2008) and Antonelli et al. (2012) we can asses that the dynamic of the process 

might be non-ergodic, that is, an early and successful innovation may have long lasting 

consequences driving further innovations. Moreover, it must be investigated if the early innovation 

is sufficient to produce long lasting consequences or whether effectively strategies and events that 

have been taking place along the process do affect the persistence. In other word, the process may 

be respectively past dependent and path dependent.  

Table 8 shows the estimation results of equation (3) for the two Schumpeterian patterns of 

innovations. A crucial assumption for the validity of GMM is that the instruments are exogenous. 

For that, in order to compute the Sargan test, we firstly estimate equation (3) in the homoskedastic 

case.
17

 The null hypothesis of the Sargan test is that the over-identification restrictions are valid; we 

do not reject the null and the model is correctly specified. In order to control for heteroskedasticity, 

every estimated equation in table 8 has robust standard errors. Each column is estimated with 

calendar dummy variable in order to control for common shocks for a given year; we do not show 

the coefficients of such dummies. We have also included dummies for the Italian regions firms 

belong to in order to control for an investment localization effect:
18

 it is reasonable to believe that 

                                                
15

 See Arellano and Bond (1991). 
16 In the definition of the Schumpeterian patterns, in terms of sectors of economy they include, we have followed 

Castellacci and Zheng (2010). When a sector included in our dataset does not appear in the Castellacci and Zheng 

classification, we adopted a dimensional criterion: small and medium size firms are included in SMI, large firms are 

included in SMII. The definition of patterns is in table 7 in appendix. 
17 The estimation in the homoskedastic case includes, step by step, all the control variables described above; in every 

specification we do not reject the null. We do not show the Chi
2
 of the test but it available upon request.  

18
 Those estimations are available upon request. The results do not change. 
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firms decide to place their production in a region rather than in another to exploit knowledge 

spillover. The last raw of the table displays the p value of the Arellano–Bond test for second-order 

autocorrelation in the first-differenced residual; we do not reject the null hypothesis of no second-

order autocorrelation.  

In columns (a) and (b) we have regressed our dependent variable (ln(R&D)) on contemporaneous 

and one year lagged coefficients of Patent, including the standard control variable in R&D-patent 

empirical analysis, ln(Sales), and the initial condition, ln(R&D)0, in order to check if the process is 

shaped by the first realization of the dependent variable. In columns (c) and (d) we add the second 

lag of Patent. In SMI the lagged ln(R&D), the persistence coefficient, is positive and highly 

significant: the R&D investment is positively affected by the previous realization of the same 

variable. In SMII, instead, the autoregressive coefficient is not significant (but in (d) where it is 

negative and weakly significant).
19

 Those results must be interpreted to the light of the lag structure 

of the patent→R&D relationship. Firms in SMI show a positive, contemporaneous and highly 

significant sign of patent applications coefficient.
20

 Firms in SMI mostly operate in small traditional 

sector of economy; the “creative destruction” promotes competition among innovative firms which 

tend to persist in their innovative activity because of the short effective patent life they expect. In 

particular, in this pattern firms that decide to patent their innovations make it continuously as well 

as their R&D investments. This is why, in column (a), only the contemporaneous (and not the 

lagged one) coefficient of Patent is significant. Adding one more lag of Patent does not change the 

results: only the contemporaneous coefficient remains significant and its magnitude reduces very 

little. Therefore the contemporaneous relationship between Patent and ln(R&D) is the result of a 

shorter effective patent life which is the explanation of the persistence of the R&D effort in this 

pattern of innovation. The significance of the initial condition (everywhere positive in table 8) 

shows that the early R&D investment has shaped the process. Moreover the non-ergodic persistence 

of the ln(R&D) is also path dependent because it is affected by contingent factors, as Patent (we are 

interested in), and as all the control variables we include in the model (as shown in every column in 

table 8).       

On the contrary, in SMII the high appropriability of innovations, raising entry barriers, creates an 

oligopoly of innovators which tend to patent their innovations in order to enjoy the monopoly rent 

patent gave them. They face a longer effective patent life (guaranteed by the absence of 

competition); R&D investments are, therefore, postponed just before the expected patent rent will 

be expired. As just hypothesize, results in columns (b) and (d) show neither contemporary nor 

                                                
19

 We have also performed every estimation including the second lag of the dependent variable and the results are the 

same. 
20 That coefficient represents the elasticity of the R&D expenditure (over R&D employees) with respect to a unitary 

variation of Patent; its magnitude is, in column (a), about 0.13 meaning that if Patent increases of 1, R&D increases of 

0.13%. 
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delayed (one and two lags) significant coefficients of Patent, justifying a longer effective patent life. 

