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KINEMATIC-WAVE FURROW IRRIGATION MODEL

By Wynn R. Walker' and Allan S. Humpherys, 2 Members, ASCE

ABSTRACT: A kinematic-wave model of furrow irrigation under both continu-
ous and surged flow management was developed and verified. Numerical so-
lution of the differential continuity equation is accomplished with a Eulerian
first-order integration coupled with the assumption that flow rate and flow area
are uniquely related by the Manning uniform flow equation. Field data from
three Colorado sites, a Utah site, and an Idaho site were used to verify the
model's continuous flow simulation of advance and recession. The sites rep-
resented a wide range of soil types, field slopes and lengths, and duration of
the irrigation event. Companion data from the Utah and Idaho sites were used
to verify the model's analysis of surge flow conditions.

INTRODUCTION

Mathematical models of surface irrigation processes can be generally
classified as: (1) Hydrodynamic (1,9,10); (2) zero-inertia (6,19); (3) kine-
matic-wave (3,12,15,18); and (4) volume balance (7,11). Most models were
developed for border irrigated conditions and later modified for basin
and furrow systems (6,7,11,17,20).

Furrow simulation requires three modifications to the traditional anal-
ysis of border irrigation. First, the geometry of the flow cross section
must be described. Although furrows are not prismatic, the model re-
sults are not highly sensitive to changes in geometry and simple power
functions can be used to relate depth of flow, area, hydraulic section,
etc. The second factor added by furrow conditions is the need to utilize
an infiltration equation incorporating both a time dependent rate and a
basic or steady rate term (i.e., Kostiakov-Lewis) rather than a single time
dependent rate term (i.e., Kostiakov). Advance can be simulated rea-
sonably well without the addition of the basic intake rate term, but not
runoff (5). Finally, infiltration is known to be affected by wetted perim-
eter and, thereby, flow rate (8). It is commonly assumed that infiltration
is strictly a function of intake opportunity time, so its evaluation in-
volves only one independent parameter (time). If it is also discharge de-
pendent, it involves both an independent parameter and a dependent
parameter (flow rate), thereby complicating the numerical solution. The
model presented herein ignores this third factor without apparent loss
of accuracy. As the mathematics of infiltration becomes better under-
stood, this aspect of the model may be modified.

Cycled or surged irrigations (2,4,20) present additional complications
in furrow flow simulation. Intermittent wetting of a furrow alters its hy-
draulic conductivity such that infiltration is not only time dependent,
but also spatially dependent due to the stepwise advance of the wetted
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region (13,21). Depending upon the prior wetting history at a particular
point, the intake characteristics may vary substantially. This factor makes
infiltration rates dependent on both intake opportunity time and spatial
coordinates. The kinematic-wave model presented in this paper is the
first with the capability of simulating furrow irrigation under surged flow.

THEORETICAL MODEL DEVELOPMENT

The kinematic-wave model was initially developed for hydrologic ap-
plications (12,22), modified for sloping, free draining borders (3,18), and
finally to sloping, free draining furrows (15,20). The model is a solution
of the continuity equation,

OA	 aQ	 az
— + — + — = o 	  (1)
at	 ax	 aT

with the assumption that discharge and cross-sectional area are uniquely
related. In Eq. 1, A = the cross-sectional area (L 2); Q = the flow rate
(L3T-1); Z = the infiltrated volume per unit length (L 2); t = time (T);
x = distance (L); and T = the intake opportunity time (T).

The area-discharge relation is generally provided by a uniform flow
equation, which for this analysis is the Manning equation. Utilizing the
empirical approximation for the squared hydraulic section proposed by
Elliott, et al. (6)

(AR2f3) 2 = piAP2 	 (2)
the Manning equation can be written (18) as

Q = aAm 	
The parameters in Eqs. 2-3 are defined as follows:

(Pi So)112
a= 	

n

and m = P2— 	  (5)2
in which p i and p2 = empirical constants fitted to actual field furrow
shape measurements; So = the furrow slope; and n = the Manning
roughness coefficient. Eq. 3 can be substituted for Q in Eq. 1 to yield a
continuity equation of one unknown dependent parameter, A. It is as-
sumed that the spatial and temporal dependence of Z are defined.

