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Abstract 

 

It has been argued that the deterministic frontier approach in inefficiency measurement has a 

major limitation as inefficiency is mixed with measurement error (statistical noise) in this 

approach. The result is that inefficiency is contaminated with noise. Later stochastic frontier 

approach improves the situation with allowing a statistical noise in the model which captures 

all other factors other than inefficiency. The stochastic frontier model has been used for 

inefficiency analysis despite its complicated form and estimation procedure. This paper 

introduced an extra parameter which estimates the amount of proportion that an error 

component shares in the observational error. An EM estimation approach is used for 

estimation of the model and a test procedure is developed to test the significance of presence 

of the error component in the observational error.   
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1   Introduction 

In early twentieth century, Cobb and Douglas (1928) introduced the econometric estimation 

of production function for estimating the economic efficiency of a firm using given inputs 

and a technology. They used the ordinary least square (OLS) method of estimation to 

estimate the production function which requires the observations to lie around it. This 

assumption, however, contradicted the theoretical definition of production function which 

refers to the maximum (frontier) output attainable using a given inputs and a technology. 

Next thirty years econometric analysis of production function ignored this frontier property of 

the production function and was primarily based on the estimated ‘average’ production 

function.  

Winsten (1957) was perhaps first to attempt estimation of the frontier production function 

using Corrected OLS (COLS) method. In this method, the intercept of the OLS estimated 

‘average’ production is adjusted so that all the observations lie below the estimated 

production function. Aigner and Chu (1968) suggested the estimation of production function 

using linear and quadratic programming technique with the frontier restriction i.e. the 

residuals are to be positive. However, this approach has two main drawbacks. Firstly, it is 

deterministic as there is no stochastic specification and, hence, one cannot compute the error 

margin of the estimates and ii) The estimates were found to be very sensitive to outliers.  

Timmer (1971) suggested an iterative approach to overcome these problems where at each 

stage a new deterministic frontier is estimated after deleting those data points with respect to 

which the estimates at the previous stage were found sensitive and the process is continued 

until the deterministic frontier function stabilizes. Richmond (1974) improved upon the 

COLS estimates to make them unbiased and consistent. 

Schmidt (1976) estimated the deterministic frontier model with a statistical sense by the 

maximum likelihood method assuming error with a one-sided distribution like exponential 

and half-normal. The resulting estimates under these distributional assumptions are 

equivalent to the linear and the quadratic programming estimators of Aigner and Chu (1968). 

Later, Greene (1980) estimated another deterministic frontier model assuming errors are 

gamma variables.  

Although the deterministic frontier approach of Aigner-Chu-Schmidt estimates the frontier 

function respecting its frontier property, an obvious limitation of this approach is that in this 

approach one cannot isolate the effect of inefficiency from that of the random noise as both 

are lumped together in the disturbance term of the model. Also, it violates one of the 
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regularity conditions required for application of ML method viz. the support of the 

distribution of y must be independent of the parameter vector. In this approach the regularity 

condition is violated. One can, however, apply the MOLS method of Richmond (1974) which 

is a combination of the OLS and MOM, for estimation of the parameters of the deterministic 

frontier.        

The stochastic frontier approach introduced by Aigner, Lovell and Schmidt (1977), Meeusen 

and van den Broeck (1977) and Bettese and Corra (1977) overcomes the limitations of the 

deterministic frontier approach by decomposing the disturbance term into two random 

components representing the “random noise” and the “inefficiency”. While the 

decomposition enables one to separate out the effects of random noise from the inefficiency 

and makes the support of the distribution of output independent of the parameter space, the 

concept of stochastic frontier ensures the frontier restriction on the observed outcomes. The 

stochastic frontier model is the extension of deterministic frontier model with added 

stochastic noise. However, sensitivity of the stochastic frontier model depends on mis-

specification and amount of statistical noise and inefficiency in composite disturbance.    

Ruggiero (1999) examined the performance of deterministic and stochastic frontier models 

using Monte Carlo simulation experiments. The analysis revealed that the deterministic 

frontier model was more consistent than stochastic frontier model. Also, deterministic 

frontier model outperformed the stochastic frontier model which concludes that the stochastic 

frontier model does not decompose the stochastic noise and inefficiency correctly. 

