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摘要

摘摘摘 要要要

自从2004年3月26日芝加哥期权交易所（CBOE）专门成立期货交易所CFE

（CBOE Future Exchange）并开始交易基于S&P500波动率指数VIX的期货，过去几

年中波动率已经被交易员、投资者和基金经理广泛接受为一种资产类型，并用于投

资、分散和对冲资产组合中的集中度和尾部风险。2006年2月24日，CBOE又推出

了基于VIX指数的的期权。现在，VIX期权已经成为CBOE交易最为活跃的期权系

列。

本论文主要工作在于对VIX指数进行独立建模。部分文献中对VIX采用一致性

建模方法。该方法以S&P500指数（SPX）和它的随机波动率建模为起点，并且基于

这个动态模型根据 VIX的定义得到VIX表达式，从而可以基于这个表达式对VIX期

货和VIX期权进行定价。与文献中VIX指数的一致性建模方法不同，独立建模方法

直接指定VIX指数的动态过程，并基于这个动态过程对VIX衍生品进行定价。

虽然文献中有关于对数均值回复VIX模型（MRLR）的研究，目前尚未有文

献考虑具有随机波动率的MRLR模型用于刻画VIX期权市场中的正向波动率偏

斜。文献中也没有比较基于纯粹扩散的MRLR模型与考虑跳扩散和/或随机波动率

的MRLR模型的优劣。而且，大部分现有文献注重推导VIX期货和期权的静态定

价公式，而没有研究VIX期货的动态性质、VIX期货和VIX期权的校正与对冲 策

略，以及从远期方差互换到VIX期货的凸度调整。其中，远期方差互换可以用流动

性很高的方差互换进行复制，并且能够用于估计MRLR模型中的波动率的波动率

（vol-of-vol）参数。

本文考虑了四个对数均值回复的VIX模型。第一个模型是纯粹基于扩散的

的VIX模型，并且称为MRLR模型。之后，本文将这个基本的MRLR模型推广到包

含泊松跳或随机波动率， 从而得到推广后的MRLRJ模型和MRLRSV模型。最后，

本文在VIX指数动态过程中同时考虑泊松跳和随机波动率，并得到一个最全面

的MRLRSVJ模型。

对于这四个模型，本文推导了它们的转移概率密度函数或者条件特征函数。
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基于这些结果，本文推导了VIX期货和VIX期权的定价公式。为了能够很好的拟

合VIX期货期限结构，本文假设 VIX动态过程的长期均值是时变函数，并且用这个

函数来拟合VIX期货期限结构。此外，扩散、泊松跳和随机波动率的参数被用于拟

合VIX隐含波动率曲面。

本文建议了两种参数校正方法。对于MRLR形式的VIX模型，参数校正的第一

个阶段是对VIX指数或者VIX期货中波动率的波动率（vol-of-vol）的拟合，从而决

定vol-of-vol的扩散、泊松跳和随机波动率参数可以被估计出来。这个校正阶段的

第一种方法是用这些参数拟合VIX隐含波动率曲面。第二种方法是将这些参数用于

拟合远期方差互换中的VIX凸度。之所以拟合远期方差互换，是因为它包含VIX指

数和VIX期货的的凸度并且方差互换市场的流动性非常高。基于第一阶段的参数拟

合，VIX指数的长期均值函数可以用于拟合VIX期货的期限结构。

除了VIX期货和VIX期权的静态定价公式，本文还推导了VIX期货的动态过

程。本文的结论指出，MRLR模型下VIX期货服从一个几何布朗运动，MRLRJ模型

下VIX期货服从 跳扩散模型，MRLRSV模型下VIX期货服从随机波动率模型，以

及MRLRSVJ模型下VIX期货服从随机波动率跳扩散模型。

本文还推导了基于对数均值VIX模型下的VIX期货与期权对冲策略。由

于VIX指数本身不是可交易资产，投资者不能直接建立该指数的交易头寸。文献

中的研究结果指出， 较短期限的VIX期货对下一个期限的VIX期货的走势具有很

好的预测能力。因此，用较短期限的VIX期货对冲较长期限的VIX期货是一个非常

自然的对冲策略并可以期待这个策略表现较好。此外，VIX期权作为基于VIX指数

的期权，它也可以视为基于具有同样期限的VIX期货的期权。从而，用较短期限

的VIX期货合约对冲较长期限的VIX期权合约也是非常自然的对冲策略。本文中推

导了基于上述对冲策略的VIX期货与VIX期权的对冲公式。

最后，本文用数值分析比较四个模型对VIX隐含波动率曲面的拟合效果。文中

结果指出，MRLR模型完全不能产生VIX期权的正向隐含波动率偏斜。与此对比，

MRLRJ模型和MRLRSV模型能够同等程度地产生正向波动率偏斜。然而，最全面

的MRLRSVJ模型对提高波动率偏斜拟合效果起到很小的作用。相反，这个复杂模

型会导致更多参数需要估计并且降低了模型参数的稳定性。
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关关关键键键词词词：：：VIX；VIX期货；VIX期权；远期方差互换；VIX隐含波动率偏斜；对数

均值回复模型；跳-扩散；随机波动率。
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Abstract

Since March 26, 2004, when the CBOE Futures Exchange (CFE) began trading futures

written on S&P500 volatility index (VIX), volatility has become a widely accepted asset

class as trading, diversifying and hedging vehicle by traders, investors and portfolio man-

agers over the past few years. On February 24, 2006, CBOE introduced options written

on VIX index and since then VIX option series has now become the most actively traded

index option series on CBOE.

This thesis focuses on mathematical modeling of spot VIX with standalone approach. Un-

like the consistent modeling approach in literature, which starts with specifying joint dy-

namics for SPX index and its instantaneous stochastic volatility then derives expression for

spot VIX and price VIX derivatives based on this expression, standalone approach starts

with directly specifying dynamics for spot VIX and prices VIX derivatives in this simpler

framework.

Although there is work in literature that studies the mean-reverting logarithmic model (M-

RLR), no work has been done in considering stochastic volatility in MRLR to capture the

positive implied volatility skew of VIX option, nor have they compared the pure diffusion

version of MRLR with its jump and/or stochastic volatility extensions. Furthermore, most

of the literature only focus on static pricing formulas for VIX future and VIX option, no

work has been done in investigating the dynamic feature of VIX future, calibration and

hedging strategies of mean-reverting logarithmic models, as well as the convexity adjust-

ment of VIX future from forward variance swap, which has a liquid variance swap market

to back out the vol-of-vol information in mean-reverting logarithmic models.

In this thesis, I present four versions of MRLR models. The first model is a pure diffusion

model where spot VIX follows a mean-reverting logarithmic dynamics. Then I extend this

basic MRLR model by adding jump or stochastic volatility into spot VIX dynamics to get

IV
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MRLRJ and MRLRSV models. Finally, I combine jump and stochastic volatility together

and add them into dynamics of spot VIX to get the fully specified MRLRSVJ model.

For all the four models, I derive either transition function or conditional characteristic

function of spot VIX. Based on those results, the pricing formulas for VIX future and VIX

option are derived. In order to calibrate to VIX future term structure, I make the long-

term mean of spot VIX be a time-dependent function and use the diffusion, jump and/or

stochastic volatility parameters to calibrate VIX implied volatility surface.

Two types of calibration strategies are suggested in this thesis. On the first stage of cal-

ibration, we need to calibrate all vol-of-vol parameters to convexity of spot VIX or VIX

future. One strategy is to calibrate those parameters to VIX option implied volatility sur-

face. Another strategy is to calibrate them to convexity adjustment of VIX future from

forward variance swap, which can be replicated by liquid variance swaps. On the second

stage of calibration, the long-term mean function of spot VIX is used to fit VIX futuer term

structure given the vol-of-vol parameters calibrated on the first stage.

In addition to the static pricing formula, dynamics of VIX future is also derived under

all mean-reverting logarithmic models. The analysis in this thesis shows that VIX future

follows geometric Brownian motion under MRLR model, jump-diffusion dynamics un-

der MRLRJ model, stochastic volatility dynamics under MRLRSV model and stochastic

volatility with jump dynamics under MRLRSVJ model.

I develop the hedging strategies of VIX future and VIX option under mean-reverting log-

arithmic models. As spot VIX is not tradable asset, investors are unable to take positions

on this index. Instead, research in literature has shown that a shorter-term VIX future has

good power in forecasting movements of the subsequent VIX future. Therefore, hedging

VIX future with a shorter-term VIX future is expected to perform well. Moreover, as VIX

option can also be regarded as an option on a VIX future contract that has same maturity as

VIX option, using the shorter-term VIX future contract as hedging instrument is a natural

choice. In this thesis, I derive hedging ratios of VIX future and VIX option under the above

hedging strategy.

V



浙江大学博士学位论文

At last, numerical analysis in this thesis compares the four models in fitting VIX implied

volatility surface. The results show that MRLR is unable to create positive implied volatil-

ity skew for VIX option. In contrast, MRLRJ and MRLRSV models perform equally well

in fitting positive skew. However, the fully specified MRLRSVJ model adds little value in

fitting VIX skew but incurs additional cost of calibrating more parameters and is subject to

less stable parameters over maturities and over time.

Keywords: VIX; VIX Future; VIX Option; Forward Variance Swap; VIX Implied Volatil-

ity Skew; MRLR Model; Jump-Diffusion; Stochastic Volatility.
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Introduction

1 Introduction

Since March 26, 2004, when the CBOE Futures Exchange (CFE) began trading futures

written on S&P500 volatility index (VIX), volatility has become a widely accepted asset

class as trading, diversifying and hedging vehicle by traders, investors and portfolio man-

agers over the past few years. On February 24, 2006, CBOE introduced options written

on VIX index and since then VIX option series has now become the most actively traded

index option series on CBOE.

Spot VIX index is defined as square root of 30-day variance swap of S&P500 index (SPX)

and it can be understood as an index representing 30-day average implied volatility of

S&P500 index option. As all well known, variance swap is a tradable asset and it can

be statically replicated by a series of out-of-money (OTM) SPX options. However, being

defined as square root of SPX variance swap, spot VIX itself is not tradable asset and

this is the exact reason CBOE introduces VIX futures and VIX options as vehicles to take

positions on VIX.

As a volatility index, VIX shares the properties of mean-reversion, large upward jumps and

stochastic volatility, which is known as stochastic vol-of-vol. Therefore, a good model for

modeling spot VIX should take into account at least some of these factors.

For the purpose of calibration, pricing and hedging of VIX futures, one is concerned with

statically calibrating the initial VIX future term structure and dynamics of VIX future con-

tracts. In order to develop a good model for pricing and hedging VIX option, one is also

very concerned with the ability of VIX model in calibrating VIX volatility surface and

derive reasonable hedging ratios for VIX options with respect to VIX futures.

There are roughly two categories of approaches for VIX modeling in the literature. In one

line of research, the inherent relationship between S&P500 and VIX are retained by spec-

ifying joint dynamics of S&P500 index (SPX) and its stochastic instantaneous volatility.

Then the expression for spot VIX is derived by its definition as square root of forward re-
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alized variance of SPX. This approach is called consistent modeling approach in literature

and it has been studied and applied to pricing VIX futures in Zhang and Zhu [31], Zhu and

Zhang [34], Lin [16], Lu and Zhu [19], Zhang and Huang [29] and Zhu and Lian [33], where model

factors such as mean-reversion and jumps are characterized by various kinds of stochas-

tic processes. Following this approach, Lin and Chang [17], Lin and Chang [18] and Sepp [24]

address the problem of VIX option pricing by characteristic function method.

In the other line of research, VIX dynamics are directly specified and thus VIX option-

s can be priced in simpler formula. Papers following this approach include Whaley [28],

Grunbichler and Longstaff [8], Detemple and Osakwe [3] and Psychoyios [21], where mean-

reverting square-root and mean-reverting logarithmic processes with or without jumps are

adopted to characterize VIX.

Psychoyios and Skiadopoulos [22] and Wang and Daigler [27] made some comparative studies

about the above two categories of VIX future and option pricing models in the aspect of

hedging effectiveness and pricing accuracy. They suggest that simpler models of the second

kind perform equally well with or even better than the first kind complicated models, such

as the fully-specified Lin and Chang [17] model.

In spite of the accomplishment of VIX modeling in the literature, some problems are still

need to be addressed. Psychoyios and Skiadopoulos [22] and Psychoyios [21] recommend that

the mean-reverting logarithmic model (denoted as MRLR) serves better than the mean-

reverting square root models (denoted as MRSR) in both aspects of fitting VIX historical

data under the objective measure and calibrating VIX options under martingale measure.

The logarithmic models proposed in Psychoyios and Skiadopoulos [22] and Psychoyios [21]

assumes that logarithm of VIX follows a OU process as Vasicek [26]. By adding upward

jumps that follow exponential distribution into the MRLR model to construct mean-reverting

logarithmic jump model (denoted as MRLRJ), Psychoyios [21] successfully get an explic-

it pricing formula for VIX option expressed by characteristic function of log-VIX in the

MRLRJ model.

Bao [36] calibrates the four models BS, MRSR, MRLR and MRLRJ to a series of VIX

2
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options, and performs a comparative study on pricing accuracy and flexibility to generating

reasonable positive volatility skew. Calibration in Bao [36] is conducted for each separate

maturity across strikes that have non-zero bid prices. The results confirm that MRLR and

MRLRJ are better than MRSR model in fitting VIX option quotes, especially MRLRJ.

However, pricing accuracy of MRLR is still not satisfactory, especially for out of the money

call options, which can provide effective hedging instruments against large downside move

of stock market. Therefore, the results in Bao [36] conclude that upward jumps in spot VIX

and stochastic volatility of spot VIX is necessary in order to improve the mean-reverting

logarithmic modeling of VIX.

The most significant shortage of research in literature regarding VIX modeling is the dy-

namic features of VIX futures implied by VIX models as well as the hedging ratios of

VIX futures and VIX options with respect to other VIX future contracts. In this thesis,

I will focus on the family of mean-reverting logarithmic models in the aspects of pricing,

dynamics, calibration, hedging and convexity adjustments of VIX futures and VIX options.

The remaining chapters of this thesis are organized as follows. Chapter 2 reviews some of

the literature of VIX modeling that are most relevant to this thesis. Chapter 3 begins the

research of this thesis and starts with MRLR model. I derive the VIX future and VIX op-

tion pricing formulas and also the dynamics of VIX future. Based on the dynamics of VIX

future, I calculate the instantaneous correlation of VIX futures with different maturities.

Furthermore, I derive hedging ratios of VIX futures and VIX options both with respect to

spot VIX and VIX futures of different maturities. Finally, I derive the pricing formula for

forward 30-day variance swap and calculate the convexity adjustment of VIX future from

forward variance swap. The MRLR model is calibrated to both VIX future term struc-

ture and VIX implied volatility surfaces. Also calibration idea of making use of forward

variance swap market data is suggested in this chapter.

In the following chapters 4, 5 and 6, I extend MRLR model to including jump or/and

stochastic volatility and conduct the same research as above to those models MRLRJ, M-

RLRSV, MRLRJSV.

3
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In Chapter 7, I present some numerical results of those models and make some concluding

remarks on pros and cons of all of these models.

4
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2 VIX Modeling Review

2.1 Consistent Approach

In the first line of research for VIX future modeling in literature, the joint dynamics of SPX

index and its instantaneous stochastic volatility is specified. Based on this joint dynamics,

expression for spot VIX is further derived and it can be represented as function of instan-

taneous SPX volatility and its driving factors. Consequently, VIX future and VIX option

can be priced using the characteristic function of instantaneous volatility. This approach

is usually called consistent modeling approach because under this model both SPX option

and VIX option can be priced simultaneously and the model is jointly calibrated to both

option markets.

2.1.1 Zhang and Zhu (2006) [31]

Zhang and Zhu [31] is the first paper in literature that proposes a consistent model for VIX

future. Under pricing measure Q, the authors assume that SPX index follows Heston s-

tochastic volatility model{
dSt

St
= rdt+

√
VtdW

S
t

dVt = κ (θ − Vt) dt+ σV
√
VtdW

V
t

∼ Q (2.1)

with dW S
t dW

V
t = ρdt. Given the above joint dynamics, especially dynamics of instan-

taneous variance Vt, V IX2
t as conditional expectation of 30 day realized variance is ex-

pressed as

V IX2
t
.
= EQ

t

[
1

τ0

∫ t+τ0

t

Vsds

]
= A+B · Vt (2.2)

where τ0 = 30/365, A and B are represented as{
A = θ

[
1− 1

κτ0
[1− e−κτ0 ]

]
B = 1

κτ0
[1− e−κτ0 ]

(2.3)

Furthermore, transition function of instantaneous variance Vt is expressed as

fQ (VT |Vt) = ce−u−v
(v
u

)q/2
Iq
(
2
√
uv
)

(2.4)
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with 
c = 2κ

σ2
V [1−e−κ(T−t)]

u = cVte
−κ(T−t)

v = cVT
q = 2κθ

σ2
V
− 1

(2.5)

Consequently, VIX future pricing formula can be easily expressed as

F T
t = EQ

t [V IXT ] = EQ
t

[√
A+B · VT

]
=

∫ +∞

0

√
A+B · VTfQ (VT |Vt) dVT (2.6)

Given the analytical formula of transition function fQ (VT |Vt) under martingale measure

Q, the above formula as an integral can be implemented by Gaussian quadrature.

With the 3 free parameters (κ, θ, σV ), the VIX future model can be calibrated to market

prices of VIX futures.

2.1.2 Zhu and Zhang [34]

Zhu and Zhang [34] extends the model of Zhang and Zhu [31] by making the long-term mean

in instantaneous variance be time-dependent, i.e. θ = θt.{
dSt

St
= rdt+

√
VtdW

S
t

dVt = κ (θt − Vt) dt+ σV
√
VtdW

V
t

∼ Q (2.7)

with dW S
t dW

V
t = ρdt. Again, square of spot VIX, V IX2

t , can be represented as

V IX2
t
.
= EQ

t

[
1

τ0

∫ t+τ0

t

Vsds

]
= A+B · Vt (2.8)

where A and B are given by{
A = 1

τ0

∫ t+τ0
t

[
1− e−(t+τ0−s)

]
θsds

B = 1
κτ0

[1− e−κτ0 ]
(2.9)

Furthermore, transition function of instantaneous variance Vt is expressed as inverse Fouri-

er transform of conditional characteristic function

fQ (VT |Vt) =
1

π

∫ +∞

0

Re
[
e−isVT+α(t;is)+β(t;is)Vt

]
ds (2.10)

with {
β (t;u) = κue−κ(T−t)

κ−1
2
σ2
V u[1−e−κ(T−t)]

α (t;u) = κ
∫ T
t
θhβ (h;u) dh

(2.11)

6
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Consequently, VIX future pricing formula can be easily expressed as

F T
t = EQ

t [V IXT ] = EQ
t

[√
A+B · VT

]
=

∫ +∞

0

√
A+B · VTfQ (VT |Vt) dVT (2.12)

This model is calibrated to SPX index option market and forward variance term structure.

2.1.3 Zhang, Shu and Brenner (2010) [30]

Zhang, Shu and Brenner [30] further extends the previous two models by making the long-

term mean stochastic, i.e.
dSt

St
= rdt+

√
VtdW

S
t

dVt = κ (θt − Vt) dt+ σV
√
VtdW

V
t

dθt = σθdW
θ
t

∼ Q (2.13)

with dW S
t dW

V
t = ρdt and dW V

t dW
θ
t = ρθdt. Again, square of spot VIX, V IX2

t , can be

represented as

V IX2
t
.
= EQ

t

[
1

τ0

∫ t+τ0

t

Vsds

]
= (1−B) · θt +B · Vt (2.14)

where B is given by

B =
1

κτ0

[
1− e−κτ0

]
(2.15)

Also, VIX future pricing formula can be easily expressed as

F T
t = EQ

t [V IXT ] = EQ
t

[√
A+B · VT

]
=

∫ +∞

0

√
(1−B) · θT +B · VTfQ (VT |Vt) dVT (2.16)

However, transition function nor conditional characteristic function of instantaneous vari-

ance Vt is derived in this thesis. Instead, the authors approximate
√

(1−B) · θT +B · VT

with
√
(1−B) · θt +B · VT and further expand it up to the third order using Taylor’s ex-

pansion so that VIX future can be expressed by 1st, 2nd and 3rd moments of VT

This model is calibrated to VIX future term structure.

2.1.4 Other Consistent Models

In addition to the above mentioned papers, there are other literature that focus on consistent

modeling of spot VIX and further price VIX future and VIX option under this model.

7
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The first fully specified model is Lin [16]. The author assumes that SPX index and its instan-

taneous variance follows{
dSt/St = [r − λt] dt+

√
VtdW

S
t + zSdNt

dVt = κ (θ − Vt) dt+ σV
√
VtdW

V
t + zV dNt

∼ Q (2.17)

with dW S
t dW

V
t = ρdt. The Poisson process Nt is assumed to be independent from the two

Brownian MotionsW S
t andW V

t and it controls jumps both in SPX index and instantaneous

variance. Intensity of this Poisson process is assumed to be stochastic and it is affine func-

tion of instantaneous variance Vt, i.e. λt = λ0 + λ1 · Vt. Jump size in Vt is exponentially

distributed with ZV ∼ exp (µV ). Conditioned on ZV , the jump size in SPX index follows

normal distribution, i.e. zS|zV ∼ N (µJ + ρJzV , σ
2
J).

Again, V IX2
t can be expressed as affine function of Vt in this model. Therefore, knowing

the transition function of Vt is equivalent to knowing transition of V IX2
t . The method to

obtain transition function of Vt is to express it as inverse Fourier transform of conditional

characteristic function of Vt. Given conditional characteristic function of Vt defined as

below

ψ (Vt, t; s) = EQ
t

[
eisVT

]
(2.18)

one can calculate conditional moments of VT , thus using the affine expression of V IX2
T

with VT one can easily derive the second moment of V IXT . By making use of the below

convexity adjustment formula

F T
t =

√
EQ
t [V IX2

T ]−
varQt [V IX

2
T ]

8
{
EQ
t [V IX2

T ]
}3/2 (2.19)

VIX future price can be obtained. However, as several authors point out, the formula for

conditional characteristic function of Vt in Lin [16] is problematic and it can cause significant

pricing discrepancy from other pricing formulas under the same model, see Lian [15].

