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Abstract

This paper examines a perfectly discriminating contest (all-pay auction) with two

asymmetric players. We focus on unordered valuations. Valuations are endogenous (poly-

nomial functions) and depend on the effort each player invests in the contest. The shape

of the valuation function is common knowledge and differs between the contestants. Some

key properties of R&D races, lobbying activity and sport contests are captured by this

framework. After analyzing the unique mixed strategy equilibrium, we derive a closed

form of the expected expenditure of both players. We characterize the expected expendi-

ture by means of incomplete Beta functions.
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1 Introduction

Although commonly assumed to be fixed, the size of the prize in a contest may in fact be

endogenous and depend on the effort made by the contestants. In particular, a higher level

of effort may lead to higher valuations.1 In other words, the effort expended in a contest may

increase both the probability of winning and the size of the prize. Moreover, contestants may

differ with respect to the magnitude of this effect, and the same effort levels may lead to a

different valuation of winning the contest (Kaplan, Luski, Sela, and Wettstein, 2002).

Such an environment is descriptive of several economic issues. In R&D races, for example,

an increase in the amount of resources spent on developing new technologies may result

in a shorter product pipeline and in the firm winning the race. At the same time, the

additional resources may improve the quality of the final product and therefore its market

value. Asymmetric market structures and differences in marketing, existing product variety

or spill-over effects to related research projects are likely to lead to differences in the marginal

value of R&D spending. Organizational differences in research departments or a different

composition of inputs into the research process may likewise lead to different values of winning

the race. In some sense, academic hiring efforts may follow a similar pattern. As long as

universities attempt to attract faculty by offering productivity enhancing inducements, such

as research funds, expanded seminar series or access to data sets, they are likely to increase

the productivity of the potential new hire and at the same time the value of being able to

hire the desired candidate.

In the classical example of a lobbying contest, the value of the legislation enacted or the

project awarded may depend on the magnitude of the contribution to the political institution

involved. Asymmetries may enter the contest through the pre-existing political connection

of the lobbyist, so that an organization with conservative credentials would obtain a more

favourable outcome with a conservative government than a more liberal lobbyist. Lastly, in

professional sports, the effort invested by a team increases its expected score making a win

more likely. In addition, conditional on having won the game, a higher score may raise the

reputation of the team. For teams quoted on the stock market, such as several European soc-

cer teams, this may translate into additional stock price gains.2 Again, differences between

teams may lead to asymmetries in this effect.

This paper examines the equilibrium of a contest with endogenous rewards and derives

the aggregate expenditure of the contestants – which is the main contribution of the paper.

Indeed, it is useful for the organizer of the contest to know the expected aggregate expenditures

if he would like to maximize it and then to affect the design of the contest. It might be the case

1Higher effort levels can also lead to a lower value of winning a contest. In a war of attrition, for example,

the effort spent to win is likely to make the winner more vulnerable in future conflicts and contestants prefer

to win at lower effort levels.
2Indeed, players were also stockholders when soccer clubs issued the first shares.
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in R&D races. We examine a contest modeled as an all-pay auction, that is a situation in which

the contestant investing the largest effort will win with certainty. Regardless of whether they

won or not, all contestants have to pay their effort cost. Information is assumed to be complete

and valuations are asymmetric and endogenous (polynomial functions). For simplicity, the

analysis is limited to two participants. The payoff from winning the contest, that is the

valuation less the cost of effort, is assumed to decline strictly in effort despite valuations that

increase in the invested effort. Similar to traditional all-pay auctions, the participants in the

contest thus prefer to win at lower effort levels. This assumption contrasts with Amegashie

(2001) who investigates situations where the returns to additional expenditures in all-pay

auctions exceed the costs and players therefore could aim to win with higher efforts. Contrary

to the case where payoffs strictly decrease he finds that a Nash equilibrium in pure strategies

exists.

A second related paper is Kaplan, Luski, and Wettstein (2003), who investigate a model

of innovation and R&D races with a structure similar to an all-pay auction. Information is

complete, values and innovation cost are time dependent and firms compete in when to bring

the innovation to the market. In consequence, the usual equivalence of staying out of the

contest and exercising zero effort does not apply. In contrast to our paper, a closed form

solution for expected aggregate expenditure is not given. Siegel (2009, 2010) also studies

all-pay auctions with complete information and non-ordered contestants. The differences

are in the levels of generality. Whereas Siegel’s broad approach covers quite general model

specifications – in particular he focuses on contests where all-pay auction is a sub-class of

contests – our more specific set-up allows us to determine a closed form solution for expected

equilibrium expenditures thanks to the incomplete Beta functions.3 This result could be

useful for applications of contests with – polynomial – endogenous rewards as in R&D races.