As a result, the persistence coefficient in this pattern is not significant. The strongly significance of 

the initial condition confirms that, in SMII, the present investment in R&D is affected by the early 

one, strengthening the presumption of a relationship between patent and R&D deferred in time.  

We expect a positive sign for ln(Sales): if firm’s size increases, investments in R&D may increase 

to; it is not significant in both the patterns. The constant term is always positive and significant.    

In columns (e) and (f) we have introduced another control for size: R&D size as a measure of the 

size of the R&D division. Its coefficient is negative and significant in both SMI and SMII and its 

sign means that the R&D intensity decreases when the relative size of the R&D division increases. 

This is due to the sunk costs: if the R&D division grows (in percentage), the per capita expenditure 

in R&D decreases. The magnitude of that coefficient is very low: an increase of 1% in the R&D size 

implies a decrease in the R&D intensity of 0.002% for firms in SMI and 0.001% for firms in SMII. 

Patent coefficients do not change in both SMI and SMII, as well as the variables just expounded, 

but the magnitude of the contemporaneous coefficient of Patent in SMI (the only significant) 

reduces.  

Generally the R&D division of firms is made of higher educated people. This is the reason why, in 

columns (g) and (h), we add the variable Education to control for the education level in the R&D 

division. A positive correlation between R&D investment and the share of graduated R&D 

employees is supposed, because graduates receive higher wages than less educated people. As 

expected its sign is positive but significant only in SMI (column g): a unitary increase in the 

percentage of graduated implies an increase of 0.004% in the R&D expenses per employees in 

R&D division. The reverse R&D-patents relationship remains robust to the introduction of this 

control variable; the contemporaneous coefficient of Patent in SMI continues to be highly 

significant and its magnitude slowly decreases when more significant regressors are introduced.  

We may argue that investments in R&D are affected by the financial structure of firm: if getting 

credit becomes more expensive, firm has less money to invest. In columns (i) and (l) we introduce a 

measure of firms debt, Leverage. Firms use debt as a source of financing; when the leverage 

increases, firm is considered more risky. Leverage is negative but not significant. As always, 

nothing changed in the patents-R&D relationship and persistence, and the significant 

contemporaneous coefficient of Patent in SMI continues to decrease.  

We also control for a measure of efficiency, Labour cost (columns (m) and (n) in table 8). It is 

significant only in SMI with negative sign: if labor cost decreases in every division (included 

R&D), the resources to be invested increases everywhere. This is because a more efficient firm may 

have higher financial liquidity and, as a consequence, may invest more in R&D activities. In both 

the patterns nothing changed in the sign and significance of all other regressors. 
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We performed a further robustnes check that concerns the estimation method. Arellano and Bover 

(1995) and Blundell and Bond (1998) developed a system estimator that, using additional moment 

conditions, is more efficient for datasets with many panels and few periods. We estimate equation 

(e) for SMI and SMII, including all regressors, with this estimator; results do not change.
21

 

As said above, we cannot introduce more lags of patent applications because of the insufficient 

number of observations. For sure, this is a weakness of the present analysis, but we have tried to 

give robustness to our hypotheses showing that, adding more control variables, the relationship 

between patent and R&D does not change. Moreover, the estimation of the reverse causality R&D-

patents link on a more suitable sample can be the line of a future research. 

 

5. Concluding remarks 

The present work fits within two literatures: patents→R&D reverse causality relationship and 

innovation persistence. It advances in the empirical literature on the patents→R&D relationship 

because, to the best of our knowledge, it is the first that tests a R&D-patents Granger causality on 

an Italian panel data of firms belonging to all the sectors of the economy. The Granger test results 

support the hypothesis that the reverse causality patents→R&D (patents occurs at an early stage on 

the innovation process, promoting/deterring the R&D activity) may cause the failure of the 

traditional relationship when time-series and within-industry dimensions are introduced. 