Most of the kinematic-wave analyses to date have been characteristic
solutions (3,15,18). Walker and Lee (20) utilized the first-order Lagran-
gian type integration presented by Strelkoff and Katapodes (19). In com-
paring the characteristic furrow model to the integral model, it was con-
cluded that the integral model was superior on the basis of its adaptability
to both surged and continuous flows, less sensitivity to the size of the
time step, and the numerical stability of the solution.

Lagrangian integration was utilized in zero-inertia models to maximize
the stability of the locally linearized numerical solution (6,19). The ki-
nematic-wave model uses a Newton-Raphson solution which does not

(3)

(4)
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FIG. 1.—Kinematic-Wave Computational Cell (See Fig. 2 for Subscript Notation)

have the potential instability associated with the zero-inertia model.
Consequently, simpler first-order Eulerian integration is used yielding
an equivalent solution.

Integration of Eq. 1 is carried out over individual time and space in-
crements (St, Bx) as follows (17):
i t-i-St t fx+bt

aQ

1	 ..1. - dx)dt +
ax

t+bt

+ fx

x+bx (

J.:	 oi. 	
0 	  (6)— dt)dx =

a Z

The first-order result is
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	Oct j St

	 (10)

and C2 = 7,' + H) (AZ – AT) + (A L + ZL – AI  Z) —8t
1 – 0	 41	 bx

Oa

+ (1 – 4))
	

bx

	

Oct (Z
R – AM Zm)-8t 
	 (11)

The left boundary condition provides the first value of the area at each
time step and then the explicit solution moves to the right, cell-by-cell.

Initial Condition.—During the first time step, the flow advances the
distance, Eal . Variables AR , A1, Am , and ZR, Zi , ZM are zero, thereby
reducing Eqs. 9-11 to

(k)	 Sai
–AT + — (A L + Z L) —St = 0 	  (12)

Oct 

Since AL is known for the inflow hydrograph, and ZL is assumed uniquely

in which

[Q(x + 8x, t) – (2(x, t)pt + [A(x, t + St) – A(x, t)]6x

+ [2(x, t + St) – 2(x, t)18x = 0 	  (7)

The bar over the discharge variables indicates the time-averaged value
over the St interval, and the tilded A and Z variables are spatially av-
eraged over the Sx distance.

Eq. 7 can be shown as an incremental body of water within the flow
system during a specific period as depicted in Fig. 1. Strelkoff and Ka-
tapodes (19) refer to the deforming body as a "cell" within the water
body on and within the soil. The subscripts J, M, L, and R are used to
distinguish which cell boundary is being considered (i.e., left, L, or right,
R) and whether the time is the beginning, J, or ending, M, of the period
(Fig. 2). Rewriting Eq. 7 in terms of the Fig. 1 notation yields

{[OQR + (1 – 0)Qm] – [OQL + ( 1 – 0)Q1]lat + {[4AL + (1 – OAR]

– [CA I + (1 – cf))Amil8x + {[4ZL + (1 – (0)41 ]

– [VI + (1 – 4)ZA4]}Sx = 0 	  (8)

in which 0 = the time averaging coefficient; and 4 = the space averaging
coefficient (0 s 0, 4) � 1).

NUMERICAL SOLUTION

The solution to Eq. 1 is found by writing Eq. 8 for each cell or, equiv-
alently, constructing the t-x grid, shown in Fig. 2, one time step at a
time. In the physical sense, the flow profile expands at the advancing
front by adding a new cell for each time step and then contracting from
either end of the profile during recession. Along a particular time line,
each grid cell is described by Eq. 8 in which only QR and AR are un-
known and can be reduced to simply AR by Eq. 3. Solving for AR gives

4 + CiAR + C2 = 0 	  (9)
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related to St, the unknown incremental advance distance, tz1 , can be
identified as

Szi = 	  	  (13)
CA L + Z L)