Three other recent papers with complete information are also related to our work. In-

terestingly, Chowdhury (2009) investigates the two contestants all-pay auction with winning

payoffs as non-monotonic functions of their own efforts. He finds conditions under which a

pure strategy Nash equilibrium exists and determines the unique mixed strategy Nash equi-

librium. Furthermore, Siegel (2012) generalizes the results of Siegel (2009) for n contestants

to a model with non-monotonic payoff functions. Sacco and Schumtzler (2008) characterize

pure and mixed strategies Nash equilibria with contestants’ valuation as a function of both

own and rival efforts. In addition to their theoretical results they focus on an experimental

analysis. Yet, as the other papers with complete information these do not provide a closed

form solution for expected equilibrium expenditures.

A related paper with incomplete information is Kaplan, Luski, Sela, and Wettstein (2002)

who investigate an all-pay auction where the rewards are additively or multiplicatively sepa-

3Siegel (2010) provides an algorithm to solve equilibrium expenditures in the general framework of Siegel

(2009).
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rable in the type of the players. This setting seems well-suited to R&D races, political contest

or lobbying activities. Kaplan, Luski, Sela, and Wettstein (2002) solve for the equilibrium bid

function and link the size of the reward as well as the costs of bidding to the expected sum

of equilibrium bids. Cohen, Kaplan, and Sela (2009) study an all-pay auction with additively

and multiplicatively separable rewards under incomplete information where the designer can

set the shape of the reward function. In particular, they determine that the optimal additively

separable reward is not necessarily positive. In our model, we investigate additively separable

rewards with complete information.

The next section introduces the model. While valuations are not ordered, they are regular

in the sense that over some range of effort one player has higher valuations while above a

certain threshold effort level the valuations of the other player are higher. The existence of a

Nash equilibrium in mixed strategies and equilibrium effort levels are derived in Section 3. A

closed form solution for the aggregate expected equilibrium expenditure is derived in Section

4 – this is indeed the main contribution of this paper.

2 The Model

Consider two players or group of players, i = 1, 2 who choose effort levels xi ∈ R+ simultane-

ously and independently in a contest. The shape of their valuations is given by Vi(·) : R+ → R

which specifies the size of the prize as a function of their effort. The valuation of winning the

contest Vi for each i = 1, 2 consists of a common element v and the additive polynomial func-

tion βix
αi
i with 0 < βi < 1 and αi ≥ 1. The shape of every player’s valuation – the constant

v and parameters αi and βi – are common knowledge at the beginning of the contest. Both

players pay their effort cost and final payoffs for each player i = 1, 2 are given by

ui(xi, xj) =


v + βix

αi
i − xi if xi > xj

v + βix
αi
i

2
− xi if xi = xj

−xi if xi < xj

In an all-pay auction bidders have to pay their effort independently of the outcome of the

contest and only the winner keeps a balance from his effort spent (unlikely to the first-price

auction with complete information for example). The following assumption captures this

element.

Assumption 1 (A1). The winning payoff is strictly decreasing with the effort spent.

Assumption A1 makes the contestants prefer winning at lower effort levels. In other words,

the net payoff from an additional unit of effort is negative and then βiαix
αi−1 < 1 for all

x ∈ [0, x̃] where x̃ is the maximum effort such as assumption A1 is satisfied. Remark that x̃

needs to be sufficiently small and is determined in the next Section. Although our set-up is
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more specific than Siegel (2009, 2010) – it is actually a special case of their model – it allows

us to determine a closed form of the aggregate expected equilibrium expenditure (which is

not possible in Siegel (2009, 2010)).4 Moreover, the shape of the valuations can be derived

because of an axiomatization.5

The case where Vi(xi) = v for all xi corresponds to a pure common value setting. It is

well-known that under these circumstances there is no Nash equilibrium in pure strategies.

As Amegashie (2001) has shown, if utility is not monotonically decreasing in effort, a pure

strategy Nash equilibrium exists. Although his framework is different, the link between in-

creasing utility and equilibrium existence is likely to apply to our set-up as well. The reward

components of the all-pay auction are depicted in Figure 1.