In chapter 7 of thesis Lian [15], the author corrects the formula for conditional characteristic

function under the same model as Lin [16]. Furthermore, instead of deriving an approximate

pricing formula for VIX future using the convexity adjustment formula (2.19), Lian [15]

express VIX future price as in eqn. (2.12)

8
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2.2 Standalone Approach

In the second line of research for VIX future modeling in literature, the dynamics of spot

VIX is directly specified and VIX future and VIX option can be priced under this model.

This approach only focuses on pricing derivatives written on VIX index without consid-

ering SPX option. The advantage of this model is that a clear dynamics for spot VIX can

be obtained and thus the pricing formula and dynamics of VIX future and VIX option

can be clearer and simpler. This makes pricing and calibration of VIX derivatives more

straightforward and accurate.

This approach makes good sense because the market practice of hedging VIX future and

VIX option is usually making use of other VIX futures with shorter maturities. One reason

of using other VIX future contracts as hedging instruments is that spot VIX itself is not a

tradable asset and the simplest and most relevant contract to VIX future and VIX option

is another VIX future contract. Second reason for this hedging strategy is that VIX option

can be regarded as an option written on VIX future contract with the same maturity as VIX

option. Third reason for this method is the evidence from literature that a shorter maturity

VIX future has significant power in forecasting changes in the subsequent VIX future price

(see Simon and Campasano [25]). Consequently, hedging VIX future and VIX option with

a shorter maturity VIX future contract is not only reasonable but also one of the few only

choices available to investors.

2.2.1 Whaley (1993) [28]

Whaley [28] is the first paper proposes a standalone method for modeling spot VIX. Of

course, at that time the definition of spot VIX is still under the old methodology. Wha-

ley [28] simply assumes that spot VIX follows a Geometric Brownian Motion process under

martingale measure Q

dV IXt

V IXt

= rdt+ σdWt (2.20)

9
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Thus VIX call option is given by Black-Scholes formula

CallTt = e−r(T−t)
[
F T
t ·N (d1)−K ·N (d2)

]
(2.21)

with

F T
t = V IXte

r(T−t)

and

d1,2 =

[
ln
F T
t

K
± σ2T

2

]/
σ
√
T

.

Although this model is too simple to capture the feature of VIX option, it can serve as

a formula to invert market quotes of VIX option to implied volatility of VIX option. This

implied volatility is known as the implied vol-of-vol. However, the input of F T
t in the above

pricing formula needs to be replaced with market quotes of VIX future which has the same

maturity as VIX option, instead of F T
t = V IXte

r(T−t).

2.2.2 Grunbichler and Longstaff (1996) [8]

In Grunbichler and Longstaff [8], the authors assume that V IXt follows a mean-reverting

square root process (MRSR) as below

dV IXt = κ (θ − V IXt) dt+ σ
√
V IXtdWt (2.22)

By making use of the analytical transition function of V IXt under this model, one can get

the below analytical pricing formula for VIX call option

CallTt = e−r(T−t)
{
ϕT−tV IXt ·

[
1− χ2 (ωK; v + 4, ξ)

]
+θ (1− ϕT−t)

[
1− χ2 (ωK; v + 2, ξ)

]
−K

[
1− χ2 (ωK; v, ξ)

]}
(2.23)

with 
ϕτ = e−κτ

ω = 4κ
σ2(1−ϕτ )

v = 4κθ
σ2

ξ = ωϕτV IXt

10
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and χ2(v, ξ) is a cumulative function of Chi-Square distribution with degree of freedom v

and non-central parameter ξ.

Disadvantage of this pricing formula is the calculation speed of cumulative distribution

function χ2(v, ξ). An alternative method is to calculate the conditional characteristic func-

tion ψ (t; s) of V IXt

ψ (t; s)
.
= EQ

t

[
eisV IXT

]
(2.24)

and then using the below formula to calculate VIX option price

CallTt = exp

{
−
∫ T

t

rsds

}
· EQ

t

[
(V IXT −K)+

]
= exp

{
−
∫ T

t

rsds

}
·
[
F T
t · Π1 −K · Π2

]
(2.25)

where Π1 and Π2 are two tail probabilities under two martingale measures and they are

given as

Πj =
1

2
+

1

π

∫ +∞

0

Re

[
ψj (t; s)

is

]
ds, j = 1, 2 (2.26)

and the two characteristic functions are given by{
ψ1 (t; s) =

ψ(t;s−i)
ψ(t;−i)

ψ2 (t; s) = ψ (t; s)
(2.27)

2.2.3 Detemple and Osakwe (2000) [3]

In Detemple and Osakwe [3], the authors assume that V IXt follows a mean-reverting

logarithmic process (MRLR) as below

d lnV IXt = κ (θ − lnV IXt) dt+ σdWt (2.28)

By making use of the log-normal distribution of V IXt under MRLR model, one can easily

derive the pricing formula for VIX call option as below

CallTt = e−r(T−t)
[
F T
t ·N (dT−t + αT−t)−K ·N (dT−t)

]
(2.29)

where

F T
t = V IX

ϕT−t

t MT−t

11



浙江大学博士学位论文

is VIX future, and 
Mτ = exp

{
θ(1− ϕτ ) +

1
2
α2
τ

}
ϕτ = e−κτ

ατ = σ
√

1−ϕ2τ
2κ

dτ =
ϕτ ·ln V IXτ

K
+(1−ϕτ )·θ

ατ

2.2.4 Psychoyios, Dotsis, and Markellos [21]

In Psychoyios [21], the authors assume that V IXt follows a mean-reverting logarithmic

jump process (MRLRJ) as below

d lnV IXt = κ (θ − lnV IXt) dt+ σdWt + JdNt (2.30)

In this model analytical formula for the transition function is not available and the pricing

formula for VIX call option can be expressed as

Ct = exp

{
−
∫ T

t

rsds

}
·
[
F T
t · Π1 −K · Π2

]
(2.31)

where

F T
t = V IX

ϕT−t

t MT−t

is VIX future and this time Mτ is given by

Mτ = exp
{
θ(1− ϕτ ) +

1
2
α2
τ +

λ
κ
ln
(
η−ϕτ
η−1

)}

2.3 Comparison of two Approaches

Psychoyios and Skiadopoulos [22] and Wang and Daigler [27] conduct some comparative s-

tudies about the above two categories of VIX future and VIX option pricing models in the

aspect of hedging effectiveness and pricing accuracy. Their research results suggest that

simpler models of the second kind perform equally well with or even better than the more

complicated consistent models, such as the fully-specified Lin and Chang [17] model.

As indicated above, the standalone approach makes good sense because the market practice

of hedging VIX future and VIX option is usually making use of other VIX futures with

12
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shorter maturities. This is not only reasonable but also one of the few only choices available

to investors.

Therefore, in this thesis I focus on studying the standalone approach for VIX future and

VIX option modeling. As shown in Psychoyios [21] and Bao [36], the mean-reverting loga-

rithmic model (MRLR) serves much better than mean-reverting square root model (MRSR)

in fitting quality, calibration accuracy, computation speed and property of VIX future dy-

namics. Therefore, I will focus on MRLR and its extension in this thesis.

What separates my work from that in literature of standalone approach is multi-fold. Firstly,

the models proposed in this thesis calibrate to initial VIX future curve by construction and

I explicitly present the calibration formula for doing so. Secondly, I am not only concerned

about the static calibration to initial VIX future curve but also the convexity adjustment of

VIX future from forward variance swap. Thirdly, I not only derive the pricing formula for

VIX future and VIX option, but also derive the dynamics of VIX future and VIX option

under the proposed models. This helps well explain hedging strategies for VIX futures and

VIX options under those models.

13
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3 MRLR Model

In this chapter I present the first version of mean-reverting logarithmic model (MRLR).

Under this model, logarithm of spot VIX is assumed to follow an OU process. As a pro-

cess of OU type is normally distributed (see Vasicek [26]), spot VIX under this model thus

follows log-normal distribution. Of course conditional distribution of V IXT conditioned

on V IXt also follows log-normal distribution. Consequently, VIX future as condition-

al expectation of V IXT also is log-normally distributed. VIX option can be regarded as

an option written on VIX future with the same maturity and thus Black’s formula with

time-dependent volatility for VIX option is obtained. This is a modification of the simple

log-normal spot VIX model of Whaley [28] as presented in subsection 2.2.1 and the VIX

option pricing formula can serves as a formula to invert VIX option market quotes to VIX

implied volatilities.

3.1 MRLR dynamics and distribution

I first present the dynamics of lnV IXt under MRLR model here. In order to calibrate this

model to initial VIX future curve, I make the long-term mean θt be time-dependent. Also,

in order to calibrate to VIX ATM implied volatility term structure, I let the instantaneous

volatility-of-volatility (vol-of-vol) to be time dependent.

Definition 3.1：(MRLR Dynamics)

Under martingale measure Q, the mean-reverting logarithmic process is formulated as

d lnV IXt = κ (θt − lnV IX t) dt+ σtdWt (3.1)

where κ is mean-reverting speed, time-dependent function θt is the long-term mean of

logarithm of spot VIX, σt is also a function of time and it can be thought as vol-of-vol for

spot VIX.

Of course, θt and σt can either be constant or be time-dependent. When θt is time-dependent,

14
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e.g. piece-wise constant, it can be calibrated to term structure of VIX future. The time-

dependent vol-of-vol function σt can be used to calibrate to ATM VIX implied volatility

term structure.

Below I present the analytical conditional distribution of V IXT under MRLR model.

Proposition 3.1：(VIX Distribution)

Under the assumption of MRLR process in Definition 3.1, spot V IXT is log-normal dis-

tributed under martingale measure Q conditioned on information at time t, i.e.

V IXT |Ft
∼ LN

(
e−κ(T−t) lnV IXt +

∫ T

t

κθse
−κ(T−s)ds,

∫ T

t

σ2
se

−2κ(T−s)ds

)
(3.2)

In particular, if parameters θ and σ are constant, we have

V IXT |Ft
∼ LN

(
e−κ(T−t) lnV IXt + θ

[
1− e−κ(T−t)

]
,
σ2

2κ

[
1− e−2κ(T−t)]) (3.3)

Proof: Given dynamics of lnV IXt in eqn. (3.1), we can make the following change of

variable

d
(
eκt lnV IXt

)
= κeκt lnV IXtdt+ eκtd lnV IXt

= κeκt lnV IXtdt+ eκt [κ (θt − lnV IXt) dt+ σtdWt]

= κθte
κtdt+ eκtσtdWt

Thus we have

eκT lnV IXT = eκt lnV IXt +

∫ T

t

κθse
κsds+

∫ T

t

σse
κsdWs

and further

lnV IXT = e−κ(T−t) lnV IXt +

∫ T

t

κθse
−κ(T−s)ds+

∫ T

t

σse
−κ(T−s)dWs

With the following property in mind

varQt

(∫ T

t

σse
−κ(T−s)dWs

)
=

∫ T

t

σ2
se

−2κ(T−s)ds

we conclude that V IXT is log-normally distributed conditioned on information at time t

as in eqn. (3.2).

Proof of eqn. (3.3) is trivial based on results in eqn. (3.2). �
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3.2 VIX Future and VIX Option Pricing

Based on the distribution of spot VIX under martingale measure Q as in eqn. (3.2), we can

derive the pricing formulas for VIX future and VIX option.

Theorem 3.1：(VIX Future Pricing)

Under the assumption of MRLR process in Definition 3.1, VIX future F T
t

.
= EQ

t [V IXT ]

can be explicitly solved as

F T
t = {V IXt}e

−κ(T−t)

· exp
{∫ T

t

κθse
−κ(T−s)ds+

1

2

∫ T

t

σ2
se

−2κ(T−s)ds

}
(3.4)

In particular, when parameters θ and σ are constant, VIX future can be expressed as

F T
t = {V IXt}e

−κ(T−t)

· exp
{
θ
[
1− e−κ(T−t)

]
+
σ2

4κ

[
1− e−2κ(T−t)]} (3.5)

Furthermore, dynamics of VIX future under pricing measure Q can be given by

dF T
t

F T
t

= e−κ(T−t) · σtdWt (3.6)

Proof:

VIX future pricing formulas (3.4) and (3.5) are direct consequence of log-normal distribu-

tion of V IX under pricing measure Q as shown in eqn. (3.2) and the below property of

normal variable

X ∼ N
(
µ, σ2

)
⇒ E

[
eX
]
= eµ+

1
2
σ2

In order to derive the risk-neutral dynamics of VIX future, we first derive dynamics of

V IXt under the pricing measure.

dV IXt = delnV IXt = elnV IXtd lnV IXt +
1

2
elnV IXtd lnV IXtd lnV IXt

= V IXt [κ (θt − lnV IXt) dt+ σtdWt] +
V IXt

2
σ2
t dt

= V IXt

[(
θtκ+

σ2
t

2

)
− κ lnV IXt

]
dt+ V IXtσtdWt

Consequently, we get

dV IXt

V IXt

=
[(
θtκ+

σ2
t

2

)
− κ lnV IXt

]
dt+ σtdWt (3.7)
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Using Ito’s lemma to eqn. (3.4) and result in the above equation, we get

dF T
t = exp

{∫ T

t

κθse
−κ(T−s)ds+

1

2

∫ T

t

σ2
se

−2κ(T−s)ds

}
·e−κ(T−t) · {V IXt}e

−κ(T−t)−1dV IXt

+
1

2
exp

{∫ T

t

κθse
−κ(T−s)ds+

1

2

∫ T

t

σ2
se

−2κ(T−s)ds

}
·e−κ(T−t)

[
e−κ(T−t) − 1

]
· {V IXt}e

−κ(T−t)−2 · dV IXtdV IXt

+exp

{∫ T

t

κθse
−κ(T−s)ds+

1

2

∫ T

t

σ2
se

−2κ(T−s)ds

}
· lnV IXt · {V IXt}e

−κ(T−t)

· κe−κ(T−t)dt

−
[
κθte

−κ(T−t) +
1

2
e−2κ(T−t)σ2

t

]
· F T

t dt

= F T
t · e−κ(T−t) ·

{[(
θtκ+

σ2
t

2

)
− κ lnV IXt

]
dt+ σtdWt

}
+
1

2
F T
t · e−κ(T−t)

[
e−κ(T−t) − 1

]
σ2
t dt

+F T
t · lnV IXt · κe−κ(T−t)dt

−
[
κθte

−κ(T−t) +
1

2
e−2κ(T−t)σ2

t

]
· F T

t dt

= F T
t · e−κ(T−t) · σtdWt

which concludes proof of eqn. (3.6). �

One conclusion we can draw from eqn. (3.6) is that the time-dependent vol-of-vol function

σt of spot VIX is also a significant component of the vol-of-vol of VIX future. In addition,

the mean-reverting speed κ of spot VIX has inverse impact on vol-of-vol of VIX future.

This is understandable as increase of mean-reverting speed makes spot VIX less possibly

to deviate significantly from its long-term mean and thus spot VIX is less volatile in longer

term compared to a non mean-reverting process with same vol-of-vol. This effect of mean-

reversion further translates into less vol-of-vol in VIX future.

Now I calculate the correlation of VIX futures with different maturities. For the single

factor MRLR model, we have the below corollary.

Corollary 3.1：(VIX Future Correlation)

From the dynamics of VIX future in eqn. (3.6), we get the instantaneous correlation of VIX
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futures with different maturities as

ρT1,T2t = corr
(
dF T1

t , dF T2
t

) .
=

⟨
dF T1

t , dF T2
t

⟩√⟨
dF T1

t , dF T1
t

⟩ ⟨
dF T2

t , dF T2
t

⟩ = 1 (3.8)

with T1 < T2.

Proof:

Given dynamics of VIX future in eqn. (3.6), we have

ρT1,T2t =

⟨
dF T1

t , dF T2
t

⟩√⟨
dF T1

t , dF T1
t

⟩ ⟨
dF T2

t , dF T2
t

⟩
=

e−κ(T1−t)e−κ(T2−t)σ2
tF

T1
t F T2

t dt√[
e−2κ(T1−t)σ2

t

(
F T1
t

)2] [
e−2κ(T2−t)σ2

t

(
F T2
t

)2] = 1

which concludes proof of this corollary. �

Like the drawback of single factor short rate model in interest rate modeling, the one-factor

MRLR model implies that VIX futures with different maturities are perfectly correlated

instantaneously.

Theorem 3.2：(VIX Option Pricing)

Under the assumption of MRLR process in Definition 3.1, VIX call option CallTt (K)
.
=

exp
{
−
∫ T
t
rsds

}
· EQ

t

[
(V IXT −K)+

]
can be explicitly solved as

CallTt (K) = exp

{
−
∫ T

t

rsds

}
·
[
F T
t · Π1 −K · Π2

]
= exp

{
−
∫ T

t

rsds

}
·
[
F T
t · Φ (d1)−K · Φ (d2)

]
(3.9)

where Φ is cumulative distribution function of standard normal variable, d1 and d2 are

defined as 
d1 =

ln(FT
t /K)+

1
2

∫ T
t σ2

se
−2κ(T−s)ds√∫ T

t σ2
se

−2κ(T−s)ds

d2 =
ln(FT

t /K)−
1
2

∫ T
t σ2

se
−2κ(T−s)ds√∫ T

t σ2
se

−2κ(T−s)ds

(3.10)

Furthermore, VIX put option PutTt (K)
.
= exp

{
−
∫ T
t
rsds

}
·EQ

t

[
(K − V IXT )

+] can be

explicitly solved as

PutTt (K) = exp

{
−
∫ T

t

rsds

}
·
[
K · (1− Π2)− F T

t · (1− Π1)
]
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= exp

{
−
∫ T

t

rsds

}
·
[
K · Φ (−d2)− F T

t · Φ (−d1)
]

(3.11)

Proof:

VIX option is settled with spot VIX at maturity, thus it can be regarded as an option on spot

VIX. Alternatively, VIX option can also be regarded as an option written on VIX future

contract which has the same maturity as VIX option, because

CallTt (K) = exp

{
−
∫ T

t

rsds

}
· EQ

t

[
(V IXT −K)+

]
= exp

{
−
∫ T

t

rsds

}
· EQ

t

[(
F T
T −K

)+]
(3.12)

Based on the conditional log-normal distribution of F T
T given by driftless dynamics of F T

t

as in eqn. (3.6), we can just use Black’s formula with time-dependent volatility to obtain

call and put option prices as in eqn. (3.9) and (3.11). �

Of course, pricing formulas (3.9) and (3.11) can also be derived by treating VIX option

with spot VIX as underlying and using the log-normal distribution of spot VIX as shown

in eqn. (3.2).

The pricing formula (3.9) seems very close to the Whaley [28] pricing formula (2.21). How-

ever, in formula (2.21) the VIX future is priced with a problematic formula and if the input

of current underlying level is spot VIX, the obtained VIX option price can be wrong. In

contrast, in pricing formula (3.9) the VIX future F T
t is also priced with MRLR model and

after calibration it can perfectly match market VIX future prices. Therefore, even the spot

VIX is used as input for current level of underlying, the VIX option pricing formula can

still perfectly fit VIX ATM implied volatility term structure.

3.3 VIX Future and VIX Option Calibration

Theorem 3.3：(Calibration of VIX ATM Implied Vol and VIX Future Term Structure)

For the MRLR model in Definition 3.1, VIX option is priced using a log-normal underlying

F T
t with time-dependent volatility. Thus this model has no effect of skewness and we can

only imply ATM implied volatility of VIX option using this model. From the result of
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Black’s formula, we can easily derive

σIVATM (T ) =

√
1

T

∫ T

0

e−2κ(T−s)σ2
sds (3.13)

where σIVATM (T ) is ATM VIX implied volatility term structure. Thus we have the below

calibration formula

σ2
T =

[
σIVATM (T )

]2 · (1 + 2κT ) + 2TσIVATM (T )
dσIVATM (T )

dT
(3.14)

In practice, one could specify a pre-given value for mean-reverting speed κ and calibrate σt

to ATM VIX implied volatility term structure according to above formula. With calibration

result of κ and σt from ATM implied volatility term structure, we can move forward to

calibrate VIX future term structure.

θT = fT0 +
1

κ

dfT0
dT

− 1

2

[
σ2
T

κ
−
∫ T

0

e−2κ(T−s)σ2
sds

]
(3.15)

where fT0
.
= lnF T

0 is the initial VIX future term structure.

Proof:

In order to prove the pricing formula (3.14), we take derivatives w.r.t. T on both sides of

eqn. (3.13). Thus we get

[
σIVATM (T )

]2
+ 2σIVATM (T )

dσIVATM (T )

dT
T

= σ2
T − 2κ

∫ T

0

e−2κ(T−s)σ2
sds

= σ2
T − 2κ

[
σIVATM (T )

]2
T

Reorganize the above equation, we get calibration formula (3.14) for vol-of-vol σt. Ac-

cording to eqn. (3.4), the initial VIX future term structure F T
0 is given by

F T
0 = {V IX0}e

−κT

· exp
{
κ

∫ T

0

e−κ(T−s)θsds+
1

2

∫ T

0

e−2κ(T−s)σ2
sds

}
Thus

fT0 = lnF T
0 = e−κT · lnV IX0 + κ

∫ T

0

e−κ(T−s)θsds+
1

2

∫ T

0

e−2κ(T−s)σ2
sds
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Take derivative w.r.t. T on both sides of the above equation, we get

dfT0
dT

= −κe−κT · lnV IX0 + κθT − κ2
∫ T

0

e−κ(T−s)θsds+
1

2
σ2
T

−κ
∫ T

0

e−2κ(T−s)σ2
sds

= −κe−κT · lnV IX0 + κθT +
1

2
σ2
T − κ

∫ T

0

e−2κ(T−s)σ2
sds

−κ
[
κ

∫ T

0

e−κ(T−s)θsds

]
= −κe−κT · lnV IX0 + κθT +

1

2
σ2
T − κ

∫ T

0

e−2κ(T−s)σ2
sds

−κ
[
fT0 − e−κT · lnV IX0 −

1

2

∫ T

0

e−2κ(T−s)σ2
sds

]
= κθT +

1

2

[
σ2
T − κ

∫ T

0

e−2κ(T−s)σ2
sds

]
− κfT0 (3.16)

Rearrange the above equation, we get the result in eqn. (3.15). �

The above calibration formulas (3.14) and (3.15) suggest calibration strategy of this model.