Measurement error leads to bigger biases in the stochastic frontier model than it does in the 

deterministic model. This suggests that the main criticism against the deterministic models is 

hypocritical.  

The purpose of this paper is to provide a more general frontier model which is specific to 

each firm. An extra binary random variable is introduced to decide whether a deterministic 

frontier or stochastic frontier model is appropriate for each firm.  

The rest of the paper is organized as follows. Section 2 presents the more general stochastic 

frontier model and derives the distribution of the observational error. Section 3 presents the 

estimation procedure to estimate the parameters of the model. In section 4, a Monte Carlo 

experiment is constructed to compare the performance and the results of the analysis and their 

implications are reported. In section 5 we report and analyze the results of an empirical 

application of the firm-specific frontier model. The major conclusions emerging from this 

study are noted in the final section.  
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2 A Firm-specific Frontier Model   

Let iy  and ix  be the output and vector of non-stochastic inputs of the ith firm respectively 

indexed by the production function (.)f  and ie  be the random error. Then a firm-specific 

frontier model for the ith firm can be presented as 

                                ( , ) ;i i i i i i iy f x J v ub e e  , 1,.......,i n                   (2.1) 

where b  is a vector of unknown parameters to be estimated. The random error ie  is 

composed of two unobservable stochastic terms viz. iv , the statistical noise and 0iu , the 

technical inefficiency and iJ  is a unobservable binary random variable that defines whether 

the frontier model is stochastic frontier or deterministic frontier for ith firm. If 0iJ , the 

frontier model becomes deterministic frontier model and if 1iJ , the frontier model 

becomes stochastic frontier model.      

The distribution of error component iv  can be assumed to be normal i.e. 2(0, )i vv N s  and 

the distribution of error component iu  can be assumed to be half-normal (ALS, 1977) or 

Exponential (Stevenson, 1980) or Gamma (Greene, 1990) with 0iu . We retain these 

distributional assumptions regarding the error components in this paper. Also it is assumed 

that ( )iJ Bern p .  

The density function of ie  can be found as: 

Let 1( )ij e  is the density function of ie  when 0iJ  and 2 ( )ij e  is the density function of ie  

when 1iJ . Then, the density function of ie  is given by  

                                          2 1( ) ( ) (1 ) ( )i i if e pj e p j e .                              (2.2) 

The density function of ie  can be considered as a two component mixture model. The EM 

algorithm can be most reliable approach to estimate the parameters of the model using the 

density function of ie .   

2.1 Estimating firm-specific inefficiency 

Though the primary objective of the frontier model is to estimate the unknown parameter 

vector 2 2 '( , , , )v ud b s s p , the ultimate objective of the frontier model is the estimation of firm 

specific inefficiency, u. In this section we discuss the approach of estimating the firm-specific 

inefficiency in the frontier model presented in the above section. The natural estimators for 
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firm-specific inefficiency in the firm-specific frontier model are the Jondrow et al. (1982) 

proposed conditional mean or mode of u given which is given by 

                                                  ( | ) ( , )i i iE u ge e d                                    (2.3) 

which is a function of the unknown parameter vector and the observational error and can be 

estimated using the estimated value of parameter vector and the observed data. This measure 

of inefficiency given in (2.3) can be computed using the conditional distribution of u given e . 

In our model the conditional distribution of u given e  can be derived as follow:     

The conditional distribution function of u given e  can be derived as 

( | ) ( | , 0) ( 0) ( | , 1) ( 1)P U u P U u J P J P U u J P Je e e  

                 ( | ) ( | )(1 )P U u u P U u u vp p  

                 ( ) (1 ) ( | )F u F u u vp p  

Then the conditional distribution of u given e  can be derived by differentiating the above 

equation by u as 

                              ( | ) ( ) (1 ) ( | )f u f u f u u ve p p  

Therefore the Jondrow, et al. (1982) measure of firm specific inefficiency is given by 

                              ( | ) ( ) (1 ) ( | )E u E u E u u ve p p                                (2.4) 

In ALS (1977) the error components iv  and iu  are assumed to be distributed as normal and 

half-normal respectively i.e. 2(0, )vv N s  and 2(0, )uu N s  with 0iu . 