As valuations are dependent on the effort of the two contestants, they need not to be

ordered. In other words, for two different effort levels, the ranking of the valuations could

be reversed. If αi > αj , for example, Vj(x) > Vi(x) for all x <
(
βj
βi

) 1
αi−αj and Vj(x) ≤

Vi(x) otherwise. Non-ordered valuations seem well-suited for the real-world applications that

motivate our analysis. Indeed, with different marginal returns to effort in R&D races, lobbying

or sports contests, the ranking of the valuations depends on effort levels and valuations are

unlikely to be ordered.6

4Siegel (2009, 2010) do not specify the shape of the valuation and cost functions. Yet Siegel (2009, 2010)

also use a similar assumption to assumption A1.
5Let us denote ei(.) a differentiable and continuous functions such as Vi(.) = v + ei(.). Given the three

following assumptions

• ei(.) is a non-negative and increasing function for all xi > 0 and ei(0) = 0

• contestants prefer winning at lower effort levels (which is equivalent to our assumption A1)

• ei(.) is a homogeneous function

the shape of ei(.) is our polynomial function. Details and economic interpretations are available in a previous

draft of this paper, Bos and Ranger (2009).
6The case of ordered valuations is considered in Appendix B.
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xi

v

x̃i

V (xi)

xi

Positive payoff

Negative payoff

Figure 1: Payoff of Winning

3 Equilibrium Characterization

It is a well known result that all-pay auctions with constant heterogeneous valuations, that

is valuations that are independent of the submitted bids, have a unique equilibrium in mixed

strategies (Hillman and Riley (1989), Baye, Kovenock, and de Vries (1996) for linear costs,

Che and Gale (1998), Che and Gale (2006), Kaplan and Wettstein (2006) and Vartiainen

(2007) for non-linear cost functions). In recent papers, Siegel (2009, 2010, 2012) extends this

result to non-ordered contestants in a general framework.

To simplify the notation we define the “weak” and the “strong” player and denote them

by the subscripts w and s, respectively. The intuition is simple: since payoffs are falling in

effort by assumption A1 there will be a level of effort after which the payoff obtained will

be negative even if the contest is won. The “weak” player determines the maximum effort

any player is willing to exercise in the contest. At this effort level its utility from winning

the contest is zero; the “strong” player, in contrast, still obtains a positive payoff at the

same effort level. Non-ordered valuations and ordered valuations are depicted in Figure 4 and

Figure 5 in Appendix C.

Definition 1. A player is called “weak” if he determines the maximum effort x̃ in the contest,

that is v+ βwx̃
αw − x̃ = 0 and v+ βsx̃

αs − x̃ > 0. His opponent is called the “strong” player.

Let us consider αi > αj . If x̃ is such as v + βj x̃
αj − x̃ = 0 and x̃ >

(
βj
βi

) 1
αi−αj then
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the player i is the “strong” player. Otherwise, the player j is the “strong” player and the

maximum effort is given by x̃ such as v+βix̃
αi − x̃ = 0. Unlike in a standard all-pay auction,

it is not enough for a particular player to have the higher valuation over an interval of x

in order to be the “strong” player. Rather, the relative strength of a player is determined

not only by the difference between the valuations at a particular x but also – implicitly – by

the distance from the threshold
(
βj
βi

) 1
αi−αj which defines the order of the valuations on each

sub-interval.

It follows from the implicit function theorem that the maximum effort is increasing in βw,

decreasing in αw if x̃ < 1 and increasing in αw if x̃ > 1,

dx̃

dβw
=

x̃αw

1− βwαwx̃αw−1
> 0 and

dx̃

dαw
=

βwx̃
αw ln x̃

1− βwαwx̃αw−1


< 0 if x̃ < 1

= 0 if x̃ = 1

> 0 if x̃ > 1

 (1)

The signs follow from assumption A1.

Define the mixed strategies at the equilibrium by Fi(·) = P(X ≤ ·) for both players

i = s, w. The following proposition determines the unique Nash equilibrium strategies for the

two players and the corresponding equilibrium payoffs.

