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Abstract

Since March 26, 2004, when the CBOE Futures Exchange (CFE) began trading futures
written on S&P500 volatility index (VIX), volatility has become a widely accepted asset
class as trading, diversifying and hedging vehicle by traders, investors and portfolio man-
agers over the past few years. On February 24, 2006, CBOE introduced options written
on VIX index and since then VIX option series has now become the most actively traded
index option series on CBOE.

This thesis focuses on mathematical modeling of spot VIX with standalone approach. Un-
like the consistent modeling approach in literature, which starts with specifying joint dy-
namics for SPX index and its instantaneous stochastic volatility then derives expression for
spot VIX and price VIX derivatives based on this expression, standalone approach starts
with directly specifying dynamics for spot VIX and prices VIX derivatives in this simpler
framework.

Although there is work in literature that studies the mean-reverting logarithmic model (M-
RLR), no work has been done in considering stochastic volatility in MRLR to capture the
positive implied volatility skew of VIX option, nor have they compared the pure diffusion
version of MRLR with its jump and/or stochastic volatility extensions. Furthermore, most
of the literature only focus on static pricing formulas for VIX future and VIX option, no
work has been done in investigating the dynamic feature of VIX future, calibration and
hedging strategies of mean-reverting logarithmic models, as well as the convexity adjust-
ment of VIX future from forward variance swap, which has a liquid variance swap market
to back out the vol-of-vol information in mean-reverting logarithmic models.

In this thesis, I present four versions of MRLR models. The first model is a pure diffusion
model where spot VIX follows a mean-reverting logarithmic dynamics. Then I extend this

basic MRLR model by adding jump or stochastic volatility into spot VIX dynamics to get

v
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MRLRIJ and MRLRSV models. Finally, I combine jump and stochastic volatility together
and add them into dynamics of spot VIX to get the fully specified MRLRSVJ model.

For all the four models, I derive either transition function or conditional characteristic
function of spot VIX. Based on those results, the pricing formulas for VIX future and VIX
option are derived. In order to calibrate to VIX future term structure, I make the long-
term mean of spot VIX be a time-dependent function and use the diffusion, jump and/or
stochastic volatility parameters to calibrate VIX implied volatility surface.

Two types of calibration strategies are suggested in this thesis. On the first stage of cal-
ibration, we need to calibrate all vol-of-vol parameters to convexity of spot VIX or VIX
future. One strategy is to calibrate those parameters to VIX option implied volatility sur-
face. Another strategy is to calibrate them to convexity adjustment of VIX future from
forward variance swap, which can be replicated by liquid variance swaps. On the second
stage of calibration, the long-term mean function of spot VIX is used to fit VIX futuer term
structure given the vol-of-vol parameters calibrated on the first stage.

In addition to the static pricing formula, dynamics of VIX future is also derived under
all mean-reverting logarithmic models. The analysis in this thesis shows that VIX future
follows geometric Brownian motion under MRLR model, jump-diffusion dynamics un-
der MRLRJ model, stochastic volatility dynamics under MRLRSV model and stochastic
volatility with jump dynamics under MRLRSVJ model.

I develop the hedging strategies of VIX future and VIX option under mean-reverting log-
arithmic models. As spot VIX is not tradable asset, investors are unable to take positions
on this index. Instead, research in literature has shown that a shorter-term VIX future has
good power in forecasting movements of the subsequent VIX future. Therefore, hedging
VIX future with a shorter-term VIX future is expected to perform well. Moreover, as VIX
option can also be regarded as an option on a VIX future contract that has same maturity as
VIX option, using the shorter-term VIX future contract as hedging instrument is a natural
choice. In this thesis, I derive hedging ratios of VIX future and VIX option under the above

hedging strategy.
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At last, numerical analysis in this thesis compares the four models in fitting VIX implied
volatility surface. The results show that MRLR is unable to create positive implied volatil-
ity skew for VIX option. In contrast, MRLRJ and MRLRSV models perform equally well
in fitting positive skew. However, the fully specified MRLRSVJ model adds little value in
fitting VIX skew but incurs additional cost of calibrating more parameters and is subject to
less stable parameters over maturities and over time.

Keywords: VIX; VIX Future; VIX Option; Forward Variance Swap; VIX Implied Volatil-
ity Skew; MRLR Model; Jump-Diffusion; Stochastic Volatility.
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Introduction

1 Introduction

Since March 26, 2004, when the CBOE Futures Exchange (CFE) began trading futures
written on S&P500 volatility index (VIX), volatility has become a widely accepted asset
class as trading, diversifying and hedging vehicle by traders, investors and portfolio man-
agers over the past few years. On February 24, 2006, CBOE introduced options written
on VIX index and since then VIX option series has now become the most actively traded
index option series on CBOE.

Spot VIX index is defined as square root of 30-day variance swap of S&P500 index (SPX)
and it can be understood as an index representing 30-day average implied volatility of
S&P500 index option. As all well known, variance swap is a tradable asset and it can
be statically replicated by a series of out-of-money (OTM) SPX options. However, being
defined as square root of SPX variance swap, spot VIX itself is not tradable asset and
this is the exact reason CBOE introduces VIX futures and VIX options as vehicles to take
positions on VIX.

As a volatility index, VIX shares the properties of mean-reversion, large upward jumps and
stochastic volatility, which is known as stochastic vol-of-vol. Therefore, a good model for
modeling spot VIX should take into account at least some of these factors.

For the purpose of calibration, pricing and hedging of VIX futures, one is concerned with
statically calibrating the initial VIX future term structure and dynamics of VIX future con-
tracts. In order to develop a good model for pricing and hedging VIX option, one is also
very concerned with the ability of VIX model in calibrating VIX volatility surface and
derive reasonable hedging ratios for VIX options with respect to VIX futures.

There are roughly two categories of approaches for VIX modeling in the literature. In one
line of research, the inherent relationship between S&P500 and VIX are retained by spec-
ifying joint dynamics of S&P500 index (SPX) and its stochastic instantaneous volatility.

Then the expression for spot VIX is derived by its definition as square root of forward re-
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alized variance of SPX. This approach is called consistent modeling approach in literature
and it has been studied and applied to pricing VIX futures in Zhang and Zhu"!!, Zhu and
Zhang®*¥, Lin!'®!, Lu and Zhu!"®!, Zhang and Huang!?®! and Zhu and Lian**!, where model
factors such as mean-reversion and jumps are characterized by various kinds of stochas-
tic processes. Following this approach, Lin and Chang!'”l, Lin and Chang!'®! and Sepp!?
address the problem of VIX option pricing by characteristic function method.

In the other line of research, VIX dynamics are directly specified and thus VIX option-
s can be priced in simpler formula. Papers following this approach include Whaley %%,
Grunbichler and Longstaff!®, Detemple and Osakwe™ and Psychoyios?!!, where mean-
reverting square-root and mean-reverting logarithmic processes with or without jumps are
adopted to characterize VIX.

Psychoyios and Skiadopoulos!??! and Wang and Daigler'?”! made some comparative studies
about the above two categories of VIX future and option pricing models in the aspect of
hedging effectiveness and pricing accuracy. They suggest that simpler models of the second
kind perform equally well with or even better than the first kind complicated models, such
as the fully-specified Lin and Chang!'”! model.

In spite of the accomplishment of VIX modeling in the literature, some problems are still
need to be addressed. Psychoyios and Skiadopoulos!??! and Psychoyios?!! recommend that
the mean-reverting logarithmic model (denoted as MRLR) serves better than the mean-
reverting square root models (denoted as MRSR) in both aspects of fitting VIX historical
data under the objective measure and calibrating VIX options under martingale measure.
The logarithmic models proposed in Psychoyios and Skiadopoulos!??! and Psychoyios?!
assumes that logarithm of VIX follows a OU process as Vasicek!?®!. By adding upward
Jumps that follow exponential distribution into the MRLR model to construct mean-reverting
logarithmic jump model (denoted as MRLRIJ), Psychoyios?!! successfully get an explic-
it pricing formula for VIX option expressed by characteristic function of log-VIX in the

MRLRJ model.
Baol®! calibrates the four models BS, MRSR, MRLR and MRLRIJ to a series of VIX
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options, and performs a comparative study on pricing accuracy and flexibility to generating
reasonable positive volatility skew. Calibration in Bao® is conducted for each separate
maturity across strikes that have non-zero bid prices. The results confirm that MRLR and
MRLRIJ are better than MRSR model in fitting VIX option quotes, especially MRLRI.
However, pricing accuracy of MRLR is still not satisfactory, especially for out of the money
call options, which can provide effective hedging instruments against large downside move
of stock market. Therefore, the results in Bao'*®! conclude that upward jumps in spot VIX
and stochastic volatility of spot VIX is necessary in order to improve the mean-reverting
logarithmic modeling of VIX.

The most significant shortage of research in literature regarding VIX modeling is the dy-
namic features of VIX futures implied by VIX models as well as the hedging ratios of
VIX futures and VIX options with respect to other VIX future contracts. In this thesis,
I will focus on the family of mean-reverting logarithmic models in the aspects of pricing,
dynamics, calibration, hedging and convexity adjustments of VIX futures and VIX options.
The remaining chapters of this thesis are organized as follows. Chapter 2 reviews some of
the literature of VIX modeling that are most relevant to this thesis. Chapter 3 begins the
research of this thesis and starts with MRLR model. I derive the VIX future and VIX op-
tion pricing formulas and also the dynamics of VIX future. Based on the dynamics of VIX
future, I calculate the instantaneous correlation of VIX futures with different maturities.
Furthermore, I derive hedging ratios of VIX futures and VIX options both with respect to
spot VIX and VIX futures of different maturities. Finally, I derive the pricing formula for
forward 30-day variance swap and calculate the convexity adjustment of VIX future from
forward variance swap. The MRLR model is calibrated to both VIX future term struc-
ture and VIX implied volatility surfaces. Also calibration idea of making use of forward
variance swap market data is suggested in this chapter.

In the following chapters 4, 5 and 6, I extend MRLR model to including jump or/and
stochastic volatility and conduct the same research as above to those models MRLRJ, M-

RLRSV, MRLRIJSV.
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In Chapter 7, I present some numerical results of those models and make some concluding

remarks on pros and cons of all of these models.
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2 VIX Modeling Review

2.1 Consistent Approach

In the first line of research for VIX future modeling in literature, the joint dynamics of SPX
index and its instantaneous stochastic volatility is specified. Based on this joint dynamics,
expression for spot VIX is further derived and it can be represented as function of instan-
taneous SPX volatility and its driving factors. Consequently, VIX future and VIX option
can be priced using the characteristic function of instantaneous volatility. This approach
is usually called consistent modeling approach because under this model both SPX option
and VIX option can be priced simultaneously and the model is jointly calibrated to both

option markets.

2.1.1 Zhang and Zhu (2006) 3"

Zhang and Zhu" is the first paper in literature that proposes a consistent model for VIX
future. Under pricing measure (Q, the authors assume that SPX index follows Heston s-

tochastic volatility model

5 = vt + VWP ~Q @1
dV, = k(0 — V;) dt + oy/VdW) ’

with dW;°dW} = pdt. Given the above joint dynamics, especially dynamics of instan-
taneous variance V;, VI X} as conditional expectation of 30 day realized variance is ex-

pressed as

1 t+710
VIX? = E2 {— / Vsds} =A+B-V, (2.2)
t

7o
where 79 = 30/365, A and B are represented as
- _ 1 11 _ o—kT0
A=6 [1 L —e ]} 2.3)
B= [l —e*m)

Furthermore, transition function of instantaneous variance V; is expressed as

£ Velve) = e ()1, (2/m) 04
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with
_ 2K
- UV l—e —k(T—t)
— wk(T—t)
= =
q= i}i@ 1
Vv

Consequently, VIX future pricing formula can be easily expressed as

+oo
FT = B2 [VIXy] = EQ [\/A B VT} - VAT B-VefQ(VelVi) dVe (2.6)

0
Given the analytical formula of transition function f© (V|V;) under martingale measure
Q, the above formula as an integral can be implemented by Gaussian quadrature.

With the 3 free parameters (k, 6, oy ), the VIX future model can be calibrated to market

prices of VIX futures.

2.1.2  Zhu and Zhang®¥

Zhu and Zhang **! extends the model of Zhang and Zhu*!! by making the long-term mean

in instantaneous variance be time-dependent, i.e. 6 = 0;.

{ 90— pdt 4 /Tid WS

Vy = 1 (6 — V) dt + oy yViawy ~ @ @D

with thS thV = pdt. Again, square of spot VIX, V' I Xf, can be represented as
1 t+710
VIX? = E? {—/ Vsds] — A+ BV, (2.8)
To Jt
where A and B are given by

{ A= %ft+7—0 [1 i 6—(t+mfs)] Qsds

t

B =L ] 2.9)

Furthermore, transition function of instantaneous variance V; is expressed as inverse Fouri-

er transform of conditional characteristic function
1 [T . 4 .
Q (VT“/t) — _/ Re [efstTJra(t;zs)JrB(t;'Ls)Vt} ds (210)
™ Jo

with

k=50t u[l—er(T-1)] (2.11)

{ Bltsu) = e
a(t;u) = KLT On5 (h;u) dh
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Consequently, VIX future pricing formula can be easily expressed as

+o0
FT = EC[VIXy] = EQ [\/A B VT} - VAT BV fQ(Ve|Vy) dVi (2.12)

0

This model is calibrated to SPX index option market and forward variance term structure.

2.1.3 Zhang, Shu and Brenner (2010)"

Zhang, Shu and Brenner®” further extends the previous two models by making the long-

term mean stochastic, i.e.

dS—Stt = rdt + Vi dW}
dVy, = k (0, — V) dt + oy /VidWY ~Q (2.13)
db, = ogdW?

with AW dWY = pdt and dW)Y dW! = pedt. Again, square of spot VIX, VI X?, can be

represented as

1 t+710
VIX?=EQ2 {—/ v;ds] =(1-B)-6;,+B-V, (2.14)
t

To
where B is given by

B= L [1—er™] (2.15)

RTo

Also, VIX future pricing formula can be easily expressed as

FT = E[VIXs] = E® [\/A +B- VT]

+oo
— V(1 =B) -0+ B-VpfQ(Vp|V,) dVy (2.16)
0

However, transition function nor conditional characteristic function of instantaneous vari-

ance V} is derived in this thesis. Instead, the authors approximate \/ (1-B)-0r+B-Vr

with \/ (1= B) -0+ B - Vp and further expand it up to the third order using Taylor’s ex-
pansion so that VIX future can be expressed by 1%, 2"¢ and 3"? moments of V-

This model is calibrated to VIX future term structure.

2.1.4 Other Consistent Models

In addition to the above mentioned papers, there are other literature that focus on consistent

modeling of spot VIX and further price VIX future and VIX option under this model.



RN o U e A0

The first fully specified model is Lin!'®!. The author assumes that SPX index and its instan-

taneous variance follows

(2.17)

dSi/S; = [r — M) dt + VVidW + 25dN; 0
AV = k(0 = Vi) dt + oy /VidW + zvdN,

with dWdW}Y = pdt. The Poisson process N; is assumed to be independent from the two
Brownian Motions W;° and W}”" and it controls jumps both in SPX index and instantaneous
variance. Intensity of this Poisson process is assumed to be stochastic and it is affine func-
tion of instantaneous variance V;, i.e. Ay = Ao + A1 - V4. Jump size in V; is exponentially
distributed with Zy ~ exp (uy ). Conditioned on Zy, the jump size in SPX index follows
normal distribution, i.e. zg|zy ~ N (s + pszv, 03).

Again, VI X? can be expressed as affine function of V; in this model. Therefore, knowing
the transition function of V; is equivalent to knowing transition of V7 X?. The method to
obtain transition function of V; is to express it as inverse Fourier transform of conditional
characteristic function of V;. Given conditional characteristic function of V; defined as

below
¥ (Vi t;s) = BP [V7] (2.18)

one can calculate conditional moments of V7, thus using the affine expression of VI X2
with V7 one can easily derive the second moment of V' / Xr. By making use of the below
convexity adjustment formula

2viIx2
B =B i) - e VI 219

s{E2 [V Ix2)}”

VIX future price can be obtained. However, as several authors point out, the formula for
conditional characteristic function of V; in Lin!! is problematic and it can cause significant
pricing discrepancy from other pricing formulas under the same model, see Lian!.

In chapter 7 of thesis Lian!"!, the author corrects the formula for conditional characteristic
function under the same model as Lin!'®!. Furthermore, instead of deriving an approximate
pricing formula for VIX future using the convexity adjustment formula (2.19), Lian!!>!

express VIX future price as in eqn. (2.12)
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2.2 Standalone Approach

In the second line of research for VIX future modeling in literature, the dynamics of spot
VIX is directly specified and VIX future and VIX option can be priced under this model.
This approach only focuses on pricing derivatives written on VIX index without consid-
ering SPX option. The advantage of this model is that a clear dynamics for spot VIX can
be obtained and thus the pricing formula and dynamics of VIX future and VIX option
can be clearer and simpler. This makes pricing and calibration of VIX derivatives more
straightforward and accurate.

This approach makes good sense because the market practice of hedging VIX future and
VIX option is usually making use of other VIX futures with shorter maturities. One reason
of using other VIX future contracts as hedging instruments is that spot VIX itself is not a
tradable asset and the simplest and most relevant contract to VIX future and VIX option
is another VIX future contract. Second reason for this hedging strategy is that VIX option
can be regarded as an option written on VIX future contract with the same maturity as VIX
option. Third reason for this method is the evidence from literature that a shorter maturity
VIX future has significant power in forecasting changes in the subsequent VIX future price
(see Simon and Campasano!®!). Consequently, hedging VIX future and VIX option with
a shorter maturity VIX future contract is not only reasonable but also one of the few only

choices available to investors.