On the first stage of calibration, we calibrate the vol-of-vol function σt to VIX ATM implied

volatility term structure with a given pre-specified mean-reverting speed κ using formula

(3.14). On the second stage of calibration, we further calibrate the long-term mean function

θt to initial VIX future term structure using formula (3.15).

3.4 VIX Future and VIX Option Hedging

VIX future is defined as the expectation in future level of change in spot VIX. However,

spot VIX is not tradable asset and investors can not take position on this index. This is

similar as the situation in fixed income modeling framework. Interest rate is not a tradable

asset but it’s the driving factor of fixed income assets and derivatives. In fixed income asset

class, one can calculate sensitivities of both interest rate derivatives and bonds to interest

rate and then use those sensitives to further develop hedging strategies for interest rate

derivatives with bonds as hedging instruments. Similarly, one can calculate sensitivities

of VIX futures and VIX options with respect to spot VIX and further develop hedging
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strategies for VIX futures and VIX options with other VIX future contracts as hedging

instruments.

Theorem 3.4：(VIX Future Hedging)

Firstly, we calculate the sensitivities of VIX future price to spot VIX. We are concerned

with the spot delta and spot gamma.
∂FT

t

∂V IXt
= e−κ(T−t)

V IXt
· F T

t

∂2FT
t

∂V IX2
t
= − e−κ(T−t)·[1−e−κ(T−t)]

V IX2
t

· F T
t

(3.17)

Based on the above formulas, we can move forward to calculate sensitivities of VIX future

with maturity T2 to another VIX future with shorter maturity T1.
∂F

T2
t

∂F
T1
t

= e−κ(T2−T1) · F
T2
t

F
T1
t

∂2F
T2
t

∂(FT1
t )

2 = −e−2κ(T2−T1) ·
[
eκ(T2−T1) − 1

]
· F

T2
t

(FT1
t )

2

(3.18)

Proof:

Given the pricing formula for VIX future in eqn. (3.4), we have the first order derivative of

VIX future with respect to V IXt as

∂F T
t

∂V IXt

= e−κ(T−t) · {V IXt}e
−κ(T−t)−1

· exp
{
κ

∫ T

t

e−κ(T−s)θsds+
1

2

∫ T

t

e−2κ(T−s)σ2
sds

}
=

e−κ(T−t)

V IXt

· F T
t

Based on the above equation, we can further calculate

∂2F T
t

∂V IX2
t

=
∂

∂V IXt

[
e−κ(T−t)

V IXt

· F T
t

]
=

e−κ(T−t)

V IXt

· ∂F T
t

∂V IXt

+
−e−κ(T−t)

V IX2
t

· F T
t

=
e−κ(T−t)

V IXt

· e
−κ(T−t)

V IXt

· F T
t +

−e−κ(T−t)

V IX2
t

· F T
t

= −
e−κ(T−t) ·

[
1− e−κ(T−t)

]
V IX2

t

· F T
t

Furthermore, we notice the below change of variable formula
∂Y
∂Z

= ∂Y
∂X

/
∂Z
∂X

∂2Y
∂Z2 =

∂2Y
∂X2

∂Z
∂X

− ∂2Z
∂X2

∂Y
∂X

( ∂Z
∂X )

3

(3.19)
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Therefore, by making use of the above formula we can derive the delta hedging ratio of

VIX future w.r.t. a shorter term maturity VIX future as

∂F T2
t

∂F T1
t

=
∂F T2

t

∂V IXt

/
∂F T1

t

∂V IXt

=

[
e−κ(T2−t) · F T2

t

V IXt

]/[
e−κ(T1−t) · F T1

t

V IXt

]
= e−κ(T2−T1) · F

T2
t

F T1
t

(3.20)

and finally

∂2F T2
t

∂
(
F T1
t

)2 =

[
∂2F T2

t

∂V IX2
t

∂F T1
t

∂V IXt

− ∂2F T1
t

∂V IX2
t

∂F T2
t

∂V IXt

]/(
∂F T1

t

∂V IXt

)3

=

[
−e

−κ(T2−t) · F T2
t

V IX2
t

[
1− e−κ(T2−t)

] e−κ(T1−t) · F T1
t

V IXt

+
e−κ(T1−t) · F T1

t

V IX2
t

[
1− e−κ(T1−t)

] e−κ(T2−t) · F T2
t

V IXt

]/(
e−κ(T1−t) · F T1

t

V IXt

)3

=
−e−κ(T2−t) · F T2

t

[
1− e−κ(T2−t)

]
+
[
1− e−κ(T1−t)

]
e−κ(T2−t) · F T2

t(
e−κ(T1−t) · F T1

t

)2
=

e−κ(T2−t) ·
[
1− e−κ(T1−t)

]
− e−κ(T2−t) ·

[
1− e−κ(T2−t)

]
e−2κ(T1−t)

· F T2
t(

F T1
t

)2
=

e−κ(T2−t)e−κ(T2−t) − e−κ(T2−t)e−κ(T1−t)

e−2κ(T1−t)
· F T2

t(
F T1
t

)2
=

[
e−2κ(T2−T1) − e−κ(T2−T1)

]
· F T2

t(
F T1
t

)2
= −e−2κ(T2−T1) ·

[
eκ(T2−T1) − 1

]
· F T2

t(
F T1
t

)2 (3.21)

which concludes proof of this theorem. �

Theorem 3.5：(VIX Option Hedging)

Firstly, we calculate the sensitivities of VIX call option price to spot VIX. We are concerned

with the spot delta and spot gamma.{
∂CallTt
∂V IXt

=
e−(r+κ)(T−t)·FT

t

V IXt
· Π1

∂2CallTt
∂V IX2

t
=

e−(r+κ)(T−t)·FT
t

V IX2
t

{[
e−κ(T−t) − 1

]
· Π1 + e−κ(T−t) · f1 (lnK)

} (3.22)
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where Π1 is defined in eqn. (3.9) and f1 (x) is conditional p.d.f. of lnV IXT under a mar-

tingale measure with V IXt as numeraire and it can be expressed as

f1 (lnK) = − dΠ1

d (lnK)
= −dΠ1 (K)

d (lnK)
(3.23)

Based on the above formulas (3.22), we can move forward to calculate sensitivities of VIX

call option price with maturity T2 to a VIX future with shorter maturity T1.
∂Call

T2
t

∂F
T1
t

= e−r(T2−t)e−κ(T2−T1) · F
T2
t

F
T1
t

· Π1(T2)

∂2Call
T2
t

∂(FT1
t )

2 = e−r(T2−t)e−2κ(T2−T1) · F
T2
t

(FT1
t )

2 ·
[(
1− eκ(T2−T1)

)
· Π1 + f1 (lnK)

] (3.24)

Proof:

Proof of formula (3.22) is referred to Theorem 4.6 in next chapter where we provide proof

for the formula in more generic setup.

Using the change of variable formula in eqn. (3.19), we can easily derive the first and

second order sensitivities of VIX call option w.r.t. VIX future that has shorter maturity

than call option.

Firstly, we calculate the first order sensitivity of VIX call option with maturity T2 with

respect to VIX future with maturity T1 < T2.

∂CallT2t
∂F T1

t

=
∂CallT2t
∂V IXt

/
∂F T1

t

∂V IXt

=

[
e−(r+κ)(T2−t) · F T2

t

V IXt

· Π1

]/[
e−κ(T1−t) · F T1

t

V IXt

]
= e−r(T2−t) · e−κ(T2−T1) · F

T2
t

F T1
t

· Π1 (3.25)

Now, we move forward to calculate the gamma sensitivity of CallT2t with respect to F T1
t

∂2CallT2t

∂
(
F T1
t

)2 =

[
∂2CallT2t
∂V IX2

t

∂F T1
t

∂V IXt

− ∂2F T1
t

∂V IX2
t

∂CallT2t
∂V IXt

]/(
∂F T1

t

∂V IXt

)3

=

{
−e

−(r+κ)(T2−t) · F T2
t

V IX2
t

{[
1− e−κ(T2−t)

]
· Π1 − e−κ(T2−t) · f1 (lnK)

} e−κ(T1−t) · F T1
t

V IXt

−
[
−e

−κ(T1−t) · F T1
t

V IX2
t

[
1− e−κ(T1−t)

]] e−(r+κ)(T2−t) · F T2
t

V IXt

· Π1

}
/(

e−κ(T1−t) · F T1
t

V IXt

)3
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=
{
−e−(r+κ)(T2−t) · F T2

t

{[
1− e−κ(T2−t)

]
· Π1 − e−κ(T2−t) · f1 (lnK)

}
e−κ(T1−t) · F T1

t

+
[
e−κ(T1−t) · F T1

t

[
1− e−κ(T1−t)

]]
e−(r+κ)(T2−t) · F T2

t · Π1

}
/(
e−κ(T1−t) · F T1

t

)3
=

{
−e−(r+κ)(T2−t) · F T2

t

{[
1− e−κ(T2−t)

]
· Π1 − e−κ(T2−t) · f1 (lnK)

}
+
[
1− e−κ(T1−t)

]
e−(r+κ)(T2−t) · F T2

t · Π1

}
/(
e−κ(T1−t) · F T1

t

)2
=

{
e−(r+κ)(T2−t) · F T2

t · Π1 ·
(
e−κ(T2−t) − e−κ(T1−t)

)
+e−(r+κ)(T2−t) · F T2

t · e−κ(T2−t) · f1 (lnK)
}/(

e−κ(T1−t) · F T1
t

)2
= e−(r+κ)(T2−t) · F T2

t(
F T1
t

)2 ·
Π1 ·

(
e−κ(T2−t) − e−κ(T1−t)

)
+ e−κ(T2−t) · f1 (lnK)

e−2κ(T1−t)

= e−(r+κ)(T2−t)eκ(T1−t) · F T2
t(

F T1
t

)2 ·
[
−
(
1− e−κ(T2−T1)

)
· Π1 + e−κ(T2−T1) · f1 (lnK)

]
= e−r(T2−t)e−2κ(T2−T1) · F T2

t(
F T1
t

)2 ·
[(
1− eκ(T2−T1)

)
· Π1 + f1 (lnK)

]
(3.26)

which concludes proof of this theorem. �

3.5 Forward Variance Swap and Convexity

Another contract with close connection to VIX future is forward variance swap. The reason

of mentioning forward variance is that variance swap has longer history than VIX future

and nowadays variance swap market is very liquid and many investors treat variance swap

as a benchmark in modeling and calibration of volatility derivatives. The popularity of

variance swap is due to the fact that variance swap as forward contract in realized variance

can be statically replicated by a series of OTM SPX options. One of the popular market

practices in the industry is to price VIX future by adding a convexity adjustment term to a

relevant forward variance swap.

Theorem 3.6：(Forward Variance Swap Pricing)

Under the assumption of MRLR process in Definition 3.1, forward variance swap on a
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30-day realized variance

FV STt
.
= EQ

t

[
RV T+30days

T

]
= EQ

t

[
EQ
T

[
RV T+30days

T

]]
= EQ

t

[
V IX2

T

]
(3.27)

can be explicitly solved as

FV STt = {V IXt}2e
−κ(T−t)

· exp
{
2κ

∫ T

t

e−κ(T−s)θsds+ 2

∫ T

t

e−2κ(T−s)σ2
sds

}
(3.28)

In particular, when parameters θ and σ are constant, forward variance swap can be ex-

pressed as

FV STt = {V IXt}2e
−κ(T−t)

· exp
{
2θ
[
1− e−κ(T−t)

]
+
σ2

κ

[
1− e−2κ(T−t)]} (3.29)

Furthermore, dynamics of the 30-day forward variance swap under pricing measure Q can

be given by

dFV STt
FV STt

= 2e−κ(T−t) · σtdWt (3.30)

Proof:

Forward variance swap pricing formula (3.28) is direct consequence of log-normal distri-

bution of V IX under pricing measure Q as shown in eqn. (3.2).

Using Ito’s lemma to eqn. (3.28) and dynamics of V IXt in eqn. (3.7), we get

dFV STt = exp

{
2

∫ T

t

κθse
−κ(T−s)ds+ 2

∫ T

t

σ2
se

−2κ(T−s)ds

}
·2e−κ(T−t) · {V IXt}2e

−κ(T−t)−1dV IXt

+
1

2
exp

{
2

∫ T

t

κθse
−κ(T−s)ds+ 2

∫ T

t

σ2
se

−2κ(T−s)ds

}
·2κe−κ(T−t)

[
2κe−κ(T−t) − 1

]
· {V IXt}2e

−κ(T−t)−2dV IXtdV IXt

+exp

{
2

∫ T

t

κθse
−κ(T−s)ds+ 2

∫ T

t

σ2
se

−2κ(T−s)ds

}
· lnV IXt · {V IXt}2e

−κ(T−t)

· 2κe−κ(T−t)dt

−
[
2κθte

−κ(T−t) + 2e−2κ(T−t)σ2
t

]
· FV STt dt

= FV STt · 2e−κ(T−t) ·
{[(

θtκ+
σ2
t

2

)
− κ lnV IXt

]
dt+ σtdWt

}
+
1

2
FV STt · 2κe−κ(T−t)

[
2κe−κ(T−t) − 1

]
· σ2

t dt
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+FV STt · lnV IXt · 2κe−κ(T−t)dt

−
[
2κθte

−κ(T−t) + 2e−2κ(T−t)σ2
t

]
· FV STt dt

= FV STt · 2e−κ(T−t) · σtdWt

which concludes proof of eqn. (3.30). �

From eqn. (3.27), the 30-day forward variance swap can be regarded as a contract with

payoff of quadratic in spot VIX. In contract, VIX future is linear in spot VIX. Therefore,

forward variance swap has a convexity term compared to VIX future.

Theorem 3.7：(Convexity Adjustment for VIX Future)

Under the assumption of MRLR process in Definition 3.1, convexity adjustment of VIX

future from forward variance swap can be derived as

CATt
.
=

F T
t√

FV STt
= exp

{
−1

2

∫ T

t

e−2κ(T−s)σ2
sds

}
(3.31)

When parameter σt is constant, we have

CATt = exp

{
−σ

2

4κ

[
1− e−2κ(T−t)]} (3.32)

Proof:

From the pricing formulas of VIX future in eqn. (3.4) and 30-day forward variance swap

in eqn. (3.28), the convexity adjustment can be derived as

CATt =
F T
t√

FV STt

=
{V IXt}e

−κ(T−t)

· exp
{
κ
∫ T
t
e−κ(T−s)θsds+

1
2

∫ T
t
e−2κ(T−s)σ2

sds
}

{V IXt}e
−κ(T−t) · exp

{
κ
∫ T
t
e−κ(T−s)θsds+

∫ T
t
e−2κ(T−s)σ2

sds
}

= exp

{
−1

2

∫ T

t

e−2κ(T−s)σ2
sds

}
which concludes proof of this theorem. �

Corollary 3.2：(Parameter Sensitivities of Convexity Adjustment)
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Under the assumption of MRLR process in Definition 3.1, when parameters are constant

we have

∂CV T
t

∂σ
= − σ

2κ

[
1− e−2κ(T−t)] · CATt < 0 (3.33)

and

∂CV T
t

∂κ
= − σ

2κ

[
1− e−2κ(T−t)] · CATt > 0 (3.34)

From the definition of convexity adjustment in (3.27), we have 0 < CATt < 1. The smaller

CATt is, the more significant convexity effect in forward variance swap is. Therefore, the

larger σ (smaller κ) is the more significant convexity embedded in forward variance swap.

This is understandable because σ increases volatility of spot VIX and κ decrease the vol-

of-vol.

As discussed in this chapter, the calibration of MRLR model is separated into two stages.

On the first stage of calibration, the vol-of-vol function σt is calibrated. Given this calibra-

tion result, the long-term mean function θt is calibrated to VIX future term structure.

Two strategies are suggested to calibrate σt. As shown in Theorem 3.5, σt is calibrated

to ATM VIX option term structure because VIX option is sensitive to vol-of-vol of VIX

index. Alternative, σt can also be calibrated to 30-day forward variance swap term structure

because Theorem 3.7 shows that the convexity adjustment of VIX future from forward

variance swap is mainly determined by σt given a pre-specified parameter κ.

On application side of MRLR model, we conclude that MRLR is not suitable for pricing

VIX option as it generates no skew for VIX option. In contract, this simple model maybe a

candidate model for pricing VIX future as the model fits initial VIX future term structure

by construction and the vol-of-vol information of VIX can be backed out from either AT-

M VIX implied volatility term structure or 30-day forward variance swap term structure.

However, the instantaneous correlation of VIX futures with different maturities are perfect-

ly correlated. Therefore, if more exotic contracts on VIX futures that are sensitive to this

instantaneous correlation are concerned, multi-factor MRLR model need to be applied.
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4 MRLRJ Model

As shown in Theorem 3.1, VIX future under MRLR follows a geometric Brownian motion.

Therefore, MRLR is unable to produce implied volatility skew for VIX option. One way to

modify MRLR model is to add jump into MRLR dynamics so that we expect VIX future

follows a jump-diffusion model and thus market VIX skew can be reproduced. Another

possible choice is to add stochastic volatility to MRLR where the instantaneous stochastic

volatility is positively correlated to spot VIX so that the positive skew can be captured.

In this chapter, I present the first extension of MRLR model by adding jump to spot VIX so

that it follows mean-reverting logarithmic jump model (MRLRJ). Recall the experience of

skew modeling in equity option market. One significant explanation for the negative skew

in equity option market is the possible large downside jumps in underlying equity market.

By adding downward jump into dynamics of underlying stock, the jump-diffusion model is

able to create negative implied skew in equity market, especially for short-term maturities.

Similarly, by adding upward jump into spot VIX we expect the MRLRJ model is able to

capture positive skew observed in VIX option market.

4.1 MRLRJ dynamics and characteristic function

I first present the dynamics of lnV IXt under MRLRJ model here. In order to calibrate this

model to initial VIX future curve, I make the long-term mean θt be time-dependent. Also, in

order to calibrate to VIX ATM implied volatility term structure and VIX implied volatility

skew, I let the instantaneous volatility-of-volatility (vol-of-vol) to be time dependent and

use the upward jump in MRLRJ to calibrate to skew.

Definition 4.1：(MRLRJ Dynamics)

Under martingale measure Q, the mean-reverting logarithmic jump process is formulated

as

d lnV IXt = κ (θt − lnV IX t) dt+ σtdWt + JdNt (4.1)
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where κ is mean-reverting speed, time-dependent function θt is the long-term mean of

logarithm of spot VIX, σt is also a function of time that can be thought as vol-of-vol for

spot VIX. Nt is Poisson process with jump intensity λ and J is exponentially distributed

jump size with J ∼ Exp(η) and η > 0.

Of course parameters θt and σt can either be constant or time-dependent. When θt is time-

dependent, e.g. piece-wise constant, it can be calibrated to term structure of VIX future.

The time-dependent vol-of-vol function σt and jump parameters can be used to calibrate to

VIX implied volatility skew and term structure.

Unlike MRLR model, we have no analytical transition function available under MRLR-

J model. The standard way to get around this is to derive the conditional characteristic

function and use the standard method of Heston model to get option pricing formula.