Proposition 1. The unique Nash equilibrium is in mixed strategies as follows. Players choose

their effort randomly according to the cumulative distributions functions

Fs(x) =
x

v + βwxαw
for all x ∈ [0, x̃]

Fw(x) =
v + βsx̃

αs − x̃+ x

v + βsxαs
for all x ∈ [0, x̃]

And the expected equilibrium payoffs are

u?s = βsx̃
αs − βwx̃αw

u?w = 0

Proof. Let us define ṽi(x) = v + βix
αi − x and c̃i(x) = x. Then, the bidders’ expected utility

could be written as Fi(x)ṽi(x)− (1−Fi(x))c̃i(x). Observe that ṽi and −c̃i are continuous and

strictly decreasing, ṽi(0) = v and limx→+∞ ṽi(x) < 0 and ṽ−1
s (0) > ṽ−1

w (0) = x̃. Consequently

all assumptions of Siegel (2010) are satisfied. In addition what he called the threshold T of

the contest is in our case the maximum effort x̃ of the “weak” bidder. Thus, Theoreom 3 of

Siegel (2010) can be applied and our result follows. �

Observe that the equilibrium expected payoff of the “weak” player is independent of

the parameters of the contestants’ value functions. The expected equilibrium payoff of the

“strong” depends on its own valuation and, via its equilibrium strategy, on the parameters of

its opponent.
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Corollary 1. The expected equilibrium payoff of the “strong” player is (i) decreasing in βw

and (ii) decreasing in αw if x̃ > 1 and increasing otherwise.

Proof. See Appendix A. �

This asymmetry in the parameter effects is interesting for its implications. As the payoff

of the “strong” player is given by βsx̃
αs − βwx̃αw the impact of the reward parameters βw

and αw comes from two sources. On one hand we can identify a parameter effect from the

endogenous valuation of the “weak” player independent of the effort level, in which a higher

βw (respectively a smaller αw if x̃ < 1 and a higher one if x̃ > 1) reduces the payoff of the

“strong” player independent of the effort levels. The maximum effect, on the other hand,

works through the impact of the relative values of βw and αw on x̃. If the maximum effect

and the parameter effect have contradictory signs, the latter dominates.

It is possible to compare the (standard) all-pay auction with exogenous valuations Vi(x) =

vi and our setup where Vi(x) = v+ βix
αi .7 Even if rewards lead to either a higher or a lower

valuation than in the standard case of all-pay auction, it is convenient to assume that the

maximum effort is the same in the endogeneous and standard all-pay auctions. Indeed, the

maximum effort could be decided ex ante, for example as a limit of the expenditure in an

R&D race. In consequence, in the standard all-pay auction valuations are ordered and the

“weak” contestant is the one with the lowest valuation. She determines her maximum effort

equal to her valuation vw such that vw = x̃ = v + βwx̃
αw . Then, vs, the valuation of the

“strong” contestant is superior to v + βwx̃
αw .

Corollary 2. The expected equilibrium payoff of the “strong” player in the all-pay auction

with polynomial rewards is lower than in a standard all-pay auction if and only if her valuation

vs is superior to v + βsx̃
αs.

This result comes from the comparison of the players’ expected equilibrium payoff given by

Proposition 1 and the contestants’ expected equilibrium payoff given by Hillman and Riley

(1989) and Baye, Kovenock, and de Vries (1996) in the standard all-pay auction which is

vs − vw for the “strong” player.

4 Aggregate Expenditures

We now derive an explicit expression for the expected equilibrium expenditure of both con-

testants by means of the incomplete Beta functions. We present a very short overview of

the family of incomplete Beta functions which are a useful tool for the computations of the

7The analysis does not change if the exogenous part of the valuations vi is not common to both contestants

and Vi(x) = vi + βix
αi .
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expected revenues. The incomplete Beta functions belongs to the general class of hypergeo-

metric functions and are studied in detail Spanier and Oldham (1987) Chapter 58 (see also

Temme (1996) for a more recent textbook).8

Definition 2. The incomplete Beta function, B(ν, µ, x), with 0 ≤ x ≤ 1, µ ∈ R, ν > 0, is

given by the Euler integral representation:

B(ν, µ, x) =

∫ x

0

tν−1

(1− t)1−µdt

Theorem 1. The incomplete Beta function, B(ν, µ, x), with 0 ≤ x < 1, µ ∈ R, ν > 0, is

given by the expansion series:

B(ν, µ, x) =
(1− x)µ

ν

∞∑
j=0

(µ+ ν)j
(1 + ν)j

xj+ν

where (y)n denotes the Pochhammer symbol such that

(y)n =
Γ(j + y)

Γ(y)
,

where Γ(.) is the special function Gamma.