2.2.1 Whaley (1993)28!

Whaley!?® is the first paper proposes a standalone method for modeling spot VIX. Of
course, at that time the definition of spot VIX is still under the old methodology. Wha-
ley 28! simply assumes that spot VIX follows a Geometric Brownian Motion process under

martingale measure Q

dVIX,
VIX,

= rdt + odW,; (2.20)
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Thus VIX call option is given by Black-Scholes formula
Call] =TV [F N (d) — K- N (dy)] (2.21)

with

and

Although this model is too simple to capture the feature of VIX option, it can serve as
a formula to invert market quotes of VIX option to implied volatility of VIX option. This
implied volatility is known as the implied vol-of-vol. However, the input of F}/ in the above
pricing formula needs to be replaced with market quotes of VIX future which has the same

maturity as VIX option, instead of F{/ = VIX,e" ™),

2.2.2  Grunbichler and Longstaff (1996)®!

In Grunbichler and Longstaff!®!, the authors assume that V' 1.X; follows a mean-reverting

square root process (MRSR) as below
AVIX, =k (0 = VIX,)dt + o/ VIX, dW,; (2.22)

By making use of the analytical transition function of V' /X, under this model, one can get

the below analytical pricing formula for VIX call option

Call] = e TN or VIX, [1 - (WK;v+4,8)]

+0(1—dr—y) [1 — P (WEK;v+2,8)] — K [1— x* (wK;v,€)] }(2.23)

with
¢T =e "7
w = 4k
o2(1—¢;)

10
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and x?(v, £) is a cumulative function of Chi-Square distribution with degree of freedom v
and non-central parameter &.

Disadvantage of this pricing formula is the calculation speed of cumulative distribution
function x%(v, £). An alternative method is to calculate the conditional characteristic func-

tion ¢ (t;s) of VIX;,
) (t;s) = B [V 7] (2.24)
and then using the below formula to calculate VIX option price

T
Calll' = exp{— / rsds} CER[(VIXy — K)']
t

T
= exp {— / Tsds} C[FTL - KT (2.25)
t
where II; and II, are two tail probabilities under two martingale measures and they are
given as
1 1 Foo ’lﬂj (t, S) .
II; = -+ — Re | ————=| ds, 1=12 (2.26)
2 7T 18

and the two characteristic functions are given by

Wy (t;8) = w(téf_}“
{ v 159) = 0 (159 (227)

2.2.3 Detemple and Osakwe (2000) !

In Detemple and Osakwe®!, the authors assume that V' I X; follows a mean-reverting

logarithmic process (MRLR) as below
dInVIX;, = k(0 —InVIX,)dt + odW,; (2.28)

By making use of the log-normal distribution of V' I .X;, under MRLR model, one can easily

derive the pricing formula for VIX call option as below
Calll = e ™™D [EL - N (dp— + ar—y) — K - N (dr_)) (2.29)

where

Fl = VIX])™ Myp_,

11
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is VIX future, and

M; =exp{0(1 — ¢;) + 102
ng =e "7

__ [ime
or =0 o

Q- prIn VEXT 4+ (1—67)-0
=

ar

2.2.4 Psychoyios, Dotsis, and Markellos!?!!

In Psychoyios?!!, the authors assume that V' IX; follows a mean-reverting logarithmic

jump process (MRLRJ) as below
dInVIX, = k(0 —InVIX,)dt + odW; + JdN, (2.30)

In this model analytical formula for the transition function is not available and the pricing

formula for VIX call option can be expressed as

T
C; = exp {—/ rsds} . [FtT L, — K- HQ] (2.31)
t

where

FI =VIX{™ My,

is VIX future and this time M. is given by

M, = exp{0(1 = 6,) + 3o + 2In (25 ) }

n—1

2.3 Comparison of two Approaches

Psychoyios and Skiadopoulos!??! and Wang and Daigler>”! conduct some comparative s-
tudies about the above two categories of VIX future and VIX option pricing models in the
aspect of hedging effectiveness and pricing accuracy. Their research results suggest that
simpler models of the second kind perform equally well with or even better than the more
complicated consistent models, such as the fully-specified Lin and Chang!!”! model.

As indicated above, the standalone approach makes good sense because the market practice

of hedging VIX future and VIX option is usually making use of other VIX futures with

12
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shorter maturities. This is not only reasonable but also one of the few only choices available
to investors.

Therefore, in this thesis I focus on studying the standalone approach for VIX future and
VIX option modeling. As shown in Psychoyios?!! and Bao*®!, the mean-reverting loga-
rithmic model (MRLR) serves much better than mean-reverting square root model (MRSR)
in fitting quality, calibration accuracy, computation speed and property of VIX future dy-
namics. Therefore, I will focus on MRLR and its extension in this thesis.

What separates my work from that in literature of standalone approach is multi-fold. Firstly,
the models proposed in this thesis calibrate to initial VIX future curve by construction and
I explicitly present the calibration formula for doing so. Secondly, I am not only concerned
about the static calibration to initial VIX future curve but also the convexity adjustment of
VIX future from forward variance swap. Thirdly, I not only derive the pricing formula for
VIX future and VIX option, but also derive the dynamics of VIX future and VIX option
under the proposed models. This helps well explain hedging strategies for VIX futures and

VIX options under those models.

13
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3 MRLR Model

In this chapter I present the first version of mean-reverting logarithmic model (MRLR).
Under this model, logarithm of spot VIX is assumed to follow an OU process. As a pro-
cess of OU type is normally distributed (see Vasicek!*®!), spot VIX under this model thus
follows log-normal distribution. Of course conditional distribution of V' /. X7 conditioned
on VIX,; also follows log-normal distribution. Consequently, VIX future as condition-
al expectation of V' I X also is log-normally distributed. VIX option can be regarded as
an option written on VIX future with the same maturity and thus Black’s formula with
time-dependent volatility for VIX option is obtained. This is a modification of the simple
log-normal spot VIX model of Whaley!?®! as presented in subsection 2.2.1 and the VIX
option pricing formula can serves as a formula to invert VIX option market quotes to VIX

implied volatilities.

3.1 MRLR dynamics and distribution

I first present the dynamics of In V' I X; under MRLR model here. In order to calibrate this
model to initial VIX future curve, I make the long-term mean 6, be time-dependent. Also,
in order to calibrate to VIX ATM implied volatility term structure, I let the instantaneous

volatility-of-volatility (vol-of-vol) to be time dependent.

Definition 3.1: (MRLR Dynamics)

Under martingale measure QQ, the mean-reverting logarithmic process is formulated as
dInVIX, =k (0; —nVIX,)dt + o dW, (3.1)

where x is mean-reverting speed, time-dependent function 6, is the long-term mean of
logarithm of spot VIX, o; is also a function of time and it can be thought as vol-of-vol for
spot VIX.

Of course, ¢, and o, can either be constant or be time-dependent. When 6, is time-dependent,

14
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e.g. piece-wise constant, it can be calibrated to term structure of VIX future. The time-
dependent vol-of-vol function o; can be used to calibrate to ATM VIX implied volatility

term structure.
Below I present the analytical conditional distribution of V' I X7 under MRLR model.

Proposition 3.1: (VIX Distribution)
Under the assumption of MRLR process in Definition 3.1, spot V' I X7 is log-normal dis-

tributed under martingale measure (Q conditioned on information at time ¢, i.e.
T T
VIXr|z ~ LN (e‘“(T_t) InVIX, + / ke " T=9) s, / age_QH(T_S)ds) (3.2)
t t

In particular, if parameters 6 and o are constant, we have

2K

2
VIX7|y ~ LN <e—"~(T—t> ImVIX, +6[1—e"TD], 7 [1- 6—2“7’—0}) (3.3)
Proof: Given dynamics of InVIX; in eqn. (3.1), we can make the following change of

variable

d (e"‘t In VIXt) = ke™InVIX,dt+edInVIX,
= k"I VIXidt + e [k (0; — InVIX,)dt + o dW,]

= /ﬁ@te”tdt + entO'tth
Thus we have
T T
T InVIXy =eInVIX, + / KBz ds + / s dW
t t
and further
T T
mVIXy =e "D IVIX, + / KOe™" =9 ds + / o T qW,
t t
With the following property in mind

T T
varifQ (/ ase_H(T_S)dWS> = / U?@‘QK(T_S)ds
t t

we conclude that V' I X7 is log-normally distributed conditioned on information at time ¢
as in eqn. (3.2).

Proof of eqn. (3.3) is trivial based on results in eqn. (3.2). B

15
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3.2 VIX Future and VIX Option Pricing

Based on the distribution of spot VIX under martingale measure QQ as in eqn. (3.2), we can

derive the pricing formulas for VIX future and VIX option.

Theorem 3.1: (VIX Future Pricing)
Under the assumption of MRLR process in Definition 3.1, VIX future I = E2 [V IX]

can be explicitly solved as

T T
—k(T—t 1
Fr = (vix,y " )-exp{ / rte~ T ds 4 / o—ge%(“)ds} (3.4)
t t

In particular, when parameters ¢ and o are constant, VIX future can be expressed as

2
Fr = {vIx """ exp {9 [1—eT0] + Z— [1- e—%(T—”]} (3.5)
K
Furthermore, dynamics of VIX future under pricing measure (Q can be given by
dFT
—L = e T W, (3.6)
Ft

Proof:
VIX future pricing formulas (3.4) and (3.5) are direct consequence of log-normal distribu-
tion of VI .X under pricing measure QQ as shown in eqn. (3.2) and the below property of

normal variable
X~ N(po?) = E[eX] =eta”

In order to derive the risk-neutral dynamics of VIX future, we first derive dynamics of

VI X, under the pricing measure.

1
dVIX, = de™VIXe = VIXegInvrix, + §eln VIXeqnVIX,dIn VIX,

VIX,

= VIX;[k(0; — mVIX;)dt + o dW;] + oldt

= VIX, (0 + %) — kI VIX,| dt + VIXiodW,

Consequently, we get

dVIX .
e (8 + F) = kWVIX,] dt + qaw, (3.7)

16
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Using Ito’s lemma to eqn. (3.4) and result in the above equation, we get

T 1 /T
dFT = exp {/ KB,e "I ds + 5/ U?e‘Qﬂ(T_S)ds}
t t

e Ty rx e v,

1 r I
+—exp {/ kb " T=9) ds + —/ a?e_QK(T_S)dS}
2 t 2 Ji

R0 [omnT0 1) v IX AT gy XAV X,

T 1 T
+exp {/ ke "= ds 4 5 / O’?EQK(TS)CZS}
t t

I VIX, - {VIXY ™ ke gy

1
. |:K0t€H(Tt) + _€2H(Tt)0_t/2:| . thTdt

2
= B0 (g + %) — kI VIX,| dt + 0d )
1
+§FtT eIt [e*“(T*t) — 1] o7dt

+FT - VIX, - ke "7 Dt

2
_ FtT . e—n(T—t) . O'tdI/Vt

1
o |:/€9te—n(T—t) + _e—2n(T—t)O_tQ:| . ETdt

which concludes proof of eqn. (3.6). B

One conclusion we can draw from eqn. (3.6) is that the time-dependent vol-of-vol function
o, of spot VIX is also a significant component of the vol-of-vol of VIX future. In addition,
the mean-reverting speed « of spot VIX has inverse impact on vol-of-vol of VIX future.
This is understandable as increase of mean-reverting speed makes spot VIX less possibly
to deviate significantly from its long-term mean and thus spot VIX is less volatile in longer
term compared to a non mean-reverting process with same vol-of-vol. This effect of mean-
reversion further translates into less vol-of-vol in VIX future.

Now I calculate the correlation of VIX futures with different maturities. For the single

factor MRLR model, we have the below corollary.

Corollary 3.1: (VIX Future Correlation)

From the dynamics of VIX future in eqn. (3.6), we get the instantaneous correlation of VIX

17
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futures with different maturities as
(dF], dF®)

pi" = corr (dF]",dF]?) = =1 (3.8)
V(A A (dF", dF")

with 77 < T5.

Proof:

Given dynamics of VIX future in eqn. (3.6), we have

Ak g <dF 2 dFtT2>
V(A" AT (dF", dF")
_ e (M=t e=rTe=t) 52 T T2 gy _

\/ |:6—2f§(T1—t)0-tQ (FtTl ) 2i| |:6_2H(T2_t)0-t2 (Fth ) 2i|

which concludes proof of this corollary. B
Like the drawback of single factor short rate model in interest rate modeling, the one-factor
MRLR model implies that VIX futures with different maturities are perfectly correlated

instantaneously.

Theorem 3.2: (VIX Option Pricing)
Under the assumption of MRLR process in Definition 3.1, VIX call option Calll (K) =
exp {— LT rsds} . E;@ [(VIXT — K)+] can be explicitly solved as

T
Calll (K) = exp{—/ rsds} C[FIL - K0
t

= exp{—/tTTSds} 0 (d) - K- @ (dy)] (3.9)

where @ is cumulative distribution function of standard normal variable, d; and d, are

defined as
di — 1n<FtT/K)+%ftT o2e=26(T=5) g
1= \/ftT 02e—2:(T=5)ds (3 10)
4 /) g -
2 pu—

\/ftT o02e=26(T=s)gs
Furthermore, VIX put option Put! (K) = exp {— I rsds} -EP [(K = VIX7)*] canbe

explicitly solved as

Put! (K) = exp{—/tTTSds} K- (1-1L) — F - (1—1L)]

18
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= exp{—/tTrsds}-[K-CID(—dg)—FtT-CID(—dl)] (3.11)

Proof:
VIX option is settled with spot VIX at maturity, thus it can be regarded as an option on spot
VIX. Alternatively, VIX option can also be regarded as an option written on VIX future

contract which has the same maturity as VIX option, because
T
Calll (K) = exp {—/ rsds} B2 (VIXr — K)"]
t

T
= exp{—/ rsds}-E;@ [(F%—K)*} (3.12)
t

Based on the conditional log-normal distribution of F'X given by driftless dynamics of £
as in eqn. (3.6), we can just use Black’s formula with time-dependent volatility to obtain

call and put option prices as in eqn. (3.9) and (3.11). &

Of course, pricing formulas (3.9) and (3.11) can also be derived by treating VIX option
with spot VIX as underlying and using the log-normal distribution of spot VIX as shown
in eqn. (3.2).

The pricing formula (3.9) seems very close to the Whaley?®!

pricing formula (2.21). How-
ever, in formula (2.21) the VIX future is priced with a problematic formula and if the input
of current underlying level is spot VIX, the obtained VIX option price can be wrong. In
contrast, in pricing formula (3.9) the VIX future F} is also priced with MRLR model and
after calibration it can perfectly match market VIX future prices. Therefore, even the spot

VIX is used as input for current level of underlying, the VIX option pricing formula can

still perfectly fit VIX ATM implied volatility term structure.

3.3 VIX Future and VIX Option Calibration

Theorem 3.3: (Calibration of VIX ATM Implied Vol and VIX Future Term Structure)
For the MRLR model in Definition 3.1, VIX option is priced using a log-normal underlying
F' with time-dependent volatility. Thus this model has no effect of skewness and we can

only imply ATM implied volatility of VIX option using this model. From the result of
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Black’s formula, we can easily derive

ol (T \/ / e=2(T=5)g2ds (3.13)

where ., (T) is ATM VIX implied volatility term structure. Thus we have the below

calibration formula

do ,{1‘7/“M (T)

o7 = [aﬁéM (T)} (14 2kT) + ZTUATM (T) T

(3.14)

In practice, one could specify a pre-given value for mean-reverting speed ~ and calibrate o
to ATM VIX implied volatility term structure according to above formula. With calibration
result of x and o; from ATM implied volatility term structure, we can move forward to
calibrate VIX future term structure.

1dff 1 [o2 r
Or = [y + =% — 5 —T—/ —I9g2d 3.15
r=Jo t Kk dT 2[/@ 06 N ( )

where fI' = In F{ is the initial VIX future term structure.
Proof:
In order to prove the pricing formula (3.14), we take derivatives w.r.t. T on both sides of

eqn. (3.13). Thus we get

dolt¥.,, (T)
[0k (T)} + 2077y (T) AZ—%{T
T
= 0%—2/{/ e 2K T=9) 52
0

— o2 —2[ol (D)]°T

Reorganize the above equation, we get calibration formula (3.14) for vol-of-vol ;. Ac-

cording to eqn. (3.4), the initial VIX future term structure F{ is given by

T T
K 1
F(,)T = {VIX()}@ T - exp {K// e_H(T—S)QSdS + 5/' 6—21'6 (T—3s) 2d8}
0 0

Thus

S

T T
1
ff=WmFf =" - InVIX,+ Ii/ e T=90 ds + 5/ e 2 T=3) 52
0 0
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Take derivative w.r.t. 7" on both sides of the above equation, we get

i

T
1
= —re " . InVIX,+ kbp — /12/ e "T=9)0 ds + —o2.
dT 0

2

T
—Ii/ e 2KT=9) 52
0

1 T
= —ke " . InVIX,+ klr + 50% - Ii/ e~ 2 T=9)52
0

T
—K lm/ e“(Ts)Gsdsl
0

1 T
= —re " InVIXy+ kbp + 50% — Ii/ 6_2“(T—5)J§ds
0

1 [T
—K lfOT —e T InVIX,— 5/ 6_2"(T—s)a§ds}
0

1 T
= KOp + 5 {0% - /{/ e_QH(T_S)aids} — Kkff (3.16)
0

Rearrange the above equation, we get the result in eqn. (3.15). B

The above calibration formulas (3.14) and (3.15) suggest calibration strategy of this model.
On the first stage of calibration, we calibrate the vol-of-vol function o; to VIX ATM implied
volatility term structure with a given pre-specified mean-reverting speed ~ using formula
(3.14). On the second stage of calibration, we further calibrate the long-term mean function

0, to initial VIX future term structure using formula (3.15).

3.4 VIX Future and VIX Option Hedging

VIX future is defined as the expectation in future level of change in spot VIX. However,
spot VIX is not tradable asset and investors can not take position on this index. This is
similar as the situation in fixed income modeling framework. Interest rate is not a tradable
asset but it’s the driving factor of fixed income assets and derivatives. In fixed income asset
class, one can calculate sensitivities of both interest rate derivatives and bonds to interest
rate and then use those sensitives to further develop hedging strategies for interest rate
derivatives with bonds as hedging instruments. Similarly, one can calculate sensitivities

of VIX futures and VIX options with respect to spot VIX and further develop hedging
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strategies for VIX futures and VIX options with other VIX future contracts as hedging

instruments.

Theorem 3.4: (VIX Future Hedging)
Firstly, we calculate the sensitivities of VIX future price to spot VIX. We are concerned

with the spot delta and spot gamma.

OFf  _ Tt oy

ovVIXy — VIX, t 3.17
82FtT . _67N<T7t)'|:1—67'€<T7t):| . FT ( . )
VIXZ — VIX? t

Based on the above formulas, we can move forward to calculate sensitivities of VIX future

with maturity 75 to another VIX future with shorter maturity 77.