The values of the time and space, 8 and 4), averaging constants used
in Eq. 13 are usually defined differently for the initial conditions and for
the advancing tip right boundary condition than for the interior cells. In
fact, a different 4) value is used for AL and ZL in the denominator of Eq.
13 in most models (6,7,9,17,20). These "shape" or weighting factors have
been given substantial consideration and theoretical derivation resulting
in several analytical expressions. However, the writers believe the as-
sumptions leading to these expressions [e.g., Elliott, et al. (6)] are in-
adequate. The weighting factor applied to the surface profile (multiply-
ing AL) assumes a uniform flow velocity behind the advancing tip. Initial
advance increments using a 1-2 min time step may be as much as 20-
30 m, and a uniform velocity is simply not observed. Second, the sub-
surface weighting factor (applied to Z L) assumes the contribution to total
infiltrated volume from the basic intake rate term in the Kostiakov-Lewis
equation is negligible in comparison to the time dependent rate term.
This is also inadequate in many soils. Consequently, for the model pre-
sented herein, Eq. 13 was used without distinguishing individual values
for 4, and 0 for the various cells, and the analyses made to date have
not shown a significant effect on model performance. Values 0 and 4)
were both set equal to 0.65.

Boundary Conditions.—The left boundary is the field inlet with the
following conditions:

A = Q = 0, t	 0; A =	 Qo = culom , 0 < t to, ;

A = Q = 0, t > to, 	  (14)

in which the zero subscript refers to the inflow hydrograph at x = 0;
and tco = the time of cutoff.

There are three possible right boundary conditions: (1) An advancing
tip; (2) a free draining outflow; and (3) a diked downstream field bound-
ary. Only the first two are considered in the kinematic-wave model. Eq.
13 is used for the advancing tip (Fig. 2). Following completion of the
advance phase, the last downstream cell is evaluated as an interior cell,
i.e., the flow leaves the field at normal depth.

Depletion and Recession.—The kinematic-wave model does not con-
sider a depletion phase. As soon as the inflow is cutoff, the inlet area
goes to zero during the time step. An artificial depletion phase can be
added by inputting a decreasing hydrograph. However, in sloping fur-
rows, the depletion phase is rarely longer than 1-2 min and can be ne-
glected unless the field slope is very small.

Computations following the time of cutoff are the same as prior to
cutoff. The flow area gradually declines at each point farther along the
furrow length, eventually approaching zero. Recession is defined when
the area at any station falls below 5% of the inlet flow area during the
interval 0 < t < tro . The model predicts both left and right-side recession,
as well as simultaneous left-side recession and right-side advance.

0a217,' St
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MODELING SURGED SYSTEMS

A typical surge flow irrigation regime is shown in Fig. 3. Water ap-
plied to the furrow in a series of intermittent surges advances over a
previously wetted furrow section and then over a dry section until reces-
sion is completed following the cutoff. Field and laboratory investiga-
tions (2,4,13,21) have documented that such a practice significantly re-
duces both the time dependent infiltration rates and the basic intake
rates. Simulation of infiltration under surged conditions is based on the
recirculating infiltrometer studies reported by Malano (13) and Walker,
et al. (21), covering three soil types.

In a furrow section where the discharge is relatively constant from
surge to surge, infiltration can be evaluated by two Kostiakov-Lewis
equations:

Zr = k? + fdr 	  (15)

and Z, = k'T a' + for 	  (16)

in which Z, and Z, = the infiltrated volumes per unit of furrow length

Percent of Field Length

FIG. 3.—Characteristic Advance and Recession Curves for Surged Furrow Irrigation
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(L2) for dry, continuous flow conditions and wet, intermittent flow con-
ditions, respectively. Parameters k, k', a, a', f, and f are the empirical
parameters particular to the soil type and the effect of cycled wetting
and drying. For Eq. 16, the intake opportunity time, 7, is cumulative,
i.e., the sum of opportunity time over the number of surges applied.

Flow rate in a dry furrow section wetted by a surge is substantially
lower than will occur in that section during succeeding surges. Field
observations indicate, and Malano's (13) tests verify, that infiltration can
be described by a function somewhere between Eqs. 15 and 16 for the
second surge cycle. In the present version of the model, these changes
are approximated using Eq. 15 for the dry sections, Eq. 16 for the third
and succeeding surges, and a transition equation for the second surge.