Proposition 2. The aggregate expected equilibrium expenditures are given by

ERs =


− v

βw

[
1 +

1

βw
ln(1− βw)

]
if αw = 1

x̃− 1

αwvφ
2
αw

B

(
2

αw
, 1− 2

αw
,

φx̃αw

1 + φx̃αw

)
if αw > 1

ERw =


1− βs
βs

[
ln(1 + ϕx̃)

(
x̃+

v

βs

)
− x̃
]

if αs = 1

x̃− 1

αsvϕ
2
αs

B

(
2

αs
, 1− 2

αs
,

ϕx̃αs

1 + ϕx̃αs

)
− βsx̃

αs − βwx̃αw

αsv2ϕ
1
αs

B

(
1

αs
, 1− 1

αs
,

ϕx̃αs

1 + ϕx̃αs

)
if αs > 1

with x̃ = v + βwx̃
αw , ϕ = βs

v and φ = βw
v .

Proof. See Appendix A. �

The Euler integral form of the incomplete Beta functions is used in the proof to identify

it. An explicit form of the expected revenues are given in Appendix A by the means of the

expansion series of the incomplete Beta functions.

8The incomplete Beta function converges to the standard Beta Function when x = 1.
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Assuming a linear relationship between effort and the valuations, αs = αw = 1, one can

simplify the expression for ERw to

ERw =
1− βs
1− βw

v

βs

[
−1 +

(
1− βw + βs

βs

)
ln

(
βs

1− βw
+ 1

)]
The relationship between the expected equilibrium expenditure for both players and the val-

ues for βw and βs can be shown graphically (Figure 2 and Figure 3 with v = 2).

0.2 0.4 0.6 0.8 1.0
Βw

1.5

2.0

2.5

3.0

3.5

4.0

4.5

ERs

Figure 2: ERs for αs = αw = 1

0.0 0.5 1.0
Βw

0.0

0.5

1.0

Βs

0
5

10
15
20

ERw

Figure 3: ERw for αs = αw = 1

The features of the individual expenditures that we observe in graphs 2 and 3 can be

extended to all values of αs and αw. It is thus possible to compare the standard all-pay auction

with exogenous valuations Vi(x) = vi with our setup where Vi(x) = v + βix
αi . Qualitatively,

βi and αi (when x̃ > 1) play the same role as vi in the standard framework and αi (when

x̃ ≤ 1) the inverse one and the results should comparatively similar with respect to individual

expected equilibrium expenditure. The following corollary confirms this intuition for all value

of αs, αw, βs, βw and v.

Corollary 3. The individual expected equilibrium expenditures

(i) of the “strong” player are increasing in βw and decreasing in αw if x̃ ≤ 1.

(ii) of the “strong” player are independent of βs and αs.

(iii) of the “weak” player are decreasing in βs, increasing in αs if x̃ ≤ 1.

(iv) of the “weak” player are increasing in βw, decreasing in αw if x̃ ≤ 1 and increasing in

αw if x̃ > 1.

Proof. See Appendix A. �
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We are not able to compute the sign of the derivatives of the role of the parameters αs on

the “weak” player’s and αw on the “strong” player’s expected equilibrium expenditure when

x̃ > 1. Yet, we did not find any example which could contradict the intuition given above.

These results (Corollary 3) may have implications for the designer of a contest. If the

designer is interested in eliciting the largest amount of effort, in cases where the effort accrues

directly to him, and if he can manipulate the contest technology of both players, Corollary

3 indicates a method to achieve this goal. In addition, the contestants themselves have an

incentive to influence the parameters in the valuation functions. A “weak” firm in an R&D

race, for example, would prefer a larger value for βw and a smaller value for αw if x̃ ≤ 1

(respectively a higher value if x̃ > 1) in order to decrease the expected equilibrium payoff of

its competitor (see Corollary 1). If the contestant can chose the parameters αi and βi at some

cost before the beginning of the contest, the game can be extended to include the pre-contest

selection of the contest technology.

As in Section 3 for Corollary 2, we compare our setup where Vi(x) = v + βix
αi with the

standard all-pay auction where the valuation vw of the “weak player” is such that vw = x̃.

Corollary 4. The expected equilibrium expenditures of the “strong” player in the all-pay

auction with polynomial rewards is lower than in the standard all-pay auction.

Proof. As vw > v + βwx
αw for all effort inferior to x̃, the “strong” player’s mixed strategy

in the contest with rewards is stochastically dominated by the one in the standard contest.

Then, the result follows from ERs = x̃−
∫ x̃

0
Fs(x)dx. �

The effect on the expected equilibrium expenditures of the “weak” contestant is not clear.