8F§2 — —n(Tg—Tl) . Ft_;z

or;! F;l

82FzT2 . —eiZN(TQ*Tl) ) [eﬁ(Tngﬂ o 1} ) Fth (318)
T1\2 T\ 2

o(F, ") (")

Proof:
Given the pricing formula for VIX future in eqn. (3.4), we have the first order derivative of

VIX future with respect to VI X, as
OFF
oVIX,

—r(T—t) _1

e "I VX, )

T [ (T
- exp {/1/ e " T=9)p ds + 3 / eQﬁ(Ts)afds}
t t

e—n(T—t) T

vVix,
Based on the above equation, we can further calculate
82FtT _ 0 efn(Tft) ' FT
OVIX? ovIX, | VIX, °
B e—m(T—t) aFtT N _e—/@(T—t)
B VIX?

. . FtT
VIX, 0VIX,

efn(Tft) efn(Tft) _efn(Tft)

= . B 2 —
VIiX, VIX, ! o VIX?
_ _efﬁ(Tft) . [1 _ 67H(T7t):| ‘ FT
VIX? !

-FtT

Furthermore, we notice the below change of variable formula

oy _ oy joz
oz — 653%/%)2( 9%z oy
Y _ 9x2 09X px2 09X (3.19)
=)
X
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Therefore, by making use of the above formula we can derive the delta hedging ratio of

VIX future w.r.t. a shorter term maturity VIX future as

oF  OF"® | OF
OFR — OVIX,/ OVIX,
e—li(Tz—t) . FtT2 e—fi(T1—t) . FtTl
B [ VIX, }/{ VIX, ]
Fr
_ w(Te-T1) 2t
— e 7 (3.20)
and finally
PER [ PER 9FN 9FD 9F" oF \°
o(F)? — |oVIXZOVIX, OVIXZOVIX, IVIX,

{_ o—H(Ta—1) . FtTg [1 - e—n(Tz—t)] e—r(T1—t) FtT1

VIX? VIX,

—i——eiH(Trt) 'FtTl- [1 — e—n(Tl—t)} —ein(TQit) ) FtT2 e nh-n. FtT1 ’
VIX2 VIX, VIX,

—e—H(Ta—t) . FtT2 [1 —_ e*H(TQ*t)} + [1 — e*H(Tlft)} e—r(T2—t) ET2

(efn(Tlft) . FtTl)2
e—r(T2—t) [1 _ 6—H(T1—t)} — e H(T2=t) . [1 _ e—H(Tz—t)} ET2

672K(T17t) ' (FtT1)2
e*“(TQ*t)efﬁ(TQ%) . e*ﬁ(TQ*f)efﬁ(Tlft) Fth
= o—2r(T1—1) ' (FtTl>2
_ [G—QH(TQ—Tl) _ e—m(Tz—Tﬂ} ) ETz
(")

1>
_ _672K/(T2*T1) . [en(T27T1) _ 1} . (FF;I)Q (321)

t

which concludes proof of this theorem. l

Theorem

3.5: (VIX Option Hedging)

Firstly, we calculate the sensitivities of VIX call option price to spot VIX. We are concerned

with the spot delta and spot gamma.

{

oCalll e~ (rt0)(T=t).FT

- i
aVIX, VIX,
P2Calll e~ (r+R Tt pT o (T (3.22)
VIXT — VIXT {[e7@0 —1] - I + e fi (In K) }
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where II; is defined in eqn. (3.9) and f; (x) is conditional p.d.f. of In V' I X under a mar-

tingale measure with V' X, as numeraire and it can be expressed as

A dIL (K)
fi(inK) = TdK)  d(nK) (3.23)

Based on the above formulas (3.22), we can move forward to calculate sensitivities of VIX

call option price with maturity 75 to a VIX future with shorter maturity 7.

Ty T
M — efT(T27t)€7ﬂ(T27Tl) . Ft_Tl . Hl (TQ)

aFflT - Fr (3.24)
2’2 o (To—t) - —20(T— , 2 k(T2—Ty ’
oy = €T e [ ) Tt fy ()

Proof:

Proof of formula (3.22) is referred to Theorem 4.6 in next chapter where we provide proof
for the formula in more generic setup.

Using the change of variable formula in eqn. (3.19), we can easily derive the first and
second order sensitivities of VIX call option w.r.t. VIX future that has shorter maturity
than call option.

Firstly, we calculate the first order sensitivity of VIX call option with maturity 7, with

respect to VIX future with maturity 77 < Ts.

oCalll? oOCall!* / OFM

aﬂﬂ ovVIX,/ oVIX,
e~ (rtr)(Ta—t) FtTQ I e H(T—1) . FtTl
- { VIX, ' 1} / {VI—Xt}
— o r(Tat) | —k(T=Th) | FLTQ 0 (3.25)
pu— Tl 1 *
Ft

Now, we move forward to calculate the gamma sensitivity of C'all? with respect to F'!

2Call’ {820alltT2 oFT  o2ph acau?] / ( oF )3

3(FtT1)2 QV[XtQ oVIX, B 8V[Xt2 oVIX, oVIX,
e~ (r+m)(Ta—t) | [T e~r(hi—t) . ph
_ N 1— —k(To—t)] . I, — —k(Tp—t) | In K t
{ VIX? {[ € ] 1—¢€ fi(In )} VIX,

B _efn(Tlft) . FtTl [1 B e—n(Tl—t)] ef(rﬂ-c)(Tzft) . Ffb 0,
VIX? VIX,

e—H(Tl—t) . FtTl 3
VIX,
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= {_e—(TJrH)(Tz—t) . FtT2 {[1 _ e—H(Tz—t)] 0 — e~ r(T2—t) fi(In K)} e—r(Ti—t) FtTl
L [e T T[] o(Ti0]] et | pTe )
/(e—N(T1—t) X FtTl)g
= [ T BT (] B0 L oW f (I )
+ [1 _ e—H(Tl—t)] 6—(T+H)(T2—t) . Fth . Hl}
/(efn(Tlft) _ FtTl)2
— {e—(T-FH)(Tz—t) ) FtTQ 14 - (e—H(Trt) _ e—"v(Tl—t))
+e—(r+n)(Tg—t) . FtT2 . e—m(Tg—t) . fl (hl K)} /(6—H(T1—t) . F;tTl)Q

rR)(Tat) ETQ ' I1, - (efli(TQ*t) _ efn(Tlft)) + e*H(Tzft) . fl (hl K)

= €

(F‘tTl)2 e—ZH(Tl—t)
— o (rHR)(Ta—t) w(Th—t) | FtT2 : [_ (1 - e_H(TQ_Tl)) AL+ e 2T fi(In K)}
(F")°
F
_ r(Tat) - 26(To-Th) (F;)? (- e’f(TrTl)) AL+ f1 (In K)] (3.26)
t

which concludes proof of this theorem. Bl

3.5 Forward Variance Swap and Convexity

Another contract with close connection to VIX future is forward variance swap. The reason
of mentioning forward variance is that variance swap has longer history than VIX future
and nowadays variance swap market is very liquid and many investors treat variance swap
as a benchmark in modeling and calibration of volatility derivatives. The popularity of
variance swap is due to the fact that variance swap as forward contract in realized variance
can be statically replicated by a series of OTM SPX options. One of the popular market
practices in the industry is to price VIX future by adding a convexity adjustment term to a

relevant forward variance swap.

Theorem 3.6: (Forward Variance Swap Pricing)

Under the assumption of MRLR process in Definition 3.1, forward variance swap on a
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30-day realized variance
FVST = E;@ [RVTT+30days] _ Ei@ [Eg [RVTTJrzoclaysH _ E;@ [VIX%] (3.27)
can be explicitly solved as
2e—r(T—t) T T
FVSE ={VIX}* - exp {2/@/ e "T=%)0 ds + 2/ e_ZH(T_S)JgdS} (3.28)
t t

In particular, when parameters f and o are constant, forward variance swap can be ex-

pressed as

2

- exp {29 [1 — e_“(T_t)} + %

2¢—H(T—t)

FVS] ={VIX,} [1- e—%(T—t)}} (3.29)

Furthermore, dynamics of the 30-day forward variance swap under pricing measure Q can
be given by

dFV ST T
TStTt = 2¢ TV . 5. dW, (3.30)

Proof:
Forward variance swap pricing formula (3.28) is direct consequence of log-normal distri-
bution of V' I X under pricing measure (Q as shown in eqn. (3.2).

Using Ito’s lemma to eqn. (3.28) and dynamics of V /X, in eqn. (3.7), we get

T T
dFVS;T e exp {2 / ﬁesefﬂ(Tfs)dS + 2 / U§€2H(Ts)ds}
t t
2 0 gy Xy T av X,

1 T T
—1—5 exp {2/ K0 "= ds + 2/ UEG_QR(T_S)dS}
¢ ¢

2k W T (2T 1] (VIX> " AV IX,aVIX,
+exp {2 /T ke " T ds 4 2 /T a?e_QH(T_S)ds}
t t
A VIX, - {VIX " 2 T gy
- [25@6"‘@’” + 26’2“(T’t)af] -FVSTdt
= Vsl 2T L (0 + ) - kI VIX,| dt + oyaW |

1
+§FVStT - 2ke T [21{6_H(T_t) —1] - o7dt
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+FVSE - mVIX,  2ke "T=Hqt
- [2591‘/6’”@’” + 26’2””(T’t)af] -FVSTdt

= FVSI.2e7"T=0 . 5,dW,
which concludes proof of eqn. (3.30). B

From eqn. (3.27), the 30-day forward variance swap can be regarded as a contract with
payoff of quadratic in spot VIX. In contract, VIX future is linear in spot VIX. Therefore,

forward variance swap has a convexity term compared to VIX future.

Theorem 3.7: (Convexity Adjustment for VIX Future)
Under the assumption of MRLR process in Definition 3.1, convexity adjustment of VIX

future from forward variance swap can be derived as

Fr 1"
CAT = ——L_ =exp {——/ e‘zﬁ(T_S)agds} (3.31)
t

JEVST

When parameter o, is constant, we have
o2
CAT = exp {—4— [1— e 2rT0)] } (3.32)
K

Proof:
From the pricing formulas of VIX future in eqn. (3.4) and 30-day forward variance swap
in eqn. (3.28), the convexity adjustment can be derived as
FT
VEVST

vIxy " exp {FL [l e T=99.ds + L [T 6_2”(T_5)a§ds}

{V[Xt}e%(Tft> - exp {H ftT e=~(T=5)0,ds + ftT e—QN(T—S)agds}

1 [T
= exp{—ﬁ/ eQﬂ(Ts)afds}
t

which concludes proof of this theorem.

CAT

Corollary 3.2: (Parameter Sensitivities of Convexity Adjustment)
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Under the assumption of MRLR process in Definition 3.1, when parameters are constant

we have
oCv" o —2%(T—t) T
L =T [1-e 0] CAT <0 (3.33)
and
oCVr o —2k(T—t) T
== [1— e T0] . CAT > 0 (3.34)

From the definition of convexity adjustment in (3.27), we have 0 < C'AT < 1. The smaller
C AT is, the more significant convexity effect in forward variance swap is. Therefore, the
larger o (smaller ) is the more significant convexity embedded in forward variance swap.
This is understandable because o increases volatility of spot VIX and « decrease the vol-
of-vol.

As discussed in this chapter, the calibration of MRLR model is separated into two stages.
On the first stage of calibration, the vol-of-vol function o, is calibrated. Given this calibra-
tion result, the long-term mean function 6, is calibrated to VIX future term structure.

Two strategies are suggested to calibrate o;. As shown in Theorem 3.5, o0, is calibrated
to ATM VIX option term structure because VIX option is sensitive to vol-of-vol of VIX
index. Alternative, o; can also be calibrated to 30-day forward variance swap term structure
because Theorem 3.7 shows that the convexity adjustment of VIX future from forward
variance swap is mainly determined by o; given a pre-specified parameter x.

On application side of MRLR model, we conclude that MRLR is not suitable for pricing
VIX option as it generates no skew for VIX option. In contract, this simple model maybe a
candidate model for pricing VIX future as the model fits initial VIX future term structure
by construction and the vol-of-vol information of VIX can be backed out from either AT-
M VIX implied volatility term structure or 30-day forward variance swap term structure.
However, the instantaneous correlation of VIX futures with different maturities are perfect-
ly correlated. Therefore, if more exotic contracts on VIX futures that are sensitive to this

instantaneous correlation are concerned, multi-factor MRLR model need to be applied.
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4 MRLRJ Model

As shown in Theorem 3.1, VIX future under MRLR follows a geometric Brownian motion.
Therefore, MRLR is unable to produce implied volatility skew for VIX option. One way to
modify MRLR model is to add jump into MRLR dynamics so that we expect VIX future
follows a jump-diffusion model and thus market VIX skew can be reproduced. Another
possible choice is to add stochastic volatility to MRLR where the instantaneous stochastic
volatility is positively correlated to spot VIX so that the positive skew can be captured.

In this chapter, I present the first extension of MRLR model by adding jump to spot VIX so
that it follows mean-reverting logarithmic jump model (MRLRJ). Recall the experience of
skew modeling in equity option market. One significant explanation for the negative skew
in equity option market is the possible large downside jumps in underlying equity market.
By adding downward jump into dynamics of underlying stock, the jump-diffusion model is
able to create negative implied skew in equity market, especially for short-term maturities.
Similarly, by adding upward jump into spot VIX we expect the MRLRJ model is able to

capture positive skew observed in VIX option market.

4.1 MRLR]J dynamics and characteristic function

I first present the dynamics of In V' 1 X; under MRLRJ model here. In order to calibrate this
model to initial VIX future curve, I make the long-term mean 6; be time-dependent. Also, in
order to calibrate to VIX ATM implied volatility term structure and VIX implied volatility
skew, I let the instantaneous volatility-of-volatility (vol-of-vol) to be time dependent and

use the upward jump in MRLRJ to calibrate to skew.

Definition 4.1: (MRLRJ Dynamics)
Under martingale measure QQ, the mean-reverting logarithmic jump process is formulated
as

dan[Xt:/ﬁl(et—IDVIXt)dt+Utth+JdNt (41)
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where x is mean-reverting speed, time-dependent function 6, is the long-term mean of
logarithm of spot VIX, o; is also a function of time that can be thought as vol-of-vol for
spot VIX. NV, is Poisson process with jump intensity A and J is exponentially distributed
jump size with J ~ FExp(n) and n > 0.

Of course parameters ¢, and o, can either be constant or time-dependent. When 6, is time-
dependent, e.g. piece-wise constant, it can be calibrated to term structure of VIX future.
The time-dependent vol-of-vol function o, and jump parameters can be used to calibrate to

VIX implied volatility skew and term structure.

Unlike MRLR model, we have no analytical transition function available under MRLR-
J model. The standard way to get around this is to derive the conditional characteristic

function and use the standard method of Heston model to get option pricing formula.

Definition 4.2: (Conditional Characteristic Function)
For generic mean-reverting logarithmic process, either with jump and/or stochastic volatility-
of-volatility or not, we define conditional characteristic function of In V' I X conditioned

on the information at time ¢ as below

w(t S) - E;@ [eisanIXT] — EQ [eiSIHVIXT‘E} (42)
Theorem 4.1: (VIX Characteristic Function)
Under the assumption of MRLRIJ process in Definition 4.1, characteristic function of spot

VIX logarithm In V' / X7 under martingale measure (Q conditioned on information at time

t is given by
¥ (t;s) = exp {A(t;s) +ise " T VIX,} (4.3)

where function A(¢; s) is given by

1 T A _ jep—k(T—1)
Al(t;s) —ms/ e T-wq u——sz/ 02672“(T“du+—ln% 4.4)
2 ), K N —1is
In particular, if parameters 6 and o are constant, we have function A(¢; s) as
1 A, n—ise (T
Alt;s) =1isb [1 — e_’“‘(T_t)] — 520 — [1 — 6_2N(T_t)} —In notse ™ 4.5)
4Kk K n—1s
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Proof:

Denote X; = In VI X, and define the below martingale
fo = f (X, t) = E%[g (X7)| Fi] = E® g (X1)| Xi] (4.6)
Then according to eqn. (4.1) dynamics of X, is given by
dX; =k (0; — Xy) dt + 0, dW, + JdN,

and dynamics of f; is given by

L Of L Of . 1Of
dfy = Spdit+ 5TdXC 4 oo dXe - dX
+If (X £ Jt) = [ (X 1) dN,
_of . Of 10°f ,
= Edt + 8_X [K, (9,5 — Xt) dt + Utth] + 5@@5 dt

+[f (Xem + I, 1) — [ (Xoo, t=)] ANy

+E(f (Xoe + Jt) — [ (X t=)| Ndt — E [f (Xoe + J,t) — f( Xy, t—)] Adt

of of  18f
= |5+ k(0 — Xy) ax t 56)(20? dt + By [f (Xoe + J,t) — f( Xy, t—)] Adt
of
+—8XotdW

P (Xee + Jt) — F (X t)] AN, — B [f (Xoe + J8) — F (X, t—)] Adt}

Using the martingale property of f;, we conclude the PIDE controlling f; as below

—+m(8t—Xt)ﬁ+la2f

0xX ' 2 axza? + B [f (X + 1) — f (X )] A=0  (47)

In particular, for conditional characteristic function defined in eqn. (4.2), ¢ is also deter-

mined by the above PIDE and it’s given by solution of the below initial problem

{ % +kK (Qti;(Xt) g—;@ + %ng; 0 + B[ (Xoe + Jt) = ¢ (X t=)] A =0 (4.8)
= =€ "

To solve the characteristic function explicitly, we use the affine feature of MRLRJ model

to make the below guess of solution

Y (t;s) = exp {A(t;s) +ise " T=DX
{ A(T;s)=0 { ') (4.9)
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For the above guess of solution, we calculate its derivatives w.r.t. to ¢ and X;

81& [dt + iske™ (T‘t)Xt} v
(()) — ise— K(T— t)w

821/) g2 2r(T—

s = "y

and the conditional expectation

B[ (Xee 4 Jt) = ¢ (X, t=)] = Ey [exp {ise ™" T} —1]
Plug the above derivatives into eqn. (4.9), we derive the ODE that determines function
A; = A(t; s) as below

aA 1 —K t
wr + O,rise Tt — 203326 (=) 4 B, [ i ] A=0 (4.10)

Using the exponential distribution of ./, we calculate the conditional expectation in the

above ODE and simplify this ODE to the following one

0A 1 ise—H(T—1)
—_ cooR(T—t) _ * 22 —on(T—t) | YSC T Ty
En + Osrise 50i5°¢ + - ise—ﬁ(T—t))\ 0 4.11)
which can be written as
0A 1 ise*N(Tft)
- = R(T—t) _ + 2.2 —2x(T—t) , 'S¢ " —
5 = Okise™ " 505 € + R A
Therefore
g T T s —k(T—u
1 (T—u)
Ay — Ap = kis / e T dy — =2 / 022K T gy 4 ) / 15¢ du
t 2 t . N ZSQ—R(T—u)

Using the terminal condition Ar = 0, we get

T 1 .
t t

2
T o o—k(T—u)
I\ / 1 du
t =

Zsefn(Tfu)
1 T N (Td[n—ise(T-w
= KIS 9 e~ "= gy, — —52/ ole 2T gy — —/ 7 , ]
t 2 kJ, n—iser(T-w
1 T A T
_ . eu —k(T—u) . 2/ 2 —2k(T—u) ~ 2 o —R(T—u)
ms/t e 25 o.e du - n (7] ise )‘t
T T (T—
1 A — #w(T—1)
= kis / euefH(T w) 82 / 0,2672K/(T u) du+ Z1n n —1se '
t 2 K n—1s

which proves the general formula for A(t; s) as in eqn. (4.4). In particular, when 6§ and o
are constant, we calculate the first and second integrations in above equation and conclude

the proof of eqn. (4.5). &
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4.2 VIX Future and VIX Option Pricing

Based on the conditional characteristic function of spot VIX under martingale measure

as in eqn. (4.3), we can derive the pricing formulas for VIX future and VIX option.