TABLE 1.-Furrow Mode ing Input Data for Continuous Flow

Model input
parameters

(1)

Flowell
non-wheel

furrow
(2)

Flowell
wheel
furrow

(3)

Kimberly
non-wheel

furrow
(4)

Kimberly
wheel
furrow

(5)

Benson
2-2-1

(6)

Printz
3-2-3

(7)

Matchett
2-3-5

(8)

Soil type Sandy Sandy Silty-Clay Silty-Clay Clay Loamy Clay
loam loam loam loam loam sand loam

Inflow, in liters
per second 2.0 2.0 0.8 1.5 1.14 3.49 0.92

Field length, in
meters 250 360 360 360 625 350 425

Field slope, in
meters per
meter 0.008 0.008 0.0104 0.0104 0.0044 0.0025 0.0095

Manning's n 0.04 0.04 0.04 0.04 0.02 0.02 0.02
Hydraulic section

parameters
P1 0.3269 0.3269 0.6644 0.6644 0.58 0.615 1.35
P2 2.734 2.734 2.8787 2.8787 2.91 2.924 3.00

Furrow geometry
parameter?
al 0.782 0.782 0.962 0.962 1.05 1.07 2.18
cr2 0.536 0.536 0.6046 0.6046 0.69 0.70 0.79

Time of cutoff,
in minutes 350 400 400 200 613 110 1,364

Kostiakov-Lewis
infiltration
function
parameters
k, in cubic

meters per
meter per
minute 0.002169 0.0028 0.00701 0.00884 0.018 0.01249 0.0033

a
f„ in cubic

meters per
meter per
minute

0.673

0.000222

0.534

0.00022

0.533

0.00017

0.212

0.00017

0.02

0.0001

0.024

0.000491

0.400

0.00003

'The furrow geometry expressed as depth = cr1 Aa2 are not used in the kinematic wave
model but are included for use in other models.

Note: 1 m = 3.28 ft; 1 liter per second (lps).
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TABLE 2.-Furrow Mode ing Input Data for Surged Flow

Input parameters
(1)

Flowell
non-wheel

furrow
(2)

Flowell
wheel
furrow

(3)

Kimberly
non-wheel

furrow
(4)

Kimberly
wheel
furrow

(5)

Soil type Sandy Sandy Silty-Clay Silty-Clay
loam loam loam loam

Inflow, in liters
per second 2.0 2.0 0.8 1.5

Field length, in
meters 360 360 360 360

Field slope, in
meters per
meter 0.008 0.008 0.0104 0.0104

Manning's n 0.04 0.04 0.04 0.04
Hydraulic section

parameters
Pi 0.3269 0.3269 0.6644 0.6644
P2 2.734 2.734 2.8787 2.8787

Furrow geometry
parameters
al 0.782 0.782 0.962 0.962
u2 0.536 0.536 0.6046 0.6046

Continuous flow
intake
parameters
k, in cubic me-

ters per meter
per minute 0.002169 0.00280 0.00701 0.00884

a
fo , in cubic me-

ters per meter
per minute

0.673

0.000222

0.534

0.000222

0.533

0.00017

0.212

0.00017
Surge flow intake

parameters
k, in cubic me-

ters per meter
per minute 0.003561 0.00459 0.00494 0.00625

a
f„ in cubic me-

ters per meter
per minute

0.322

0.00018

0.356

0.00018

0.493

0.00012

0.196

0.00012
Cycle time, in

minutes 40 80 80, 120 80
Cycle ratio 0.5 0.5 0.5 0.5

Note: 1 m = 3.28 ft; 1 = liter per second (lps).
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Letting 5c i- 2 and	 be the advance distances of the i - 2 and i - 1
surges, the transition function is written as

T = 	
X	

ii- 2 x ii- i ; T = 0, X < ii-2 or x >	 (17)

in which x = the location of the computational point of interest during
the current time step, i; and X = an empirical nonlinear distribution con-
stant. Then the infiltration equation coefficients for the transition infil-
tration function are

k" = k + (k - k')T 	
 

(18)

a" = a + (a - a')T 	
 

(19)

and f; = f„ + (ft, - g)T 	
 

(20)

In order to provide a nonlinear transition, values of X in Eq. 17 can range
from 2-5. A value of 3 was used in this paper and further tests are being
conducted to determine if X should be varied according to soil type and
incremental surge advance.