Indeed, as the payoff of the “strong bidder” decreases if vs > v + βsx̃
αs , the effect of the

reward on the mixed strategy of the “weak” contestant is ambiguous.

5 Conclusion

In this paper we examine a perfectly discriminating contest (all-pay auction) with two asym-

metric players and polynomial valuations in a complete information environment. Similar

to real-world situations, we postulate that the value of winning depends on the effort levels

invested. In particular, we assume that higher effort levels lead to higher prizes but that this

increase is smaller than the cost of effort. The contestants thus prefer to win at lower effort

levels. We believe that this set-up captures the nature of many contests such as R&D races,

lobbying games or sports events.

As the valuation functions are not symmetric, we can define the “strong” contestant as

the one having the higher effort limit. The effort limit is level of effort after which the payoff

obtained will be negative even if the contest is won. The “weak” contestant, analogously, has

11



the lower effort limit. Within these limits, valuations need not be ordered, however, as (due

to the asymmetry) both players may have the higher valuation at different levels of effort.

This notwithstanding, we show that the equilibrium strategies and expected payoffs depend

on the strength of the player.

In equilibrium, the expected equilibrium payoff of the “strong” player is positive and de-

pends on the parameters of both players’ valuation function. In particular, it is decreasing

in the steepness of the “weak” player’s valuations. We are able to characterize the expected

expenditure thanks to the incomplete Beta functions. This result could be useful for applica-

tions of contests with polynomial rewards as in R&D races. For example, the organizer of the

contest could provide incentives to contestants such as they would select a contest technology

(their parameters αi and βi) which would increase the expected aggregate expenditures.

Appendix A: Proofs

Proof of Corollary 1. (i)

∂u?s
∂βw

=
dx̃

dβw
(βsαsx̃

αs−1 − βwαwx̃αw−1)︸ ︷︷ ︸
maximum effect

− x̃αw︸︷︷︸
parameter effect

(2)

=
dx̃

dβw

(
βsαsx̃

αs−1 − 1
)

(3)

< 0 (4)

To arrive at equation (3) from (2) we apply the implicit function theorem to x̃ = v+βwx̃
αw

in x̃ and βw such that
dx̃

dβw

(
1− βwαwx̃αw−1

)
= x̃αw . The result then follows from assumption

A1 and (1).

(ii)

∂u?s
∂αw

=
dx̃

dαw

(
βsαsx̃

αs−1 − βwαwx̃αw−1
)

︸ ︷︷ ︸
maximum effect

− βwx̃
αw ln x̃︸ ︷︷ ︸

parameter effect

(5)

=
dx̃

dαw

(
βsαsx̃

αs−1 − 1
)

+ x̃αw
(
dx̃

dαw

dβw
dx̃
− βw ln x̃

)
(6)

= x̃αw
(
dx̃

dαw

dβw
dx̃
− βw ln x̃

)
(7)

=
dx̃

dαw

(
βsαsx̃

αs−1 − 1
)

(8)

Using equations (2) and (3), βsαsx̃
αs−1−βwαwx̃αw−1 = (βsαsx̃

αs−1−1)+ x̃αw
dβw
dx̃

. Then

12



(6) follows. We get (7) as
dx̃

dαw

dβw
dx̃
− βw ln x̃ = 0 from (1). In (8), the term between brackets

is negative from assumption A1 and the sign of
dx̃

dαw
is given by (1).

�

Proof of the Proposition 2. The expected equilibrium expenditure of effort is given by ERi =

x̃−
∫ x̃

0
Fi(x)dx for i = w, s.

1. Computation of ERw.

Let us denote ϕ = βs
v . If αs = 1, it follows that

∫ x̃

0
Fw(x)dx = (v + (βs − 1)x̃)

∫ x̃

0

dx

v + βsx
+

∫ x̃

0

x

v + βsx
dx

=
v + (βs − 1)x̃

v

∫ x̃

0

dx

1 + ϕx
+

1

βs

∫ x̃

0
1− 1

1 + ϕx
dx

= −1− βs
βs

(
v

βs
+ x̃

)
ln(1 + ϕx̃) +

x̃

βs

Therefore,

ERw =
1− βs
βs

[
ln(1 + ϕx̃)

(
x̃+

v

βs

)
− x̃
]

The derivative in x̃ and the boundedness condition guarantee that ERw is positive.

