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Krzysztof PIASECKI
*
 

 

EFFECTIVENESS OF SECURITIES WITH FUZZY PROBABILISTIC RETURN 

   

 The generalized fuzzy present value of a security is defined here as fuzzy valued 

utility of cash flow.  The generalized fuzzy present value cannot depend on the value of future 

cash flow. There exists such a generalized fuzzy present value which is not a fuzzy present 

value in the sense given by Ward [35] or by Huang [14]. If the present value is a fuzzy 

number and the future value is a random variable, then the return rate is given as a 

probabilistic fuzzy subset on the real line. This kind of return rate is called a fuzzy 

probabilistic return. The main goal of this paper is to derive the family of effective securities 

with fuzzy probabilistic return. Achieving this goal requires the study of the basic parameters 

characterizing fuzzy probabilistic return. Therefore, fuzzy expected value and variance are 

determined for this case of return.  These results are a starting point for constructing a three-

dimensional image. The set of effective securities is introduced as the Pareto optimal set 

determined by the maximization of the expected return rate and minimization of the variance. 

Finally, the set of effective securities is distinguished as a fuzzy set. These results are obtained 

without the assumption that the distribution of future values is Gaussian.  

 

Keywords: behavioural present value, fuzzy present value, random future value, fuzzy 

probabilistic return, effective financial security.  

 

Introduction 

 

 Typically, an analysis of the properties of any security is conducted as an analysis of 

the properties of the return rate. Any return rate is an increasing function of the future value 

(FV) and a decreasing function of the present value (PV).  

 Using the classical approach from finance, PV is defined as a discounted cash flow. 

This cash flow may be a present or future one. Ward [35] defines a fuzzy PV as a discounted 

fuzzy cash flow. The fuzzy cash flow used here is interpreted as an imprecise forecast of 

future crisp cash flow. Ward’s definition is generalized to the case of a fuzzy duration by 

Greenhut et al. [11].  Sheen [29] generalizes Ward’s definition to the case of a fuzzy interest 
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rate. Buckley [1,2], Gutierrez [12], Kuchta [19] and Lesage [22] discuss some problems 

connected with the application of fuzzy arithmetic to calculating fuzzy PV.  

 According to the uncertainty thesis expressed by Mises [24] and Kaplan et al. [16], 

each future cash flow is uncertain. In the crisp case, this uncertainty is usually modeled in 

such a way that cash flow is described as a random variable. Therefore, Huang [14] 

generalizes Ward’s definition for the case when future cash flow is given as a fuzzy random 

variable in the sense given by Kwakernaak [20, 21]. A more general definition of a fuzzy PV 

is proposed by Tsao, who assumes that the future cash flow is a fuzzy probabilistic set in the 

sense given by Hiroto [13].  

 All the kinds of fuzzy PV defined above may be used for the determination of fuzzy 

net present value (NPV) defined as a sum of fuzzy PV.  

 In recent years the concept of cash flow utility has played an important part in 

behavioral finance research. This problem is discussed for example by Frederick et al. [33], 

Dacey et al. [6], Killeen [17], Zauberman et al.  [37], Kontek [18] and Doyle [7]. PV is 

defined there as the utility of cash flow. Thus a generalized fuzzy PV is defined as a fuzzy 

valued utility of cash flow. This generalized fuzzy PV is more general than the definitions of a 

fuzzy PV proposed by Greenhut et al. [11] and Sheen [29].  

 In financial market theory the current market price of a security is interpreted as a 

crisp PV.  Piasecki [27] considers the impact of chosen behavioural factors on PV. The formal 

model of behavioural PV is presented as a result of these considerations. The behavioural PV 

is dependent on the equilibrium price, current market price and degree of an investor’s 

acceptance of risk. This implies that the present value can deviate from its observed market 

price under the influence of behavioural factors. The model obtained explains the mechanism 

of maintaining the balance between supply and demand in an efficient financial market. The 

states of the behavioural environment are defined imprecisely. Therefore, behavioural PV is 

described by a trapezoidal fuzzy number in the sense given by Campos et al. [3]. This means 

that behavioural PV is subject to imprecision risk. Behavioural PV is an example of a 

generalized fuzzy PV defined as above. On the other hand, in the general case, behavioural 

PV does not depend on the value of future cash flow. This means that there exists such a 

behavioural PV which is not a fuzzy PV in the sense given by Ward [35] or by Huang [14].  

 According to the thesis cited above as expressed by Mises [24] and Kaplan et al. [16], 

each FV is uncertain. Therefore, the security FV is usually presented as a random variable. 