Under these assumptions, when 0iJ , i iue  and the density function of ie  is given by   

                                  2

1 2

2 1
( ) ( ) exp

22
i i i

uu

f e j e e
sps

  

                       (2.5) 

and similarly when 1iJ , i i iv ue  the density function of ie  is given by  

          

2

2 2 2 2 22 2

2 1
( ) ( ) exp

22

u i i
i i

v u v u vu v

f
s e e

e j e
s s s s sp s s

 

          (2.6) 

which is a skew-normal density (Azzalini, 1985).  

Under these specific assumptions, the Jondrow, et al. (1982) measure of firm specific 

inefficiency is given by 

                     
2

( / )2
( | ) (1 )

1 ( / )

i i
i i u

i

E u
f el s elsl

e p s p
p l el s s

         (2.7) 

where 

 u vl s s  
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 2 2

u vs s s  

Now, the posterior estimate of probability of a firm being stochastic is given by  

                    
( 1, )

( | ) ( | )
( )

i i
i i i i

i

P J
E J P J

P

e
e e

e
 

                                                  
( | 1) ( 1)

( )

i i i

i

P J P J

P

e
e

 

                                                  2

2 1

( )
( , )

( ) (1 ) ( )

i
i i

i i

pj e
g e d

pj e p j e
             (2.8) 

This ( , )i ig e d  can be termed as the responsibility of randomness of ith firm. The estimates in 

equation (2.8) can be estimated using the maximum likelihood estimator of the parameter 

vector d , d̂  and the estimated residuals ˆ
ie . These posterior estimates of inefficiency are firm 

specific and provide us the probability of a firm’s randomness given the input vectors and a 

technology.  

 

3 EM Estimation of the Model  

The log-likelihood of the model is given by 

                     2 1log ( ; ) log[ ( , ) (1 ) ( , )]i i

i

L y y yd pj d p j d  

The maximum likelihood estimators can be found by solving log ( ; ) 0L yd d . Trying to 

maximize log ( ; )L yd  directly for the estimation of parameters is quite difficult since those 

equations are nonlinear and no analytic solutions can be found. So numerical procedure like 

iterative optimization methods often be used to get successive approximation of the solution. 

In that case The EM algorithm is applied to estimate the parameters of the model. The model 

is recasted into a missing data framework in order to implement the EM algorithm. The 

unobserved binary variable J  can be treated as the missing data and the observable output y 

can be treated as observed data. Then the complete data is given by (y, J). The density 

function of iJ  is given by 
1

( ; ) (1 )i iJ J

if J p p p .  

Now see the joint density of the observed data e  and unobserved data J : 

                       
1

1 2

1

( , ) ( ) ( | ) (1 ) ( ) ( )
i i

n
J J

i i

i

f J f J f Je e p j e pj e               (3.1) 

Then from (3.1) the joint density of the observed data y  and unobserved data J  can be 

obtained by the transformation 'y xe b  and is given by 
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1

1 2

1

( , ) ( ) ( | ) (1 ) ( ) ( )
i i

n
J J

i i

i

f y J f J f y J y yp j pj  

The complete log-likelihood function of the complete data ( y , J ) is given by 

               1 2log ( ; , ) (1 ) log[(1 ) ( )] log[ ( )]i i i i

i i

L y J J y J yd p j pj  

Since, the values of iJ  is unknown, so we want to use the expected value of |i iJ y  to 

substitute each iJ  in above.  We have 

                    
( 1, )

( | ) ( | )
( )

i i
i i i i

i

P J y
E J y P J y

P y
 

                                                  
( | 1) ( 1)

( )

i i i

i

P y J P J

P y
 

                                                  2

2 1

( )
( )

( ) (1 ) ( )

i
i

i i

y

y y

pj
g d

pj p j
        

The expected value of |i iJ y  is called the responsibility of the model for ith observation, 

denoted as ( )ig d :  

                                                ( ) ( | , )i i iE J yg d d  

Then the Q-function, which is the expected value of complete log-likelihood with respect to 

the conditional distribution of J given y, is given by  

  | | 1 | 2( ) [log ( ; , )] (1 ) log[(1 ) ( )] ( ) log[ ( )]J y J y i i J y i i

i i

Q E L y J E J y E J yd d p j pj  

                                      1 2(1 ( )) log[(1 ) ( )] ( ) log[ ( )]i i i i

i i

y yg d p j g d pj  

        1 2log(1 ) (1 ( )) (1 ( )) log ( ) log ( ) ( ) log ( )i i i i i i

i i i i

y yp g d g d j p g d g d j   

                                                                                                                       (3.2) 

Under the assumptions of ALS (1977), the density functions of ie  under the assumption of 

deterministic frontier model and stochastic frontier model are presented in (2.5) and (2.6) 

respectively.  