Definition 4.2：(Conditional Characteristic Function)

For generic mean-reverting logarithmic process, either with jump and/or stochastic volatility-

of-volatility or not, we define conditional characteristic function of lnV IXT conditioned

on the information at time t as below

ψ (t; s)
.
= EQ

t

[
eis lnV IXT

]
= EQ [eis lnV IXT

∣∣Ft

]
(4.2)

Theorem 4.1：(VIX Characteristic Function)

Under the assumption of MRLRJ process in Definition 4.1, characteristic function of spot

VIX logarithm lnV IXT under martingale measure Q conditioned on information at time

t is given by

ψ (t; s) = exp
{
A (t; s) + ise−κ(T−t)lnV IXt

}
(4.3)

where function A(t; s) is given by

A (t; s) = κis

∫ T

t

θue
−κ(T−u)du− 1

2
s2
∫ T

t

σ2
ue

−2κ(T−u)du+
λ

κ
ln
η − ise−κ(T−t)

η − is
(4.4)

In particular, if parameters θ and σ are constant, we have function A(t; s) as

A (t; s) = isθ
[
1− e−κ(T−t)

]
− s2σ2 1

4κ

[
1− e−2κ(T−t)]+ λ

κ
ln
η − ise−κ(T−t)

η − is
(4.5)
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Proof:

Denote Xt = lnV IXt and define the below martingale

ft
.
= f (Xt, t) = EQ [g (XT )| Ft] = EQ [g (XT )|Xt] (4.6)

Then according to eqn. (4.1) dynamics of Xt is given by

dXt = κ (θt −Xt) dt+ σtdWt + JdNt

and dynamics of ft is given by

dft =
∂f

∂t
dt+

∂f

∂X
dXc +

1

2

∂2f

∂X2
dXc · dXc

+ [f (Xt− + J, t)− f (Xt−, t−)] dNt

=
∂f

∂t
dt+

∂f

∂X
[κ (θt −Xt) dt+ σtdWt] +

1

2

∂2f

∂X2
σ2
t dt

+ [f (Xt− + J, t)− f (Xt−, t−)] dNt

+Et [f (Xt− + J, t)− f (Xt−, t−)]λdt− Et [f (Xt− + J, t)− f (Xt−, t−)]λdt

=

[
∂f

∂t
+ κ (θt −Xt)

∂f

∂X
+

1

2

∂2f

∂X2
σ2
t

]
dt+ Et [f (Xt− + J, t)− f (Xt−, t−)]λdt

+
∂f

∂X
σtdW

+ {[f (Xt− + J, t)− f (Xt−, t−)] dNt − Et [f (Xt− + J, t)− f (Xt−, t−)]λdt}

Using the martingale property of ft, we conclude the PIDE controlling ft as below

∂f

∂t
+ κ (θt −Xt)

∂f

∂X
+

1

2

∂2f

∂X2
σ2
t + Et [f (Xt− + J, t)− f (Xt−, t−)]λ = 0 (4.7)

In particular, for conditional characteristic function defined in eqn. (4.2), ψ is also deter-

mined by the above PIDE and it’s given by solution of the below initial problem{
∂ψ
∂t

+ κ (θt −Xt)
∂ψ
∂X

+ 1
2
∂2ψ
∂X2σ

2
t + Et [ψ (Xt− + J, t)− ψ (Xt−, t−)]λ = 0

ψ|t=T = eisXT
(4.8)

To solve the characteristic function explicitly, we use the affine feature of MRLRJ model

to make the below guess of solution{
ψ (t; s) = exp

{
A (t; s) + ise−κ(T−t)Xt

}
A (T ; s) ≡ 0

(4.9)
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For the above guess of solution, we calculate its derivatives w.r.t. to t and Xt
∂ψ
∂t

=
[
∂A
∂t

+ isκe−κ(T−t)Xt

]
ψ

∂ψ
∂Xt

= ise−κ(T−t)ψ
∂2ψ
∂X2

t
= −s2e−2κ(T−t)ψ

and the conditional expectation

Et [ψ (Xt− + J, t)− ψ (Xt−, t−)] = Et
[
exp

{
ise−κ(T−t)J

}
− 1
]
ψ

Plug the above derivatives into eqn. (4.9), we derive the ODE that determines function

At
.
= A(t; s) as below

∂A

∂t
+ θtκise

−κ(T−t) − 1

2
σ2
t s

2e−2κ(T−t) + Et

[
eise

−κ(T−t)J − 1
]
λ = 0 (4.10)

Using the exponential distribution of J , we calculate the conditional expectation in the

above ODE and simplify this ODE to the following one

∂A

∂t
+ θtκise

−κ(T−t) − 1

2
σ2
t s

2e−2κ(T−t) +
ise−κ(T−t)

η − ise−κ(T−t)
λ = 0 (4.11)

which can be written as

−∂A
∂t

= θtκise
−κ(T−t) − 1

2
σ2
t s

2e−2κ(T−t) +
ise−κ(T−t)

η − ise−κ(T−t)
λ

Therefore

At − AT = κis

∫ T

t

θue
−κ(T−u)du− 1

2
s2
∫ T

t

σ2
ue

−2κ(T−u)du+ λ

∫ T

t

ise−κ(T−u)

η − ise−κ(T−u)
du

Using the terminal condition AT = 0, we get

A (t; s) = At = κis

∫ T

t

θue
−κ(T−u)du− 1

2
s2
∫ T

t

σ2
ue

−2κ(T−u)du

+λ

∫ T

t

ise−κ(T−u)

η − ise−κ(T−u)
du

= κis

∫ T

t

θue
−κ(T−u)du− 1

2
s2
∫ T

t

σ2
ue

−2κ(T−u)du− λ

κ

∫ T

t

d
[
η − ise−κ(T−u)

]
η − ise−κ(T−u)

= κis

∫ T

t

θue
−κ(T−u)du− 1

2
s2
∫ T

t

σ2
ue

−2κ(T−u)du− λ

κ
ln
(
η − ise−κ(T−u)

)∣∣T
t

= κis

∫ T

t

θue
−κ(T−u)du− 1

2
s2
∫ T

t

σ2
ue

−2κ(T−u)du+
λ

κ
ln
η − ise−κ(T−t)

η − is

which proves the general formula for A(t; s) as in eqn. (4.4). In particular, when θ and σ

are constant, we calculate the first and second integrations in above equation and conclude

the proof of eqn. (4.5). �
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4.2 VIX Future and VIX Option Pricing

Based on the conditional characteristic function of spot VIX under martingale measure Q

as in eqn. (4.3), we can derive the pricing formulas for VIX future and VIX option.

Theorem 4.2：(VIX Future Pricing)

Under the assumption of MRLRJ process in Definition 4.1, VIX future F T
t can be explicitly

solved as

F T
t = {V IXt}e

−κ(T−t)

· exp
{
κ

∫ T

t

θue
−κ(T−u)du+

1

2

∫ T

t

σ2
ue

−2κ(T−u)du

+
λ

κ
ln
η − e−κ(T−t)

η − 1

}
(4.12)

In particular, when parameters θ and σ are constant, VIX future can be expressed as

F T
t = {V IXt}e

−κ(T−t)

· exp
{
θ
[
1− e−κ(T−t)

]
+
σ2

4κ

[
1− e−2κ(T−t)]

+
λ

κ
ln
η − e−κ(T−t)

η − 1

}
(4.13)

Furthermore, dynamics of VIX future under pricing measure Q can be given by

dF T
t

F T
t−

= e−κ(T−t) · σtdWt +

{[
eJe

−κ(T−t) − 1
]
· dNt −

e−κ(T−t)

η − e−κ(T−t)
λdt

}
(4.14)

Proof:

VIX future pricing formula (4.12) can be derived from the conditional characteristic func-

tion of of lnV IXT under pricing measure Q. From eqn. (4.3) and (4.4), we have condi-

tional characteristic function explicitly given as.

ψ (t; s) = {V IXt}ise
−κ(T−t)

· exp
{
isκ

∫ T

t

θue
−κ(T−u)du

−s
2

2

∫ T

t

σ2
ue

−2κ(T−u)du+
λ

κ
ln
η − ise−κ(T−t)

η − is

}
(4.15)

Thus VIX future can be derived as

F T
t = EQ

t [V IXT ] = EQ
t

[
elnV IXT

]
= ψ (t;−i)

= {V IXt}e
−κ(T−t)

· exp
{
κ

∫ T

t

θue
−κ(T−u)du+

1

2

∫ T

t

σ2
ue

−2κ(T−u)du
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+
λ

κ
ln
η − e−κ(T−t)

η − 1

}
In order to derive the risk-neutral dynamics of VIX future, we first derive dynamics of

V IXt under the pricing measure.

dV IXt = delnV IXt

= elnV IXtd lnV IXc
t +

1

2
elnV IXtd lnV IXc

t d lnV IX
c
t

+
[
elnV IXt−+J − elnV IXt−

]
dNt

= V IXt [κ (θt − lnV IXt) dt+ σtdWt] +
V IXt

2
σ2
t dt+ V IXt−

[
eJ − 1

]
dNt

= V IXt

[(
θtκ+

σ2
t

2

)
− κ lnV IXt

]
dt+ V IXtσtdWt + V IXt−

[
eJ − 1

]
dNt

Consequently, we get

dV IXt

V IXt−
=
[(
θtκ+

σ2
t

2

)
− κ lnV IXt

]
dt+ σtdWt +

[
eJ − 1

]
dNt (4.16)

Using Ito’s lemma to eqn. (4.12) and result in the above equation, we get

dF T
t = exp

{
κ

∫ T

t

θue
−κ(T−u)du+

1

2

∫ T

t

σ2
ue

−2κ(T−u)du+
λ

κ
ln
η − e−κ(T−t)

η − 1

}
·e−κ(T−t) · {V IXt}e

−κ(T−t)−1dV IXc
t

+
1

2
exp

{
κ

∫ T

t

θue
−κ(T−u)du+

1

2

∫ T

t

σ2
ue

−2κ(T−u)du+
λ

κ
ln
η − e−κ(T−t)

η − 1

}
·e−κ(T−t)

[
e−κ(T−t) − 1

]
· {V IXt}e

−κ(T−t)−2dV IXc
t dV IX

c
t

+exp

{
κ

∫ T

t

θue
−κ(T−u)du+

1

2

∫ T

t

σ2
ue

−2κ(T−u)du+
λ

κ
ln
η − e−κ(T−t)

η − 1

}
· lnV IXt · {V IXt}e

−κ(T−t)

· κe−κ(T−t)dt

−
[
κθte

−κ(T−t) +
1

2
e−2κ(T−t)σ2

t +
λe−κ(T−t)

η − e−κ(T−t)

]
· F T

t dt

+
[
F T
t (lnV IXt− + J)− F T

t (lnV IXt−)
]
dNt

= F T
t · e−κ(T−t) ·

{[(
θtκ+

σ2
t

2

)
− κ lnV IXt

]
dt+ σtdWt

}
+
1

2
F T
t · e−κ(T−t)

[
e−κ(T−t) − 1

]
· σ2

t dt

+F T
t · lnV IXt · κe−κ(T−t)dt

−
[
κθte

−κ(T−t) +
1

2
e−2κ(T−t)σ2

t +
λe−κ(T−t)

η − e−κ(T−t)

]
· F T

t dt
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+
[
eJe

−κ(T−t) − 1
]
· F T

t−dNt

= F T
t · e−κ(T−t) · σtdWt + F T

t−

{[
eJe

−κ(T−t) − 1
]
· dNt −

e−κ(T−t)

η − e−κ(T−t)
λdt

}
which concludes proof of eqn. (4.14). �

Corollary 4.1：(VIX Future Correlation)

From the dynamics of VIX future in eqn. (4.14), we get the instantaneous correlation of

VIX futures with different maturities as

ρT1,T2t = corr
(
dF T1

t , dF T2
t

) .
=

⟨
dF T1

t , dF T2
t

⟩√⟨
dF T1

t , dF T1
t

⟩ ⟨
dF T2

t , dF T2
t

⟩
=

[
e−κ(T1−t)e−κ(T2−t)σ2

t dt+
(
eJe

−κ(T1−t) − 1
)(

eJe
−κ(T1−t) − 1

)
dNt

]
√[

e−2κ(T1−t)σ2
t +

(
eJe

−κ(T1−t) − 1
)2
dNt

] [
e−2κ(T2−t)σ2

t +
(
eJe

−κ(T2−t) − 1
)2
dNt

]
< 1 (4.17)

Proof:

Given dynamics of VIX future in eqn. (4.14), we have

ρT1,T2t =

⟨
dF T1

t , dF T2
t

⟩√⟨
dF T1

t , dF T1
t

⟩ ⟨
dF T2

t , dF T2
t

⟩
=

[
F T1
t−F

T2
t−

[
e−κ(T1−t)e−κ(T2−t)σ2

t dt+
(
eJe

−κ(T1−t) − 1
)(

eJe
−κ(T1−t) − 1

)
dNt

]]
/{(

F T1
t−
)2 [

e−2κ(T1−t)σ2
t +

(
eJe

−κ(T1−t) − 1
)2
dNt

]
·
(
F T2
t−
)2 [

e−2κ(T2−t)σ2
t +

(
eJe

−κ(T2−t) − 1
)2
dNt

]}

=

[
e−κ(T1−t)e−κ(T2−t)σ2

t dt+
(
eJe

−κ(T1−t) − 1
)(

eJe
−κ(T1−t) − 1

)
dNt

]
√[

e−2κ(T1−t)σ2
t +

(
eJe

−κ(T1−t) − 1
)2
dNt

] [
e−2κ(T2−t)σ2

t +
(
eJe

−κ(T2−t) − 1
)2
dNt

]
< 1

which concludes proof of this corollary. �

For the two-factor MRLRJ model, the instantaneous correlation is less than 1, which is

more realistic for VIX futures with different maturities.
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Theorem 4.3：(VIX Option Pricing)

Under the assumption of MRLRJ process in Definition 4.1, VIX call option can be explic-

itly solved as

CallTt (K) = exp

{
−
∫ T

t

rsds

}
·
[
F T
t · Π1 −K · Π2

]
(4.18)

where Π1 and Π2 are two tail probabilities{
Πj =

1
2
+ 1

π

∫∞
0

Re
{
ψj(s)e

−is lnK

is

}
ds, j = 1, 2

ψ1 (t; s) =
ψ(t;s−i)
ψ(t;−i) , ψ2 (t; s) = ψ (t; s)

(4.19)

Furthermore, VIX put option can be explicitly solved as

PutTt (K) = exp

{
−
∫ T

t

rsds

}
·
[
K · (1− Π2)− F T

t · (1− Π1)
]

(4.20)

Proof:

Although VIX call option can be regarded as an option written on VIX future which has the

same maturity as VIX option, the payoff at maturity is the same as settled using spot VIX.

Given dynamics of spot VIX under the pricing measure Q of VIX option and VIX future,

we can further make change of measure so that VIX call option price can be represented in

a similar formula as Black-Scholes formula as below

CallTt (K) = exp

{
−
∫ T

t

rsds

}
· EQ

t

[
(V IXT −K)+

]
= exp

{
−
∫ T

t

rsds

}
·
{
EQ
t

[
elnV IXT 1{lnV IXT>lnK}

]
−KEQ

t

[
1{lnV IXT>lnK}

]}
= exp

{
−
∫ T

t

rsds

}
·

{
EQ
t

[
elnV IXT

]
EQ
t

[
elnV IXT

/
EQ
[
elnV IXT

]
EQ
t

[
elnV IXT

/
EQ [elnV IXT ]

]1{lnV IXT>lnK}

]
−KEQ

t

[
1{lnV IXT>lnK}

]}
= exp

{
−
∫ T

t

rsds

}
·
{
EQ
t

[
elnV IXT

]
EQ1
t

[
1{lnV IXT>lnK}

]
−KEQ2

t

[
1{lnV IXT>lnK}

]}
≡ exp

{
−
∫ T

t

rsds

}
·
{
F T
t · Π1 −K · Π2

}
(4.21)

where the first measure is defined by the following Esscher transform

dQ1

dQ

∣∣∣∣
Ft

=
elnV IXt

EQ [elnV IXt ]
(4.22)
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and the second measure Q2 is the same as Q. In order to calculate the two tail probabilities

Π1 and Π2, conditional characteristic functions of lnV IXT on filtration Ft are first derived

by

ψ1 (t; s) = EQ1
t

[
eis lnV IXT

]
= EQ

t

[
elnV IXT

EQ
t [elnV IXT ]

eis lnV IXT

]
=

EQ
t

[
ei(−i+s) lnV IXT

]
EQ
t [elnV IXT ]

=
ψ (t; s− i)

ψ (t;−i)

and

ψ2 (t; s) = EQ2
t

[
eis lnV IXT

]
= EQ

t

[
eis lnV IXT

]
= ψ (t; s)

Given the conditional characteristic functions above, the two tail probabilities in eqn. (4.18)

can be recovered by inverse theorem of Gil-Pelaez [7], as shown in eqn. (4.19).

Pricing formula (4.20) for VIX put option can be easily derived from put-call parity and

the VIX call option pricing formula (4.18). �

4.3 VIX Future and VIX Option Calibration

Theorem 4.4：(Calibration)

For the MRLRJ model in Definition 4.1, VIX option is priced using a Jump-Diffusion

underlying F T
t with time-dependent volatility. Thus this model is able to produce implied

volatility skew for VIX option. Furthermore, the jump size is positively distributed and

thus this model is able to produce positive implied volatility skew for VIX option. Thus

parameters σt, κ and jump parameters λ and η can be used to calibrate to market implied

volatility skew for VIX option. As there is no explicit formula for implied volatility in a

Jump-Diffusion model with time-dependent volatility parameters, the calibration to VIX

implied volatility skew and term structure needs optimization.

With calibration result of κ, σt, λ and η from market quotes of VIX implied volatility

surface, we can move forward to calibrate VIX future term structure.

θT = fT0 +
1

κ

dfT0
dT

− 1

2

[
σ2
T

κ
−
∫ T

0

e−2κ(T−s)σ2
sds

]
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−λ
κ

[
e−κT

η − e−κT
+ ln

η − e−κT

η − 1

]
(4.23)

where fT0
.
= lnF T

0 is the initial VIX future term structure.

Proof: According to eqn. (4.12), the initial VIX future term structure F T
0 is given by

F T
0 = {V IX0}e

−κT

· exp
{
κ

∫ T

0

θue
−κ(T−u)du+

1

2

∫ T

0

σ2
ue

−2κ(T−u)du+
λ

κ
ln
η − e−κT

η − 1

}
Thus

fT0 = lnF T
0 = e−κT · lnV IX0 + κ

∫ T

0

e−κ(T−s)θsds+
1

2

∫ T

0

e−2κ(T−s)σ2
sds

+
λ

κ
ln
η − e−κT

η − 1

Take derivative w.r.t. T on both sides of the above equation, we get

dfT0
dT

= −κe−κT · lnV IX0 + κθT +
1

2
σ2
T − κ

∫ T

0

e−2κ(T−s)σ2
sds+ λ

e−κT

η − e−κT

−κ
[
κ

∫ T

0

e−κ(T−s)θsds

]
= −κe−κT · lnV IX0 + κθT +

1

2
σ2
T − κ

∫ T

0

e−2κ(T−s)σ2
sds+ λ

e−κT

η − e−κT

−κ
[
fT0 − e−κT · lnV IX0 −

1

2

∫ T

0

e−2κ(T−s)σ2
sds−

λ

κ
ln
η − e−κT

η − 1

]
= κθT +

1

2

[
σ2
T − κ

∫ T

0

e−2κ(T−s)σ2
sds

]
− κfT0 + λ

[
e−κT

η − e−κT
+ ln

η − e−κT

η − 1

]
Rearrange the above equation, we get the result in eqn. (4.23). �

The calibration strategy of MRLRJ model is similar as MRLR model. On the first stage

of calibration, the vol-of-vol function σt, mean-reverting speed κ and jump parameters are

calibrated to VIX implied volatility surface using the below optimization.

min
σt,κ,λ,η

∥∥CallMRLRJ (K,T )− CallMKT (K,T )
∥∥ (4.24)

where CallMRLRJ (K,T ) is MRLRJ model price of VIX option and CallMKT (K,T ) is

market quotes of VIX options.

On the second stage of calibration, we further calibrate the long-term mean function θt to

initial VIX future term structure using formula (4.23).
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4.4 VIX Future and VIX Option Hedging

In this section, I calculate sensitivities of VIX futures and VIX options with respect to spot

VIX and further develop hedging strategies for VIX futures and VIX options with other

VIX future contracts as hedging instruments.

Theorem 4.5：(VIX Future Hedging)

Firstly, we calculate the sensitivities of VIX future price to spot VIX. We are concerned

with the spot delta and spot gamma
∂FT

t

∂V IXt
= e−κ(T−t)

V IXt
· F T

t

∂2FT
t

∂V IX2
t
= − e−κ(T−t)·[1−e−κ(T−t)]

V IX2
t

· F T
t

(4.25)

Based on the above formulas, we can move forward to calculate sensitivities of VIX future

with maturity T2 to another VIX future with shorter maturity T1
∂F

T2
t

∂F
T1
t

= e−κ(T2−T1) · F
T2
t

F
T1
t

∂2F
T2
t

∂(FT1
t )

2 = −e−2κ(T2−T1) ·
[
eκ(T2−T1) − 1

]
· F

T2
t

(FT1
t )

2

(4.26)

Proof:

The characteristic function defined in eqn. (4.3) can be simplified as

ψ (t; s) = {V IXt}ise
−κ(T−t)

· Z (t; s)

Thus VIX future pricing formula eqn. (4.12) can be denoted as

F T
t = ψ (t;−i) = {V IXt}e

−κ(T−t)

· Z (t;−i)

where Z (t;−i) is function of t and it’s independent from V IXt. Given the pricing formula

for VIX future as above, we have delta sensitivity of F T
t with respect to V IXt as

∂F T
t

∂V IXt

= e−κ(T−t){V IXt}e
−κ(T−t)−1 · Z (t;−i)

=
e−κ(T−t)

V IXt

· F T
t

and gamma sensitivity of F T
t with respect to V IXt as

∂2F T
t

∂V IX2
t

=
∂

∂V IXt

[
e−κ(T−t)

V IXt

· F T
t

]
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=
e−κ(T−t)

V IXt

· ∂F T
t

∂V IXt

+
−e−κ(T−t)

V IX2
t

· F T
t

=
e−κ(T−t)

V IXt

· e
−κ(T−t)

V IXt

· F T
t +

−e−κ(T−t)

V IX2
t

· F T
t

= −
e−κ(T−t) ·

[
1− e−κ(T−t)

]
V IX2

t

· F T
t

We notice the delta and gamma of VIX future with respect to spot VIX as shown in eqn.