The distribution of this random variable is a formal image of the uncertainty risk. Detailed 



information on uncertainty risk is gathered in this way. The papers [8], [30], [31], [32], [33] 

and [36] are examples of this knowledge.  

 Piasecki [27] noted that if PV is a fuzzy number and FV is a random variable, then the 

return rate is given as a probabilistic fuzzy subset on the real line. Thus this return rate will be 

called a fuzzy probabilistic return. Despite a careful preliminary survey of the literature, the 

author has not found any similar model of the return rate. When we apply a fuzzy 

probabilistic return to an assessment of the security based on a generalized fuzzy PV, then we 

can use, without any changes, all the rich empirical knowledge about the probability 

distributions of return rate which has been gathered. This fact expands the possibility of real 

applications. It is also a highly advantageous feature of the proposed model.  

 Investment in effective security (ES) is a standard goal of investors in normative 

theories of the financial markets. Therefore, the main goal of our considerations is to derive 

the family of ESs with fuzzy probabilistic return.  

 Achieving this goal requires the study of the basic parameters characterizing fuzzy 

probabilistic return. In Section 1 the fuzzy expected value and variance are determined for this 

case of return.  The expected return rate is replaced there by the fuzzy return rate which also 

takes into account behavioural aspects of decision making in finance. However, such an 

increase in cognitive value has a price. This price is the introduction of imprecision risk.  

 Imprecision is composed of ambiguity and indistinctness. Moreover, fuzzy 

probabilistic return is at uncertainty risk. Hence, the three-dimensional image of risk 

described in Section 2.  

 When we use imprecise images of security, we cannot precisely indicate the 

recommended investment out of a set of alternatives. Each alternative is thus recommended to 

some extent. The investor shifts some of the responsibility to advisers or the forecasting tool 

applied. For this reason, the investor restricts his choice of investment decisions to 

alternatives recommended to the greatest degree. In this way, the investor minimizes his 

individual responsibility for financial decision making. It shows that the assessment of 

imprecision risk is relevant to the analysis of investment processes. This problem was widely 

discussed in [25].   

 In this paper we consider the case when each effective security is indicated as a 

recommended investment. In comparison with classical Markowitz theory, imprecision is a 

new aspect of risk assessment. We ask the question of whether such an extension of risk 



assessment is appropriate. The usefulness of taking imprecision into account in the study of 

risk is well justified by the following three arguments. 

 Firstly, it is always possible to reduce the uncertainty risk of forecasting by 

appropriately lowering the forecast precision.  

 Secondly, if we take into account the imprecision risk, we can reject investment 

alternatives which are attractive from the viewpoint of classical Markowitz theory, but, 

unfortunately, the information gathered about them is highly imprecise.  

 Thirdly, from the viewpoint of classical Markowitz theory and its implications, we 

witness many anomalies in financial practice. Seeing these paradoxes is the starting point for 

the development of behavioural finance.  

 In Section 3, a set of effective securities is defined as the Pareto optimal set 

determined by the maximization of the fuzzy expected return rate and the minimization of risk 

assessments. Two cases of risk management are taken into account. The minimization of 

uncertainty risk and the simultaneous minimization of uncertainty risk and imprecision risk 

are considered. 

 This article is addressed to two groups of readers. The results obtained may be of 

interest to financial market theorists and to practitioners constructing support systems for 

investment decisions.  

 

1. Imprecise assessment of the return rate 

 

 Let us assume that the time horizon      of an investment is fixed.  Thus, the 

security considered here is determined by two values: 

 the anticipated future value (FV)      
  , 

 the assessed present value (PV)     
 . 

The basic characteristics of benefits by ownership this instrument is the return rate    given by 

the identity 

    (     ).                                                       (1) 

 In the general case, the function:           is a decreasing function of PV and a 

increasing function of FV. This implies that for any FV    we can determine the inverse 

function   
  (    )    

 . In the special case we have here:  

 the simple  return rate is given by 



   
     

  
 
  

  
  .                                                       (2) 

 the logarithmic return rate is given by   

     
  

  
.                                                                   (3) 

 The FV is at risk of uncertainty. Formal model of this uncertainty is presentation FV 

   as a random variable  ̃    { }   
 . The set   is the set of elementary states of the 

financial market. In the classical approach to the problem of determining return rate, the PV 

of a security is identified with the observed market price  ̌. Then return rate is a random 

variable which is at uncertainty risk. This random variable is determined by the identity 

 ̃ ( )   ( ̌  ̃ ( )).                                                       (4) 

  In the practical analysis of financial markets, uncertainty risk is usually described by a 

probability distribution of return rates. We already have extensive knowledge on this subject. 