Theorem 4.2: (VIX Future Pricing)
Under the assumption of MRLRJ process in Definition 4.1, VIX future F}/ can be explicitly

solved as

T T

(T — 1

thT — {VIXt}e (T—t) ,exp{/g/ gue—n(T—u)du+ _/ 0.26—2/4(T—u)du
t t

2
A _ —k(T—1)
+2n L} 4.12)

K n—1

In particular, when parameters ¢ and ¢ are constant, VIX future can be expressed as

—k(T—t 2
F' = {VIX,}* S exp {6’ [1- 6_“(T_t)] + Z— [1- 6_2”(T_t)}
K
A _ —k(T—1)
A U } 4.13)
K n—1
Furthermore, dynamics of VIX future under pricing measure (Q can be given by
dFtT _ _ —R(T—t) 6_H(T_t)
_ K(T—t) | Je o . e
¢ oudWV, + { E 1] -an, e 41
Proof:

VIX future pricing formula (4.12) can be derived from the conditional characteristic func-
tion of of In V' 1 X7 under pricing measure Q. From eqn. (4.3) and (4.4), we have condi-

tional characteristic function explicitly given as.
ise=w(T—1) . g —k(T—u)
v (t;s) = {VIX;} ~expqisk [ G du
t

2 T Y _ iep—R(T—1)
_5 / o2 2T gy + 2y L} (4.15)
2/ K N —1s

Thus VIX future can be derived as

El = EP[VIXg]= B [e"V7] = v (i)

T T
—k(T— 1
= vixy ”~e><p{“ / e T Vdu + / o2 2T gy
t t
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+ —1In

A n— e*l{(Tft)
K n—1 }

In order to derive the risk-neutral dynamics of VIX future, we first derive dynamics of

V IX, under the pricing measure.

dVIX, = de™V'

1
— MVIXigln Y IXE 5e‘“‘”deln VIX{dInVIX;

+ [6anIXt,+J o eanIXt,} dNt

VIX,
= VIX;[k (0 — mVIX;)dt + o dW;] + 5 Loldt + VIX, [e! — 1] AN,

= VIX, |(0k+ %) = kI VIX,| dt+ VIXiodW, + VIX, [’ = 1] dN,

Consequently, we get

dvVIXx,
VIX,_

= [0+ F) = kI VIX,] dt + 0dWy + [! 1] dN, (4.16)

Using Ito’s lemma to eqn. (4.12) and result in the above equation, we get

T T —k(T—t
1 A p—e T
dET = exp {K,/ e " T dy + —/ ole Ty + Zn L}
; 2 J; K n—1

e R Ty rx e gy xe

1 T 1 (7T A\ _—R(T—1)
+—exp /4;/ B e Ty + = / ole T gy + Z1n L —

o F(T—t) [e—m(T—t) _ 1} AVIX )¢ %)_QdV]deVIXf

T T —r(T—t
1 A\ — e H(T—1)
+exp {m/ O e " Ty + = / 026_2“(T_“)du +—1In L}
¢ 2./ K n—1

—r(T

I VIX, - {VIX ™ ke T gy

)\G—H(T—t)

1
—r(T—t) —2r(T—t) 2
— |:Ii0t6 + € o; + =gy

} - Flat
+[FT (WVIX,- +J) = FT (InVIX, )] dN,

= B0 f o+ F) - s VIX] dt +odw}

1
—i—§ T . e=r(T-1) [e‘”(T_t) —1] - o7dt

+FT-mVIX, - ke Tt

1 e H(T—1)
_ —k(T—t) | * —2r(T—t) 2 T
lm@te + 5€ o, + -~ e_H(T_t)} Frdt
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n [ejewpt) - 1} . FT 4N,

T —k(T—t)
— FtT X e—li(T—t) . Utth + Ft'll { |:6Je (T—-t) 1] - dNt — WAC&}

which concludes proof of eqn. (4.14). B
Corollary 4.1: (VIX Future Correlation)

From the dynamics of VIX future in eqn. (4.14), we get the instantaneous correlation of

VIX futures with different maturities as

T T
it = corr (dﬂTl, dFtTQ) = (dF",dE)
VD aFT) (dF" dFT)

[e_n(Tl—t)e—n(Tg—t)o.tht + <6Je*n(T1ft) _ 1) <6Je*n(T1*t) _ 1) dNt:|

\/|:62K(T1t)0-t2 + (etje*m(Tlft) _ ]_)2dNt:| |:672K(T27t)0-t2 + (6J67”<T27t) _ 1)2dNt:|

<1 (4.17)

Proof:

Given dynamics of VIX future in eqn. (4.14), we have

11,15 <dFtT1 ) dﬂT? >
P ’ =
t V(A dFD) (R, dF")

— [thilﬁvt’]ig |:6—H(T1—t)e—H(T2—t)0-t2dt + (eJe_&(Tl_t) o 1) (eje_”(Tl_t) - 1) dNti|:|
—r(T7—t 2
/{(FtT_1)2 |:6—QK(T1—t)O-t2 + (eJe (T1=t) 1) dNt}
—k(Ty—t 2
_ (FtT_Q)Q |:€—25(T2—t)0_t2 X <€Je (M-t 1> dNt}}

[e—H(Tl—t)e—n(Tg—t)Utht + <€Je_n(T1—t) _ 1) <€Je_m(T1—t) _ 1) dNt]

\/|:6—2K(T1—t)0-t2 _|_ (ejefm(Tlft) . 1)2dNt:| |:e—2n(T2—t)0-t2 _|_ (eJef'“(T?*t) . 1)2dNt:|

< 1
which concludes proof of this corollary. B

For the two-factor MRLRJ model, the instantaneous correlation is less than 1, which is

more realistic for VIX futures with different maturities.
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Theorem 4.3: (VIX Option Pricing)
Under the assumption of MRLRIJ process in Definition 4.1, VIX call option can be explic-

itly solved as

T
Calll (K) = exp {—/ rsds} C[FF 1L - KT (4.18)
t

where II; and II, are two tail probabilities
—zsan
IL; = 3 + Re{ } s, J
{ ¢{§’S ) (4.19)
wl (t,S):m, 1/} ( ) t,S

Furthermore, VIX put option can be explicitly solved as
T
Put{ (K) = exp {—/ rsds} K- (1=1) = FF - (1 - 1) (4.20)
t

Proof:

Although VIX call option can be regarded as an option written on VIX future which has the
same maturity as VIX option, the payoff at maturity is the same as settled using spot VIX.
Given dynamics of spot VIX under the pricing measure Q of VIX option and VIX future,
we can further make change of measure so that VIX call option price can be represented in

a similar formula as Black-Scholes formula as below

Call! (K) = exp {— /tT rsds} L ER [(VIXr - K)*]

Linvixy >y

= GXP{ / Tsds} {EZ [V Lpnvixgsmry] — KEZ [Linvixesmx] }
mWVIXy [ 70 [InVIX
_ exp{ / rsds} { [e"V1Xr] B2 ¢ T/EC e ]

~KE? [Lonvixesmry] }

T
= exp {—/ Tsds} {E? [t VX ] EX [Lpnvixesmiy] — KE® [Linvixeswmiy) }
t

E;@ [eln VIXp / EQ [eln VIXTH

T
= exp{—/ rsds}~{FtT~H1—K~H2} 4.21)
t
where the first measure is defined by the following Esscher transform
d InVIX;
& __° (4.22)
dQ |, — EQ[emVIXi]
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and the second measure (Q, is the same as Q. In order to calculate the two tail probabilities

I1; and Il,, conditional characteristic functions of {nV I Xt on filtration JF; are first derived

by
, e VIXy
Ui (t;s) = B [ein ] = E} EQ [elnVIXr] e
B E;@ [ei(—z’—&-s)anIXT} (s —i)
E;@ el VIXr] P (t; —1i)
and

Yo (t;5) = E;@z [6isanIXT] _ EP [eisanIXT} = (t;5)

Given the conditional characteristic functions above, the two tail probabilities in eqn. (4.18)
can be recovered by inverse theorem of Gil-Pelaez!”, as shown in eqn. (4.19).
Pricing formula (4.20) for VIX put option can be easily derived from put-call parity and

the VIX call option pricing formula (4.18). B

4.3 VIX Future and VIX Option Calibration

Theorem 4.4: (Calibration)

For the MRLRJ model in Definition 4.1, VIX option is priced using a Jump-Diffusion
underlying I with time-dependent volatility. Thus this model is able to produce implied
volatility skew for VIX option. Furthermore, the jump size is positively distributed and
thus this model is able to produce positive implied volatility skew for VIX option. Thus
parameters oy, x and jump parameters A and 7 can be used to calibrate to market implied
volatility skew for VIX option. As there is no explicit formula for implied volatility in a
Jump-Diffusion model with time-dependent volatility parameters, the calibration to VIX
implied volatility skew and term structure needs optimization.

With calibration result of x, o4, A and 1 from market quotes of VIX implied volatility
surface, we can move forward to calibrate VIX future term structure.

1d T 1 2 T
Or = fq + Ei - = [% —/0 e_QH(T_S)agds]
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by —rT _ ,—KkT
-2 {nie_ﬂjuln”n_el ] (4.23)

where f = In F{ is the initial VIX future term structure.
Proof: According to eqn. (4.12), the initial VIX future term structure Fy is given by
T T —KT
v 1 A -
FI = {VIXo} "™ - exp {m/ B,e " T~y + —/ ol Ty + Z1n u}
0 2 Jo K n—1
Thus

T T
1
fF=mF' = e - mVIXy+ 5 / (f“<7”8>93c154r§ / e 21952 (s
0 0
by _ ,—kT
A=t
K n—1

Take derivative w.r.t. 7" on both sides of the above equation, we get

dfy kT L, ’ —2k(T—s) 2 e "’

d_T = —Ke€ -an[Xo“‘/ﬁ?eT‘i‘iUT—/i e Ust‘F)\m
0 _
T
—K |:/€/ e_R(T_S)HSdS}
0

1 T e—HT
= —ke " InVIXy+ Ky + —0% — /i/ e~ T=9)520s 4 A

2 0 n—e"

1 T >\ _ —kT
—K {fg —e " InVIXy - —/ e M T=9)520s — Z1n u]
2 Jo K n—1

—kT —kT
_ G—HT n— 1 :|

1 T —
= Kir+ - [0% — H/ 6_2H(T_S)O'§d8:| —Kfl+ A [ c T
2 0 n
Rearrange the above equation, we get the result in eqn. (4.23). B

The calibration strategy of MRLRJ model is similar as MRLR model. On the first stage
of calibration, the vol-of-vol function o;, mean-reverting speed « and jump parameters are

calibrated to VIX implied volatility surface using the below optimization.

min ||Call™™ (K, T) — Call™*" (K, T)|| (4.24)

TtyRA
where CallBLRT (K T) is MRLRJ model price of VIX option and Call™5T (K, T) is
market quotes of VIX options.
On the second stage of calibration, we further calibrate the long-term mean function 6; to

initial VIX future term structure using formula (4.23).
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4.4 VIX Future and VIX Option Hedging

In this section, I calculate sensitivities of VIX futures and VIX options with respect to spot
VIX and further develop hedging strategies for VIX futures and VIX options with other

VIX future contracts as hedging instruments.

Theorem 4.5: (VIX Future Hedging)
Firstly, we calculate the sensitivities of VIX future price to spot VIX. We are concerned

with the spot delta and spot gamma

OFT  g=r(T—1) T

ovVIX, — VIX, ‘'t

2FT _e—n(T—t).[l,e—n(T—t)] T (4.25)
AVIXZ — VIX? t

Based on the above formulas, we can move forward to calculate sensitivities of VIX future

with maturity 75 to another VIX future with shorter maturity 73

T. T
OF, % _ e*/-c(Tszﬂ VB ?

oFn e
82FtT22 _ _6—25(T2—T1) . [en(Tg—Tl) B 1] ] Fth i (4.26)
oF) ()

Proof:
The characteristic function defined in eqn. (4.3) can be simplified as

—r(T—t)

) (t;s) = {VIX,}™ Z (t; )

Thus VIX future pricing formula eqn. (4.12) can be denoted as

—k(T—t)

FI = (t;—i) = {VIX,}* Z (t; —i)

where Z (t; —i) is function of ¢ and it’s independent from V' I X;. Given the pricing formula

for VIX future as above, we have delta sensitivity of £ with respect to VI X; as

OFT

— Ty x0T g

WIX e {VIX.} (t; —i)
B e—f{(T—t) T
VIX, !

and gamma sensitivity of £ with respect to VI X; as

82FtT o efn(Tft) FT
OVIXE — OVIX, { VIX, t]
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_ efn(Tft) ' aPWtT N _efﬁ(Tft) . FT
VIX, 0VIX, VIX? !
—k(T—t) —r(T—t) _ o—k(T—t)
VIX, VIX, VIX;

_ _e—n(T—t) X [1 _ 6—/4(T—t)] . FT

VIX? t

We notice the delta and gamma of VIX future with respect to spot VIX as shown in eqn.
(4.25) is exactly the same as eqn. (3.17) of MRLR model. Furthermore, we notice that the
proof of delta and gamma of VIX future with respect to another shorter term maturity VIX
future in eqn. (3.20) and (3.21) is totally based on spot VIX delta and gamma. Consequent-
ly, by referring to the proof procedure of eqn. (3.20) and (3.21), we can get the hedging
formulas (4.26). B

Theorem 4.6: (VIX Option Hedging)
Firstly, we calculate the sensitivities of VIX call option price to spot VIX. We are concerned

with the spot delta and spot gamma.

{ ACallf e~ rt(T-8.FT I
- VIX 1

oy —(rf Y@t pr
_ _e¢ i {[1 _ e—n(T—t)] 0 — e—r(T—1) . fi (ln K)}

92Call” (4.27)

OVIX? VIX2

where I1; is defined in eqn. (4.18) and f; (x) is conditional p.d.f. of In VI X7 under a
martingale measure with V' / X, as numeraire and it can be expressed as

o dIL(K)
frR) = =0 = T dm ) (4.28)

Based on the above formulas, we can move forward to calculate sensitivities of VIX call
option price with maturity 75 to a VIX future with shorter maturity 7.

T3 Ta
0Call,* e T(Ta—t) o—k(To—T1) . Ft_Tl 10 (TQ)

Ty
OF, F,

T T
P2Call,? _ —r(Ty—t) p—2x(Tp=T1) . _F 2 2)2 . [(1 — e”(TQ_Tl)) 1 + f1 (In K)]

o(r)” (F

(4.29)

Proof:
Given the functional form of conditional characteristic function in eqn. (4.3), we can easily
calculate its derivative with respect to spot VIX as

oV (t;s)  ise T
ovVIX,  VIX,

¥ (t:5) (4.30)
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By the definition of ¢; (¢; s) in (4.22) and the derivative of ¢ (¢; s) in the above equation,

we have

Ovn (t;s)  Zoise (t—i) — S (b5 — i) ise =D Y @31)
avVIX, P2 (t;—1i) CovIx, '

By noticing that 1 (t; s) = 1 (¢; s), the same form in the above two formulas (4.30) and

(4.31) concludes the below conditional characteristic functions, i.e.

O (tys)  ise T
ovVIX,  VIX,

Vi(t;s), j=12 (4.32)

Note the upper tail probabilities II; in (4.19) can also be recovered from their characteristic

functions in the following form
1 0 (¢t —isln K
=5 / Vi (tis)e ds (4.33)
T J oo 1S

Thus derivative of IT; with respect to V' 1.X, is calculated as

oI, 1 [T O(ts)e™ ands
aVIXt 27 —00 (9V[Xt 1S
6_"{ T —isln K
= VIX, 21 / vi(tis)e ds
e—n(T t)
= VIX, fi (In K) (4.34)

where f;(x) is the probability density of In VI Xr conditional on F;. We observe the fol-

lowing relationship between the two conditional p.d.f.