Infiltration equations, such as Eq. 15, are based on cumulative op-
portunity time. The infiltrated volume added by a particular surge must
therefore be computed as a difference. For instance, if at point x the
opportunity time prior to the on-going surge is T, and the opportunity
time created by the present surge is T, the infiltrated volume added dur-
ing the present surge is

Z(t) =	 + T) - Z(i) 	  (21)

VERIFICATION AND ANALYSIS

To evaluate the model presented here, seven sets of continuous flow
and four sets of surged flow test data, given in Tables 1-2, were eval-

Distance From Field Inlet in Meters

FIG. 4.—Analysis of Advance and Recession Using Benson 2-2-1 Test Data Re-
ported by Elliott, et al. (6)
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FIG. 5.—Comparison of Predicted and Measured Advance and Recession Trajec-
tories, Printz 3-2-3 Test from Elliott, et al. (6)

Distance Field Inlet in Meters

FIG. 6.—Analysis of Advance and Recession Data, Matchett 2-3-5 Test from El-
liott, et al. (6)

uated. Although not all of these evaluations are reported herein, the
entire data set is given for the benefit of other modelers who may wish
to evaluate the same conditions.

Continuous Flow.—Continuous flow tests were conducted at three
Colorado sites as reported by Elliott, et al. (6). Data from three of these,
denoted Benson 2-2-1, Printz 3-2-3, and Matchett 2-3-5, were selected
for evaluation in this paper. A comparison of the measured advance and
recession trajectories with those predicted by the model are given in Figs.
4-6. The Colorado data represent a wide range of field conditions and
the model adequately simulates each case; however, the Colorado data
are not entirely independent. The values of k and a were computed from
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advance data using the two-point volume balance solution presented by
Elliott and Walker (5).

The four sets of data in Table 1, referenced as "Flowell" and "Kim-
berly," are representive data obtained from a series of tests conducted
in Utah and Idaho. All of the parameters given are based on indepen-
dent field measurements (13,14). The comparative model analysis of the
wheel furrow tests are shown in Figs. 7-8. The predictions for the non-
wheel furrows indicated essentially the same accuracy; however, neither
non-wheel test completed the advance phase due to the higher intake
rates.

Two results of general interest emerge from the continuous flow test-
ing of the model. First, the calculated advance curves for the Colorado
data are almost exactly the same as the zero-inertia predictions pre-
sented by Elliott, et al. (6). The kinematic-wave and zero-inertia model
analyses of both continuous and surged flow at Kimberly and Flowell
are also the same and will be reported in a future paper. Considering
the range of field and soil conditions evaluated, it is concluded that un-
less field slopes are very flat with values of less than approximately 0.1%,
the added complexity of the zero-inertia model is not necessary.

The second note of interest concerns recession. The model appears to
deal adequately with the recession phase, although in relative terms the
errors are occasionally large. Recession in a continuous flow regime is
a very short process in sloping furrows and can generally be neglected
since the contribution to soil moisture and runoff are usually small fol-
lowing cessation of the furrow inflow. Furrow simulation of the reces-
sion phase is markedly simpler than for border or basin irrigation analyses.

Surged Flow.—Cycled or surged irrigation tests were also conducted
at Flowell, Utah, and Kimberly, Idaho. Fig. 9 shows the surge-by-surge
advance and recession trajectories for a Flowell wheel furrow test. The
results were similar for the other Flowell and Kimberly data. A com-
bined kinematic-wave simulation for surge flow is shown in Fig. 10, with
the actual and predicted surge advance front locations plotted. Three
replications of the Flowell non-wheel furrow tests and two of the Kim-
berly non-wheel furrow tests are shown.

The second and third sets of Flowell data shown in Fig. 10 exhibit
deviations of about 25% from the measured values for later surges. This
can probably be attributed to the difficulty experienced in maintaining
uniform discharge into the furrows, or variations in infiltration charac-
teristics from one furrow to another.