(4.25) is exactly the same as eqn. (3.17) of MRLR model. Furthermore, we notice that the

proof of delta and gamma of VIX future with respect to another shorter term maturity VIX

future in eqn. (3.20) and (3.21) is totally based on spot VIX delta and gamma. Consequent-

ly, by referring to the proof procedure of eqn. (3.20) and (3.21), we can get the hedging

formulas (4.26). �

Theorem 4.6：(VIX Option Hedging)

Firstly, we calculate the sensitivities of VIX call option price to spot VIX. We are concerned

with the spot delta and spot gamma.{
∂CallTt
∂V IXt

=
e−(r+κ)(T−t)·FT

t

V IXt
· Π1

∂2CallTt
∂V IX2

t
= − e−(r+κ)(T−t)·FT

t

V IX2
t

{[
1− e−κ(T−t)

]
· Π1 − e−κ(T−t) · f1 (lnK)

} (4.27)

where Π1 is defined in eqn. (4.18) and f1 (x) is conditional p.d.f. of lnV IXT under a

martingale measure with V IXt as numeraire and it can be expressed as

f1 (lnK) = − dΠ1

d (lnK)
= −dΠ1 (K)

d (lnK)
(4.28)

Based on the above formulas, we can move forward to calculate sensitivities of VIX call

option price with maturity T2 to a VIX future with shorter maturity T1.
∂Call

T2
t

∂F
T1
t

= e−r(T2−t)e−κ(T2−T1) · F
T2
t

F
T1
t

· Π1(T2)

∂2Call
T2
t

∂(FT1
t )

2 = e−r(T2−t)e−2κ(T2−T1) · F
T2
t

(FT1
t )

2 ·
[(
1− eκ(T2−T1)

)
· Π1 + f1 (lnK)

] (4.29)

Proof:

Given the functional form of conditional characteristic function in eqn. (4.3), we can easily

calculate its derivative with respect to spot VIX as

∂ψ (t; s)

∂V IXt

=
ise−κ(T−t)

V IXt

ψ (t; s) (4.30)
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By the definition of ψ1 (t; s) in (4.22) and the derivative of ψ (t; s) in the above equation,

we have

∂ψ1 (t; s)

∂V IXt

=

∂ψ(t;s−i)
∂V IXt

ψ (t;−i)− ∂ψ(t;−i)
∂V IXt

ψ (t; s− i)

ψ2 (t;−i)
=
ise−κ(T−t)

V IXt

ψ1 (4.31)

By noticing that ψ2 (t; s) = ψ (t; s), the same form in the above two formulas (4.30) and

(4.31) concludes the below conditional characteristic functions, i.e.

∂ψj (t; s)

∂V IXt

=
ise−κ(T−t)

V IXt

ψj (t; s) , j = 1, 2 (4.32)

Note the upper tail probabilities Πj in (4.19) can also be recovered from their characteristic

functions in the following form

Πj =
1

2π

∫ ∞

−∞

ψj (t; s) e
−is lnK

is
ds (4.33)

Thus derivative of Πj with respect to V IXt is calculated as

∂Πj

∂V IXt

=
1

2π

∫ ∞

−∞

∂ψj (t; s)

∂V IXt

e−is lnK

is
ds

=
e−κ(T−t)

V IXt

1

2π

∫ ∞

−∞
ψj (t; s) e

−is lnKds

=
e−κ(T−t)

V IXt

fj (lnK) (4.34)

where fj(x) is the probability density of lnV IXT conditional on Ft. We observe the fol-

lowing relationship between the two conditional p.d.f.

F T
t f1 (x) = F T

t

1

2π

∫ ∞

−∞
ψ1 (t; s) e

−isxds

=
1

2π

∫ ∞

−∞
ψ (t; s− i) e−i(s−i)x+xds

= ex
1

2π

∫ ∞

−∞
ψ (t; s− i) e−i(s−i) lnKd (s− i)

= exf2 (x) (4.35)

Therefore, we have the following equality

F T
t

∂Π1

∂V IXt

−K · ∂Π2

∂V IXt

=
e−κ(T−t)

V IXt

[
F T
t f1 (lnK)−K · f2 (lnK)

]
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=
e−κ(T−t)

V IXt

[
elnKf2 (lnK)−K · f2 (lnK)

]
= 0 (4.36)

Consequently, we have

∂CallTt
∂V IXt

= e−r(T−t)
[

∂Ft
∂V IXt

· Π1 + Ft
∂Π1

∂V IXt

−K · ∂Π2

∂V IXt

]
=

e−(r+κ)(T−t)Ft
V IXt

· Π1 (4.37)

Given the above formula for delta of VIX option with respect to spot VIX, we can move

forward to calculate the spot gamma

∂2CallTt
∂V IX2

t

=
∂

∂V IXt

(
e−(r+κ)(T−t) · F T

t

V IXt

)
· Π1 +

e−(r+κ)(T−t) · F T
t

V IXt

· ∂Π1

∂V IXt

=

[
−e−(r+κ)(T−t) · F T

t

V IX2
t

+
e−(r+κ)(T−t)

V IXt

e−κ(T−t) · F T
t

V IXt

]
· Π1

+
e−(r+κ)(T−t) · F T

t

V IXt

· e
−κ(T−t)

V IXt

· f1 (lnK)

= −e
−(r+κ)(T−t) · F T

t

V IX2
t

[
1− e−κ(T−t)

]
· Π1

+
e−(r+κ)(T−t) · F T

t

V IX2
t

· e−κ(T−t) · f1 (lnK)

= −e
−(r+κ)(T−t) · F T

t

V IX2
t

{[
1− e−κ(T−t)

]
· Π1 − e−κ(T−t) · f1 (lnK)

}
(4.38)

We notice the delta and gamma of VIX option with respect to spot VIX as shown in eqn.

(4.27) is exactly the same as eqn. (3.22) of MRLR model. Furthermore, we notice that the

proof of delta and gamma of VIX option with respect to another shorter term maturity VIX

future in eqn. (3.25) and (3.26) is totally based on spot VIX delta and gamma. Consequent-

ly, by referring to the proof procedure in eqn. (3.25) and (3.26), we can get the hedging

formulas (4.29). �

4.5 Forward Variance Swap and Convexity

In this section I extend the 30-day forward variance swap pricing formula in MRLR to

MRLRJ model.
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Theorem 4.7：(Forward Variance Swap Pricing)

Under the assumption of MRLRJ process in Definition 4.1, the 30-day forward variance

swap FV STt = EQ
t

[
RV T+30days

T

]
= EQ

t [V IX2
T ] can be explicitly solved as

FV STt = {V IXt}2e
−κ(T−t)

· exp
{
2κ

∫ T

t

θue
−κ(T−u)du+ 2

∫ T

t

σ2
ue

−2κ(T−u)du

+
λ

κ
ln
η − 2e−κ(T−t)

η − 2

}
(4.39)

In particular, when parameters θ and σ are constant, VIX future can be expressed as

FV STt = {V IXt}2e
−κ(T−t)

· exp
{
2θ
[
1− e−κ(T−t)

]
+
σ2

κ

[
1− e−2κ(T−t)]

+
λ

κ
ln
η − 2e−κ(T−t)

η − 2

}
(4.40)

Furthermore, dynamics of the 30-day forward variance swap under pricing measure Q can

be given by

dFV STt
FV STt−

= 2e−κ(T−t) · σtdWt +

{[
e2Je

−κ(T−t) − 1
]
· dNt −

2e−κ(T−t)

η − 2e−κ(T−t)
λdt

}
(4.41)

Proof:

Forward variance swap pricing formula (4.39) can be derived from the conditional char-

acteristic function of of lnV IXT under pricing measure Q. From eqn. (4.15), forward

variance swap can be derived as

FV STt = EQ
t

[
V IX2

T

]
= EQ

t

[
e2 lnV IXT

]
= ψ (lnV IXt, t;−2i)

= {V IXt}2e
−κ(T−t)

· exp
{
2κ

∫ T

t

θue
−κ(T−u)du+ 2

∫ T

t

σ2
ue

−2κ(T−u)du

+
λ

κ
ln
η − 2e−κ(T−t)

η − 2

}
Using Ito’s lemma to eqn. (4.39) and dynamics of V IXt in eqn. (4.16), we get

dFV STt = exp

{
2κ

∫ T

t

θue
−κ(T−u)du+ 2

∫ T

t

σ2
ue

−2κ(T−u)du+
λ

κ
ln
η − 2e−κ(T−t)

η − 2

}
·2e−κ(T−t) · {V IXt}2e

−κ(T−t)−1dV IXc
t

+
1

2
exp

{
2κ

∫ T

t

θue
−κ(T−u)du+ 2

∫ T

t

σ2
ue

−2κ(T−u)du+
λ

κ
ln
η − 2e−κ(T−t)

η − 2

}
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·2e−κ(T−t)
[
2e−κ(T−t) − 1

]
· {V IXt}2e

−κ(T−t)−2dV IXc
t dV IX

c
t

+exp

{
2κ

∫ T

t

θue
−κ(T−u)du+ 2

∫ T

t

σ2
ue

−2κ(T−u)du+
λ

κ
ln
η − 2e−κ(T−t)

η − 2

}
· lnV IXt · {V IXt}2e

−κ(T−t)

· 2κe−κ(T−t)dt

−
[
2κθte

−κ(T−t) + 2e−2κ(T−t)σ2
t +

λ2e−κ(T−t)

η − 2e−κ(T−t)

]
· FV STt dt

+
[
FV STt (lnV IXt− + J)− FV STt (lnV IXt−)

]
dNt

= FV STt · 2e−κ(T−t) ·
{[(

θtκ+
σ2
t

2

)
− κ lnV IXt

]
dt+ σtdWt

}
+
1

2
FV STt · 2e−κ(T−t)

[
2e−κ(T−t) − 1

]
· σ2

t dt

+FV STt · lnV IXt · 2κe−κ(T−t)dt

−
[
2κθte

−κ(T−t) + 2e−2κ(T−t)σ2
t +

λ2e−κ(T−t)

η − 2e−κ(T−t)

]
· FV STt dt

+
[
e2Je

−κ(T−t) − 1
]
· FV STt−dNt

= FV STt · 2e−κ(T−t) · σtdWt

+FV STt−

{[
e2Je

−κ(T−t) − 1
]
· dNt −

2e−κ(T−t)

η − 2e−κ(T−t)
λdt

}
which concludes proof of eqn. (4.41). �

Below we derive the convexity adjustment for VIX future from 30-day forward variance

swap.

Theorem 4.8：(Convexity Adjustment for VIX Future)

Under the assumption of MRLRJ process in Definition 4.1, convexity adjustment of VIX

future from 30-day forward variance swap can be derived as

CATt
.
=

F T
t√

FV STt
= exp

{
−1

2

∫ T

t

e−2κ(T−s)σ2
sds

+
λ

κ

ln η − e−κ(T−t)

η − 1
− ln

√
η − 2e−κ(T−t)

η − 2

 (4.42)

When parameter σt is constant, we have

CATt = exp

{
−σ

2

4κ

[
1− e−2κ(T−t)]
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+
λ

κ
ln
η − e−κ(T−t)

η − 1
− ln

√
η − 2e−κ(T−t)

η − 2

 (4.43)

Proof:

From the pricing formulas of VIX future in eqn. (4.12) and 30-day forward variance swap

in eqn. (4.39), the convexity adjustment can be derived as

CATt =
F T
t√

FV STt

=
{V IXt}e

−κ(T−t)

· exp
{
κ
∫ T
t
θue

−κ(T−u)du+ 1
2

∫ T
t
σ2
ue

−2κ(T−u)du+ λ
κ
ln η−e−κ(T−t)

η−1

}
{V IXt}e

−κ(T−t) · exp
{
κ
∫ T
t
θue−κ(T−u)du+

∫ T
t
σ2
ue

−2κ(T−u)du+ λ
2κ

ln η−2e−κ(T−t)

η−2

}
= exp

−1

2

∫ T

t

e−2κ(T−s)σ2
sds+

λ

κ

ln η − e−κ(T−t)

η − 1
− ln

√
η − 2e−κ(T−t)

η − 2


which concludes proof of this theorem. �
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5 MRLRSV Model

In last chapter, I present the first extension of MRLR model by adding upward jump in-

to spot VIX in order to produce positive implied volatility skew for VIX option. Another

popular method to create implied volatility skew in addition to jump diffusion is to in-

clude stochastic volatility into the underlying dynamics. In this chapter, I further present

this second version extension of MRLR model, i.e. mean-reverting logarithmic stochastic

volatility model (MRLRSV). In order to create positive implied volatility skew for VIX

option, we need to make the instantaneous correlation between spot VIX and its stochastic

volatility positively correlated, in contrast to the negative correlation in stochastic volatility

model for equity option where negative implied volatility skew is observed.

5.1 MRLRSV dynamics and characteristic function

I first present the dynamics of lnV IXt under MRLRSV model in this section.

Definition 5.1：(MRLRSV Dynamics)

Under martingale measure Q, the mean-reverting logarithmic stochastic volatility process

is formulated as {
d lnV IXt = κ (θt − lnV IXt) dt+

√
VtdWt

dVt = κv (θv − Vt) dt+ σv
√
VtdZt

(5.1)

where κ is mean-reverting speed, time-dependent function θt is the long-term mean of

logarithm of spot VIX,
√
Vt is vol-of-vol for spot VIX and Vt is assumed to follow a square-

root process.

Of course, parameters θt can either be constant or time-dependent. When θt is time-dependent,

e.g. piece-wise constant, it can be calibrated to term structure of VIX future. All parameters

for var-of-vol process Vt can be used to calibrate to VIX implied volatility surface.

Again, in this model the transition function of spot VIX is not available and the VIX future

and option pricing formulas need to be priced using characteristic function method.
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Theorem 5.1：(VIX Characteristic Function)

Under the assumption of MRLRSV process in Definition 5.1, characteristic function of

spot VIX logarithm lnV IXT under martingale measure Q conditioned on information at

time t is given by

ψ (t; s) = exp
{
A (t; s) + B (t; s)Vt + ise−κ(T−t) lnV IXt

}
(5.2)

where functions A(t; s) and B(t; s) are given by{
A (t; s) = C (t; s) + is

∫ T
t
e−κ(T−h)κθhdh− isρκvθv

σvκ

[
1− e−κ(T−t)

]
B (t; s) = D (t; s)− isρe−κ(T−t)

σv

(5.3)

and functions C(t; s) and D(t; s) satisfy the below ODE system{
−dC

dt
= κvθvD

−dD
dt

= 1
2
σ2
vD

2 − κvD − isρ(κ−κv)
σv

e−κ(T−t) − 1
2
s2 (1− ρ2) e−2κ(T−t) (5.4)

The second ODE of D in (5.4) is a Riccati equation with exponentially time-dependent

coefficients, which can be solved explicitly to the extent represented by first and second

kind Kummer functions. Because function C can be represented as integration of D with

respect to t, it can also be expressed by Kummer functions.

Firstly, we change variable from t to τ = T − t. Then for the case of κv
κ
̸= 1, 2, ..., we have

C(τ) = −2κvθv
σ2
v

(
ϕσv
√
1− ρ2

2κ
(1− e−κτ ) + ln

gM (a, b; z) + U (a, b; z)

gM (a, b; z0) + U (a, b; z0)

)

D(τ) =
ϕ
√
1− ρ2e−κτ

σv

{
−1 +

g 2a
b
M (a+ 1, b+ 1; z)− 2aU (a+ 1, b+ 1; z)

gM (a, b; z) + U (a, b; z)

}(5.5)

and for the case of κv
κ
= 1, 2, ..., we have

C(τ) = −2κvθv
σ2
v

(
ϕσv

√
1−ρ2

2κ
(1− e−κτ )− (1− b)κτ

+ ln g̃M(a−b+1,2−b;z)+U(a−b+1,2−b;z)
g̃M(a−b+1,2−b;z0)+U(a−b+1,2−b;z0)

)
D(τ) =

ϕ
√

1−ρ2
σv

e−κτ {−1 + 2 [(1− b)z−1

+
g̃
a−b+1
2−b M(a−b+2,3−b;z)−(a−b+1)U(a−b+2,3−b;z)

g̃M(a−b+1,2−b;z)+U(a−b+1,2−b;z)

]}
whereM (a, b; z) and U (a, b; z) stand for the first and second kind Kummer functions. The
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constants and variables used in equations (5.5) and (5.6) are defined by
a = κ−κv

κ

i
√

1−ρ2−ρ

2i
√

1−ρ2

b = κ−κv
κ

z = e−κτϕσv
√

1− ρ2
/
κ

z0 = ϕσv
√
1− ρ2

/
κ

(5.6)

and
g =

aU (a+ 1, b+ 1; z0) +
1
2
U (a, b; z0)

a
b
M (a+ 1, b+ 1; z0)− 1

2
M (a, b; z0)

g̃ =
(a− b+ 1)U (a− b+ 2, 3− b; z0) +

[
1
2
− (1− b)z−1

0

]
U (a− b+ 1, 2− b; z0)

a−b+1
2−b M (a− b+ 2, 3− b; z0)−

[
1
2
− (1− b)z−1

0

]
M (a− b+ 1, 2− b; z0)

(5.7)

Kummer functions M (a, b; z) and U (a, b; z) are two solutions of the following ODE

zu
′′

zz + (b− z)u
′

z − au = 0

where a is complex constant in this thesis.

Proof:

In order to solve conditional characteristic function for XT = lnV IXT from (5.1), we

derive dynamics of eκtXt by Ito’s lemma as

d
(
eκtXt

)
= eκtκθtdt+ eκt

√
VtdWt

Therefore, XT can be represented by

XT = e−κ(T−t)Xt +

∫ T

t

e−κ(T−h)κθhdh+

∫ T

t

e−κ(T−h)
√
VhdWh (5.8)

Put the above equation (5.8) into ψ (t; s) = EQ
t [exp {isXT}], we get

ψ (t; s) = exp

{[
e−κ(T−t)Xt +

∫ T

t

e−κ(T−h)κθhdh

]
is

}
·EQ

t

[
exp

{
is

∫ T

t

e−κ(T−h)
√
VhdWh

}]
(5.9)

Denote the conditional expectation in the above equation as

Ω (t; s) = EQ
t

[
exp

{
is

∫ T

t

e−κ(T−h)
√
VhdWh

}]
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According to Cholesky decomposition of standard Brownian motion Wt, there is a SBM

W 3
t that is independent from Zt such that Wt = ρZt +

√
(1− ρ2)W 3

t . Conditioned on

realization of path {Zh}t≤h≤T , we have

Ω (t; s) = EQ
t

[
exp

{
is

∫ T

t

e−κ(T−h)
√
VhρdZh + is

∫ T

t

e−κ(T−h)
√
Vh
√
1− ρ2dW 3

h

}]
= EQ

t

[
exp

{
is

∫ T

t

e−κ(T−h)
√
VhρdZh

}
· EQ

t

[
exp

{
is

∫ T

t

e−κ(T−h)
√
Vh
√
1− ρ2dW 3

h

}∣∣∣∣Zh, t 6 h 6 T

]]
= EQ

t

[
exp

{
isρ

∫ T

t

e−κ(T−h)
√
VhdZh −

s2(1−ρ2)
2

∫ T

t

e−2κ(T−h)Vhdh

}]
(5.10)

where the third equality holds due to the fact that
∫ T
t
e−κ(T−h)

√
Vh
√
1− ρ2dW 3

h is con-

ditionally normally distributed with mean 0 and variance
∫ T
t
(1− ρ2) e−2κ(T−h)Vhdh. Use

Ito’s Lemma, we get

d
(
e−κ(T−h)Vh

)
= e−κ(T−h) [κvθv + (κ− κv)Vh] dh+ e−κ(T−h)σv

√
VhdZh

Thus we get∫ T

t

e−κ(T−h)
√
VhdZh =

1

σv

[
VT − e−κ(T−t)Vt −

κvθv
κ

[
1− e−κ(T−t)

]
− (κ− κv)

∫ T

t

e−κ(T−h)Vhdh

]
(5.11)

Plug the above equation into eqn. (5.10), we get

Ω (t; s) = exp

{[
−ρe

−κ(T−t)Vt
σv

− ρκvθv
σvκ

[
1− e−κ(T−t)

]]
is

}
·EQ

t

[
exp

{
is

[
ρ

σv
VT − ρ (κ− κv)

σv

∫ T

t

e−κ(T−h)Vhdh

]
− s2(1−ρ2)

2

∫ T

t

e−2κ(T−h)Vhdh

}]
(5.12)

Put the above equation back into (5.9), we can reduce ψ(t; s) to

ψ (t; s) = exp {u0 (t)}EQ
t

[
exp

{
u1 · VT −

∫ T

t

u2 (h) · Vhdh
}]

(5.13)
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where the three functions u0, u1 and u2 are given by
u0 (t) =

[
e−κ(T−t)Xt +

(
θ − ρκvθv

σvκ

) [
1− e−κ(T−t)

]
− ρe−κ(T−t)Vt

σv

]
is

u1 =
isρ
σv

u2 (t) =
isρ(κ−κv)

σv
e−κ(T−t) +

s2(1−ρ2)
2

e−2κ(T−t)

(5.14)

Decomposition (5.13) is simpler than (5.9) in the aspect that the conditional expectation

here only involves path of the stochastic volatility Vt, and the expectation is denoted by

Φ (t; s) ≡ EQ
t

[
exp

{
u1 · VT −

∫ T

t

u2 (h) · Vhdh
}]

(5.15)

Due to Feynman-Kac theorem and dynamics of Vt under martingale measure Q, the dis-

counted expectation Φ (t; s) satisfies the following initial problem of PDE
−∂Φ
∂t

=
1

2
σ2
vV

∂2Φ

∂V 2
+ κv (θv − V )

∂Φ

∂V
− u2 (t)V Φ

Φ(T ) = exp

{
isρ

σv
· V
} (5.16)

Duffie et al. [5] indicates that the Feynman-Kac PDE (5.16) for the affine process Vt has the

following exponential affine form solution

Φ (t; s) = exp {C (t; s) +D (t; s)Vt} (5.17)

Plug equation (5.17) back into (5.16), it can be shown that functions C and D satisfies

ODE system (5.4). The Riccati function in (5.4) can be explicitly solved and represented

by Kummer’s functions. Alternatively, the ODE system (5.4) can be solved numerically by

Runge-Kutta algorithm. Below I present the analytical solution for C and D.

The conditional expectation with respect to V defined in (5.15) has the exponential affine

form solution (5.17), with the two coefficient functions C andD solving PDE system (5.4).