Let us assume that this probability distribution is given by the cumulative distribution 

function       [   ]. Then, the probability distribution of FV is described by the 

cumulative distribution function      
  [   ], given as follows 

  ( )    (  ( ̌  )).                                                              (5) 

 Assessment of the security FV is based only on objective measurements.  This means 

that the cumulative distribution function of the future value is independent of how the present 

value is determined. 

 It is shown in [27] that the security PV may be at imprecision risk.  This imprecision 

risk was determined using behavioural premises. An imprecisely assessed PV is described as 

a generalized fuzzy PV, which is represented by its membership function      [   ]. 

Then the return rate is at risk of coincidence uncertainty and imprecision. According to the 

Zadeh extension principle, for each fixed elementary state     of a financial market, the 

membership function  (   )   [   ] of the return rate is determined by the identity 

 (   )     { ( )         (   ̃ ( ))}   (  
  (   ̃ ( ))) .                 (6) 

This means that considered return rate is represented by a fuzzy probabilistic set as defined by 

Hiroto [13].  For this reason, this return rate is called a fuzzy probabilistic return. In the 

special cases we have here:  

 



 for the simple return rate 

 (   )    ((   )    ̃ ( ))                                  (7) 

 for the logarithmic return rate   

 (   )    (     ̃ ( ))                                          (8) 

For any fuzzy probabilistic return we determine the parameters of its distribution. We have 

here: 

 distribution of the expected return rate  

 ( )  ∫  (  
  (   ̃ ( )))    ( )

  

  
 ;                             (9) 

 the expected return rate 

  ̅  
∫    ( )  
  

  

∫  ( )  
  

  

 .                                                    (10) 

The distribution of the expected return rate   [   ]  is a membership function of the fuzzy 

subset  ̃ on the real line. This subset  ̃ is called the fuzzy expected return rate.  This rate 

represents both rational and behavioural aspects in the approach to estimating the expected 

benefits.   We will use the following variance of the return rate to assess the risk uncertainty 

      (∫ ∫  (   )   ( )  
  

  

  

 
)
  
 ∫ ∫    (   )   ( )  

  

  

  

 
       (11) 

where 

 (   ̃ ( ))  {
   { ( ̅  √   )  ( ̅  √   )}

                                                       
         .        (12) 

A detailed analysis of these relationships shows that this variance describes both rational and 

behavioural aspects of an assessment of the safety of the capital employed.   

 As in the case of a precisely defined return rate, there are such probability distributions 

of future value for which the variance of the return rate does not exist. We then replace this 

distribution with a distribution truncated on both sides, for which the variance always exists. 

This procedure finds its justification in the theory of perspective [15]. Among other things, 

this theory describes the behavioural phenomenon of the rejection of extremes.   

 

 

 

2. The three-dimensional image of the risk 



 

In the classical portfolio theory given by Markowitz [23] a normative investment 

strategy involves the maximization of the expected return rate  ̅  while its variance   is 

minimizing. In this situation, each security is represented by pair ( ̅   ). This pair represents 

rational premises for the evaluation of a security. It is implicitly assumed that the returns have 

a Gaussian distribution. 

In this section the expected return rate    is replaced by the fuzzy return rate  ̃, which 

also takes into account behavioural aspects of decision making in finance. In this way, we 

describe the imprecision risk. Imprecision is composed of the ambiguity and indistinctness. 

 The ambiguity is the lack of a clear recommendation one alternative between the 

various given alternatives. In accordance with suggestion given in [1], we will evaluate the 

ambiguity risk using the energy measure  ( ̃) of the fuzzy expected return rate  ̃. This 

measure is determined by the identity  

   ( ̃)  
∫  ( )  
  
  

  ∫  ( )  
  
  

  .                                            (13) 

Indistinctness is the lack of an explicit distinguishing amongst the given information 

and its negation.  According to suggestion given in [3], we will evaluate the indistinctness risk 

using the entropy measure  ( ̃) of the fuzzy expected return rate  ̃. This measure is 

described as follows 

   ( ̃)  
∫    { ( )    ( )}  
  
  

  ∫    { ( )    ( )}  
  
  

.                                           (14) 

 This uncertainty follows from an investor’s lack of knowledge about future states of 

the financial market. This lack of this knowledge implies that no investor is sure of future 

profits or losses.  The properties of such risk are discussed in a rich body of literature. In this 

paper, we will evaluate the uncertainty risk using the variance   given by identity (11). 