It also advances in the empirical literature on innovation persistence because the effective patent 

life, defined by the lag structure of the reverse causality relationship between patent and R&D, 

offers another explanation of the innovation persistence in terms of Schumpeterian patterns of 

innovation. This new explanation leads to opposite empirical results whith respect to the traditional 

theory of persistence. While this latter links the “creative destruction” in SMI to the absense of 

persistence and the “creative accumulation” in SMII to the presence of the innovation persistence, 

our results showed how the monopoly rent granted by the effective patent life may drive firms, in 

SMI, to persist in the R&D effort and not to persist in SMII. This is shown respectively by the 

significance of the auto-regression coefficient in SMI and by absence of significance of the auto-

regression coefficient in SMII. In SMI the estimated reverse causality patents-R&D relationship 

does not change if we, time after time, include regressors. The contemporaneous coefficient of 

Patent remains highly significant in every specification: the innovation dynamicity of firms in this 

pattern, drives patenting activity and R&D investment to move contemporaneously. Moreover, 

almost all the regressors are significant as well as the (positive) initial condition, showing 

respectively  the path and past dependence of the non-ergodic persistence. In SMII, on the contrary, 

no regressor (but R&D size) becomes significant. Taking into account that, in the econometric 

                                                
21

 We do not show the Blundell-Bond estimation results but they are available upon request. 
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specification, we have controlled for lots of aspects of firms (time, regional, size, educational, risk, 

efficiency), this result (together with the significance of the positive coefficient of the initial 

condition) reinforces our hypothesis that successive lags of Patent (more than two) may explain the 

variance of the dependent variables. 

Given the many missing value of patent applications in the dataset, we cannot estimate more than 

two lags for Patent, therefore we cannot draw conclusions about the effective patent life in SMII. 

The weakness of the present work may be the basis for a future research.        
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Appendix 
 

Table 1: Technological regimes dimensions  

Level of technological opportunities 

  

 

They are all the instruments that firms use to protect the results of their 

innovative activities from imitation. Industries can be sorted by high and low 

appropriability conditions. High appropriability conditions refer to the 

ability firms have to successfully protect innovation from imitation (we are 

dealing with formal means, such as patents and trademarks, and informal 

means, such as process secrecy and know 

Appropriability conditions  

They are all the instruments that firms use to protect the results of their 

innovative activities from imitation. Industries can be sorted by high and low 

appropriability conditions. High appropriability conditions refer to the 

ability firms have to successfully protect innovation from imitation (we are 

dealing with formal means, such as patents and trademarks, and informal 

means, such as process secrecy and know 

Cumulativeness conditions 

These conditions refer to the possibility that the innovative activity today is 

the starting point for innovative activity tomorrow, that is, firms which are 

willing to innovate today, are willing to innovate in the future (Cefis and 

Orsenigo, 2001). 

External sources of opportunities  

External sources of opportunities arise when firms are able to engage in 

interactions and cooperations with other agents in the innovation system. 

The economic environment which may offer a pool of advanced knowledge 

is made of suppliers, users, competitors, private R&D labs, Universities and 

other public research institutes (Laursen and Meliciani, 2002; Reichstein and 

Salter, 2006). 

 

 

Table 5: Variables and descriptive statistics 

Variable  Mean Std. Dev. Cross-section  

Units 

ln(R&D) R&D intramural expenditure over employees in  

the R&D division (logarithm) 

4.00 0.61 6490 

 
 

  
Patent Number of patent applications over 

employees in the R&D activities  

0.21 0.57 3827 

 
 

  
ln(Sales) Natural logarithm of sales  9.32 4.12 5904 

RD Size Employees in the R&D activities over total employees (percentage) 0.27 1.91 5191 

Education Graduated over total employees in the R&D activities (percentage) 36.5 32.1 6490 

Leverage Ratio between total assets and total assets minus total liabilities 8183 65222 5498 

Labour cost Wages over total employees 7305 185441 5817 

Notes. Monetary values are in thousand of euros at constant price 2000. 

 

Table 6: Correlations 
 ln(R&D) Patent RD Size Education ln(Sales) Leverage Labour cost 

ln(R&D) 1       

Patent 0.0342* 1      

RD Size -0.0117 -0.0177 1     

Education 0.0875* -0.0041 0.0637* 1    

ln(Sales) 0.1867* 0.0033 -0.0831* 0.0121 1   

Leverage -0.0066 -0.0178 0.0058 -0.0137 -0.0585 1  

Labour cost 0.0305* 0.0019 -0.0155 -0.0096 0.0796* -0.0059 1 

Notes. Star denotes the correlation coefficients significance at, at least, 5% level. 
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Table 7: Definition of the Schumpeterian patterns 

Schumpeter Mark I mining; textiles; wearing; leather and footwear; wood and related 

products; printing and publishing; non-metallic mineral products; 

fabricated metals; machinery and equipment; electrical; radio and 

TV; medical and optical; other transport equipment; furniture; 

recycling; construction; wholesale trade; land transport; auxiliary 

transport services; research and development; plastic material; water; 

car retails; car wholesale; insurance and supporting activities; real 

estate; public services; education. 