Function D is controlled by a Riccati equation, and the first step to solve D is to define the

following function transform

1

2
σ2
vD = −u

′
τ

u

Therefore, u satisfies the following second-order ODE

u
′′

ττ + κvu
′

τ −
[
1

2
isρσv (κ− κv) e

−κτ +
1

4
σ2
vs

2
(
1− ρ2

)
e−2κτ

]
u = 0
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Then we define the following variable transform to change the ODE coefficients to con-

stants.

x = ise−κτ

Then

xu
′′

xx +
κ− κv
κ

u
′

x +

[
σ2
v (1− ρ2)

4κ2
x− (κ− κv) ρσv

2κ2

]
u = 0

or

[a2x+ b2]u
′′

xx + [a1x+ b1]u
′

x + [a0x+ b0]u = 0 (5.18)

with 

a0 =
σ2
v(1−ρ2)
4κ2

b0 =
−(κ−κv)ρσv

2κ2

a1 = 0
b1 =

κ−κv
κ

a2 = 1
b2 = 0

Equation (5.18) is of the type ODE 2.1.2-108 in Polyanin [20], and the general solution of u

can be represented as

u(x) = ekxJ (a, b; z) (5.19)

where J (a, b; z) is general solution of degenerate hyper-geometric equation

zJ ′′

zz + (b− z)J ′

z − aJ = 0 (5.20)

a, b are two constants and z is a new variable. Denote D = a21 − 4a0a2 =
−σ2

v(1−ρ2)
κ2

and

B (k) = κ−κv
κ
k − (κ−κv)ρσv

2κ2
, then for the case of D ̸= 0, or equivalently ρ ̸= ±1 which is

assumed to always holds, we have
k ≡

√
D−a1
2a2

=
iσv

√
1−ρ2

2κ

λ ≡ − a2
2a2k+a1

= −κ
iσv

√
1−ρ2

µ ≡ − b2
a2

= 0
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and consequently 
a ≡ B(k)

2a2k+a1
= κ−κv

κ

i
√

1−ρ2−ρ

2i
√

1−ρ2

b ≡ a2b1−a1b2
a22

= κ−κv
κ

z ≡ x−µ
λ

=
ϕσv

√
1−ρ2
κ

e−κτ

Solution of second order ODE (5.20) is given in ODE 2.1.2-70 of Polyanin [? ]. More specif-

ically, the general solution can be expressed as

J (a, b; z) =


C1M (a, b; z) + C2U (a, b; z) , κv

κ
̸= 1, 2, ...

z1−b
[
C̃1M (a− b+ 1, 2− b; z) + C̃2U (a− b+ 1, 2− b; z)

]
, κv
κ
= 1, 2, ...

(5.21)

where M and U are the first and second kind Kummer functions. Plug the general solution

(5.21) of J back into (5.19), for the case of κv
κ
̸= 1, 2, ... we get

D(τ) =
2isκe−κτ

σ2
v

{
k − iσv

κ

√
1− ρ2

gM
′
z (a, b; z) + U

′
z (a, b; z)

gM (a, b; z) + U (a, b; z)

}
(5.22)

and when κv
κ
= 1, 2, ... we get

D(τ) =
2isκe−κτ

σ2
v

{
k − iσv

κ

√
1− ρ2

[
(1− b)z−1

+
g̃M

′
z (a− b+ 1, 2− b; z) + U

′
z (a− b+ 1, 2− b; z)

g̃M (a− b+ 1, 2− b; z) + U (a− b+ 1, 2− b; z)

]}
(5.23)

g and g̃ are two constants determined by initial condition of D. In order to simplify the

expressions (5.22) and (5.23), we need the following properties of Kummer functions
d

dz
M (a, b; z) =

a

b
M (a+ 1, b+ 1; z)

d

dz
U (a, b; z) = −aU (a+ 1, b+ 1; z)

(5.24)

Applying (5.24) to (5.22) and (5.23) we can obtain expression of D as (5.5) and (5.6). and

the two constants g and g̃ can be attained accordingly.

To solve function C from ∂C
∂τ

= θvκvD, we have to integrate D from 0 to τ . Note D =

− 2
σ2
v

u
′
τ

u
, thus we have∫ τ

0

D(v)dv = − 2

σ2
v

∫ τ

0

u
′
v

u
dv = − 2

σ2
v

ln
u(τ)

u(0)

and thus expressions for C can be easily expressed as (5.5) and (5.6). �
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The Kummer functionsM and U can be implemented in symbolic math toolbox of Matlab.

However, the calculation is not so stable and rather time-consuming. An alternative reso-

lution of this problem is directly solving ODE system (5.4) numerically by Runge-Kutta

algorithm. We compare the two methods in Matlab on calculating characteristic function,

and find that the Runge-Kutta algorithm is much more stable than Kummer functions rep-

resented closed-form formula. Moreover, we find the Runge-Kutta algorithm in computing

characteristic function once is at least 7 times faster than the Kummer function formula.

Therefore, we recommend using Runge-Kutta numerical solution for MRLRSV model in-

stead of the Kummer function represented explicit formula, unless a more stable and faster

routine is developed in Matlab.

5.2 VIX Future and VIX Option Pricing

Based on the conditional characteristic function of spot VIX under martingale measure Q

as in eqn. (5.2), we can derive the pricing formulas for VIX future and VIX option.

Theorem 5.2：(VIX Future Pricing)

Under the assumption of MRLRSV process in Definition 5.1, VIX future F T
t can be ex-

plicitly solved as

F T
t = ψ (t;−i) = {V IXt}e

−κ(T−t)

· exp {A (t;−i) +B (t;−i) · Vt} (5.25)

where functions A(t; s) and B(t; s) are defined as eqn. (5.3).

Furthermore, dynamics of VIX future under pricing measure Q can be given by

dF T
t = F T

t ·
[
e−κ(T−t)

√
VtdWt +B (t;−i)σv

√
VtdZt

]
=

∂F T
t

∂V IXt

· V IXt

√
VtdWt +

∂F T
t

∂Vt
· σv
√
VtdZt (5.26)

= F T
t

√
Vt · dMt (5.27)

where standard Brownian Motion dMt is defined as dMt =
e−κ(T−t)dWt+BσvdZt√

e−2κ(T−t)+2ρe−κ(T−t)Bσv+B2σ2
v

dMtdZt =
Bσv√

e−2κ(T−t)+2ρe−κ(T−t)Bσv+B2σ2
v

dt
(5.28)
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Proof:

VIX future pricing formula (5.25) can be derived from the conditional characteristic func-

tion of of lnV IXT under pricing measure Q.

In order to derive the risk-neutral dynamics of VIX future, we first derive dynamics of

V IXt under the pricing measure.

dV IXt = delnV IXt

= elnV IXtd lnV IXt +
1

2
elnV IXtd lnV IXtd lnV IXt

= V IXt

[
κ (θt − lnV IXt) dt+

√
VtdWt

]
+
V IXt

2
Vtdt

= V IXt

[(
θtκ+ Vt

2

)
− κ lnV IXt

]
dt+ V IXt

√
VtdWt

Consequently, we get

dV IXt

V IXt

=
[(
θtκ+ Vt

2

)
− κ lnV IXt

]
dt+

√
VtdWt (5.29)

Using Ito’s lemma to eqn. (5.25) and result in the above equation, we get

dF T
t = exp {A+B · Vt} · e−κ(T−t) · {V IXt}e

−κ(T−t)−1dV IXt

+
1

2
exp {A+B · Vt} · e−κ(T−t)

[
e−κ(T−t) − 1

]
·{V IXt}e

−κ(T−t)−2dV IXt · dV IXt

+B · {V IXt}e
−κ(T−t)

· exp {A+B · Vt} dVt

+
1

2
B2 · {V IXt}e

−κ(T−t)

· exp {A+B · Vt} dVt · dVt

+κe−κ(T−t) lnV IXt · {V IXt}e
−κ(T−t)

· exp {A+B · Vt} dt

+
(
A

′

t +B
′

t · Vt
)
{V IXt}e

−κ(T−t)

· exp {A+B · Vt} dt

= e−κ(T−t) · F T
t

[[(
θtκ+ Vt

2

)
− κ lnV IXt

]
dt+

√
VtdWt

]
+
1

2
e−κ(T−t)

[
e−κ(T−t) − 1

]
F T
t · Vtdt

+B · F T
t

[
κv (θv − Vt) dt+ σv

√
VtdZt

]
+
1

2
B2 · F T

t · σ2
vVtdt

+F T
t

[
κe−κ(T−t) lnV IXt +

(
A

′

t +B
′

t · Vt
)]
dt
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= e−κ(T−t) · F T
t

(
θtκ+ Vt

2

)
dt+ F T

t

(
A

′

t +B
′

t · Vt
)
dt+B · F T

t κv (θv − Vt) dt

+
1

2
e−κ(T−t)

[
e−κ(T−t) − 1

]
F T
t · Vtdt+

1

2
B2 · F T

t · σ2
vVtdt

+e−κ(T−t) · F T
t

√
VtdWt +B · F T

t σv
√
VtdZt

= F T
t ·
{
e−κ(T−t) ·

(
θtκ+ Vt

2

)
+
(
A

′

t +B
′

t · Vt
)
+Bκv (θv − Vt)

}
dt

+F T
t ·
{
1

2
e−κ(T−t)

[
e−κ(T−t) − 1

]
Vt +

1

2
B2 · σ2

vVt

}
dt

+e−κ(T−t) · F T
t

√
VtdWt +B · F T

t σv
√
VtdZt

= e−κ(T−t) · F T
t

√
VtdWt +B · F T

t σv
√
VtdZt

=
∂F T

t

∂V IXt

· V IXt

√
VtdWt +

∂F T
t

∂Vt
· σv
√
VtdZt

= F T
t

√
Vt · dMt

where the 5th equality holds due to the fact that F T
t is martingale under the pricing mea-

sure Q. dMt in the 6th equality as defined in (5.28) is a continuous martingale and it has

quadratic variation

dMtdMt =
e−κ(T−t)dWt +BσvdZt√

e−2κ(T−t) + 2ρe−κ(T−t)Bσv +B2σ2
v

e−κ(T−t)dWt +BσvdZt√
e−2κ(T−t) + 2ρe−κ(T−t)Bσv +B2σ2

v

=
e−2κ(T−t)dWtdWt + 2e−κ(T−t)BσvdWtdZt +B2σ2

vdZtdZt
[e−2κ(T−t) + 2ρe−κ(T−t)Bσv +B2σ2

v ]

=
e−2κ(T−t)dt+ 2e−κ(T−t)Bσvρdt+B2σ2

vdt

[e−2κ(T−t) + 2ρe−κ(T−t)Bσv +B2σ2
v ]

= dt

Therefore, dMt is a standard Brownian Motion. �

Corollary 5.1：(VIX Future Correlation)

From the dynamics of VIX future in eqn. (5.26) under MRLRSV model, we get the instan-

taneous correlation of VIX futures with different maturities as

ρT1,T2t = corr
(
dF T1

t , dF T2
t

) .
=

⟨
dF T1

t , dF T2
t

⟩√⟨
dF T1

t , dF T1
t

⟩ ⟨
dF T2

t , dF T2
t

⟩
=

{[
e−κ(T1−t)e−κ(T2−t) +B2σ2

v +
(
e−κ(T1−t) + e−κ(T2−t)

)
Bσvρ

]}/{√
[e−2κ(T1−t) +B2σ2

v + 2e−κ(T1−t)Bσvρ]
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·
√
[e−2κ(T2−t) +B2σ2

v + 2e−κ(T2−t)Bσvρ]

}
< 1 (5.30)

with B = B (t;−i).

Proof:

Given dynamics of VIX future in eqn. (5.26), we have{
dF T1

t = F T1
t

√
Vt ·

[
e−κ(T1−t)dWt +B (t;−i) σvdZt

]
dF T2

t = F T2
t

√
Vt ·

[
e−κ(T2−t)dWt +B (t;−i) σvdZt

]
Thus

dF T1
t dF T2

t = F T1
t F T2

t Vt ·
[
e−κ(T1−t)e−κ(T2−t)dWtdWt +B2 (t;−i)σ2

vdZtdZt

+
(
e−κ(T1−t) + e−κ(T2−t)

)
B (t;−i)σvdWtdZt

]
= F T1

t F T2
t Vt

[
e−κ(T1−t)e−κ(T2−t) +B2σ2

v

+
(
e−κ(T1−t) + e−κ(T2−t)

)
Bσvρ

]
dt

Consequently,

ρT1,T2t =

⟨
dF T1

t , dF T2
t

⟩√⟨
dF T1

t , dF T1
t

⟩ ⟨
dF T2

t , dF T2
t

⟩
=

{[
e−κ(T1−t)e−κ(T2−t) +B2σ2

v +
(
e−κ(T1−t) + e−κ(T2−t)

)
Bσvρ

]}/{√
[e−2κ(T1−t) +B2σ2

v + 2e−κ(T1−t)Bσvρ]

·
√
[e−2κ(T2−t) +B2σ2

v + 2e−κ(T2−t)Bσvρ]

}
< 1

which concludes proof of this corollary. �

For the two-factor MRLRSV model, the instantaneous correlation is less than 1, which is

more realistic for VIX futures with different maturities.

Theorem 5.3：(VIX Option Pricing)

Under the assumption of MRLRSV process in Definition 5.1, VIX call option CallTt (K)
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can be explicitly solved as

CallTt (K) = exp

{
−
∫ T

t

rsds

}
·
[
F T
t · Π1 −K · Π2

]
(5.31)

where Π1 and Π2 are two tail probabilities{
Πj =

1
2
+ 1

π

∫∞
0

Re
{
ψj(s)e

−is lnK

is

}
ds, j = 1, 2

ψ1 (t; s) =
ψ(t;s−i)
ψ(t;−i) , ψ2 (t; s) = ψ (t; s)

(5.32)

Furthermore, VIX put option PutTt (K)
.
= exp

{
−
∫ T
t
rsds

}
·EQ

t

[
(K − V IXT )

+] can be

explicitly solved as

PutTt (K) = exp

{
−
∫ T

t

rsds

}
·
[
K · (1− Π2)− F T

t · (1− Π1)
]

(5.33)

Proof:

Although VIX call option can be regarded as an option written on VIX future that has the

same maturity as VIX option, the payoff at maturity is the same as settled using spot VIX.

Given dynamics of spot VIX under the pricing measure Q, we can further make change

of measure so that VIX call option price can be represented in a similar formula as Black-

Scholes formula

C (T − t, V IXt, K) = exp

{
−
∫ T

t

rsds

}
· EQ

t

[
(V IXT −K)+

]
= exp

{
−
∫ T

t

rsds

}
·
{
EQ
t

[
elnV IXT 1{lnV IXT>lnK}

]
−KEQ

t

[
1{lnV IXT>lnK}

]}
= exp

{
−
∫ T

t

rsds

}
·
{
−KEQ

t

[
1{lnV IXT>lnK}

]
EQ
t

[
elnV IXT

]
EQ
t

[
elnV IXT

/
EQ
[
elnV IXT

]
EQ
t

[
elnV IXT

/
EQ [elnV IXT ]

]1{lnV IXT>lnK}

]}

= exp

{
−
∫ T

t

rsds

}
·
{
EQ
t

[
elnV IXT

]
EQ1
t

[
1{lnV IXT>lnK}

]
−KEQ2

t

[
1{lnV IXT>lnK}

]}
≡ exp

{
−
∫ T

t

rsds

}
·
{
F T
t · Π1 −K · Π2

}
(5.34)

where the first measure is defined by the following Esscher transform

dQ1

dQ

∣∣∣∣
Ft

=
elnV IXt

EQ [elnV IXt ]
(5.35)
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and the second measure Q2 is the same as Q. In order to calculate the two tail probabilities

Π1 and Π2, conditional characteristic functions of lnV IXT on filtration Ft are derived as

ψ1 (t; s) = EQ1
t

[
eis lnV IXT

]
= EQ

t

[
elnV IXT

EQ
t [elnV IXT ]

eis lnV IXT

]
=

EQ
t

[
ei(−i+s) lnV IXT

]
EQ
t [elnV IXT ]

=
ψ (t; s− i)

ψ (t;−i)

and

ψ2 (t; s) = EQ2
t

[
eis lnV IXT

]
= EQ

t

[
eis lnV IXT

]
= ψ (t; s)

Given the conditional characteristic functions above, the two tail probabilities in eqn. (5.31)

can be recovered by inverse theorem of Gil-Pelaez [7], as shown in eqn. (5.32).

Pricing formula (5.33) for VIX put option can be easily derived from put-call parity and

the pricing formula for VIX call option. �

5.3 VIX Future and VIX Option Calibration

Theorem 5.4：(Calibration)

For the MRLRSV model in Definition 5.1, VIX option is priced using a Stochastic Volatil-

ity (Heston) underlying F T
t with time-dependent parameters. Thus this model is able to

produce implied volatility skew for VIX option. Furthermore, the instantaneous correla-

tion in this stochastic volatility model is positive and thus this model is able to produce

positive implied volatility skew for VIX option. As there is no explicit formula for implied

volatility in a stochastic volatility model with time-dependent parameters. Thus parameters

of Vt can be used to calibrate to market implied volatility skew for VIX option.

With calibration result of parameters of Vt from market quotes of VIX implied volatility

skew, we can move forward to calibrate VIX future term structure.

θT = fT0 +
1

κ

dfT0
dT

− 1

κ

[
dC

dT
+ κC

]
− 1

κ

[
dB

dT
+ κB

]
· V0 +

1

κ

ρκvθv
σv

(5.36)
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where fT0
.
= lnF T

0 is the initial VIX future term structure, C and D are defined as
C = C (0;−i)
D = D (0;−i)
dC
dT

= κvθvD
dD
dT

= 1
2
σ2
vD

2 − κvD − ρ(κ−κv)
σv

e−κT + 1
2
(1− ρ2) e−2κT

Proof: According to eqn. (5.25), the initial VIX future term structure F T
0 is given by

F T
0 = {V IX0}e

−κT

· exp {A+B · V0}

where {
A = A (0;−i) = C +

∫ T
0
θhe

−κ(T−g)dh− ρκvθv
σvκ

[
1− e−κT

]
B = B (0;−i) = D − ρe−κT

σv

Thus

fT0 = e−κT · lnV IX0 + A+B · V0

= e−κT · lnV IX0 +

{
C +

∫ T

0

θhe
−κ(T−g)dh− ρκvθv

σvκ

[
1− e−κT

]}
+B · V0

Take derivative w.r.t. T on both sides of the above equation, we get

dfT0
dT

= −κe−κT · lnV IX0 +
dA

dT
+
dB

dT
· V0

= −κe−κT · lnV IX0 +

[
dC

dT
+ κθT − κ2

∫ T

0

θhe
−κ(T−g)dh− e−κT

ρκvθv
σv

]
+B · V0

= κθT − κe−κT · lnV IX0 +
dC

dT
+
dB

dT
· V0 − e−κT

ρκvθv
σv

− κ

[
κ

∫ T

0

θhe
−κ(T−g)dh

]
= κθT − κe−κT · lnV IX0 +

dC

dT
+
dB

dT
· V0 − e−κT

ρκvθv
σv

−κ
[
fT0 − e−κT · lnV IX0 − C +

ρκvθv
σvκ

[
1− e−κT

]
−B · V0

]
= κθT +

[
dC

dT
+ κC

]
+

[
dB

dT
+ κB

]
· V0 −

ρκvθv
σv

− κfT0

Rearrange the above equation, we get the result in eqn. (5.36). �

5.4 VIX Future and VIX Option Hedging

In this section, I calculate sensitivities of VIX futures and VIX options with respect to spot

VIX and further develop hedging strategies for VIX futures and VIX options with other

VIX future contracts as hedging instruments.
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Theorem 5.5：(VIX Future Hedging)

Firstly, we calculate the sensitivities of VIX future price to spot VIX. We are concerned

with the spot delta and spot gamma.
∂FT

t

∂V IXt
= e−κ(T−t)

V IXt
· F T

t

∂2FT
t

∂V IX2
t
= − e−κ(T−t)·[1−e−κ(T−t)]

V IX2
t

· F T
t

(5.37)

Based on the above formulas, we can move forward to calculate sensitivities of VIX future

with maturity T2 to another VIX future with shorter maturity T1.
∂F

T2
t

∂F
T1
t

= e−κ(T2−T1) · F
T2
t

F
T1
t

∂2F
T2
t

∂(FT1
t )

2 = −e−2κ(T2−T1) ·
[
eκ(T2−T1) − 1

]
· F

T2
t

(FT1
t )

2

(5.38)

Proof:

Like the case in MRLRJ model, the characteristic function defined in eqn. (5.2) can also

be simplified as

ψ (t; s) = {V IXt}ise
−κ(T−t)

· Z (t; s)

where Z (t; s) is function of t and it’s independent from V IXt. Thus VIX future pricing

formula eqn. (5.25) can also be denoted as

F T
t = ψ (lnV IXt, t;−i) = {V IXt}e

−κ(T−t)

· Z (t;−i)

Therefore, by using the same proof procedure as in last chapter we can easily derive the

hedging formulas (5.37) and (5.38). �

Theorem 5.6：(VIX Option Hedging)

Firstly, we calculate the sensitivities of VIX call option price to spot VIX. We are concerned

with the spot delta and spot gamma.{
∂CallTt
∂V IXt

=
e−(r+κ)(T−t)·FT

t

V IXt
· Π1

∂2CallTt
∂V IX2

t
= − e−(r+κ)(T−t)·FT

t

V IX2
t

{[
1− e−κ(T−t)

]
· Π1 − e−κ(T−t) · f1 (lnK)

} (5.39)

Based on the above formulas, we can move forward to calculate sensitivities of VIX call

option price with maturity T2 to a VIX future with shorter maturity T1.
∂Call

T2
t

∂F
T1
t

= e−r(T2−t)e−κ(T2−T1) · F
T2
t

F
T1
t

· Π1(T2)

∂2Call
T2
t

∂(FT1
t )

2 = e−r(T2−t)e−2κ(T2−T1) · F
T2
t

(FT1
t )

2 ·
[(
1− eκ(T2−T1)

)
· Π1 + f1 (lnK)

] (5.40)
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Proof:

This theorem can be proved with the exact procedure as in Theorem 4.6. �

5.5 Forward Variance Swap and Convexity

Finally, in this section I extend the 30-day forward variance swap pricing formula in MRLR

and MRLRJ models to MRLRSV model.