 In this situation, we assign a three-dimensional vector (      ) to each fuzzy 

expected return rate  ̃.  This vector describes the risks, which are understood to be composed 

of the risks of uncertainty, ambiguity and indistinctness.  

 An increase in the ambiguity risk means that the number of recommended investment 

alternatives increases too. This increases the chance of selecting a recommended alternative, 

which involves opportunity cost.  



 An increase in indistinctness risk means that the distinctions between recommended 

and unrecommended alternatives are more blurred. It implies a higher probability of choosing 

unrecommended alternatives.  

 These observations show that an increase in the imprecision risk makes investment 

conditions noticeably worse. Using the three-dimensional description of risk (      ) 

facilitates the management of imprecision risk.  It is desirable here to minimize each of the 

three risk assessments.  

 Using this three-dimensional description of risk enables the investigation of 

relationships between different types of risk. Here we can observe the empirical interaction 

between risks. Moreover, there is a formal correlation between the uncertainty risk and 

ambiguity risk. The number of recommended alternatives increases with ambiguity risk.  In 

this way, there is more certainty that the recommended alternatives include the best 

investment decision. This means that the uncertainty risk decreases. In summary, the 

uncertainty risk and the ambiguity risk are negatively correlated. 

 

3. Financial effectiveness 

 

A security is called effective (ES) if it attains, for a given variance, the maximum expected 

return rate. In his classical portfolio theory, Markowitz assumed that the distribution of return 

rates is Gaussian. The set of ESs is given by the upper branch of the Markowitz curve, which 

is called the ES curve.  

The set of ESs can also be specified by means of multicriteria comparison theory. 

Using this approach we can dispense with the assumption that the probability distribution of 

return rates is Gaussian. We define two preorders on the set of all securities. These preorders 

are the maximization of expected return rates and the minimization of variance. The set of 

ESs is then described as the Pareto optimal set for multicriteria comparison defined by the 

above preorders.  If we additionally assume here that the distribution of the return rate is 

Gaussian, the set of ESs will coincide with the upper branch of the Markowitz curve. This 

means that the set of ESs is a generalization of the concept of the ES curve defined on the 

basis of classical Markowitz theory.  

Any investment using an ES is an investment in security guaranteeing maximum 

returns with the minimal risk of capital loss. This is a standard goal of investors in normative 

theories of the financial markets.  This poses some difficulties in application, since investors 

typically invest in securities which are outside of the ES set. Accordingly, from the viewpoint 



of these theories, they invest in ineffective securities. At the same time, these investors 

declare investing in ESs to be their normative goal. In this way, we find a paradox inherent 

the real financial markets. 

This paradox is very common. It cannot be explained by a lack of sufficient 

knowledge of the real processes occurring in the financial markets and economic 

environment. The increasing professionalization of investor activity and fast development of 

information technology imply that full access to market information and the capacity to 

process data is available to all professional investors, who manage the vast majority of the 

volume of exchange trading.  

This paradox may be explained in the following way. The normative aim of investing 

in ESs is declared by investors who invest only in securities similar to effective ones. The 

degree of effectiveness of a given security is equal to the degree of its similarity to an ES. In 

practice, this means that almost every commercially available security is effective to some 

extent. On the other hand, an ES is no longer traded on the stock exchange. All this explains 

the paradox of the divergence between a normative investor’s purpose and the real goal of an 

investment strategy.  Investors always act in a manner similar to an effective course of action.   

Let us consider a normative model of investor activity. The set of all securities is 

denoted by the symbol  . The security  ̆   is represented by the pair ( ̃  (  
       )), 

where the individual symbols have the following meanings: 

  ̃   is fuzzy expected rate of return on security  ̆, 

   
  is the variance of the rate of return on security  ̆, 

    is the energy measure of the fuzzy expected  return rate  ̃ ,               

    is the energy measure of the fuzzy expected  return rate  ̃ . 

The fuzzy expected return rate  ̃  is defined by the distribution of the expected return rate 

   [   ]
 . On the set of fuzzy real numbers  ( ) define the relation  ̃   ̃, which reads:  

Fuzzy real number  ̃ is greater or equal to fuzzy real number  ̃. 

This relation is a fuzzy preorder defined by a membership function     ( )   ( )  [   ] 

which fulfils the condition  

  ( ̃   ̃ )     {   {  ( )   ( )}    }                            (15) 

for any pair  ( ̃   ̃ ) of fuzzy expected return rates.  