If αs > 1

∫ x̃

0
Fw(x)dx = (βsx̃

αs − βwx̃αw)

∫ x̃

0

dx

v + βsxαs
+

∫ x̃

0

x

v + βsxαs
dx

13



Moreover, ∫ x̃

0

dx

v + βsxαs
=

1

v

∫ x̃

0

dx

1 + ϕxαs

=
1

αsvϕ
1
αs

∫ ϕx̃αs

0

y
1
αs
−1

1 + y
dy (9)

=
1

αsvϕ
1
αs

∫ ϕx̃αs

1+ϕx̃αs

0

t
1
αs
−1

(1− t)
1
αs

dt (10)

=
1

αsvϕ
1
αs

B

(
1

αs
, 1− 1

αs
,

ϕx̃αs

1 + ϕx̃αs

)
(11)

=
x̃

v
Γ

(
1

αs

)(
1

1 + ϕx̃αs

)1− 1
αs
∞∑
j=0

(ϕx̃αs)j

(1 + αsj)Γ( 1
αs

+ j)
(12)

To obtain equations (9) and (10), we define y = ϕxαs and t = y
1+y . As ϕx̃αs

1+ϕx̃αs ∈ (0, 1) and
1
αs
> 0, equation (10) is the Euler integral representation of an incomplete Beta function and

equation (12) comes from his expansion series given by Theorem 1.

Moreover, ∫ x̃

0

x

v + βsxαs
dx =

1

αsvϕ
2
αs

∫ ϕx̃αs

1+ϕx̃αs

0

t
2
αs
−1

(1− t)
2
αs

dt (13)

=
1

αsvϕ
2
αs

B

(
2

αs
, 1− 2

αs
,

ϕx̃αs

1 + ϕx̃αs

)
(14)

As before, we find (13) after change in variables as for equation (9) and (10).

Therefore,

ERw = x̃− x̃

v
Γ

(
2

αs

)(
1

1 + ϕx̃αs

)1− 2
αs
∞∑
j=0

(ϕx̃αs)j

(2 + αsj)Γ( 2
αs

+ j)

− x̃βsx̃
αs − βwx̃αw

v
Γ

(
1

αs

)(
1

1 + ϕx̃αs

)1− 1
αs
∞∑
j=0

(ϕx̃αs)j

(1 + αsj)Γ( 1
αs

+ j)

2. Computation of ERs.

Let us denote φ = βw
v . If αw = 1

ERs = − 1

βw
[(1− βw)x̃+

1

φβw
ln(1 + φx̃)]

= − v

βw

(
1 +

1

βw
ln(1− βw)

)
which is positive as βw < 1.
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If αw > 1 the calculation is the same as for ERw, thus

ERs = x̃

1− 1

v
Γ

(
2

αw

)(
1

1 + φx̃αw

)1− 2
αw

∞∑
j=0

(φx̃αw)j

(2 + αwj)Γ( 2
αw

+ j)


�

Proof of the Corollary 3. We recall that the expected equilibrium expenditure is given by

ERi = x̃−
∫ x̃

0
Fi(x)dx for i = w, s.

(i)

∂ERs
∂βw

=
dx̃

dβw
(1− Fs(x̃))︸ ︷︷ ︸

=0

+

∫ x̃

0

xαw+1

(v + βwxαw)2
dx

> 0

∂ERs
∂αw

=
dx̃

dαw
(1− Fs(x̃))︸ ︷︷ ︸

=0

+

∫ x̃

0

xαw+1βw lnx

(v + βwxαw)2
dx

which is negative if x̃ ≤ 1.

(ii) The mixed strategies and the maximum effort are independent of βs and αs. Hence the

result.

(iii)
∂ERw
∂βs

= −
∫ x̃

0

v(x̃αs − xαs) + xαs(x̃− x)

(v + βsxαs)2
dx < 0. Moreover, if x̃ ≤ 1,

∂ERw
∂αs

= −βs
∫ x̃

0

vx̃αs ln x̃− xαs lnx(v − x̃+ x)

(v + βsxαs)2
dx

≥ βs
∫ x̃

0

xαs(x̃− x) lnx

(v + βsxαs)2
dx

≥ 0

(iv) Using assumption A1 and equation (1), it follows that
∂ERw
∂βw

=
dx̃

dβw
(1− Fs(x̃))︸ ︷︷ ︸

=0

−
∫ x̃

0

dx̃

dβw

αsβsx̃
αs−1 − 1

v + βsxαs
dx > 0 and

∂ERw
∂αw

=
dx̃

dαw
(1− Fs(x̃))︸ ︷︷ ︸

=0

−
∫ x̃

0

dx̃

dαw

αsβsx̃
αs−1 − 1

v + βsxαs
dx which is negative if x̃ ≤ 1 and

non-negative if x̃ > 1.