Theorem 5.7：(Forward Variance Swap Pricing)

Under the assumption of MRLRSV process in Definition 5.1, the 30-day forward variance

swap FV STt = EQ
t

[
RV T+30days

T

]
= EQ

t [V IX2
T ] can be explicitly solved as

FV STt = ψ (lnV IXt, Vt, t;−2i)

= {V IXt}2e
−κ(T−t)

· exp {A (t;−2i) + B (t;−2i) · Vt}
.
= {V IXt}2e

−κ(T−t)

· exp
{
Ã+ B̃ · Vt

}
(5.41)

Furthermore, dynamics of forward variance under pricing measure Q can be given by

dFV STt = FV STt · 2e−κ(T−t)
√
VtdWt + FV STt ·B (t;−2i)σv

√
VtdZt

=
∂FV STt
∂V IXt

· V IXt

√
VtdWt +

∂FV STt
∂Vt

· σv
√
VtdZt (5.42)

Proof:

Forward variance swap pricing formula (5.41) can be derived from the conditional charac-

teristic function of of lnV IXT under pricing measure Q.

Using Ito’s lemma to eqn. (5.41) and dynamics of V IXt in eqn. (5.29), we get

dFV STt = exp
{
Ã+ B̃ · Vt

}
· 2e−κ(T−t) · {V IXt}2e

−κ(T−t)−1dV IXt

+
1

2
exp

{
Ã+ B̃ · Vt

}
· 2e−κ(T−t)

[
2e−κ(T−t) − 1

]
·{V IXt}2e

−κ(T−t)−2dV IXt · dV IXt

+B̃ · {V IXt}2e
−κ(T−t)

· exp
{
Ã+ B̃ · Vt

}
dVt

+
1

2
B̃2 · {V IXt}2e

−κ(T−t)

· exp
{
Ã+ B̃ · Vt

}
dVt · dVt
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+2κe−κ(T−t) lnV IXt · {V IXt}2e
−κ(T−t)

· exp
{
Ã+ B̃ · Vt

}
dt

+
(
Ã

′

t + B̃
′

t · Vt
)
{V IXt}2e

−κ(T−t)

· exp
{
Ã+ B̃ · Vt

}
dt

= 2e−κ(T−t) · FV STt
[[(

θtκ+ Vt
2

)
− κ lnV IXt

]
dt+

√
VtdWt

]
+e−κ(T−t)

[
2e−κ(T−t) − 1

]
FV STt · Vtdt

+B̃ · FV STt
[
κv (θv − Vt) dt+ σv

√
VtdZt

]
+
1

2
B̃2 · FV STt · σ2

vVtdt

+FV STt

[
2κe−κ(T−t) lnV IXt +

(
Ã

′

t + B̃
′

t · Vt
)]
dt

= 2e−κ(T−t) · FV STt
(
θtκ+ Vt

2

)
dt+ FV STt

(
Ã

′

t + B̃
′

t · Vt
)
dt

+B̃ · FV STt κv (θv − Vt) dt

+e−κ(T−t)
[
2e−κ(T−t) − 1

]
FV STt · Vtdt+

1

2
B̃2 · FV STt · σ2

vVtdt

+2e−κ(T−t) · FV STt
√
VtdWt + B̃ · FV STt σv

√
VtdZt

= FV STt ·
{
2e−κ(T−t) ·

(
θtκ+ Vt

2

)
+
(
Ã

′

t + B̃
′

t · Vt
)
+ B̃κv (θv − Vt)

}
dt

+FV STt ·
{
e−κ(T−t)

[
2e−κ(T−t) − 1

]
Vt +

1

2
B̃2 · σ2

vVt

}
dt

+2e−κ(T−t) · FV STt
√
VtdWt + B̃ · FV STt σv

√
VtdZt

= 2e−κ(T−t) · FV STt
√
VtdWt + B̃ · FV STt σv

√
VtdZt

= 2e−κ(T−t) · FV STt
√
VtdWt +B (t;−2i) · FV STt σv

√
VtdZt

=
∂FV STt
∂V IXt

· V IXt

√
VtdWt +

∂FV STt
∂Vt

· σv
√
VtdZt

where the 5th equality holds due to the fact that FV STt is martingale under the pricing

measure Q and the above equation concludes proof of eqn. (5.42). �

Below we derive the convexity adjustment for VIX future from 30-day forward variance

swap.

Theorem 5.8：(Convexity Adjustment for VIX Future)

Under the assumption of MRLRSV process in Definition 5.1, convexity adjustment of VIX
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future from forward variance swap can be derived as

CATt
.
=

F T
t√

FV STt
= exp

{
−
[
1

2
A (t;−2i)− A (t;−i)

]
−
[
1

2
B (t;−2i)−B (t;−i)

]
· Vt
}

(5.43)

Proof:

From the pricing formulas of VIX future in eqn. (5.25) and 30-day forward variance swap

in eqn. (5.41), the convexity adjustment can be derived as

CATt =
F T
t√

FV STt

=
{V IXt}e

−κ(T−t)

· exp {A (t;−i) + B (t;−i) · Vt}
{V IXt}e

−κ(T−t) · exp
{

1
2
A (t;−2i) + 1

2
B (t;−2i) · Vt

}
= exp

{
−
[
1

2
A (t;−2i)− A (t;−i)

]
−
[
1

2
B (t;−2i)−B (t;−i)

]
· Vt
}

with T1 < T2. �
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6 MRLRSVJ Model

In this chapter, I combine MRLRJ and MRLRSV models together so that both upward

jump and positively correlated stochastic volatility present in dynamics of spot VIX. This

model is called mean-reverting logarithmic stochastic volatility jump model (MRLRSVJ).

6.1 MRLRSVJ dynamics and characteristic function

The dynamics of lnV IXt under MRLRSVJ model is defined as below.

Definition 6.1：(MRLRSVJ Dynamics)

Under martingale measure Q, the mean-reverting logarithmic stochastic volatility process

is formulated as{
d lnV IXt = κ (θt − lnV IXt) dt+

√
VtdWt + JdNt

dVt = κv (θv − Vt) dt+ σv
√
VtdZt

(6.1)

where κ is mean-reverting speed, time-dependent function θt is the long-term mean of

logarithm of spot VIX,
√
Vt is vol-of-vol for spot VIX and Vt is assumed to follow a

square-root process. Nt is Poisson process with jump intensity λ and J is exponentially

distributed jump size with J ∼ Exp(η) and η > 0.

Conditional characteristic function of lnV IXt under MRLRSVJ model can be derived as

below.

Theorem 6.1：(VIX Characteristic Function)

Under the assumption of MRLRSVJ process in Definition 6.1, characteristic function of

spot VIX logarithm lnV IXT under martingale measure Q conditioned on information at

time t is given by

ψ (t; s) = exp
{
A (t; s) +B (t; s)Vt + ise−κ(T−t) lnV IXt

}
(6.2)
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where functions A(t; s) and B(t; s) are given by{
A (t; s) = C (t; s) + is

∫ T
t
e−κ(T−h)κθhdh− isρκvθv

σvκ

[
1− e−κ(T−t)

]
+H (t; s)

B (t; s) = D (t; s)− isρe−κ(T−t)

σv

(6.3)

and functions C(t; s) andD(t; s) are defined in eqn. (5.4) and can be solved as in eqn. (5.5)

and (5.6). The function H(t; s) comes from the jump term and can be given as

H (t; s) =
λ

κ
ln

(
η − ise−κ(T−t)

η − is

)
(6.4)

Proof:

In order to solve conditional characteristic function for XT = lnV IXT from (6.1), we

derive dynamics of eκtXt by Ito’s lemma as

d
(
eκtXt

)
= eκtκθtdt+ eκt

√
VtdWt + eκtJdNt

Therefore, XT can be represented by

XT = e−κ(T−t)Xt +

∫ T

t

e−κ(T−h)κθhdh+

∫ T

t

e−κ(T−h)
√
VhdWh

+

∫ T

t

e−κ(T−h)JdNh (6.5)

Put the above equation (6.5) into ψ (t; s) = EQ
t [exp {isXT}], we get

ψ (t; s) = exp

{[
e−κ(T−t)Xt +

∫ T

t

e−κ(T−h)κθhdh

]
is

}
·EQ

t

[
exp

{
is

∫ T

t

e−κ(T−h)
√
VhdWh

}]
·EQ

t

[
exp

{
is

∫ T

t

e−κ(T−h)JdNh

}]
(6.6)

The first conditional expectation in the above equation is denoted Ω (t; s) as in Theorem

5.1 of last chapter and it has been solved explicitly in that theorem. The second conditional

expectation in the above equation can be denoted as

Υ(t; s) = EQ
t

[
exp

{
is

∫ T

t

e−κ(T−h)JdNh

}]
and Poisson jump times in the interval (t, T ] are denoted as {Tk}≥1 . Then Υ(t; s) can be

simplified as

Υ(t; s) = EQ
t

[
exp

{
NT−Nt∑
k=1

ise−κ(T−Tk)Jk

}]
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= EQ
t

[
NT−Nt∏
k=1

EQ
t

[
exp

{
ise−κ(T−Tk)Jk

}∣∣FN
T

]]

= EQ
t

[
NT−Nt∏
k=1

[
η

η − ise−κ(T−Tk)

]]

=
∞∑
n=0

e−λ(T−t)(λ(T − t))n

n!
EQ
t

[
n∏
k=1

[
η

η − ise−κ(T−Tk)

]∣∣∣∣∣NT −Nt = n

]
(6.7)

where FN
T stands for all information of Poisson process N up to time T . The second equal-

ity utilizes the independence between jump size random variables J and Poisson process

N , and the third equality holds due to EQ [exp {αJ}] = η
η−α for exponential variable J .

Because jump times {Tk}nk=1 of homogeneous Poisson process N is uniformly distributed

over (t, T ) conditioned on realization of jump number NT −Nt = n, we have

EQ
t

[
η

η − ise−κ(T−Tk)

∣∣∣∣NT −Nt = n

]
=

∫ T

t

η

η − ise−κT eκs
1

T − t
ds

= 1− 1

κ(T − t)
ln

(
η − is

η − ise−κ(T−t)

)
(6.8)

Plug the above (6.8) into (6.7), and simple calculation leads to

Υ(t; s) =
∞∑
n=1

e−λ(T−t)(λ(T − t))n

n!

[
1− 1

κ(T − t)
ln

(
η − is

η − ise−κ(T−t)

)]n
=

(
η − is

η − ise−κ(T−t)

)−λ
κ

(6.9)

Put the above equation back into eqn. (6.6) we conclude proof of formula (6.3). �

6.2 VIX Future and VIX Option Pricing

Based on the conditional characteristic function of spot VIX under martingale measure Q

as in eqn. (6.2), we can derive the pricing formulas for VIX future and VIX option.

Theorem 6.2：(VIX Future Pricing)

Under the assumption of MRLRSVJ process in Definition 6.1, VIX future F T
t can be ex-
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plicitly solved as

F T
t = ψ (t;−i) = {V IXt}e

−κ(T−t)

· exp {A (t;−i) +B (t;−i) · Vt} (6.10)

where functions A(t; s) and B(t; s) are defined as eqn. (6.3).

Furthermore, dynamics of VIX future under pricing measure Q can be given by

dF T
t = F T

t ·
[
e−κ(T−t)

√
VtdWt +B (t;−i)σv

√
VtdZt

]
+F T

t−

{[
eJe

−κ(T−t) − 1
]
· dNt −

e−κ(T−t)

η − e−κ(T−t)
λdt

}
=

∂F T
t

∂V IXt

· V IXt

√
VtdWt +

∂F T
t

∂Vt
· σv
√
VtdZt

+
{
∆F T

t dNt − λEQ
t

[
∆F T

t

]
dt
}

(6.11)

Proof:

Given the same form of conditional characteristic function of eqn. (6.10) as eqn. (5.25) of

MRLRSV model, proof of the VIX future pricing formula (6.10) is exactly the same of

Theorem 5.2.

In order to derive the risk-neutral dynamics of VIX future, we first derive dynamics of

V IXt under the pricing measure.

dV IXt = delnV IXt

= elnV IXtd lnV IXc
t +

1

2
elnV IXtd lnV IXc

t d lnV IX
c
t

+
[
elnV IXt−+J − elnV IXt−

]
dNt

= V IXt

[
κ (θt − lnV IXt) dt+

√
VtdWt

]
+
V IXt

2
Vtdt+ V IXt−

[
eJ − 1

]
dNt

= V IXt

[(
θtκ+ Vt

2

)
− κ lnV IXt

]
dt+ V IXt

√
VtdWt + V IXt−

[
eJ − 1

]
dNt

Consequently, we get

dV IXt

V IXt−
=
[(
θtκ+ Vt

2

)
− κ lnV IXt

]
dt+

√
VtdWt +

[
eJ − 1

]
dNt (6.12)

Using Ito’s lemma to eqn. (6.10) and result in the above equation, we get

dF T
t = exp {A+B · Vt} · e−κ(T−t) · {V IXt}e

−κ(T−t)−1dV IXc
t

67



浙江大学博士学位论文

+
1

2
exp {A+B · Vt} · e−κ(T−t)

[
e−κ(T−t) − 1

]
·{V IXt}e

−κ(T−t)−2dV IXc
t · dV IXc

t

+B · {V IXt}e
−κ(T−t)

· exp {A+B · Vt} dVt

+
1

2
B2 · {V IXt}e

−κ(T−t)

· exp {A+B · Vt} dVt · dVt

+κe−κ(T−t) lnV IXt · {V IXt}e
−κ(T−t)

· exp {A+B · Vt} dt

+
(
A

′

t +B
′

t · Vt
)
{V IXt}e

−κ(T−t)

· exp {A+B · Vt} dt

+
[
F T
t (lnV IXt− + J)− F T

t (lnV IXt−)
]
dNt

= e−κ(T−t) · F T
t

[[(
θtκ+ Vt

2

)
− κ lnV IXt

]
dt+

√
VtdWt

]
+
1

2
e−κ(T−t)

[
e−κ(T−t) − 1

]
F T
t · Vtdt

+B · F T
t

[
κv (θv − Vt) dt+ σv

√
VtdZt

]
+
1

2
B2 · F T

t · σ2
vVtdt

+F T
t

[
κe−κ(T−t) lnV IXt +

(
A

′

t +B
′

t · Vt
)]
dt

+
[
eJe

−κ(T−t) − 1
]
· F T

t−dNt

= e−κ(T−t) · F T
t

(
θtκ+ Vt

2

)
dt+ F T

t

(
A

′

t +B
′

t · Vt
)
dt+B · F T

t κv (θv − Vt) dt

+
1

2
e−κ(T−t)

[
e−κ(T−t) − 1

]
F T
t · Vtdt+

1

2
B2 · F T

t · σ2
vVtdt

−F T
t

e−κ(T−t)

η − e−κ(T−t)
λdt

+e−κ(T−t) · F T
t

√
VtdWt +B · F T

t σv
√
VtdZt

+F T
t−

{[
eJe

−κ(T−t) − 1
]
· dNt −

e−κ(T−t)

η − e−κ(T−t)
λdt

}
= e−κ(T−t) · F T

t

√
VtdWt +B · F T

t σv
√
VtdZt

+F T
t−

{[
eJe

−κ(T−t) − 1
]
· dNt −

e−κ(T−t)

η − e−κ(T−t)
λdt

}
=

∂F T
t

∂V IXt

· V IXt

√
VtdWt +

∂F T
t

∂Vt
· σv
√
VtdZt

+
{
∆F T

t dNt − λEQ
t

[
∆F T

t

]
dt
}

which concludes proof of eqn. (6.11). �

Theorem 6.3：(VIX Option Pricing)
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Under the assumption of MRLRSVJ process in Definition 6.1, VIX call option CallTt (K)

can be explicitly solved as

CallTt (K) = exp

{
−
∫ T

t

rsds

}
·
[
F T
t · Π1 −K · Π2

]
(6.13)

where Π1 and Π2 are two tail probabilities{
Πj =

1
2
+ 1

π

∫∞
0

Re
{
ψj(s)e

−is lnK

is

}
ds, j = 1, 2

ψ1 (t; s) =
ψ(t;s−i)
ψ(t;−i) , ψ2 (t; s) = ψ (t; s)

(6.14)

Furthermore, VIX put option PutTt (K) can be explicitly solved as

PutTt (K) = exp

{
−
∫ T

t

rsds

}
·
[
K · (1− Π2)− F T

t · (1− Π1)
]

(6.15)

Proof:

Proof of this theorem is same as theorem 6.3. �

6.3 VIX Future and VIX Option Calibration

Theorem 6.4：(Calibration)

For the MRLRSVJ model in Definition 6.1, VIX option is priced using a Stochastic Volatil-

ity with jump underlying F T
t with time-dependent parameters. The stochastic volatility and

jump parameters are calibrated to VIX implied volatility surface.

With calibration result of parameters of Vt and Nt from market quotes of VIX implied

volatility skew, we can move forward to calibrate VIX future term structure.

θT = fT0 +
1

κ

dfT0
dT

− 1

κ

[
dC

dT
+ κC

]
− 1

κ

[
dB

dT
+ κB

]
· V0

+
1

κ

ρκvθv
σv

− λ

κ

1

η − e−κT
− λ ln

(
η − e−κT

η − 1

)
(6.16)

where fT0
.
= lnF T

0 is the initial VIX future term structure, C and D are defined as
C = C (0;−i)
D = D (0;−i)
dC
dT

= κvθvD
dD
dT

= 1
2
σ2
vD

2 − κvD − ρ(κ−κv)
σv

e−κT + 1
2
(1− ρ2) e−2κT
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Proof: According to eqn. (6.10), the initial VIX future term structure F T
0 is given by

F T
0 = {V IX0}e

−κT

· exp {A+B · V0}

where{
A = A (0;−i) = C +

∫ T
0
θhe

−κ(T−g)dh− ρκvθv
σvκ

[
1− e−κT

]
+ λ

κ
ln
(
η−e−κT

η−1

)
B = B (0;−i) = D − ρe−κT

σv

Thus

fT0 = e−κT · lnV IX0 + A+B · V0

= e−κT · lnV IX0 +B · V0

+

{
C +

∫ T

0

θhe
−κ(T−g)dh− ρκvθv

σvκ

[
1− e−κT

]
+
λ

κ
ln

(
η − e−κT

η − 1

)}
Take derivative w.r.t. T on both sides of the above equation, we get

dfT0
dT

= −κe−κT · lnV IX0 +
dA

dT
+
dB

dT
· V0

= −κe−κT · lnV IX0 +B · V0

+

[
dC

dT
+ κθT − κ2

∫ T

0

θhe
−κ(T−g)dh− e−κT

ρκvθv
σv

+
λ

η − e−κT

]
= κθT − κe−κT · lnV IX0 +

dC

dT
+
dB

dT
· V0 − e−κT

ρκvθv
σv

+
λ

η − e−κT

−κ
[
κ

∫ T

0

θhe
−κ(T−g)dh

]
= κθT − κe−κT · lnV IX0 +

dC

dT
+
dB

dT
· V0 − e−κT

ρκvθv
σv

+
λ

η − e−κT

−κ
[
fT0 − e−κT · lnV IX0 − C +

ρκvθv
σvκ

[
1− e−κT

]
− λ

κ
ln

(
η − e−κT

η − 1

)
−B · V0

]
= κθT +

[
dC

dT
+ κC

]
+

[
dB

dT
+ κB

]
· V0 −

ρκvθv
σv

− κfT0

+
λ

η − e−κT
+ λ ln

(
η − e−κT

η − 1

)
Rearrange the above equation, we get the result in eqn. (6.16). �
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6.4 VIX Future and VIX Option Hedging

In this section, I calculate sensitivities of VIX futures and VIX options with respect to spot

VIX and further develop hedging strategies for VIX futures and VIX options with other

VIX future contracts as hedging instruments.

Theorem 6.5：(VIX Future Hedging)

Firstly, we calculate the sensitivities of VIX future price to spot VIX. We are concerned

with the spot delta and spot gamma.
∂FT

t

∂V IXt
= e−κ(T−t)

V IXt
· F T

t

∂2FT
t

∂V IX2
t
= − e−κ(T−t)·[1−e−κ(T−t)]

V IX2
t

· F T
t

(6.17)

Based on the above formulas, we can move forward to calculate sensitivities of VIX future

with maturity T2 to another VIX future with shorter maturity T1.
∂F

T2
t

∂F
T1
t

= e−κ(T2−T1) · F
T2
t

F
T1
t

∂2F
T2
t

∂(FT1
t )

2 = −e−2κ(T2−T1) ·
[
eκ(T2−T1) − 1

]
· F

T2
t

(FT1
t )

2

(6.18)

Proof:

Proof of this theorem is same as theorem 4.5. �

Theorem 6.6：(VIX Option Hedging)

Firstly, we calculate the sensitivities of VIX call option price to spot VIX. We are concerned

with the spot delta and spot gamma.{
∂CallTt
∂V IXt

=
e−(r+κ)(T−t)·FT

t

V IXt
· Π1

∂2CallTt
∂V IX2

t
= − e−(r+κ)(T−t)·FT

t

V IX2
t

{[
1− e−κ(T−t)

]
· Π1 − e−κ(T−t) · f1 (lnK)

} (6.19)

Based on the above formulas, we can move forward to calculate sensitivities of VIX call

option price with maturity T2 to a VIX future with shorter maturity T1.
∂Call

T2
t

∂F
T1
t

= e−r(T2−t)e−κ(T2−T1) · F
T2
t

F
T1
t

· Π1(T2)

∂2Call
T2
t

∂(FT1
t )

2 = e−r(T2−t)e−2κ(T2−T1) · F
T2
t

(FT1
t )

2 ·
[(
1− eκ(T2−T1)

)
· Π1 + f1 (lnK)

] (6.20)

Proof:

This theorem can be proved with the exact procedure as in Theorem 4.6. �
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6.5 Forward Variance Swap and Convexity

Finally, in this section I extend the 30-day forward variance swap pricing formula in MRLR

and MRLRJ models to MRLRSVJ model.