Schumpeter Mark II motor vehicles; food and beverages; pulp and paper; basic metals; sea 

transport; air transport; telecommunication; computing and software; 

other business services; coke and oil; chemicals; electric-powered 

and gas; retails; transport; financial activities; healthcare. 
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Table 8: Estimated results  

 SMI SMII SMI SMII SMI SMII SMI SMII SMI SMII SMI SMII 

 (a) (b) (c) (d) (e) (f) (g) (h) (i) (l) (m) (n) 

ln(R&D) (-1) 0.3085*** 
(2.96) 

-0.0251 
(-0.17) 

0.4273*** 
(2.98) 

-0.4600* 
(-1.95) 

0.4648*** 
(3.16) 

-0.3595 
(-1.56) 

0.4658*** 
(3.20) 

-0.3415 
(-1.46) 

0.4909*** 
(3.07) 

-0.3046 
(-1.05) 

0.4584*** 
(2.93) 

-0.2774 
(-0.97) 

Patent 0.1369*** 
(4.17) 

0.0232 
(0.35) 

0.1236*** 
(2.93) 

0.1145 
(0.93) 

0.1221*** 
(2.86) 

0.0741 
(0.63) 

0.1107*** 
(3.03) 

0.0770 
(0.67) 

0.1072*** 
(3.11) 

0.1221 
(1.20) 

0.1021*** 
(2.91) 

0.1229 
(1.17) 

Patent (-1) 0.0008 
(0.03) 

-0.0873 
(-1.56) 

0.0152 
(0.41) 

-0.0448 
(-0.35) 

0.0138 
(0.36) 

-0.0885 
(-0.72) 

0.0283 
(0.78) 

-0.0917 
(-0.76) 

0.0399 
(0.99) 

-0.1983 
(-0.51) 

0.0429 
(1.11) 

-0.1895 
(-0.48) 

Patent (-2) 
  

-0.0160 
(-0.35) 

-0.0491 
(-0.60) 

-0.0135 
(-0.30) 

-0.0779 
(-0.93) 

-0.0173 
(-0.41) 

-0.0809 
(-0.98) 

-0.0006 
(-0.02) 

-0.0338 
(-0.38) 

0.0027 
(0.07) 

-0.0356 
(-0.39) 

ln(Sales) -0.0023 
(-0.54) 

0.0030 
(0.55) 

-0.0090 
(-1.48) 

0.0052 
(0.67) 

-0.0082 
(-1.35) 

0.0034 
(0.44) 

-0.0082 
(-1.38) 

0.0038 
(0.53) 

-0.0073 
(-1.21) 

0.0002 
(0.03) 

0.0069 
(0.77) 

-0.0069 
(-0.76) 

R&D size     -0.0020*** 
(-3.46) 

-0.0012** 
(-2.00) 

-0.0019*** 
(-3.58) 

-0.0012* 
(-1.94) 

-0.0021** 
(-2.42) 

-0.0010** 
(-2.17) 

-0.2096*** 
(-2.56) 

-0.0999** 
(-2.19) 

Education       0.0048** 
(2.40) 

-0.0019 
(-0.50) 

0.0060*** 
(2.66) 

-0.0018 
(-0.44) 

0.0060*** 
(2.71) 

-0.0019 
(-0.46) 

Leverage         -7.12e-07 
(-0.98) 

-2.86e-07 
(-0.60) 

-6.36e-07 
(-0.89) 

-3.40e-07 
(-0.68) 

Labour cost           -3.31e-06* 
(-1.75) 

1.83e-06 
(0.85) 

ln(R&D)0 0.6922*** 
(6.66) 

1.0193*** 
(7.22) 

0.5863*** 
(4.00) 

1.4801*** 
(6.55) 

0.5622*** 
(3.77) 

1.3936*** 
(6.27) 

0.5232*** 
(3.03) 

1.3957*** 
(6.32) 

0.4874*** 
(2.90) 

1.3601*** 
(4.77) 

0.5039*** 
(3.05) 

1.3458*** 
(4.68) 

N. obs. 814 359 404 186 401 184 401 184 375 170 372 170 

p-value 2nd order 

autocorrelation 
0.2460 0.8570 0.7286 0.2569 0.8628 0.3273 0.4963 0.3700 0.2556 0.2140 0.2032 0.2966 

Notes. Arellano-Bond dynamic panel-data estimations with robust standard errors. The dependent variable is log of R&D intramural expenditure per employee in the R&D division. The definition of 

the variables is in table 4. All regressions contain calendar year dummies (results not reported); the time span is 1998-2004.  Standardized normal z-test values are in parentheses; significant 

coefficients are indicated by * (10% level), ** (5% level) and *** (1% level). 
  

 