1 [ 4
Ffi(z) = FtTﬁ/ Uy (L s) e %ds
1 0 o
= 5 /_Oo Y (t;s — i) e DT tegg
1 o0 o
= e‘”% /_Oow(t;s—i) e MK g (5 )
= " fy () (4.35)

Therefore, we have the following equality

oIl oIl e r(T-1)
Yok avix, © vix [ MK) K- f (n k)]
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efli(Tft) K
= T ("5 f(InK) — K - fo(InK)]
-0 (4.36)
Consequently, we have
5CalltT —r(T—t) 8Ft 81_[1 31_[2
= € AL+ P — K-
oVIX, oVIX, oVIX, oVIX,
ef(rJrn)(Tft)F’t
= — .11 4.37
VIX, 1 (4.37)

Given the above formula for delta of VIX option with respect to spot VIX, we can move

forward to calculate the spot gamma

820(1”3 o 6—(r+n)(T—t) . FtT 6—(r+n)(T—t) . FtT 81_11
OVIXE — OVIX, ( VIX, ) o VIX, OVIX,
_e—(r—i-n)(T—t) . FT e—('r—i—n)(T—t) e—n(T—t) . FT
— t + t X Hl
VIX2 VIX, VIX,
67(r+n)(Tft) . FtT efn(Tft)
. . In K
I, vix, Sk
ef(r%'-e)(Tft) . FtT
— _ 1 _ 7I€(T7t) . H
vixg Lo
e—(r—l—/i)(T—t) . FT T
e )
—(r+k)(T—-t) . FT
e —k(1'— —Kk(1'—
= e L —e T D) 1 — e T £ (In K) §4.38)

We notice the delta and gamma of VIX option with respect to spot VIX as shown in eqn.
(4.27) is exactly the same as eqn. (3.22) of MRLR model. Furthermore, we notice that the
proof of delta and gamma of VIX option with respect to another shorter term maturity VIX
future in eqn. (3.25) and (3.26) is totally based on spot VIX delta and gamma. Consequent-
ly, by referring to the proof procedure in eqn. (3.25) and (3.26), we can get the hedging
formulas (4.29). B

4.5 Forward Variance Swap and Convexity

In this section I extend the 30-day forward variance swap pricing formula in MRLR to

MRLRJ model.
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Theorem 4.7: (Forward Variance Swap Pricing)
Under the assumption of MRLRJ process in Definition 4.1, the 30-day forward variance
swap FV ST = E° [RVTT +30d“ﬂ — E2[V1X2] can be explicitly solved as

T T
FVStT = {V]Xt}Qe*n(Tf ) - exp {2’1/ HUG—H(T—u)du + 2/ Uge—QK(T—u)du
t t

A — 2¢—H(T—1)
AT
K

In particular, when parameters # and o are constant, VIX future can be expressed as
T 2= (T—1) —r(T—t o —25(T—t)
FVSl = {vIx,} cexpq20 [1—e "] 4 — [1— e 201

K
A -9 —k(T—t)
2 "—}

4.40
- ) —2 (4.40)

Furthermore, dynamics of the 30-day forward variance swap under pricing measure QQ can

be given by

dFV St —r(T—t) 2] H(T—1) 2e (T

e = od Wy + 4 e 1] AN Tt (4D
Proof:

Forward variance swap pricing formula (4.39) can be derived from the conditional char-
acteristic function of of In V' I X7 under pricing measure Q. From eqn. (4.15), forward

variance swap can be derived as

FVSE = EP[VIXZ] = ER [2™V7] = ¢ (InVIX,, t; —2i)

T T
= {vix -exp{?m / B,e" Ty + 2 / o2~ 2HT =) gy
t t

A -9 —k(T—t)
+_1HL}
K n—2

Using Ito’s lemma to eqn. (4.39) and dynamics of V' I X, in eqn. (4.16), we get

T T —(T—
A ) k(T—t)
dFV ST = exp {2/@/ e~ T dy - 2/ ole Ty + Z1n %}
t t k U

2e~ T VXY gy TXe

1 r r A — 2e~R(T=Y)
+—exp {2%/ e T dy, + 2/ ole 2Ty 4+ Zn L}
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2600 [2e#T-0 _ 1] AVIX Y " RaVIXAV XS
T _ _
A %¢ k(T—t)
+exp{2/<;/ e T dy + 2/ ole T gy, 4 —1 77—}
t t n—2
W VIX, - {VIX}* 2k Ty
A267H(T7t)
Kk(T—t) k(T—t) 2 I T
{2&9 e +2¢e72 o, + - 26_H(T_t)} FVS;dt

+ [FVSI InVIX,- +J)— FVS] (InVIX,_ )] dN,
= FvST2e 00 0+ ) = kI VIX,| dt + 0udW, |
+§FVStT 2T 267K 1] . g2dt

+FVSI - ImVIX,  2ke "T=Vqt
A2eH(T=1)

w(T—t) rT-t)gy2 4 727
{2/—@9 e +2¢72 o; + 7 — 26D

} -FVSTdt
+ [8"6‘“”‘” - 1} . FVST dN,
= FVST. 2e7 T8 . 5aW,

—k(T—t)
T 92 Je—r(T—1) . . 26
+FV ST { e 1] -an, ] Adt}

which concludes proof of eqn. (4.41). B

Below we derive the convexity adjustment for VIX future from 30-day forward variance

swap.

Theorem 4.8: (Convexity Adjustment for VIX Future)
Under the assumption of MRLRIJ process in Definition 4.1, convexity adjustment of VIX

future from 30-day forward variance swap can be derived as

FF e
CAT = ——L__ = exp {——/ 6_2”(T_S)G§d8
t

VST 2

A = e n — 2e~T0)
p— l’l — —_—
K n—1 n—2

When parameter o; is constant, we have

CAT _ o’ 1 —2k(T—1)
;. = exp _E[ —e ]
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A.on— e—r(T—1) n — 2e—H(T-1)

—nhn———Iny/ —m— 4.4
+/€n - n - (4.43)

Proof:
From the pricing formulas of VIX future in eqn. (4.12) and 30-day forward variance swap
in eqn. (4.39), the convexity adjustment can be derived as
FT
VEVSE

B {V[Xt}e_ﬁ(T_t) - exp {F& ftT Oue " du + 3 ftT o2e 2Ty 4+ 2 In %}

CAT —

{VIXt}ew(T—t) - exp {;{ LT gue—n(T—u)du + ftT 0_36—25(T—u)du + ﬁ In 77—2677—_'$2(T—t) }
1 (7 A _ e—H(T—D) — 9p—K(T—1)
= exp ——/ e 295205 + = |In n—e - gy, = 7
2.J: K n—1 n—2

which concludes proof of this theorem. Bl
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5 MRLRSYV Model

In last chapter, I present the first extension of MRLR model by adding upward jump in-
to spot VIX in order to produce positive implied volatility skew for VIX option. Another
popular method to create implied volatility skew in addition to jump diffusion is to in-
clude stochastic volatility into the underlying dynamics. In this chapter, I further present
this second version extension of MRLR model, i.e. mean-reverting logarithmic stochastic
volatility model (MRLRSV). In order to create positive implied volatility skew for VIX
option, we need to make the instantaneous correlation between spot VIX and its stochastic
volatility positively correlated, in contrast to the negative correlation in stochastic volatility

model for equity option where negative implied volatility skew is observed.

5.1 MRLRSYV dynamics and characteristic function

I first present the dynamics of In V' 7. X; under MRLRSV model in this section.

Definition 5.1: (MRLRSYV Dynamics)
Under martingale measure (Q, the mean-reverting logarithmic stochastic volatility process

is formulated as

AV, = ky (0, — V) dt + o,/ VidZ, -1

{ dinVIX; =k (0; — nVIX,)dt + /V,dW,
where x is mean-reverting speed, time-dependent function 6, is the long-term mean of
logarithm of spot VIX, \/V/ is vol-of-vol for spot VIX and V; is assumed to follow a square-
root process.

Of course, parameters 0; can either be constant or time-dependent. When 6, is time-dependent,

e.g. piece-wise constant, it can be calibrated to term structure of VIX future. All parameters

for var-of-vol process V; can be used to calibrate to VIX implied volatility surface.

Again, in this model the transition function of spot VIX is not available and the VIX future

and option pricing formulas need to be priced using characteristic function method.
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Theorem 5.1: (VIX Characteristic Function)
Under the assumption of MRLRSV process in Definition 5.1, characteristic function of
spot VIX logarithm In V' I X7 under martingale measure Q conditioned on information at

time ¢ is given by
Y (t;s) =exp{A(t;s)+ B (t;s)V; + ise "= 1n VIX} (5.2)

where functions A(t; s) and B(t; s) are given by

A(t;s) = C (t;.8) + s [T e T=M ef dfy — fspmals [ _ o=(T=0)] (5.3)
B(t:s) = D (t;s) — e " |

Ov

and functions C'(¢; s) and D(t; s) satisfy the below ODE system

T dt
dD __ 1 _2712 isp(k—Kv) —k(T—t 1.2 2\ —2k(T—t
—E—§UUD —HUD—U—Ue ( )—58 (1—p)€ ( )

ac _ vevD
{ 8 (5.4)

The second ODE of D in (5.4) is a Riccati equation with exponentially time-dependent
coefficients, which can be solved explicitly to the extent represented by first and second
kind Kummer functions. Because function C' can be represented as integration of D with
respect to ¢, it can also be expressed by Kummer functions.
Firstly, we change variable from ¢ to 7 = T" — ¢. Then for the case of ** # 1,2, ..., we have
26,0, [ pour\/1 — p? Cr gM (a,b;z) + U (a,b; 2)
C(r) =— (I1—e")+1In
o2 2K gM (a,b; z0) + U (a, b; o) 5.5

D(r) = o/ 1 — p?e " l_l_g%“M(a—i-l,b—l-l;z)—2aU(a+1,b—|— 1;2)
v Ty gM (a,b;z) + U (a,b; 2)

and for the case of ©+ = 1,2, ..., we have

( 2
O(r) = — 2 (‘m VI (1 — e ") — (1 — b)wr

o5 2K

+1 gM (a—b+1,2—b;2)+U (a—b+1,2—b;z)
N M (a4 1,2—by20)+ U(a—bt1,2—b;z0)
o\ 1-p* -1
D(T) = TG {—1+2[(1—b)2
G950 M (a—b42,3—bi2)—(a—b+ 1)U (a—b4-2,3—b;2)

4 2-b
gM (a—b+1,2—b;z)+U (a—b+1,2—b;z)

\

where M (a, b; z) and U (a, b; z) stand for the first and second kind Kummer functions. The
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constants and variables used in equations (5.5) and (5.6) are defined by

( _ K—ky PV 1—p*—p

a =
K20y /1-p2
TR 5.6
z:e*"”gzﬁcrm/l—pz//i .6
\ ZOI¢UU\/1—p2/I€
and
B aU (a+1,b+1; 2) + 3U (a, b; )
7 M (a+ 1,b+ 1;20) — 1M (a, b; 20) 5
o (a=b+1)U(a=b+23-byz)+ [3—(1—=b)z" | U(a—b+1,2—=b;z)
g:

CYENM(a—b4+2,3—byz) — [3— (1—=b)z' | M(a—b+1,2—b;2)
Kummer functions M (a, b; z) and U (a, b; z) are two solutions of the following ODE
zu,, + (b— 2)u, —au =0

where a is complex constant in this thesis.
Proof:
In order to solve conditional characteristic function for X = (nVIXy from (5.1), we

derive dynamics of e X; by Ito’s lemma as
d (e“tXt) = " kb dt + ™/ V,dW,
Therefore, X7 can be represented by

T T
Xy =e "T0X, + / e TP ko, dh + / e "T=m) SV, dW, (5.8)
t

t

Put the above equation (5.8) into ¢ (t; s) = E2 [exp {isX7}], we get
T
Y (t;s) = exp { [e‘”(T_t)Xt +/ e_“(T_h)nﬁhdh] is}
t
T
E;@ {exp {zs/ e "T=h) Vdeh}] (5.9)
¢

Denote the conditional expectation in the above equation as

T
Q(t;s) = B2 {exp {zs/ e_“(T_h)\/Vdeh}}

t
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According to Cholesky decomposition of standard Brownian motion W, there is a SBM
W2 that is independent from Z; such that W, = pZ; + /(1 — p?)W}?. Conditioned on

realization of path {Z,},_, .., we have

T T

Q(t;s) = EX {exp {zs/ e TN\, pd Zy + is/ e T\ Vi1 — deW,?}]
t t

T
= E;@ {exp {zs/ e_”(T_h)\/Vhdeh}
t
T
. E2 [eXp {zs/ e T=h VA /1 — p2dW;j'H Zn t <h< T”

¢
T T
= E? [exp {isp/ e "IN\ /V,dZ), — 52(12_p2)/ eQH(Th)Vhth (5.10)
t

t

where the third equality holds due to the fact that ftT e " T=M/V,\/1 — p2dW} is con-
ditionally normally distributed with mean 0 and variance ftT (1 — p?) e 25(T=MV} dh. Use

Ito’s Lemma, we get

A (7T VE) = 0 1,0, + (1 — k) Vil dh + 0o /VidZ,

Thus we get
T 1 Koy
/ e*l{(T*h) /Vhth — O__ |:VT . efn(Tft)V; . - [1 . efn(Tft):|
t v
T
— (K — ) / e‘“(T‘h)Vhdh} (5.11)
t

Plug the above equation into eqn. (5.10), we get

—k(T—t)
Q(t7 S) = exp { |:_10€ ‘/t _ pHUHU [1 o e—H(T—t)]:| ZS}

Oy Ouk

_ T
B2 {exp {is {£VT _ PR ) / e"‘(Th)Vhdhl
Uv t

v

T
_32<12—p2) / ezn(Th)Vhdh}} (5.12)
t

Put the above equation back into (5.9), we can reduce 1(¢; s) to

Y (t;s) = exp {ug (t)} B2 [exp {u1 Vp — /tT uy (h) - Vhth (5.13)
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where the three functions ug, u; and uy are given by

o (1) = [e 00X, + (0 — ) [1 = emor0] — 00 ]

Uy = L (5.14)

) $2(1—p2
Us (t) _ ZSP(Z;KU)efﬂ(Tft) + (12 P )672/4(T7t)

Decomposition (5.13) is simpler than (5.9) in the aspect that the conditional expectation

here only involves path of the stochastic volatility V;, and the expectation is denoted by

T
d(t;s) = B2 {exp {ul - Vp — / ug (h) - Vhdh}} (5.15)
¢

Due to Feynman-Kac theorem and dynamics of V; under martingale measure Q, the dis-
counted expectation ® (¢; s) satisfies the following initial problem of PDE

0 1 , 0% 0P
—E = §UUVW + Ry (911 — V) W — U9 (t) Vo

isp (5.16)

v

Dulffie et al."®! indicates that the Feynman-Kac PDE (5.16) for the affine process V; has the

following exponential affine form solution
P (t;5) = exp{C (t;s) + D (t;s) Vi } (5.17)

Plug equation (5.17) back into (5.16), it can be shown that functions C' and D satisfies
ODE system (5.4). The Riccati function in (5.4) can be explicitly solved and represented
by Kummer’s functions. Alternatively, the ODE system (5.4) can be solved numerically by
Runge-Kutta algorithm. Below I present the analytical solution for C' and D.

The conditional expectation with respect to V' defined in (5.15) has the exponential affine
form solution (5.17), with the two coefficient functions C' and D solving PDE system (5.4).
Function D is controlled by a Riccati equation, and the first step to solve D is to define the

following function transform

Therefore, u satisfies the following second-order ODE

" ’ ]_ . kT 1 2
U+ Ky, — 518000 (k—ky)e "+ =0

1 1;32 (1_p2)6—2m' u=0
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Then we define the following variable transform to change the ODE coefficients to con-

stants.
T =1se "7
Then
K — Ky o2 (1—p?) (kK — Ky) po
v B v v -0
Tlgq + K e 42 v 2K2
or
[CLQ.Z’ + bg] U;x + [alx + bl] UJ; + [CL(]Z' + bo] u=0 (518)
with
o2(1—p2
( ap = v(41[£2p)
bO — —(“;:g)PUU
ap = 0
bl — K;I{v
a9 = 1
k bQ - O

Equation (5.18) is of the type ODE 2.1.2-108 in Polyanin!?"!, and the general solution of u

can be represented as
u(z) = " T (a,b; 2) (5.19)
where J (a, b; z) is general solution of degenerate hyper-geometric equation

2T+ (b—2)T. —aJ =0 (5.20)

—(10?)

a, b are two constants and z is a new variable. Denote D = a% — 4apay = —5—= and

B (k) = =k — “‘;}:z)p Zv then for the case of D # 0, or equivalently p # +1 which is

assumed to always holds, we have
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and consequently

B(k) _ K—Ky i\/ 1*p2*P

a =
2ask+aq K 27;\/17102
b= asbi—aibs . K=Ky
- a% K
2
— T _ Poy 1-p — KT
Zz = > = P (&

Solution of second order ODE (5.20) is given in ODE 2.1.2-70 of Polyanin!*!. More specif-
ically, the general solution can be expressed as
(
CiM (a,b; z) + CoU (a,b; 2), " #1,2,...
J(a,b;2) = 270 [C’lM(a—lH— 1,2 = b;2) 4+ CoU (a — b+ 1,2—5;2)] (5.21)

B — 1,2

' Tk g Ly e

\

where M and U are the first and second kind Kummer functions. Plug the general solution

(5.21) of J back into (5.19), for the case of =+ 7& 1,2, ... we get

D(r) = 22’5/@§*’” { B zav\/_i (a,b;2) + U, (a, b; z)} (5.22)

o2 gMabz)+U(abz)

and when = = 1,2, ... we get

—KRT

i) = 2 k- T (1)

Uv
GM_(a—b+1,2—b;2)+ U, (a—b+ 1,2 —b; 2) (5.23)
gM(a—b+1,2—-b;2)+U(a—b+1,2—1b;2) ’

g and g are two constants determined by initial condition of D. In order to simplify the

expressions (5.22) and (5.23), we need the following properties of Kummer functions

d
—M (a,b;2) = —M(a+1,b+1;z)
dz b (5.24)

d
EU(a,b;z) =—aU(a+1,b+1;2)

Applying (5.24) to (5.22) and (5.23) we can obtain expression of D as (5.5) and (5.6). and

the two constants g and g can be attained accordingly.

To solve function C from %C

/
— 2% thus we have
o2 u

‘/D _3_ Uy o2 u(r)

o U o2 U(O)

= 0,k,D, we have to integrate D from O to 7. Note D =

and thus expressions for C' can be easily expressed as (5.5) and (5.6). B
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The Kummer functions M and U can be implemented in symbolic math toolbox of Matlab.
However, the calculation is not so stable and rather time-consuming. An alternative reso-
lution of this problem is directly solving ODE system (5.4) numerically by Runge-Kutta
algorithm. We compare the two methods in Matlab on calculating characteristic function,
and find that the Runge-Kutta algorithm is much more stable than Kummer functions rep-
resented closed-form formula. Moreover, we find the Runge-Kutta algorithm in computing
characteristic function once is at least 7 times faster than the Kummer function formula.
Therefore, we recommend using Runge-Kutta numerical solution for MRLRSV model in-
stead of the Kummer function represented explicit formula, unless a more stable and faster

routine is developed in Matlab.

5.2 VIX Future and VIX Option Pricing

Based on the conditional characteristic function of spot VIX under martingale measure QQ

as in eqn. (5.2), we can derive the pricing formulas for VIX future and VIX option.

Theorem 5.2: (VIX Future Pricing)
Under the assumption of MRLRSV process in Definition 5.1, VIX future F/' can be ex-
plicitly solved as

—k(T—t)

Fl =9t =) ={VIX,}*  -exp{A(t; i) + B(t; =i) - i} (5.25)

where functions A(t; s) and B(t; s) are defined as eqn. (5.3).