�
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Appendix B: Ordered Valuations

An alternative way to analyze the problem would be to consider ordered valuations such

that Vi(x) > Vj(x) over the relevant range of x. Due to the form of the valuation func-

tions, two separate cases have to be examined: αi > αj for x >
(
βj
βi

) 1
αi−αj and αi < αj for

x ≤
(
βj
βi

) 1
αi−αj . In the following, let us denote the threshold

(
βj
βi

) 1
αi−αj by x?.

Case (i): αi > αj, Positive Minima

If the maximum effort x̃ is superior to the effort level x? the mixed equilibrium strategies

for both players can be computed. Otherwise, there is no positive density in equilibrium. The

main difference to the standard all-pay auction, in a sense, is that the non-participation level

of effort and the minimum effort level have to be distinguished. In particular, the players do

not participate below the threshold level x?. In the following, only the results that do not

follow straightforwardly from Hillman and Riley (1989) and Baye, Kovenock, and de Vries

(1996) will be given.

Lemma 1. If the minimum effort x? is strictly positive and inferior to x̃ then the two players’

strategies have an atom such that

Fi(x
?) =

x?

Vj(x?)
and Fj(0) =

Vj(x
?)

Vi(x?)
Fi(x

?) +
Vi(x̃)− Vj(x̃)

Vi(x?)

Proof. Since the strategy spaces are the same, and expected utilities are constant at the

equilibrium we obtain Vi(x̃) − x̃ = Fj(x)Vi(x) − x and Vj(x̃) − x̃ = Fi(x)Vj(x) − x for all

x ∈ [x?, x̃]. As Vj(x̃)− x̃ = 0, the two last equations lead to the result. �

In this case, player i is “strong” and player j “weak” in the sense defined above with

probablitiy one for all x. Thus, with the exception of the common mass point at the lower

end of the distribution and the length of the strategy space, the mixed equilibrium strategies

should be the same as in the case with non-ordered valuations and i as the strong player. In

others words, for all x ∈ [x?, x̃]

Fi(x) =
x

v + βjxαj
and Fj(x) =

v + βix̃
αi − x̃+ x

v + βixαi
.

Even if the distributions are the same, the expected revenue will differ as the strategy

spaces are different. We do not provide the closed form solution here, but the computation

is straightforward and similar to the one for non-ordered valuations.

Case (ii): αi < αj, Caps
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Here, two cases have to be distinguished. In both, player i is “strong” and player j is

“weak” for all x. If the maximum effort x̃ is inferior to x? the situation is as same as that of

ordered-valuations with polynomial rewards and the results of Proposition 1 apply. Alterna-

tively, the agents face a cap in their bids that they could not exceed such as x̃ > x?. This last

case was studied by Che and Gale (1998) with exogenous valuations. As in their paper, we

consider two cases. When x? ≤ x̃
2 , there is a pure strategy Nash equilibrium where the effort

of the players is x?. Otherwise, mixed strategies have to be computed. It can be shown that

the players have a nonzero density on (0, x′] and a zero density on (x′, x?) with a mass point

at x?.9 Then, with similar technical arguments than Che and Gale (1998) we find that for all

x ∈ [0, x′] Fi(x) = x
Vj(x) and Fj(x) = x

Vi(x) +
Vi(x

′)−Vj(x′)
Vi(x) and for all x ∈ [x′, x?[ Fi(x) = x′

Vj(x′)

and Fj(x) = x′

Vi(x′)
+

Vi(x
′)−Vj(x′)
Vi(x′)

. To sum up, if x? ∈
(
x̃
2 , x̃
)

Fi(x) =



x

v + βjxαj
for all x ∈ [0, x′]

x′

v + βjx
′αj

for all x ∈ [x′, x?[

1 for x = x?

and

Fj(x) =



x

v + βixαi
+
βix

′αi − βjx
′αj

v + βixαi
for all x ∈ [0, x′]

x′

v + βix
′αi

+
βix

′αi − βjx
′αj

v + βix
′αi

for all x ∈ [x′, x?[

1 for x = x?

Appendix C: Figures

In the following figures, i is the “strong” player and j the ‘weak” player.

9See the Lemma 3 of Che and Gale (1998).
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Figure 5: Ordered Values
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