Then, the log-likelihood function under the assumption of deterministic frontier model is 

given by 

                                    2 ' 2

1 2

1 1
log ( ) log ( )

2 2
i u i

u

y c y xj s b
s

                          (3.3) 

and the log-likelihood function under the assumption of stochastic frontier model is given by 
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'

2 2 ' 2

2 2 22 2

1 1
log ( ; ) log( ) log ( )

2 2( )

u i
i u v i

v u vu v

y x
y c y x

s b
j d s s b

s s ss s
  (3.4) 

Therefore, from (3.2) and using (3.3), (3.4) the Q-function is given by 

2 ' 2

2

1 1
( ) log(1 ) (1 ( )) (1 ( )) log ( ) log ( )

2 2
i i u i i

i i iu

Q c y xd p g d g d s b p g d
s

 

                       
'

2 2 ' 2

2 22 2

1 1
( ) log( ) log ( )

2 2( )

u i
i u v i

i v u vu v

y x
c y x

s b
g d s s b

s s ss s
 

 

4 Monte Carlo Evidence  

A Monte Carlo simulation experiment is carried out to study the finite sample properties of 

the estimators under the generalized SFM. The model that is used for the experiment is a cost 

frontier model with one output produced by one input which is given below:  

                                              0 1i i i i iy x J v ub b                                       (4.1)  

 where ( )J Bern p
 

2(0, )uu N s  and 2(0, )vv s . Let '

0 1( , , , , )v uh b b s s p . A random 

sample on y can be generated using a simulation procedure from the distribution of e  by the 

transformation 0 1i i iy xe b b  for a given value of 0h h . The density function of ie  can 

be considered as a two component mixture model. The first component is normal distribution 

with right truncation and a random sample from this distribution can be generated by inverse 

method. The second component is the skew-normal distribution and a composition method of 

marginal-conditional can be used to generate a random sample from this distribution. 

Therefore, a random sample of size n on y can be generated using the above algorithm using a 

specified value of p . The composition method of marginal-conditional can be derived with a 

given 0h , as a single observation, say ith observation, of u , is first generated by the marginal 

distribution of u  where u  is distributed as half-normal variate. Given the value of iu  as 

obtained, ith observation on e  can be found by the conditional distribution of e  given u  

which is normal and then ith observation on y using the relation 00 10i i iy xb b e . The 

above two steps are repeated n times to generate a random sample of size n on y.  

Fixing the parameter vector at 0 (1,0.1,0.1, 0.5, 0.5)h , the Monte Carlo simulation carries 

out for each values of 0h . Sample size of n is generated using the above algorithm and it is 
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repeated 100 times. The cross sectional sample of size n = 100, 200, 300, 400, 500 are 

considered for the study. 

Under this Monte Carlo experiment, the parameter vector h , is estimated using the EM 

algorithm, describe above, to compare the small sample behavior of the parameter vector h . 

The result is reported in table 1. The analysis provides the mean, SD and RMSE of the 

estimators.   

The complete data expected log-likelihood equations were solved by the BHHH algorithm 

fixing the tolerance at 0.001 . For each replication the EM method converged at reasonably 

fast rate taking about three minutes in a PENTIUM-4 processor. The mean, SE and the root 

mean square error (RMSE) of the estimates for each experiment, obtained from their 

generated sampling distributions, are reported in Table-1. It is seen that for lower values of n 

the performance of the EM estimates as measured by standard error and the RMSE is poor 

and the number of iterations for convergence moderately high. However, the performance 

improves, as n is increased from 150 to 400 when estimates stabilize. Interestingly the 

number of iterations required for convergence of the EM algorithm decreases by almost one-

third as n is increased from 150 to 500. At n=500, the small sample error of the EM estimates 

are between 6 to 10 per cent. Given the fact that the single equation estimates of the SFM 

suffer from simultaneous equation bias, the small sample performances of EM estimates of 

our model is reasonably good. 