In analyzing individual surge advance and recession trajectories from
field measurements it is concluded that the spatial variability in soil in-
take properties has more impact on model performance for surge flow
than for continuous flow conditions. The relatively simple approxima-
tions contained in Eqs. 17-20 provide a limited capability to deal with
this problem, but have proved adequate in most cases. However, a sub-
stantial research effort is needed to clarify the infiltration processes for
surged flow. In the interim, the kinematic-wave model should be ade-
quate in most cases to describe the consequences of alternative surge
flow practices and to indicate the potential advantage or disadvantage
of a surge practice over a continuous flow regime.

The recession phase in surge flow is very important since a significant
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fraction of the surge-to-surge extension of the field coverage actually oc-
curs during this phase (i.e., simultaneous advance and recession). The
kinematic-wave model evaluates this phase of the irrigation very well in
the cases studied. However, recession is very difficult to monitor in the

Flowell Surged Wheel Test
400 -

Distance From Field Inlet in Meters

FIG. 9.—Measured and Predicted Advance Trajectories for 80-Minute Cycled Flow
(40 minute ON-40 minute OFF) In Flowell Wheel Furrow

Kinematic-Wave Model Predicted Surge Advance in Meters

FIG. 10.—Comparison of Measured and Calculated Surge Advance Fronts for
Kimberly and Flowell Tests (All Cycles Have Cycle Ratio of One-Half On, One-Half
Off)
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course of taking field measurements, and in sloping furrow systems the
total process occurs in relatively short time periods. Under surged flow
conditions, the model appeared to simulate field observations quite well,
and particularly the extension of the wetted area during the recession
phase.

CONCLUSIONS

Several important conclusions have emerged from this study. First,
the kinematic-wave analysis should be a satisfactory tool to predict water
advance, intake, and runoff for sloped furrow irrigated systems. Its ac-
curacy is demonstrated with data encompassing a relatively wide range
of field and soil conditions. It is simple to program and executes rapidly.
The uniform flow assumption which was made to replace consideration
of energy or momentum conservation appears basically sound in sloping
furrows, including surged conditions where the Froude number of flows
over previously wetted sections is higher. Finally, the emphasis of sur-
face and subsurface profile shapes near the advancing front, given in
the more complicated models, does not appear necessary in the kine-
matic-wave analysis. Indeed, these shape factors may be unrealistic even
in the more detailed models when the time steps approach 1-2 min or
more.

Describing infiltration under surged conditions and, therefore, simu-
lating surge flow hydraulics, is admittedly in a preliminary stage. How-
ever, the simplistic approximations presented here yielded good results.
Further research will improve this aspect of surface irrigation modeling,
but it is concluded that it can be used in its present state to assist surge
flow investigators, as well as those evaluating alternative design con-
figurations.

The field data used in this paper are not completely sufficient to eval-
uate each assumption inherent in the kinematic-wave model. The ob-
servable variations in roughness and cross-sectional shape, for instance,
can explain the deviations between predicted and measured advance and
recession. A sensitivity analysis followed closely the results of several
previous studies such as Elliott, et al. (6). It was therefore concluded
that a comprehensive analysis of the model to determine parameter sen-
sitivity and the model's limits of applicability should be based on com-
parisons with the hydrodynamic and zero-inertia solutions, a task yet
to be undertaken.
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APPENDIX 11.-NOTATION

The following symbols are used in this paper:

A =	 cross-sectional flow area, in square meters;
a	 =	 exponent in the Kostiakov-Lewis intake relation;
f,	 =	 basic intake rate, in cubic meters per meter per minute;
k=	 constant in the Kostiakov-Lewis intake relation, in cubic me-

ters per meter per minute;
m	 exponent in the area-discharge relation;
n
	 Manning resistance coefficient;

Q
	

flow rate, in cubic meters per second;
R
	

hydraulic radius, in meters;
SO	 average field slope;

time, in minutes;
x
	 distance measured from field inlet, in meters;

cumulative infiltration, in cubic meters per meter;
a	 constant in area-discharge relation;
0
	 space weighting factor;

exponent to distribute surge flow infiltration effect;
Pi /P2
	 empirical parameters relating furrow depth and area;

cri
	 =	 empirical parameters relating hydraulic section and area;

intake opportunity time, in minutes; and
time weighting factor.
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