Furthermore, dynamics of VIX future under pricing measure (Q can be given by

dFT = FT. [ —k(T— t)\/vtth+B t; —i) \/thzt]
oFT

= -V IX i/ VidW, ou\/ VidZ, 5.26
3V[Xt t\/_t ¢ + avt taZy ( )
FI\/V; - dM, (5.27)
where standard Brownian Motion d )M, is defined as
dM, — e "T—Y) dW,+ BoydZy
t — \/6 26(T=t) 4:2pe—#(T—) Bo,+ B2 02 (5.28)

dMdZ, = Bay

\/6—214(T—t) +2pe—K(T—t)Bo—v+B2g%
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Proof:

VIX future pricing formula (5.25) can be derived from the conditional characteristic func-
tion of of In V' I X under pricing measure QQ.

In order to derive the risk-neutral dynamics of VIX future, we first derive dynamics of

V IX, under the pricing measure.

dVIX, = demVIiX

1
= "VNdMVIX, + 5eln VIXdIn VIXdIn VIX,

VIX,
2

= VIX; [0k + %) — kInVIX,] dt + VIX,\/VidW,

— VIX, [H (6, — I VIX,)dt + \/thwt] + Vidt

Consequently, we get

dvVIXx,

T = (05 + %) — kI VIX,] dt + \/V,dW; (5.29)
t

Using Ito’s lemma to eqn. (5.25) and result in the above equation, we get

—s(T—t) _q

AFF = exp{A+B-Vi} -0 vixy T avix,

1
+§ exp{A+B-V;}-e "I [e”“(T’t) —1]

{VIX,)

e—K(T

201X, - dVIX,

—r(T—t)

+B-{VIX,) cexp{A+ B-V;}dV;

—r(T—t)

1
+§B2 AVIX)° cexp{A+ B-V;}dV; - dV;

—k(T—t)

+re T DI VIX, - {VIX,} rexp{A+B-V}dt

—k(T—t

+ (A; + B, Vt> VIxy """ exp{A+B-V,}dt

= 0BT [(B+ ) — kI VIX] de + \/VidW |
—|—%e‘“(T_t) [e™"T=D —1] FF - Vidt

4B FT [nv (0, — V,) dt + o, \/thzt]

+%BQ - Fl - o2V,dt

+FT [/{e—*f(T—t) nVIX, + (A; + B, V;ﬂ dt
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= TN FT (0,5 + %) dt + F) (A; + B, vt) dt + B - FTr, (0, — V;) dt
+%e_”(T_t) [e*T=D —1] FF - Vidt + %BQ - Fl - o2V,dt
e T TV dW, + B - Floy\/VidZ,
= FI. {e*“T*t) (O + %) + (A; + B, - Vt) + By (0, — V;)} dt
2
+e "0 L FT VAW, + B - Floy\/VidZ,

1 1
+F. {—e_”(T_t) [e_“(T_t) — 1} Vi+ §B2 . Jg‘/;} dt

= MY, ETﬁth +B- FtTUv \/thZt

_ Oy VVidW, +8FtT oo/ VidZ
- 8V1Xt t t t 8% v t t
= FI'\/V,-dM,

where the 5'h equality holds due to the fact that ! is martingale under the pricing mea-
sure Q. dM; in the 6'h equality as defined in (5.28) is a continuous martingale and it has

quadratic variation

e *T=qW, + Bo,dZ, """ VdW, + Bo,dZ,
Ve 0+ 2pe~ TN Bo, + B2} \/e~ T + 2pe~+(1"1 Bo, + B0}
e~ 26T QW dW, + 2¢ T Bg, dW,d Z; + B?c%dZ,dZ,
[6—2H(T—t) + Zpe_”(T_t)BUU + BQU?)]
e~ 25Tt 4 2e="T=) Bg, pdt + B>o2dt
[e=2:(T—t) 1 2pe—~(T—t) Bo, + B202]

dMd M,

= dt

Therefore, dM, is a standard Brownian Motion. Il

Corollary 5.1: (VIX Future Correlation)
From the dynamics of VIX future in eqn. (5.26) under MRLRSV model, we get the instan-

taneous correlation of VIX futures with different maturities as

pi" = corr (dF",dF?) = (dF", dF;?)
V{AF A (dF", dF")
_ {[G—K(T1—t)€—H(T2—t) + Bzgg + (e—m(Tl—t) + e—/ﬁ(TQ—If)) dep]}

/{ \/[e—Qﬂ(Tl_t) + B202 + 2e—#(Ti—t) B, p|

55



HRIPNE S L2 e VR3S

,\/[6—2I{(T2—t) + BQO—?} + 26—5(T2—t)BO—vp]}

< 1 (5.30)

with B = B (t; —1).
Proof:

Given dynamics of VIX future in eqn. (5.26), we have

dF = F/V, - [* D=YdW, + B (t; —i) 0,dZ,]
FT2 ERYV; - [e7 " T=0aW, + B (t; —i) 0,d 2]

Thus

dFPaER = EPFRV, - [e "M 0e s DDqwdW, + B2 (t; —i) o2d Z,dZ,
+ (7" =D 4 o= B (1 —i) 0, dW;d Zy]
— FT1FT2% [ —k(T1—t) 7K(T27t) + BzO'g

+ (6—H(Tl—t) + 6—H(T2—t)) BUUP} dt

Consequently,
o (dE dF]?)
T VOAED dFTY (AR, dET2)
= {[e_H(Tl_t)e_”(TQ_t) + 3203 + (e_”(Tl_t) + e_”(TQ_t)) Bavp} }
/{ \/[6_2”(T1_t) + B202 + 2¢—#(Ti—t) B, p|
~\/[e—2“(T2 + B202 + 2¢—#(T>~t) Bg p]}
< 1

which concludes proof of this corollary. B

For the two-factor MRLRSV model, the instantaneous correlation is less than 1, which is

more realistic for VIX futures with different maturities.

Theorem 5.3: (VIX Option Pricing)
Under the assumption of MRLRSV process in Definition 5.1, VIX call option Calll (K)
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can be explicitly solved as

T
Calll (K) = exp{—/ rsds}-[FtTﬂl—K-HQ} (5.31)
t

where II; and II, are two tail probabilities

{H 11 Re{ ‘”M} j= 532
b (1) =SB0y (1) = (8 )

Furthermore, VIX put option Put! (K) = exp {— I rsds} B2 [(K —VIXy)*] canbe

explicitly solved as

Put! (K) = exp {— /tT rsds} K- (1-1) — F - (1—1L)] (5.33)

Proof:

Although VIX call option can be regarded as an option written on VIX future that has the
same maturity as VIX option, the payoff at maturity is the same as settled using spot VIX.
Given dynamics of spot VIX under the pricing measure (Q, we can further make change
of measure so that VIX call option price can be represented in a similar formula as Black-

Scholes formula
T
C(T —t,VIX; K) = exp {—/ rsds} ER [(VIXy — K)']
t
T
= exp{—/ Tsds} : {EQQ [V L v sin Ky — KE? [Lpnvixesmky) }
t
T
= exp{—/ Tst} : {—KE;@ (L vixy>ink}]
t

o0 VIX7 / EQ [eln VIXT}
B [anvie [ BR [@aVTRa]] Vo)

T
= €Xp {—/ Tsds} : {EP [GIHWXT} Ez(SQI [l{anIXT>1nK}]
t

~KE» [Lmvixsmiy] }

E;@ [eln VIXT] E;@

T
= exp {—/ rsds} AF L - K -1} (5.34)
t
where the first measure is defined by the following Esscher transform
d InVIX;
dQ __°c (5.35)
dQ |, ~ EQ[emVIX)]
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and the second measure (Q, is the same as Q. In order to calculate the two tail probabilities
I1; and II,, conditional characteristic functions of [nV I Xt on filtration JF, are derived as

Q1 [islnVIX Q el Vixr isInVIX
t; s = [EN [pisin T — F etsin T
¢1 ( ) t [ ] t E;@ [eln VIXT]
Eé@ [ei(fz#s) anIXT} ¢ (t, s — Z)

E;@ [eln VIXT) B W (t; —1)

and
¢2 (t, S) — E;@2 [eisanIXT} _ Eé@ [eisanIXT] _ 1/) (t, S)

Given the conditional characteristic functions above, the two tail probabilities in eqn. (5.31)
can be recovered by inverse theorem of Gil-Pelaez!”), as shown in eqn. (5.32).
Pricing formula (5.33) for VIX put option can be easily derived from put-call parity and

the pricing formula for VIX call option. B

5.3 VIX Future and VIX Option Calibration

Theorem 5.4: (Calibration)

For the MRLRSV model in Definition 5.1, VIX option is priced using a Stochastic Volatil-
ity (Heston) underlying F}” with time-dependent parameters. Thus this model is able to
produce implied volatility skew for VIX option. Furthermore, the instantaneous correla-
tion in this stochastic volatility model is positive and thus this model is able to produce
positive implied volatility skew for VIX option. As there is no explicit formula for implied
volatility in a stochastic volatility model with time-dependent parameters. Thus parameters
of V; can be used to calibrate to market implied volatility skew for VIX option.

With calibration result of parameters of V; from market quotes of VIX implied volatility

skew, we can move forward to calibrate VIX future term structure.

Or = f& +

Kk dT K

K

1dff 1 [dC 1 [dB 1 prf,
Ldfg {ﬁ N ﬁc} {ﬁ i EB} Tor P (536)
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where f{ = 1In Fy is the initial VIX future term structure, C' and D are defined as

C' =C(0;—1)

D = D (0; —i)

dC __

& _ ?UG”D (n=r0) |

4D _ 152D2 _ g D — © s e T 4 1 (1= p?) 2T

Proof: According to eqn. (5.25), the initial VIX future term structure Fy is given by
FI ={VIXo}* " -exp{A+ B-Vy}
where

ouvk
—rT

B=B(0;—i)=D— =

Ov

{ A=A(0; i) = C+ [ Ope s T=9dp — el [| _ o=T]

Thus

fo = e mVIXg+ A+ BV,

T PryBy
= T InVIX, + {C =+ / Ope "9 dh — —= [1 B eiHT] } b
0

OuK

Take derivative w.r.t. 7" on both sides of the above equation, we get

dfy T dA dB
L0~ ke T I VIXgt —
AT re ™ - mVIXo + gm 4 gp - Vo
d T 7.)0’0
= e T mVIXe + | %kl — k2 / Ope " T=9)dp — TPl L gy
dTl’ 0 Oy
dC  dB Kol o
= KOp — ke ™ InVIX,+ o + a7 Vo — e_“TpUU — K |:/£/0 0, e T g)dh]
dC  dB ko0,
= ligT — HG_HT . h’lVIXO + d_T + d_T . VE) — G_HTPU—W
1)01) —
—/i{fOT—e”T‘anIXO—C—i—pK [1—6”}—3.1/0]
Ok

pE0y

dC dB
= K@T—Flﬁ—FFLC}—F{W—FI{B} "/0—

T
- ﬁfo
v

Rearrange the above equation, we get the result in eqn. (5.36). B

5.4 VIX Future and VIX Option Hedging

In this section, I calculate sensitivities of VIX futures and VIX options with respect to spot
VIX and further develop hedging strategies for VIX futures and VIX options with other

VIX future contracts as hedging instruments.
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Theorem 5.5: (VIX Future Hedging)
Firstly, we calculate the sensitivities of VIX future price to spot VIX. We are concerned

with the spot delta and spot gamma.

OFT  —r(T—t) T

ovVIX; — VIX; ‘it

82FT _e—n(T—z).[l_e—n(T—z)] T (5.37)
AVIXZ — VIX? t

Based on the above formulas, we can move forward to calculate sensitivities of VIX future

with maturity 75 to another VIX future with shorter maturity 77.

BF;Q G Ft_;?
oF 1 FT
—82F1T2 — _e26(T2-T) . [eH(TQ—Tl) _ 1] . ' (5.38)
9] FTl ? FTI 2
( t ) ( t )

Proof:
Like the case in MRLRJ model, the characteristic function defined in eqn. (5.2) can also

be simplified as

w(T—t)

Ut s) = {VIX}™ " - Z(t;s)

where Z (t; s) is function of ¢ and it’s independent from VI X;. Thus VIX future pricing

formula eqn. (5.25) can also be denoted as

—r(T—t)

FF' =4 (InVIX;t;—i) = {VIX,}° 7 (t;—i)

Therefore, by using the same proof procedure as in last chapter we can easily derive the

hedging formulas (5.37) and (5.38). B

Theorem 5.6: (VIX Option Hedging)
Firstly, we calculate the sensitivities of VIX call option price to spot VIX. We are concerned

with the spot delta and spot gamma.

{ aCalll e~ (rtm)(T-t).pT I
= I

OVIXy VIX

92Call] e*(r+“§<T*t>-FtT w(T— w(T—
ovIX? . VIX? {[1—e@0] I — e @0 fy (In K)

(5.39)

Based on the above formulas, we can move forward to calculate sensitivities of VIX call

option price with maturity 75 to a VIX future with shorter maturity 7.

Ty T2
oCall,* _ efr(Tgft)efn(Tszﬂ B 11, (Tg)

or;! m (5.40)
2Ca ) To .
Z(iTllltf = e "(T2=t) g=2k(T2=T1) | (}2—1)2 . [(1 — e”(TQ_Tl)) 10 + f1 (In K)]
t t
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Proof:

This theorem can be proved with the exact procedure as in Theorem 4.6. B

5.5 Forward Variance Swap and Convexity

Finally, in this section I extend the 30-day forward variance swap pricing formula in MRLR

and MRLRJ models to MRLRSV model.

Theorem 5.7: (Forward Variance Swap Pricing)
Under the assumption of MRLRSYV process in Definition 5.1, the 30-day forward variance
swap FV ST = E2 [RVTT +30days} = E2[VIX?2] can be explicitly solved as

FVSE = o (InVIX,, Vi, t; —2i)
= (VIX ) exp {A (L —20) + B (t; —2i) - V)

= vIxy* " exp {21 e Vt} (5.41)
Furthermore, dynamics of forward variance under pricing measure QQ can be given by

dFVST = FVSF.2e7*T=0\/V,dW, + FV ST - B (t; —2i) 0,\/VidZ,

OFv St OFV ST
= -V IX i/ VidW, o/ VidZ, 5.42
VX, vV ViaWy + v, o a4y ( )

Proof:
Forward variance swap pricing formula (5.41) can be derived from the conditional charac-
teristic function of of In V' I X1 under pricing measure Q.

Using Ito’s lemma to eqn. (5.41) and dynamics of V' 1 X; in eqn. (5.29), we get

Qefn(Tft)_l

dFVST = exp {A + B Vt} L 2e " T IV IX,) dVIX,

—i—% exp {fl +B- Vt} -2 (T [9emr (T 1]
AVIX)* "V PVIX, - avIX,

LB exp {[1 v B v;} dv,

1 ~ —K —t ~ ~
3B IX T ep (A4 BV v av,
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+2me—“T—ﬂ1n1/LX;-{VJ)Q}*’“”‘”-exp{/i+aé-x4}dt
+(A;+Zz-w){V[Xg%ﬂ“L“«xp{ﬁﬁaé-m}dt

= 2000 FVST [[(Bn+ %) — kI VIX,] db + /VidW, |
e T [2e75T0 1] FV ST - V,dt
+BFV§%A&—W&+%J@m}

+%BZ-Fv5f-aﬁ4m
+FVST [Qne—"‘(T—t) InVIX, + (A; + B, - V;)] dt

::zaﬂfﬂ~Fw$X@m+%)ﬁ+ZWG§(A}+E~w)ﬁ
+B-FVSTk, (6, — V,)dt
+e*”‘ﬂ[mf“T4>—1]FV5?-L@#4—%BQ.Fvsf-aﬁ@ﬁ
+2e~"T= . PV ST\/VidW, + B - FV ST 0,\/VidZ,

= FVSr. {2e*”(T*t> (O + %) + ([1; + B, - Vt> + By (6, — Vt)} dt
+FVS]. {e_H(T_t) [26_“(T_t) — 1]V, + %B2 : 03\4} dt
+2¢ =D . YV ST\/VidW, + B - FV 8L o,\/VidZ,

= 2e TV . PV ST\ /VidW, + B - FV SF o,/ VidZ,

= 27T PV ST\ /V,dW, + B (t; —2i) - FV ST 0,\/V,dZ,

OFV ST OFV ST
= 2L VIX\/Vid Lo/

where the 5'h equality holds due to the fact that F'V ST is martingale under the pricing

measure (Q and the above equation concludes proof of eqn. (5.42). B

Below we derive the convexity adjustment for VIX future from 30-day forward variance

swap.

Theorem 5.8: (Convexity Adjustment for VIX Future)

Under the assumption of MRLRSYV process in Definition 5.1, convexity adjustment of VIX
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future from forward variance swap can be derived as

CAT = J% — exp {— EA (t; —20) — Al —i)}
- EB (t: —2i) — Bt —i)} -v;} (5.43)

Proof:
From the pricing formulas of VIX future in eqn. (5.25) and 30-day forward variance swap

in eqn. (5.41), the convexity adjustment can be derived as

FT
CAT = b
JFVST
vy exp {A (6 —i) + B (t;—i) - Vi}
(VIxX} ™ exp {LA(t; —2i) + LB (t; -2i) - V;}

= e {34020 - w0 - |15 20 - pe -] v}

with 1] <15 1
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6 MRLRSVJ Model

In this chapter, I combine MRLRJ and MRLRSV models together so that both upward
jump and positively correlated stochastic volatility present in dynamics of spot VIX. This

model is called mean-reverting logarithmic stochastic volatility jump model (MRLRSVJ).

6.1 MRLRSV]J dynamics and characteristic function

The dynamics of In V' I X; under MRLRSVJ model is defined as below.

Definition 6.1: (MRLRSVJ Dynamics)
Under martingale measure (Q, the mean-reverting logarithmic stochastic volatility process

is formulated as

{ dInVIX, = k (6, — W VIX,) dt + VV;dW,; + JdN, 6.1

dV; = ki, (0, — Vi) dt + 0,\/VidZ,

where x is mean-reverting speed, time-dependent function 6, is the long-term mean of
logarithm of spot VIX, /V; is vol-of-vol for spot VIX and V; is assumed to follow a
square-root process. IV, is Poisson process with jump intensity A and J is exponentially

distributed jump size with J ~ Exp(n) and n > 0.

Conditional characteristic function of In V' I X, under MRLRSVJ model can be derived as

below.