 

5 Empirical Analysis 

We have used the US electricity utility industry data (Greene 1990, Table-3) to illustrate the 

method. The model to be fit is a cost function rather than a production function, given by          

       2

0 1 2 3 4ln(cos ) ln( ) ln ( ) ln( ) ln( )f l f k ft P Q Q P P P P u J vb b b b b                                            

where Q is the output, a function of labor (l), capital (k), fuel (f),  and lP , kP  and fP  are their 

respective factor prices; and 2 2(0, ), (0, )u vu N v Ns s ; u truncated at zero. It may be 

noted that the change in the expression for e  requires that ue  should now be replaced by 

ue  in the above derivations.  

We have estimated two models. The SFM with independent error components is estimated 

using maximum likelihood method with BHHH algorithm. The other firm-specific frontier 

model discussed above with independent error components is estimated using the illustrated 

EM algorithm. The estimators with their asymptotic variance–covariance matrix are given in 
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the Table-2. It can be seen from the Table-2 that the regression coefficients of the 

uncorrelated components SFM have significantly higher asymptotic variance than the firm-

specific frontier model which is estimated by EM algorithm. Also, the estimated value of the 

parameter  is 0.817 which is statistically significant and suggests that almost 81% firms 

prefers stochastic frontier model whereas 19% firms prefers deterministic frontier model. Fig. 

1 presents measures of firm-specific cost inefficiency in the firm-specific frontier model. Fig. 

2 presents the estimated posterior probability of randomness.  

 

6  Conclusions  

In this paper we have proposed a firm-specific frontier model where each firm is open to 

choose between stochastic and deterministic frontier model. This generalized model is 

estimated using EM estimation method. It is seen that the EM method does not face the 

problems like divergence, instability and low. The results of Monte Carlo simulation 

experiments show fairly good small sample properties of the EM estimates. Application of 

the model to the cross-section data of 123 US electricity firms shows stochastic frontier 

model is preferable to almost 81% firms and deterministic frontier model is preferable to 

remaining 19% firms.  
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Table 1: Results of the Monte Carlo simulation experiments 

0 1( , , , , )=(1, 0.1, 0.1, 0.1, 0.5)v uh b b s s p  

n EM Estimate 

Mean  SD RMSE 

100 1.224 

0.079 

0.136  
0.146 

0.594 

0.134 

0.141 

0.135 
0.218 

0.245 

0.202 

0.135 

0.143 
0.227 

0.291 

200 1.158 

0.087 

0.138 

0.135 

0.557 

0.121 

0.127 

0.118 

0.183 

0.228 

0.159 

0.133 

0.121 

0.224 

0.247 

300 

 

1.113 

0.091 

0.121 

0.129 

0.546 

0.096 

0.098 

0.097 

0.123 

0.185 

0.129 

0.111 

0.112 

0.149 

0.213 

400 1.109 

0.093 
0.118 

0.116 

0.532 

0.087 

0.082 
0.092 

0.111 

0.145 

0.114 

0.092 
0.104 

0.128 

0.167 

500 1.110 

0.095 

0.107 

0.112 

0.528 

0.082 

0.076 

0.089 

0.092 

0.118 

0.109 

0.087 

0.102 

0.114 

0.120 

 
 

 

Table 2: Estimates of the parameters 

Parameter of 

the model 

Estimate of the parameter of the model 

Generalized Model SF Model 

0 

1 

2 

3 

4 

u 

v 

 

-7.349 (0.296) 

0.401 (0.016) 

0.029 (0.057) 

0.240 (0.051) 

0.058 (0.083) 

0.149 (0.022) 

0.108 (0.026) 

0.817 (0.136) 

-7.390 (0.341) 

0.405 (0.018) 

0.031 (0.065) 

0.244 (0.048) 

0.061 (0.063) 

0.151 (0.027) 

0.111 (0.018) 

0 

  



 

13 

 

 

 

 
 

Fig 1: Kernel density of estimated cost inefficiency 

 

 
Fig 2: Kernel density of estimated posterior probability 

 

 
 

Fig 3: Scatter plot of estimated cost inefficiency and posterior probability 