Theorem 6.7：(Forward Variance Swap Pricing)

Under the assumption of MRLRSVJ process in Definition 6.1, the 30-day forward variance

swap FV STt = EQ
t

[
RV T+30days

T

]
= EQ

t [V IX2
T ] can be explicitly solved as

FV STt = ψ (lnV IXt, Vt, t;−2i)

= {V IXt}2e
−κ(T−t)

· exp {A (t;−2i) +B (t;−2i) · Vt}
.
= {V IXt}2e

−κ(T−t)

· exp
{
Ã+ B̃ · Vt

}
(6.21)

Furthermore, dynamics of forward variance under pricing measure Q can be given by

dFV STt = FV STt · 2e−κ(T−t)
√
VtdWt + FV STt ·B (t;−2i) σv

√
VtdZt

+FV STt−

{[
e2Je

−κ(T−t) − 1
]
· dNt −

2e−κ(T−t)

η − 2e−κ(T−t)
λdt

}
=

∂FV STt
∂V IXt

· V IXt

√
VtdWt +

∂FV STt
∂Vt

· σv
√
VtdZt

+
{
∆FV STt dNt − EQ

t

[
∆FV STt

]
λdt
}

(6.22)

Proof:

This theorem can be proved with the same procedure as Theorem 5.7 and Theorem 6.2. �

Below we derive the convexity adjustment for VIX future from 30-day forward variance

swap.

Theorem 6.8：(Convexity Adjustment for VIX Future)

Under the assumption of MRLRSVJ process in Definition 6.1, convexity adjustment of

VIX future from forward variance swap can be derived as

CATt
.
=

F T
t√

FV STt
= exp

{
−
[
1

2
A (t;−2i)− A (t;−i)

]
−
[
1

2
B (t;−2i)−B (t;−i)

]
· Vt
}

(6.23)
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Proof:

This theorem can be proved with the exact procedure as in Theorem 5.8. �
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7 Numerical Analysis

This chapter performs several calibrations and comparative studies of the four models p-

resented in this thesis. I use VIX option data in a single day for analysis. Calibration is

conducted for each maturity across all strikes starting from at the money to deep in the

money and deep out of the money unless the bid or ask price is unavailable.

7.1 Market Data and Data Processing

VIX option prices used in this thesis are the delayed market quotes downloaded from

CBOE website www.cboe.com on September 26, 2011 at time 10:01 ET. The underly-

ing VIX quote is 42.3 when I downloaded the option data. There are 6 maturities available

in the market at this time, and they are October 18, 2011, November 15, 2011, December

20, 2011, January 17, 2012, February 14, 2012 and March 20, 2012.

Table 7.1 reports some key features of the option data, as well as the data processing pro-

cedure. For each maturity, there are 33 or 35 call option quotes in the market, with strikes

ranging from 10 to 100 for all maturities. For those deep out-of-the-money call options, bid

price may be zero, thus I preclude those options from the sample. The number of options

with positive bid quotes are then reported for each maturity in Table 7.1. Another criteria I

consider when choosing the option sample is open interest (OI), which represents the num-

ber of all option contracts that have not been settled. The quotes with zero open interest

are kicked out from the positive bid sample. From Table 7.1, we can see that the first four

maturities have non-trivial number of open interest for each positive bid quote. When the

time to maturity exceeds the fourth month, some quotes have no open interest exist, espe-

cially for those deep in the money or out of the money options. Average OI among those

quotes with non-zero open interest are also reported in Table 7.1. The numbers in Table 7.1

show that average open interest declines as the time to maturity grows. In order to make the

sample more liquid and reliable, the last two maturities are not included because some of
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Table 7.1 Calibration data description

Maturities 18-Oct-11 15-Nov-11 20-Dec-11 17-Jan-12 14-Feb-12 20-Mar-12
All Quotes 33 33 33 35 35 35

Positive Bid Quotes 30 31 32 35 35 33
Positive OI Quotes 30 31 32 35 28 11

Average OI (35805) (19474) (15273) (2695) (914) (167)
Effective Quotes 30 31 32 35 0 0

Note. The table only presents call option data. The number in table without brackets are number of option

quotes, while the fourth line with brackets are the numbers of average open interest (OI) for those options

that has positive OI. ’All Quotes’ represents the number of all available quotes from CBOE website, while

’Positive Bid Quotes’ is the number of all quotes with non-zero bid price. ’Positive OI Quotes’ is further

refinement of the ’Positive Bid Quotes’ by kicking out those with zero open interest. ’Effective Quotes’ is

the number of option quotes that has been chosen into sample for our calibration for each maturity. The zero

effective quotes for maturities 14-Feb-2012 and 20-Mar-2012 mean that those maturities are not taken into

sample.

the positive bid quotes have no open interest and the average open interest is much smaller

than the short and medium maturities.

7.2 Loss Function

In the calibration, model parameters are backed out by minimizing a loss function that

measures the sum of pricing errors between model prices and mid prices of bid and ask

quotes. A quite often used loss function is the mean square error (MSE) function, which is

defined as the sum of squares of difference between model prices and market prices. For

each fixed maturity Ti, suppose there are Ni market prices
{
CMarket
Ti,Kj

}Ni

j=1
across the strikes

{Kj}Ni

j=1, and the corresponding market prices are computed as
{
CModel
Ti,Kj

}Ni

j=1
. Then the

loss function MSE is given by

LossMSE =

Ni∑
j=1

(
CModel
Ti,Kj

− CMarket
Ti,Kj

)2
(7.1)

Calibrating with MSE as loss function is equivalent to directly fitting model prices to mar-

ket prices. As indicated in Rebonato [23], this method tends to overweight in the money
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call options and underweight out of the money call options. A possible rescue proposed

in Rebonato [23] is to fit model implied volatilities to market volatilities, which is actually

widely used by many practitioners and scholars. Although calculation of implied volatility

needs Newton’s iteration, this cost is negligible because only few iterations are needed for

each implied volatility. However, calculation of VIX implied volatility itself is an unset-

tled problem and for some deep in-of-money VIX call options the implied volatilities are

not available. Different data sources such as iVolatility.com and International Securities

Exchange (ISE) often calculate VIX implied volatilities significantly different. I try to use

Whaley formula from Whaley [28], which is a Black-Scholes formula for VIX option, to

inverse VIX option prices to VIX implied volatilities, and I find that not all option prices

can be converted to implied volatilities. This situation is often encountered for in the mon-

ey call options. Therefore, calibration using implied volatilities as loss function is not so

stable and sometimes not feasible. An alternative improvement of the MSE method as in-

dicated in Rebonato [23] is to fit log model prices to log market prices, which is equivalent

to defining the following loss function MLSE,

LossMLSE =

Ni∑
j=1

(
logCModel

Ti,Kj
− logCMarket

Ti,Kj

)2
(7.2)

Although MLSE significantly increases the weight of deep out of the money call options,

in the money call options become underweighted under this measure. This is because ITM

call prices are far greater than OTM call prices, and the log function is almost insensitive to

small change of VIX option prices. This will inevitably cause considerable absolute error

that is greater than bid-ask spread for in the money calls. In order to balance the weights,

I suggest combine MSE and MLSE together to construct a new loss function MMLSE as

follows

LossMMLSE =

Ni∑
j=1

(
CModel
Ti,Kj

− CMarket
Ti,Kj

)2
+ α ·

Ni∑
j=1

(
logCModel

Ti,Kj
− logCMarket

Ti,Kj

)2
(7.3)

where α is a pre-given weighting factor that balances the contributions of MSE and MLSE

in MMLSE. In our experience, α = 8 is suitable to ensure good fitting quality.
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7.3 Calibration Results

In this chapter, we calibrate all parameters to VIX option prices, including the long-term

mean θ. By using this calibration strategy, we suppose the underlying of VIX option is spot

VIX and input the current spot VIX in VIX option pricing formula. For each maturity, we

calibrate all parameters to VIX implied volatility skew at that maturity. In this section, we

discuss the calibration results in terms of fitting error, positive implied volatility skew and

term structure of parameters.

Table 7.2 Fitting quality: Percentage Error (PE)

18-Oct-11 15-Nov-11 20-Dec-11 17-Jan-12
MRLR 6.91% 4.66% 6.61% 5.73%
MRLRJ 3.25% 3.81% 5.21% 3.11%
MRLRSV 3.18% 3.68% 5.07% 2.98%
MRLRSVJ 3.18% 3.68% 5.07% 2.99%

Table 7.3 Fitting quality: Mean Absolute Error (MAE)

18-Oct-11 15-Nov-11 20-Dec-11 17-Jan-12
MRLR 0.4334 0.3287 0.3566 0.3569
MRLRJ 0.1162 0.1843 0.2097 0.1322
MRLRSV 0.1214 0.1752 0.1995 0.1286
MRLRSVJ 0.1217 0.1753 0.1999 0.1294

7.3.1 Fitting Quality

The fitting quality is measured by average error of model prices from market middle quotes

over all maturities and strikes in sample. Two types of pricing error measures are used in

this thesis, percentage error (PE) and mean absolute error (MAE). The percentage error is

defined as

PE =
1

NTNK

NT∑
i=1

NK∑
j=1

∣∣CModel
(
Ti, K

i
j

)
− CMkt

(
Ti, K

i
j

)∣∣
CMkt

(
Ti, K i

j

) (7.4)

and mean absolute error is defined as

MAE =
1

NTNK

NT∑
i=1

NK∑
j=1

∣∣CModel
(
Ti, K

i
j

)
− CMkt

(
Ti, K

i
j

)∣∣ (7.5)
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Figure 7.1 Fitting quality of VIX models to VIX option quotes

where {Ti}NT

i=1 are all liquid maturities. In this chapter, they represent October 18, 2011,

November 15, 2011, December 20, 2011 and January 17, 2012. For each maturity Ti, there

are market quotes at strikes
{
Ki
j

}NK

j=1
. CMkt (Ti, Kj) is the middle quote of VIX option and

CModel (Ti, Kj) is VIX option price given by one of the four VIX models.

Table 7.2 and Table 7.3 report the fitting quality of the four models for each liquid maturity

in terms of PE and MAE. Several observations from the two tables are in order. Firstly,

we note that MRLR has largest fitting error. This is understandable because MRLR model

implies a log-normal distribution for both spot VIX and VIX future and the Black-Scholes

pricing formula for VIX option is unable to produce the positive implied volatiliy skew

observed in VIX option market.
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Secondly, the three models MRLRJ, MRLRSV and MRLRSVJ including jumps and/or

stochastic volatility significantly improve the fitting quality. In terms of PE as shown in

Table 7.2, MRLRSV and MRLRSVJ model perform equally well with each other. This

concludes that adding SV to MRLR is sufficient and additionally adding jump to the model

is unnecessary. This observation is very important because the MRLRSVJ model is more

complicated and has more parameters than both MRLRJ and MRLRSV models. In order

to get same order of accuracy, the simpler models MRLRJ and MRLRSV are sufficient.

Thirdly, the other observation from Table 7.3 is worth mentioning. For the shortest maturi-

ty October 18, 2011, MRLRJ has smaller MAE than the two stochastic volatility models.

This is consistent from observation in equity option market. The reason of why jump model

serves better than stochastic volatility model in short-term maturity is that the possible sud-

den downward jump is able to create more significant terminal correlation than stochastic

volatility model, where the terminal correlation is achieved by accumulating instantaneous

correlation between spot VIX and instantaneous variance.

Figure 7.1 is plot of calibration results in terms of VIX call option prices. The plot shows

that MRLR model has largest fitting error and for most of the strikes the model prices

lie outside the band of bid-ask quotes in VIX option market. For MRLRJ, MRLRSV and

MRLRSVJ models, most model prices lie in the bid-ask band of quotes.

7.3.2 Positive Skew

In this subsection, I investigate the ability of the four models in generating implied volatil-

ity skews for VIX options. One important thing we have to notice is that the implied

volatility inverted from VIX option price depends on what formula we use in the inver-

sion. Unlike the situation in equity option market, where the underlying asset is a tradable

asset with interest rate as drift and Black-Scholes formula can serve as formula to invert

implied volatility, the underlying spot VIX of VIX option is not a tradable asset and using

Black-Scholes formula with spot VIX as underlying is not appropriate.

Recall the simple Black-Scholes formula (2.21) for VIX option with spot VIX as underly-
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Figure 7.2 VIX implied volatility skew with spot VIX as underlying.

ing in Whaley1993. In this model, the spot VIX is assumed to follow

dV IXt

V IXt

= rdt+ σdWt (7.6)

and the Black-Scholes pricing formula for VIX option is given by

CallTt = e−r(T−t)
[
F T
t ·N (d1)−K ·N (d2)

]
(7.7)

with

F T
t = V IXte

r(T−t) (7.8)

and

d1,2 =

[
ln
F T
t

K
± σ2T

2

]/
σ
√
T (7.9)
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Figure 7.3 VIX implied volatility skew with VIX future as underlying.

The problem with this model is that it treats underlying spot VIX as tradable asset and

suppose it has interest rate as drift under pricing martingale measure. A direct consequence

of assumption of this model is the problematic pricing formula for VIX future as shown in

eqn. (7.8) because there is no cost-of-carry relationship between spot VIX and VIX future.

A more appropriate pricing formula to invert VIX implied volatility from VIX option price

is to treat VIX option with VIX future as underlying. The advantage of this model is that

VIX future is tradable asset and at the option’s maturity VIX future converges to spot VIX.

Therefore, we assume the below geometric Brownian motion for VIX future F T
t under

pricing measure Q

dF T
t

F T
t

= σdWt (7.10)
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and the Black pricing formula for VIX option is given by

CallTt = e−r(T−t)
[
F T
t ·N (d1)−K ·N (d2)

]
(7.11)

where F T
t is market price of VIX future and is input to the pricing formula and

d1,2 =

[
ln
F T
t

K
± σ2T

2

]/
σ
√
T (7.12)

In this thesis, I use the above two pricing formulas to invert VIX option market quotes to

VIX implied volatility.

Figure 7.2 plots the implied volatility skew from formula (7.7) for the four liquid maturities.

This figure confirms and amplifies the fitting results in Figure 7.1 that most of MRLR im-

plied volatilities lie outside the bid-ask band and most MRLRJ, MRLRSV and MRLRSVJ

implied volatilities lie within the bid-ask band. Furthermore, the three skew models have

similar fitting quality in terms of implied volatility.

One prominent observation from this figure is that all four models create positive implied

volatility skews. However, this is just illusion because there is problematic assumption in

this model as discussed above. The input of current underlying in this formula is spot VIX

and the resulted VIX future is obtained by the problematic formula (7.8). Therefore, this

formula maybe a good candidate in inverting VIX option to a volatility quantity to check

fitting quality but not a good formula to investigate the real implied volatility skew.

Figure 7.3 plots the implied volatility skew from formula (7.11) for the four liquid maturi-

ties. In this formula, the input of current underlying is current price of VIX future and thus

we get around the problem of formula (7.7).

One clear observation in Figure 7.3 is that the implied volatility skew under MRLR model

is almost flat and is unable to generate skew for VIX option. Another observation is that

MRLRJ, MRLRSV and MRLRSVJ models have almost the same fitting quality and they

all serves well in generating positive implied volatility skew.

Based on the above analysis, I conclude that mean-reverting logarithmic models with just

jump or stochastic volatility is sufficient in generating positive implied volatility skew.
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Table 7.4 Calibrated parameters for each maturity under MRLR model.

18-Oct-11 15-Nov-11 20-Dec-11 17-Jan-12
κ 11.05 11.43 9.88 12.58
θ 3.38 3.39 3.29 3.34
σ 1.97 2.07 2.18 2.48

Table 7.5 Calibrated parameters for each maturity under MRLRJ model.

18-Oct-11 15-Nov-11 20-Dec-11 17-Jan-12
κ 29.84 28.78 29.55 21.86
θ 3.00 3.00 3.00 3.00
σ 1.46 2.44 2.97 2.31
λ 169.45 138.89 84.76 59.53
η 9.94 10.09 7.74 6.71

Combining jump and stochastic volatility together in one model adds no value in fitting

quality and generating positive skew but with the cost of more parameters to calibrate.

7.3.3 Calibrated Parameters

In this subsection, I present the reports on calibrated parameters for the four models at four

liquid maturities. Table 7.4∼7.7 display all calibrated parameters. In order to better un-

derstand the calibration results, we recall the meaning of parameters in all mean-reverting

logarithmic models.

θ is the long-term mean of lnV IXt. Thus eθ can be interpreted as long-term mean of V IXt.

At the time of calibration, the current spot VIX is at the level of 42.3. For the four mod-

els, long-term mean of V IXt implied from θ ranges from 20 to 30. This understandable

because at the time of calibration, 25 September 2011, VIX future curve was in backwar-

dation thus market consensus expect VIX to fall in the future. Actually, ever since spot

VIX fell below 30 on 1 December 2011, spot VIX stayed in the interval [20, 30] in period 1

December 2011 to 19 January 2012, which is the period that VIX option’s maturities cover.

In contrast, θv is the long-term mean of instantaneous variance Vt in MRLRSV and M-

RLRSVJ models. The calibrated parameters show that θv stay around 100%. This is consis-

tent with the calculated market implied volatility-of-volatility in Figure 7.3. Furthermore,

83



浙江大学博士学位论文

Table 7.6 Calibrated parameters for each maturity under MRLRSV model.

18-Oct-11 15-Nov-11 20-Dec-11 17-Jan-12
κ 4.27 5.10 3.48 3.53
θ 3.14 3.25 3.11 3.26
ρ 1.00 1.00 1.00 1.00
κv 1.68 1.89 1.67 1.56
θv 1.11 1.12 1.08 1.03
σv 1.98 0.71 0.57 0.65
V0 1.81 2.00 1.63 1.37

Table 7.7 Calibrated parameters for each maturity under MRLRSVJ model.

18-Oct-11 15-Nov-11 20-Dec-11 17-Jan-12
κ 5.93 4.99 3.81 4.11
θ 3.21 3.15 3.03 3.19
ρ 1.00 1.00 1.00 1.00
κv 1.72 1.77 1.73 1.77
θv 1.11 1.14 1.07 1.06
σv 2.05 0.71 0.58 0.69
V0 1.99 1.95 1.74 1.59
λ 30.43 31.94 30.53 29.92
η 69.58 68.05 69.43 69.88

V0 as initial value of Vt is much larger than than the calibrated θv. This is also in line with

the backwardation observed in VIX future market on the calibration date.

κ is mean-reverting speed of spot VIX and κv is mean-reverting speed of var-of-vol Vt.

Table 7.4∼7.7 show that mean-reverting speed in spot VIX is much larger than in Vt.

In addition to the table reports, below I plot term structures of parameters in the four models

as show in Figure 7.4∼7.13.

From Figure 7.4 to Figure 7.13, we notice that parameters κ and θ of mean-reversion of

V IXt and parameters λ and η of jump in V IXt are rather stable over all maturities. In con-

trast, parameters for stochastic volatility are not so stable and some parameters show clear

term structure. For example, θv has clear downward term structure and this phenomenon is

in line with the fact of backwardation observed in VIX future market.
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Figure 7.8 Parameter term structure
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Figure 7.12 Parameter term structure
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8 Conclusion

This thesis focuses on mathematical modeling of spot VIX with standalone approach. Un-

like the consistent modeling approach, which starts with specifying joint dynamics for SPX

index and its instantaneous stochastic volatility then derives expression for spot VIX and

price VIX derivatives based on this expression, standalone approach starts with directly

specifying dynamics for spot VIX and price VIX derivatives in this simpler framework.

Given the good fitting quality of mean-reverting logarithmic VIX model both under phys-

ical measure and martingale measure in literature, this thesis present the basic mean-

reverting logarithmic model and it’s three extensions. The basic MRLR model is unable

to generate implied volatility skew for VIX option. Therefore, we extend MRLR model by

adding Poisson jump and stochastic volatility to VIX dynamics. In order to match the pos-

itive skew observed in VIX option market, we let the jump to be upward and the stochastic

volatility to be positively correlated with spot VIX.

What separates my analysis from that in literature is that I not only focus on deriving

static pricing formula for VIX future and VIX option, but also on dynamics of VIX future,

convexity adjustment of VIX future from forward variance swap and hedging ratios of VIX

future and VIX option with short-term VIX future as hedging instruments.

The analysis in chapter 3∼6 shows impact of spot VIX features such mean-reversion, jump,

stochastic volatility on VIX future pricing and its dynamics. Presence of mean-reversion

makes spot VIX less possibly to deviate from its long-term mean and thus decrease the

volatility of VIX future. By making the long-term mean of mean-reverting VIX dynamics

be time-dependent function, we are able to fit initial VIX future curve by construction.

Although spot VIX displays mean-reversion in its dynamics, the impact of mean-reversion

presents in VIX future pricing formula and does not present in drift of VIX future dynamics

because VIX future is martingale under the pricing measure.

By deriving dynamics of VIX future under the four models, I show that VIX future follows
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geometric Brownian motion under MRLR model, jump-diffusion dynamics under MRLRJ

model, stochastic volatility dynamics under MRLRSV model and stochastic volatility with

jump dynamics under MRLRSVJ model.

The calibration results in chapter 7 show that MRLR model is unable to generate positive

implied volatility skew for VIX option. In contrast, by adding jump and stochastic volatility

model to MRLR, the MRLRJ, MRLRSV and MRLRSVJ models are able to fit the posi-

tive skew. Moreover, the results show that MRLRJ and MRLRSV perform equally well in

fitting positive skew and adding jump into MRLRSV adds no value in fitting quality but

could potentially incur the cost of estimating more parameters.

In further work, we could compare the four mean-reverting logarithmic models with consis-

tent VIX approach in calibration and hedging efficiency from a practitioner’s view. More-

over, by using the connection between VIX future and forward variance swap as well as

the liquid market of variance swap, we could test the calibration strategy making use of

information from variance swap market. Calibrating model to VIX option market and for-

ward variance swap market can both back out the vol-of-vol of VIX. Thus the test of the

two calibration strategies are also necessary.
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