Theorem 6.1: (VIX Characteristic Function)
Under the assumption of MRLRSVJ process in Definition 6.1, characteristic function of
spot VIX logarithm In V' / X7 under martingale measure (Q conditioned on information at

time ¢ is given by

¥ (t;s) =exp {A(t;s) + B (t;s) Vi +ise " T InVIX,} (6.2)
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where functions A(¢; s) and B(t; s) are given by

A (t; S) =C (t; 5) +1s ftT e‘ﬁ(T—h)mghdh — % [1 _ e—fi(T—t)} x (t; S) o
B(t;s) = D (t;s) - 2o .

and functions C(¢; s) and D(¢; s) are defined in eqn. (5.4) and can be solved as in eqn. (5.5)

and (5.6). The function H (¢; s) comes from the jump term and can be given as

_ iep—K(T—t)
Ht:s) = 2 n (”—> 64)

K N — 1S
Proof:
In order to solve conditional characteristic function for X7 = InVIXy from (6.1), we

derive dynamics of e** X, by Ito’s lemma as
d (e”tXt) = e“t/ié’tdt + eﬁt \V4 Wth + entJdNt
Therefore, X can be represented by
T T
Xr = e I0X, + / e "My dh + / e "I\ Vid Wy,
t t
T
+ / e " Th) TN, (6.5)
t
Put the above equation (6.5) into ¢ (¢; s) = E [exp {isXr}], we get

T
Y (t;s) = exp { [e_”(T_t)Xt —I—/ e_“(T_h)/thdh] is}
t

T
EftQ [exp {zs/ e”(Th)\/VdehH

t

T
B2 [exp {is / e‘“(T_h)JthH (6.6)
t

The first conditional expectation in the above equation is denoted €2 (¢; s) as in Theorem
5.1 of last chapter and it has been solved explicitly in that theorem. The second conditional

expectation in the above equation can be denoted as

T
T (t;5) = B2 [exp {zs/ e”(Th)JthH
¢

and Poisson jump times in the interval (¢, 7| are denoted as {7} }>1 . Then T (¢; s) can be

Np—N;
exp{ Z ise“(TT’“)Jk}]
k=1

simplified as

T (t;s) = B2
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Np—Ny

= EP H E;@ [exp {ise"’“(T_T’“)JkH.F%V}]
L k=1
Np—Ny 0

_ Q

= Et ;!:[ |:77_7;86—H(T—Tk):|]

f: e MT— t)()\(T

n=0

H|: —ise KT Tk):|

Ny — N, = n] (6.7)

where F¥ stands for all information of Poisson process N up to time 7. The second equal-
ity utilizes the independence between jump size random variables J and Poisson process
N, and the third equality holds due to E? [exp {aJ}] = - for exponential variable J.
Because jump times {7}, }}_; of homogeneous Poisson process N is uniformly distributed

over (t,T) conditioned on realization of jump number Ny — N; = n, we have

EP[ 1

n — ise "(T=Tk)

I=r=rrs
= ‘ ds
. n—ise"TersT —t
1 n—1s
= 1- 1 6.8
k(T —t) " <n — ise—”(T—t)) 6.8)
Plug the above (6.8) into (6.7), and simple calculation leads to

T(ts) = ie_A(T_t)(A(T_t))n{l—K(Tl m(n n_ts )r

n! —t) — ise—r(T-1)
-2

B n—1s
= (—?7 — ise—“(T—t)> (6.9)

Put the above equation back into eqn. (6.6) we conclude proof of formula (6.3). B

NT—Nt:TL:|

n=1

6.2 VIX Future and VIX Option Pricing

Based on the conditional characteristic function of spot VIX under martingale measure Q

as in eqn. (6.2), we can derive the pricing formulas for VIX future and VIX option.

Theorem 6.2: (VIX Future Pricing)
Under the assumption of MRLRSVJ process in Definition 6.1, VIX future F' can be ex-
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plicitly solved as

(T—

FF = (t—i) = {VIX})" " " exp{A(t;—) + B(t;—i)- Vi) (6.10)

where functions A(t; s) and B(t; s) are defined as eqn. (6.3).

Furthermore, dynamics of VIX future under pricing measure (Q can be given by

dFtT — ET . |:€—H(T—t) \/thWt —+ B (t7 —Z) Oy \/vtdZt:|

—r(T—t) e—H(T=1)
T { [e’e - 1} CdN; — —))\dt}

n— e—r(T—t
OFF OFT
= VIX\/Vid L. dZ,
VIX, 4 t\/vt Wi+ v, O-’U\/Vt t
+{AFTdN, — AE? [AF]] dt} (6.11)

Proof:

Given the same form of conditional characteristic function of eqn. (6.10) as eqn. (5.25) of
MRLRSV model, proof of the VIX future pricing formula (6.10) is exactly the same of
Theorem 5.2.

In order to derive the risk-neutral dynamics of VIX future, we first derive dynamics of

V' I X, under the pricing measure.

dV[Xt _ deanIXt
1
= MVIXe I VIXS + 5elnwx’fdln VIX;dlnVIX]

4 [eanIXt,—l—J . eanIXt,} dNt

VIX,

= VIX, [m (0, — I VIX,)dt + \/thwt} + Vidt + VIX,_ [¢! —1] dN,

= VIX, [(0k+ %) — kInVIX,] dt + VIX,\/V,dW, + VIX, [e! — 1] dN,

Consequently, we get

dVIX
VIXt,t = [(0ir + %) — kI VIX,] dt + \/VidW; + [¢/ — 1] AN, 6.12)

Using Ito’s lemma to eqn. (6.10) and result in the above equation, we get

—k(T—t) _q

dFT = exp{A+B-V;} e T LVIX,}° dVIX¢
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1
—|—§ exp{A+B-V;}- e—H(T—t) [e—n(T—t) _ 1}

e—r(T

2QVIXe - dVIXE

—k(T—t)

{VIX,)

+B-{VIX,}* -exp{A+ B-V,}dV,

1 —k(T—t
+5 B {VIX) o

+re "I D IVIX, - {VIX,}

-exp{A+ B-V,}dV,-dV,

—r(T—t)

cexp{A+ B-V,}dt

e—r(T—t

+(A;+B;-vt) VIx) " exp{A+ B-V,) dt
+ [Ff (InVIX,_ +J)— F (InVIX, )| dN;

— e H(T-t) FtT [[(Qt/{ + %) — kln V[Xt} dt + \/thWt]

1

+§e—n(T—t) [e—ﬁ(T—t) . 1] _thT . V;Ldt

+B-FT [m 0, — V,) dt + o, \/thzt]
1

+§BQ - Fl'. o?Vidt

+FT [Ke—*ﬂ—t) nVIX, + (A; + B, v;)] dt
" [6(]67&@4) _ 1} 'thidNt

= TN FT (G + %) dt + FT (A; + B, vt> dt + B - FTr, (0, — V;) dt

1 1

—|—§e’“(T’t) [e"T=D —1] FF - Vdt + 532 -FT'. o2V,dt
. e—H(T—t)

—F, —77 e oy Adt

4o T BT S AW, + B - Floy/VidZ,

Fr {0 4]y, -
oy € — t—m t

— (T FtT /VidW, + B - FtTa'v\/thZt

- Tt - —k(T—1)
+FtT_{ e’ 1| LdN, — 6—)/\dt}

n— e—r(T—t

_ O -VIX\/VdWJrﬁ VVidZ,
= IVIX, t t t av, Oy ta Ly

+{AFdN, — \E? [AF]] at}

which concludes proof of eqn. (6.11). B

Theorem 6.3: (VIX Option Pricing)
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Under the assumption of MRLRSVJ process in Definition 6.1, VIX call option Calll (K)

can be explicitly solved as

T
Calll (K) = exp {—/ rsds} . [FtT I - K- Hg} (6.13)
t

where II; and II, are two tail probabilities

= o § [ Re { S5 s, =12 (6.14)
Yo (ts) = B0y (15) = 4 (1 9) |
Furthermore, VIX put option Put] (K) can be explicitly solved as
T
Put! (K) = exp {—/ rsds} K- (1-1L) — F - (1—1L)] (6.15)
t

Proof:

Proof of this theorem is same as theorem 6.3. B

6.3 VIX Future and VIX Option Calibration

Theorem 6.4: (Calibration)

For the MRLRSVJ model in Definition 6.1, VIX option is priced using a Stochastic Volatil-
ity with jump underlying F}’ with time-dependent parameters. The stochastic volatility and
jump parameters are calibrated to VIX implied volatility surface.

With calibration result of parameters of V; and /V; from market quotes of VIX implied

volatility skew, we can move forward to calibrate VIX future term structure.

1dff 1 [dC 1 |dB

T 0

= 2o 2| — | == 4+ kB -

b 0+/<;dT ra[dT—i_HC] /<L|:dT+H } Yo
1 pk,0 1 — e T
LLpmby A T—Aln(—" ‘ ) (6.16)
K Oy kKN —e "k n—1

where fI = 1In F{ is the initial VIX future term structure, C' and D are defined as

C' =C(0;—1)

D = D (0; —i)

dC __

& _ TUQUD (=) |
ﬁ:§‘712;D2_’%D_ p o e—nT+§(1_p2)e—25T
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Proof: According to eqn. (6.10), the initial VIX future term structure Fy is given by
FI = {VIX} ™" -exp{A+ BV}

where

kT

{ A= A0;=i) = C + ) Gpe=T=90dp — 28 [1 — e=7] 4 A (157

B=B(0;—i)=D -2

Ov

Thus

f& = e mVIXg+A+B-V,

= ¢ . nVIXy+ B-Vj
T kT
+ {C n / fpeT=0) gp, — Lo [1— ] + A (&) }
0 OpkK K n—1

Take derivative w.r.t. 7" on both sides of the above equation, we get

dfy . dA dB

Yo e T VX, + = 2

gr ~ e mVIXed ot o o
= —ke T .InVIXy+ B-V,

w0y A
e—HT PR 4

d T
+ |:—C -+ :‘iQT — l€2/ Qhe_H(T_g)dh —
0

dT Oy n_e—nT
dC dB Pry0 by
—rT _&T w0
= e ‘hlV]XO—}_d_T—f—d_T.VO_e Oy +77_€*NT
T
—K |:l€/ Qhe_“(T_g)dh]
0
dC dB Pry0 by
= gbr— ke T InVIX o AP kT P%
W —we - VEX o+ g Vo e o T
_ ,—KkT
—r [f()T—e‘”T-anIXO—C+ Prios 1) _ 1) _ Ay (u) _B,VO}
Oyk K 7’]—1
_ dc dB pFo0y r
= 59T+{d—T+%C]+{d—T+/{B}-%— - — kK fo
A n_e—HT
—— 4+ AIn | ———
+n—e—“T+ n< - )

Rearrange the above equation, we get the result in eqn. (6.16). B
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6.4 VIX Future and VIX Option Hedging

In this section, I calculate sensitivities of VIX futures and VIX options with respect to spot
VIX and further develop hedging strategies for VIX futures and VIX options with other

VIX future contracts as hedging instruments.

Theorem 6.5: (VIX Future Hedging)
Firstly, we calculate the sensitivities of VIX future price to spot VIX. We are concerned

with the spot delta and spot gamma.

OFF  ¢—n(T-1) CFT

ovVIXy —  VIX, t 6.17
82FtT . _eiH(T*t).[l—ef’Q(T*t)] ) FT ( . )
oVIXE — VIX? t

Based on the above formulas, we can move forward to calculate sensitivities of VIX future

with maturity 75 to another VIX future with shorter maturity 77.

T T~
oF 2 _ e—r(T2—T1) , F?

8F;T1 - FTI
D amey). [ex(Te-Ti) 1] . L2 (6.18)
o(r)’ (F1)’

Proof:

Proof of this theorem is same as theorem 4.5. B

Theorem 6.6: (VIX Option Hedging)
Firstly, we calculate the sensitivities of VIX call option price to spot VIX. We are concerned

with the spot delta and spot gamma.

{ oCalll e~ rtm)(T—t). T II
il

ovIxX,

VIX
8%Calll e’(r+"§(T’t>-FtT —k(T— —r(T—
ovVIXZ —  VIX? {[1—eT] I — e fi (InK)

(6.19)

Based on the above formulas, we can move forward to calculate sensitivities of VIX call
option price with maturity 75 to a VIX future with shorter maturity 7.

. T 5
dcalth _ e_r(TQ_t)e—,‘{(TQ—Tl) . Ft 2 . H1<T2)

0 tTlT tTl T (6 20)
2 0l T2 _ N _ T2 _ .
Z(CTlllt)z — ¢ r(Ts t)e 26(Ta—T1) <7t“—1>2 . [(1 en(Tg Tl)) . ||1 + 7[1 (ID K )]

Proof:

This theorem can be proved with the exact procedure as in Theorem 4.6. B
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6.5 Forward Variance Swap and Convexity

Finally, in this section I extend the 30-day forward variance swap pricing formula in MRLR

and MRLRJ models to MRLRSVJ model.

Theorem 6.7: (Forward Variance Swap Pricing)
Under the assumption of MRLRSVJ process in Definition 6.1, the 30-day forward variance
swap FV ST = E° [RVTT *30“@3} — E2[V1X2] can be explicitly solved as
FVSI = ¢ (InVIX,, Vi, t;—2i)
= {VIXY* " exp {A(t;—2i) + B (t; —2i) - V;}

= vIxy* " exp {!1 v B v;} 6.21)
Furthermore, dynamics of forward variance under pricing measure (Q can be given by

dFVSI = FVST.2e *T=9/V,dW, + FVS! . B (t; —2i) 0,\/V;dZ,

pvst L[ ) gy - 2
+ t— |:6 - :| . t /)7 _ 267I§(T7t)

OFV ST OFV ST
_ VIX A/ VAW, o/ VidZ
VX, eV AW g eV i

+{AFVSFAN, — B [AFVSE] Adt} (6.22)

Proof:

This theorem can be proved with the same procedure as Theorem 5.7 and Theorem 6.2. B

Below we derive the convexity adjustment for VIX future from 30-day forward variance

swap.

Theorem 6.8: (Convexity Adjustment for VIX Future)
Under the assumption of MRLRSV]J process in Definition 6.1, convexity adjustment of

VIX future from forward variance swap can be derived as
F;tT

JEFVST

CAT = - {_ BA (t; —20) — Alt; —i)]
_ EB (£ —2i) — B (¢: —i)} . m} 6.23)
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Proof:

This theorem can be proved with the exact procedure as in Theorem 5.8. l
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7 Numerical Analysis

This chapter performs several calibrations and comparative studies of the four models p-
resented in this thesis. I use VIX option data in a single day for analysis. Calibration is
conducted for each maturity across all strikes starting from at the money to deep in the

money and deep out of the money unless the bid or ask price is unavailable.

7.1 Market Data and Data Processing

VIX option prices used in this thesis are the delayed market quotes downloaded from
CBOE website www.cboe.com on September 26, 2011 at time 10:01 ET. The underly-
ing VIX quote is 42.3 when I downloaded the option data. There are 6 maturities available
in the market at this time, and they are October 18, 2011, November 15, 2011, December
20, 2011, January 17, 2012, February 14, 2012 and March 20, 2012.

Table 7.1 reports some key features of the option data, as well as the data processing pro-
cedure. For each maturity, there are 33 or 35 call option quotes in the market, with strikes
ranging from 10 to 100 for all maturities. For those deep out-of-the-money call options, bid
price may be zero, thus I preclude those options from the sample. The number of options
with positive bid quotes are then reported for each maturity in Table 7.1. Another criteria |
consider when choosing the option sample is open interest (OI), which represents the num-
ber of all option contracts that have not been settled. The quotes with zero open interest
are kicked out from the positive bid sample. From Table 7.1, we can see that the first four
maturities have non-trivial number of open interest for each positive bid quote. When the
time to maturity exceeds the fourth month, some quotes have no open interest exist, espe-
cially for those deep in the money or out of the money options. Average Ol among those
quotes with non-zero open interest are also reported in Table 7.1. The numbers in Table 7.1
show that average open interest declines as the time to maturity grows. In order to make the

sample more liquid and reliable, the last two maturities are not included because some of
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Table 7.1 Calibration data description

Maturities 18-Oct-11  15-Nov-11 20-Dec-11 17-Jan-12 14-Feb-12 20-Mar-12

All Quotes 33 33 33 35 35 35

Positive Bid Quotes 30 31 32 35 35 33
Positive OI Quotes 30 31 32 35 28 11
Average OI (35805) (19474) (15273) (2695) 914) (167)
Effective Quotes 30 31 32 35 0 0

Note. The table only presents call option data. The number in table without brackets are number of option
quotes, while the fourth line with brackets are the numbers of average open interest (OI) for those options
that has positive OI. *All Quotes’ represents the number of all available quotes from CBOE website, while
"Positive Bid Quotes’ is the number of all quotes with non-zero bid price. ’Positive OI Quotes’ is further
refinement of the ’Positive Bid Quotes’ by kicking out those with zero open interest. *Effective Quotes’ is
the number of option quotes that has been chosen into sample for our calibration for each maturity. The zero
effective quotes for maturities 14-Feb-2012 and 20-Mar-2012 mean that those maturities are not taken into

sample.

the positive bid quotes have no open interest and the average open interest is much smaller

than the short and medium maturities.