 In the next step we determine the multicriteria comparison       based on the 

maximization of the fuzzy expected return rate and  minimization of variance. We describe 

the relation formed in this way as the predicate  ̆    ̆ which reads 

 Security   ̆ is no more effective than security   ̆.                           (16)                               

 In a formal way this multicriteria comparison is defined by the equivalence  

 ̆    ̆   ̃   ̃       .                                             (17) 

 In this situation the relation   is a fuzzy preorder defined by its membership 

function        [   ]. For any pair of securities  ̆  ̆   this membership function is 

represented by the identity  

  ( ̆  ̆)  {
  ( ̃   ̃ )              

                      
.                                               (18) 

The set  ̃ of ESs is equal to the Pareto optimal set defined by multicriteria comparison (17). 

The set  ̃ is represented by its membership function      [   ] determined by the identity  

 ( ̃)     {   {  ( ̃  ̃)     ( ̃  ̃)}   ̃  }.                      (19) 

The value  ( ̆) can be interpreted as a truth value of the sentence:  

The security  ̆is effective.                                             (20) 

 We described above the case, when the investor determines the effective securities, 

taking into account only the risk of uncertainty. Now we focus our attention on the case, when 

the investor simultaneously takes into account the uncertainty risk and imprecision risk.  Let 

us now consider the multicriteria comparison       determined by the maximization fuzzy 

expected return rate and three criteria for the minimization of the risk measures described 

above. Formed in this way relation we describe as the predicate  ̆    ̆ which reads 

 Security   ̆ is no more strictly effective than security  ̆.                 (21) 

In a formal way this multicriteria comparison is defined by the equivalence  

 ̆    ̆   ̃   ̃                   .                      (22) 

  In this situation the relation   is fuzzy preorder defined by its membership function  

       [   ]. For any pair of financial instruments  ̆  ̆   this membership function is 

represented by the identity  



  ( ̆  ̆)  {
  ( ̃   ̃ )                          

               (                 )
.              (23) 

 The set  ̃ of strictly effective securities is determined as the Pareto optimal set defined 

by the multicriteria comparison (22). The set  ̃ is represented by its membership function  

    [   ] determined by the identity  

 ( ̃)     {   {  ( ̃  ̃)     ( ̃  ̃)}   ̃  }.                           (24) 

The value  ( ̃) can be interpreted as a truth value of the sentence:  

The security  ̆is strictly effective.                                         (25) 

  If investors considers purchase or sale the security  ̆,  then they can take into 

account the values  ( ̃) and  ( ̃). Investors should limit the area of their investments to 

securities characterized by relatively high value of these indicators. Also investors should 

limit the sale of their securities to those for which these indicators have low values.  The 

considerations presented in [11] suggest that individual investors use different values of these 

indicators at the same time. Such variation follows from the variation in subjective 

behavioural reasons for investment decisions. 

 

4. Conclusions 

 

 It is shown above that an increase in imprecision risk makes investment conditions 

noticeably worse. Accordingly, imprecision should be considered as a risk which is relevant 

to the investment process.  

 This paper applies behavioural reasons for investment decision making to describe the 

similarity of individual securities to effective ones (ES).  Such a result is obtained without the 

assumption that the probability distribution of the return rates is Gaussian. The normative 

theory presented here explains that the divergence between the normative investor’s purpose 

and the real goal of an investment strategy is implied by behavioural aspects of the perception 

of the financial markets. Each of the paradoxes explained is apparent. This formal theory 

allows us to control the choice of securities similar to ES. This follows from the fact that 

using this theory we can determine the truth value of sentence (20) or (25).  

 Firstly, the results so obtained may be applied in behavioural finance theory as a 

normative model. Investing only in strictly efficient securities can be recognized as a 

normative investor’s goal. This strategy results in the rejection of those investment 



alternatives which are admittedly attractive from the viewpoint of classical Markowitz theory, 

but the information gathered about them is unfortunately imprecise.  

 Secondly, the results presented above may provide theoretical foundations for 

constructing an investment decision support system. 

 Applications of the normative model presented above involve several difficulties. The 

main difficulty is the high formal and computational complexity of the tasks involved in 

determining the membership function for the set of effective securities. The computational 

complexity of the normative model is the price we pay for the lack of detailed assumptions 

about the return rate. On the other hand, the low logical complexity is an important attribute 

of the formal model presented in this paper.   

 The problem of finding a membership function for the set of effective securities can 

also be solved using econometric analysis of the financial markets. Examples of such 

solutions are presented in [26] and [28].  

 The author’s main contribution in this paper is to propose two models of effective 

security with fuzzy probabilistic return. Moreover, the paper also offers an original three-

dimensional image of the risk affecting fuzzy probabilistic return.  
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