7.2 Loss Function

In the calibration, model parameters are backed out by minimizing a loss function that
measures the sum of pricing errors between model prices and mid prices of bid and ask
quotes. A quite often used loss function is the mean square error (MSE) function, which is
defined as the sum of squares of difference between model prices and market prices. For

N;
each fixed maturity 7;, suppose there are /N; market prices {C’YM ’}Q’J’?et} across the strikes
3 ] — 1

N;
{K; }jv_l and the corresponding market prices are computed as {C’%/[ ‘}?fl} . Then the
= i le

loss function MSE is given by
N; )
Loss™SE = 3~ (Cifte — cilseer) (7.1)
j=1

Calibrating with MSE as loss function is equivalent to directly fitting model prices to mar-

ket prices. As indicated in Rebonato!?’!, this method tends to overweight in the money

75



RN o U e A0

call options and underweight out of the money call options. A possible rescue proposed
in Rebonato!?¥ is to fit model implied volatilities to market volatilities, which is actually
widely used by many practitioners and scholars. Although calculation of implied volatility
needs Newton’s iteration, this cost is negligible because only few iterations are needed for
each implied volatility. However, calculation of VIX implied volatility itself is an unset-
tled problem and for some deep in-of-money VIX call options the implied volatilities are
not available. Different data sources such as iVolatility.com and International Securities
Exchange (ISE) often calculate VIX implied volatilities significantly different. I try to use
Whaley formula from Whaley!?®!, which is a Black-Scholes formula for VIX option, to
inverse VIX option prices to VIX implied volatilities, and I find that not all option prices
can be converted to implied volatilities. This situation is often encountered for in the mon-
ey call options. Therefore, calibration using implied volatilities as loss function is not so
stable and sometimes not feasible. An alternative improvement of the MSE method as in-
dicated in Rebonato®* is to fit log model prices to log market prices, which is equivalent
to defining the following loss function MLSE,
Ni 2
LossMLSE — Z (log C%??fl — log C%%’f”) (7.2)
j=1

Although MLSE significantly increases the weight of deep out of the money call options,
in the money call options become underweighted under this measure. This is because [TM
call prices are far greater than OTM call prices, and the log function is almost insensitive to
small change of VIX option prices. This will inevitably cause considerable absolute error
that is greater than bid-ask spread for in the money calls. In order to balance the weights,
I suggest combine MSE and MLSE together to construct a new loss function MMLSE as

follows
Ni 2 i 2
MMLSE __ Model Market M odel Market
Loss = E (CTi,Kj — Ok, ) +o- E (log Crx, —logCr ik, ) (7.3)
Jj=1 j=1

where « is a pre-given weighting factor that balances the contributions of MSE and MLSE

in MMLSE. In our experience, & = 8 is suitable to ensure good fitting quality.

76



Numerical Analysis

7.3 Calibration Results

In this chapter, we calibrate all parameters to VIX option prices, including the long-term
mean 6. By using this calibration strategy, we suppose the underlying of VIX option is spot
VIX and input the current spot VIX in VIX option pricing formula. For each maturity, we
calibrate all parameters to VIX implied volatility skew at that maturity. In this section, we
discuss the calibration results in terms of fitting error, positive implied volatility skew and

term structure of parameters.

Table 7.2  Fitting quality: Percentage Error (PE)

18-Oct-11  15-Nov-11 20-Dec-11 17-Jan-12

MRLR 6.91% 4.66% 6.61% 5.73%
MRLRJ 3.25% 3.81% 5.21% 3.11%
MRLRSV 3.18% 3.68% 5.07% 2.98%
MRLRSV]J 3.18% 3.68% 5.07% 2.99%

Table 7.3  Fitting quality: Mean Absolute Error (MAE)

18-Oct-11  15-Nov-11 20-Dec-11 17-Jan-12

MRLR 0.4334 0.3287 0.3566 0.3569
MRLRJ 0.1162 0.1843 0.2097 0.1322
MRLRSV 0.1214 0.1752 0.1995 0.1286

MRLRSV] 0.1217 0.1753 0.1999 0.1294

7.3.1 Fitting Quality

The fitting quality is measured by average error of model prices from market middle quotes
over all maturities and strikes in sample. Two types of pricing error measures are used in

this thesis, percentage error (PE) and mean absolute error (MAE). The percentage error is

defined as
Nt Nk Model i MEkt i
_ 1 C (T3, K}) — CM¥ (T3, K |
PE = Ny N ; ; O Mkt (Tz‘7 K]’) (7.4)
and mean absolute error is defined as
1 Nr Ng
MAE = CMedel (T, K8 — CMM (T, K 7.5
Noe 2 2|1 C77 (T £6) (7., K5) 7.5)
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Figure 7.1 Fitting quality of VIX models to VIX option quotes

where {Tl}i\fl are all liquid maturities. In this chapter, they represent October 18, 2011,
November 15, 2011, December 20, 2011 and January 17, 2012. For each maturity 7;, there
are market quotes at strikes {KJZ };V:Kl CMFKt(T;, K;) is the middle quote of VIX option and
CModel (T, ;) is VIX option price given by one of the four VIX models.

Table 7.2 and Table 7.3 report the fitting quality of the four models for each liquid maturity
in terms of PE and MAE. Several observations from the two tables are in order. Firstly,
we note that MRLR has largest fitting error. This is understandable because MRLR model
implies a log-normal distribution for both spot VIX and VIX future and the Black-Scholes
pricing formula for VIX option is unable to produce the positive implied volatiliy skew

observed in VIX option market.

78



Numerical Analysis

Secondly, the three models MRLRJ, MRLRSV and MRLRSV]J including jumps and/or
stochastic volatility significantly improve the fitting quality. In terms of PE as shown in
Table 7.2, MRLRSV and MRLRSVJ model perform equally well with each other. This
concludes that adding SV to MRLR is sufficient and additionally adding jump to the model
is unnecessary. This observation is very important because the MRLRSVJ model is more
complicated and has more parameters than both MRLRJ and MRLRSV models. In order
to get same order of accuracy, the simpler models MRLRJ and MRLRSYV are sufficient.
Thirdly, the other observation from Table 7.3 is worth mentioning. For the shortest maturi-
ty October 18, 2011, MRLR]J has smaller MAE than the two stochastic volatility models.
This is consistent from observation in equity option market. The reason of why jump model
serves better than stochastic volatility model in short-term maturity is that the possible sud-
den downward jump is able to create more significant terminal correlation than stochastic
volatility model, where the terminal correlation is achieved by accumulating instantaneous
correlation between spot VIX and instantaneous variance.

Figure 7.1 is plot of calibration results in terms of VIX call option prices. The plot shows
that MRLR model has largest fitting error and for most of the strikes the model prices
lie outside the band of bid-ask quotes in VIX option market. For MRLRJ, MRLRSV and
MRLRSVIJ models, most model prices lie in the bid-ask band of quotes.

7.3.2 Positive Skew

In this subsection, I investigate the ability of the four models in generating implied volatil-
ity skews for VIX options. One important thing we have to notice is that the implied
volatility inverted from VIX option price depends on what formula we use in the inver-
sion. Unlike the situation in equity option market, where the underlying asset is a tradable
asset with interest rate as drift and Black-Scholes formula can serve as formula to invert
implied volatility, the underlying spot VIX of VIX option is not a tradable asset and using
Black-Scholes formula with spot VIX as underlying is not appropriate.

Recall the simple Black-Scholes formula (2.21) for VIX option with spot VIX as underly-
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Figure 7.2 VIX implied volatility skew with spot VIX as underlying.
ing in Whaley1993. In this model, the spot VIX is assumed to follow
dVIX,
———— =rdt + odW, (7.6)
VIX,
and the Black-Scholes pricing formula for VIX option is given by
Call] = eV [FL - N (d) — K - N (dy)] (7.7)
with
FI' =VIXerT=b (7.8)
and
Fr'  o’T
dLQ = |:111 ft + T ovVT (79)
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Figure 7.3  VIX implied volatility skew with VIX future as underlying.

The problem with this model is that it treats underlying spot VIX as tradable asset and
suppose it has interest rate as drift under pricing martingale measure. A direct consequence
of assumption of this model is the problematic pricing formula for VIX future as shown in
eqn. (7.8) because there is no cost-of-carry relationship between spot VIX and VIX future.
A more appropriate pricing formula to invert VIX implied volatility from VIX option price
is to treat VIX option with VIX future as underlying. The advantage of this model is that
VIX future is tradable asset and at the option’s maturity VIX future converges to spot VIX.
Therefore, we assume the below geometric Brownian motion for VIX future FtT under
pricing measure Q

dFT
L — gdW, (7.10)

81



RN o U e A0

and the Black pricing formula for VIX option is given by
Call] =TV [F N (d) — K- N (dy)] (7.11)

where F! is market price of VIX future and is input to the pricing formula and

FT  o2T
dyo = {m -+ UT} /aﬁ (7.12)

In this thesis, I use the above two pricing formulas to invert VIX option market quotes to
VIX implied volatility.

Figure 7.2 plots the implied volatility skew from formula (7.7) for the four liquid maturities.
This figure confirms and amplifies the fitting results in Figure 7.1 that most of MRLR im-
plied volatilities lie outside the bid-ask band and most MRLRJ, MRLRSV and MRLRSVJ
implied volatilities lie within the bid-ask band. Furthermore, the three skew models have
similar fitting quality in terms of implied volatility.

One prominent observation from this figure is that all four models create positive implied
volatility skews. However, this is just illusion because there is problematic assumption in
this model as discussed above. The input of current underlying in this formula is spot VIX
and the resulted VIX future is obtained by the problematic formula (7.8). Therefore, this
formula maybe a good candidate in inverting VIX option to a volatility quantity to check
fitting quality but not a good formula to investigate the real implied volatility skew.

Figure 7.3 plots the implied volatility skew from formula (7.11) for the four liquid maturi-
ties. In this formula, the input of current underlying is current price of VIX future and thus
we get around the problem of formula (7.7).

One clear observation in Figure 7.3 is that the implied volatility skew under MRLR model
is almost flat and is unable to generate skew for VIX option. Another observation is that
MRLRJ, MRLRSV and MRLRSVJ models have almost the same fitting quality and they
all serves well in generating positive implied volatility skew.

Based on the above analysis, I conclude that mean-reverting logarithmic models with just

jump or stochastic volatility is sufficient in generating positive implied volatility skew.
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Table 7.4 Calibrated parameters for each maturity under MRLR model.

18-Oct-11 15-Nov-11 20-Dec-11 17-Jan-12

K 11.05 11.43 9.88 12.58
0 3.38 3.39 3.29 3.34
o 1.97 2.07 2.18 2.48

Table 7.5 Calibrated parameters for each maturity under MRLRJ model.

18-Oct-11 15-Nov-11 20-Dec-11 17-Jan-12

K 29.84 28.78 29.55 21.86
0 3.00 3.00 3.00 3.00
o 1.46 2.44 297 2.31
A 169.45 138.89 84.76 59.53
n 9.94 10.09 7.74 6.71

Combining jump and stochastic volatility together in one model adds no value in fitting

quality and generating positive skew but with the cost of more parameters to calibrate.

7.3.3 Calibrated Parameters

In this subsection, I present the reports on calibrated parameters for the four models at four
liquid maturities. Table 7.4~7.7 display all calibrated parameters. In order to better un-
derstand the calibration results, we recall the meaning of parameters in all mean-reverting
logarithmic models.

d is the long-term mean of In V I X;. Thus ¢’ can be interpreted as long-term mean of V I X;.
At the time of calibration, the current spot VIX is at the level of 42.3. For the four mod-
els, long-term mean of V' I.X; implied from 6 ranges from 20 to 30. This understandable
because at the time of calibration, 25 September 2011, VIX future curve was in backwar-
dation thus market consensus expect VIX to fall in the future. Actually, ever since spot
VIX fell below 30 on 1 December 2011, spot VIX stayed in the interval [20, 30] in period 1
December 2011 to 19 January 2012, which is the period that VIX option’s maturities cover.
In contrast, 6, is the long-term mean of instantaneous variance V; in MRLRSV and M-
RLRSVJ models. The calibrated parameters show that 6, stay around 100%. This is consis-

tent with the calculated market implied volatility-of-volatility in Figure 7.3. Furthermore,
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Table 7.6 Calibrated parameters for each maturity under MRLRSV model.

18-Oct-11 15-Nov-11 20-Dec-11 17-Jan-12

K 4.27 5.10 3.48 3.53
0 3.14 3.25 3.11 3.26
p 1.00 1.00 1.00 1.00
Ky 1.68 1.89 1.67 1.56
0y 1.11 1.12 1.08 1.03
Oy 1.98 0.71 0.57 0.65
o 1.81 2.00 1.63 1.37

Table 7.7 Calibrated parameters for each maturity under MRLRSVJ model.

18-Oct-11  15-Nov-11 20-Dec-11 17-Jan-12

K 5.93 4.99 3.81 4.11
0 3.21 3.15 3.03 3.19
p 1.00 1.00 1.00 1.00
Ko 1.72 1.77 1.73 1.77
0, 1.11 1.14 1.07 1.06
o 2.05 0.71 0.58 0.69
o 1.99 1.95 1.74 1.59
A 30.43 31.94 30.53 29.92
n 69.58 68.05 69.43 69.88

Vp as initial value of V; is much larger than than the calibrated 6,. This is also in line with
the backwardation observed in VIX future market on the calibration date.

r 1s mean-reverting speed of spot VIX and , is mean-reverting speed of var-of-vol V.
Table 7.4~7.7 show that mean-reverting speed in spot VIX is much larger than in V;.

In addition to the table reports, below I plot term structures of parameters in the four models
as show in Figure 7.4~7.13.

From Figure 7.4 to Figure 7.13, we notice that parameters ~ and 6 of mean-reversion of
VI X, and parameters A\ and 7 of jump in V' I X, are rather stable over all maturities. In con-
trast, parameters for stochastic volatility are not so stable and some parameters show clear
term structure. For example, 6, has clear downward term structure and this phenomenon is

in line with the fact of backwardation observed in VIX future market.

84



Numerical Analysis

Calibrated term structure of parameter K

351

251

15

10

g MRLR
MRLRJ

— — —MRLRSV

—&— MRLRSV]

18-Oct-2011

15-Nov-2011 20-Dec-2011
Maturities

Figure 7.4 Parameter term structure

Calibrated term structure of parameter 6

17-Jan-2012

3.45}

3.05
3
2951

MRLR
MRLRJ
4 | — — —MRLRSV
—&— MRLRSV]

18-Oct-2011

15-Nov-2011 20-Dec-2011
Maturities

Figure 7.5 Parameter term structure

17-Jan-2012

85



HRIPNE S L2 e VR3S

86

0.9985

0.9975

Calibrated term structure of parameter o

3t
2.8f
26[
2.4

© 22
2
18

16f

1.4

12

18-Oct-2011

15-Nov-2011

Figure 7.6 Parameter term structure

Calibrated term structure of parameter p

Maturities

20-Dec-2011

17-Jan-2012

MRLR
MRLRJ

0.999

0.998

0.997

18-Oct-2011

15-Nov-2011

Figure 7.7 Parameter term structure

Maturities

20-Dec-2011

17-Jan-2012

MRLRSV
MRLRSVJ




Numerical Analysis

Calibrated term structure of parameter K,

1.95¢
191

1.851

1.751
1.7 s .
1.65¢
161

155

151

g MRLRSV
MRLRSVJ

18-Oct-2011

15-Nov-2011 20-Dec-2011
Maturities

Figure 7.8 Parameter term structure

Calibrated term structure of parameter Ov

17-Jan-2012

116

1.14¢

1i2f

1.1

1.08

1.06

1.04

1.02

MRLRSV
MRLRSVJ

18-Oct-2011

15-Nov-2011 20-Dec-2011
Maturities

Figure 7.9 Parameter term structure

17-Jan-2012

87



HRIPNE S L2 e VR3S

Calibrated term structure of parameter g,

MRLRSV
MRLRSVJ

18-0Oct-2011 15-Nov-2011 20-Dec-2011 17-Jan-2012
Maturities

Figure 7.10 Parameter term structure

Calibrated term structure of parameter VO

MRLRSV
2.1 MRLRSVJ

1.9

1.8

o 1.7

1.6

15

1.4

13 b

18-0Oct-2011 15-Nov-2011 20-Dec-2011 17-Jan-2012
Maturities

Figure 7.11 Parameter term structure

88



Numerical Analysis

200

180

160

140

120

~< 100

80

60

40

20

0

Calibrated term structure of parameter A

MRLRJ
MRLRSVJ

18-0Oct-2011 15-Nov-2011 20-Dec-2011 17-Jan-2012

80

70

60

50

40

30

20

10

Maturities

Figure 7.12  Parameter term structure

Calibrated term structure of parameter n

MRLRJ
MRLRSVJ

18-Oct-2011 15-Nov-2011 20-Dec-2011 17-Jan-2012

Maturities

Figure 7.13  Parameter term structure

89



RN o U e A0

8 Conclusion

This thesis focuses on mathematical modeling of spot VIX with standalone approach. Un-
like the consistent modeling approach, which starts with specifying joint dynamics for SPX
index and its instantaneous stochastic volatility then derives expression for spot VIX and
price VIX derivatives based on this expression, standalone approach starts with directly
specifying dynamics for spot VIX and price VIX derivatives in this simpler framework.
Given the good fitting quality of mean-reverting logarithmic VIX model both under phys-
ical measure and martingale measure in literature, this thesis present the basic mean-
reverting logarithmic model and it’s three extensions. The basic MRLR model is unable
to generate implied volatility skew for VIX option. Therefore, we extend MRLR model by
adding Poisson jump and stochastic volatility to VIX dynamics. In order to match the pos-
itive skew observed in VIX option market, we let the jump to be upward and the stochastic
volatility to be positively correlated with spot VIX.

What separates my analysis from that in literature is that I not only focus on deriving
static pricing formula for VIX future and VIX option, but also on dynamics of VIX future,
convexity adjustment of VIX future from forward variance swap and hedging ratios of VIX
future and VIX option with short-term VIX future as hedging instruments.

The analysis in chapter 3~6 shows impact of spot VIX features such mean-reversion, jump,
stochastic volatility on VIX future pricing and its dynamics. Presence of mean-reversion
makes spot VIX less possibly to deviate from its long-term mean and thus decrease the
volatility of VIX future. By making the long-term mean of mean-reverting VIX dynamics
be time-dependent function, we are able to fit initial VIX future curve by construction.
Although spot VIX displays mean-reversion in its dynamics, the impact of mean-reversion
presents in VIX future pricing formula and does not present in drift of VIX future dynamics
because VIX future is martingale under the pricing measure.

By deriving dynamics of VIX future under the four models, I show that VIX future follows
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geometric Brownian motion under MRLR model, jump-diffusion dynamics under MRLRJ
model, stochastic volatility dynamics under MRLRSV model and stochastic volatility with
jump dynamics under MRLRSVJ model.

The calibration results in chapter 7 show that MRLR model is unable to generate positive
implied volatility skew for VIX option. In contrast, by adding jump and stochastic volatility
model to MRLR, the MRLRJ, MRLRSV and MRLRSVJ models are able to fit the posi-
tive skew. Moreover, the results show that MRLRJ and MRLRSV perform equally well in
fitting positive skew and adding jump into MRLRSV adds no value in fitting quality but
could potentially incur the cost of estimating more parameters.

In further work, we could compare the four mean-reverting logarithmic models with consis-
tent VIX approach in calibration and hedging efficiency from a practitioner’s view. More-
over, by using the connection between VIX future and forward variance swap as well as
the liquid market of variance swap, we could test the calibration strategy making use of
information from variance swap market. Calibrating model to VIX option market and for-
ward variance swap market can both back out the vol-of-vol of VIX. Thus the test of the

two calibration strategies are also necessary.
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