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Abstract

Assuming a production process with returns to scale that vary with the intensity
it is operated at, an AK-model of endogenous growth with constant returns to scale
in production is shown to arise due to replication driven by profit-maximization. If
replication occurs at the efficiency-maximizing scale, the result applies also when
the number of production processes must be discrete, thus overcoming the so-called
integer problem. When competition is imperfect, there is only convergence toward
the AK-model for large enough input use, so an economy is more prone to stalling
in a steady-state without growth, the smaller and less competitive it is. Inefficient
scaling also raises the risk of stalling.

JEL Codes: O11; O40
Keywords: Economic growth; AK-model; Replication; Returns to scale in pro-
duction; Integer problem

∗Department of Economics; University of South Carolina; 1705 College Street; Columbia, SC 29208;
803-777-2786; cjensen@alumni.cmu.edu.



1 Introduction

In economic growth theory, the returns to scale in the factors of production that the

economy accumulates endogenously are crucial for its long-run evolution. In particu-

lar, when these are decreasing, growth comes to a halt in the absence of any external

impetus, as illustrated by Solow (1956). Therefore, models with sustained endogenous

growth have increasing or constant returns to scale in the endogenously accumulated

inputs, including those first proposed by Romer (1986) and Lucas (1988). Constant

returns to scale are particularly popular, giving rise to the well-known AK-model (Re-

belo (1991)), which can endogenously sustain a strictly positive constant rate of growth,

a so-called balanced-growth rate, consistent with the empirical stylized facts first de-

scribed by Kaldor (1963). Despite its crucial role, the nature of the returns to scale

is always assumed, never derived, which is a major deficiency of endogenous-growth

models (McCallum (1996)). At most, authors argue that replication leads to non-

decreasing returns to scale, since if a production process can be reproduced exactly,

the copy should arguably yield the same output as the original (Koopmans (1957), Shell

(1966), Romer (1990, 1994) and Jones (1999, 2005)). However, this is insufficient, as

it says nothing about production levels that are not a multiple of what the original

process yields, and can therefore not be generated by copying at the original scale; the

so-called integer problem (Romer (1990)).

If one assumes it is possible to copy the production process with the same degree of

efficiency at any scale, returns to scale are constant for all levels of production, but by

assumption. Instead, we assume that the efficiency of a production process, including

its returns to scale, varies with the intensity it is operated at, an idea that goes back at

least to Marshall (1890). Hence, exact replication, including the scale, yields the same

output as the original, but copies that are scaled up or down are not equally efficient.

Consequently, producers’ scaling and replication of the process determines the returns

to scale in production. In order to maximize efficiency, producers operate the process as

close as possible to the intensity where its returns to scale are constant, and replicate it

as production increases. However, they cannot do so exactly at this intensity, because

the number of processes must be a positive integer, since otherwise the scale of the

production process can be varied without affecting its efficiency, for example by run-

ning half a process at the efficiency-maximizing scale, thus violating our fundamental

assumption. Only when the process is replicated at the efficiency-maximizing intensity

does total production have constant returns to scale, which requires that nothing dis-

tort the profit-maximizing intensity away from the efficiency-maximizing one, and that
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competition be perfect, or with imperfect competition, that the number of processes,

and thus replications, be large enough.

Because constant returns to scale, and the AK-model, only arise for large enough

input use when competition is imperfect, endogenous growth can come to a halt in

smaller economies, even when larger, but otherwise identical economies, keep on grow-

ing forever. Moreover, the marginal product of the input would be lower in the stalled

economy, making it unable to attract a flow of input from the other. The reason is that

it is harder to achieve the efficiency-maximizing scaling in smaller economies, which

reduces the marginal products of inputs and affects their accumulation. As a result,

an economy’s starting point not only affects its growth rate, but could even deter-

mine whether it will stall or keep growing endogenously forever. Consequently, policies

usually considered to have only a short-term impact on the rate of growth, such as a

temporary inflow of inputs, or a transitory increase in competition, can have perma-

nent effects, by getting a stalled economy on to the path of never-ending endogenous

growth.

There are many reasons why the efficiency of a production process can vary with

the scale it is operated at. One is the physical nature of the process, for example, in

mineral extraction returns to scale might be decreasing as a result of the most easily

extractable resources being exploited first. Another is specialization, which can make

efficiency increase with the scale, as each worker concentrates more and more on the

task at which he has a comparative advantage, instead of having to do a little of

everything.1 Returns to scale might initially be increasing due to the fact that it takes

some time to get accustomed to performing a task, and doing so efficiently, while they

turn decreasing as fatigue or boredom kicks in. Additional factors that can contribute to

increasing returns to scale are fixed costs, synergies and learning-by-doing. Decreasing

returns to scale can arise due to coordination and communication problems, which are

more likely to emerge the larger the scale of operation.2 It can also be harder to provide

proper supervision and motivation in larger units, where the incentives to free-ride are

greater.

Assuming a logarithmic production process with returns to scale that go from being

increasing to decreasing as production rises, the next section derives an AK produc-

tion function with constant returns to scale based on replication driven by producers’

1In order for the degree of specialization to vary with the scale, there must be indivisibilities in
production (Edgeworth (1911), Kaldor (1934), Wicksell (1934) and Lerner (1944)).

2The managerial input can lead to decreasing returns to scale (Marshall (1890), Kaldor (1934) and
Hicks (1939)) even when it increases proportionally with all other inputs, as it becomes overstretched
due to the more than proportional complexity of the organization. The same applies for communication.
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efforts to maximize efficiency. The following two sections define the rest of the general

equilibrium model and study its dynamics, respectively. Subsequently, we show that

when the number of processes must be a positive integer, there is only convergence

toward constant returns to scale when replication occurs at the efficiency-maximizing

intensity.

2 Production with optimal replication

Imagine the output y of a production process depends on the input k through the

function

y = a log (bk) (1)

with given constants a > 0 and b > 0. Its returns to scale are increasing for k ∈
(1/b, e/b), decreasing for k > e/b, and constant at k = e/b.3 Output is zero for

k = 1/b, and strictly negative for k < 1/b. Because the production process is a concave

function, the optimal allocation among multiple identical processes is symmetrical, so

the most total output Y that can be produced with N processes and K total input is

Y = Na log

(
b
K

N

)
≡ H (K,N) (2)

where Y = N × y and K = N × k. If N could be varied continuously, the first-order

condition
∂H (K,N)

∂N
= a

(
log

(
b
K

N

)
− 1

)
= 0 (3)

would yield the optimal number of processes

N∗ (K) = be−1K (4)

since H is concave in N . The corresponding production function

Y = H (K,N∗ (K)) = abe−1K ≡ AK (5)

yields the most output that could be produced with any amount of total input K. For

given a and b, output Y would be linear in the input K, and have constant returns

to scale, so the AK-model would arise for any N and K. However, if N could be

varied continuously, it would be possible to change the scale of the production process

3Returns to scale at x0 are said to be increasing when f ′(x0) > f(x0)/x0, decreasing when f ′(x0) <
f(x0)/x0, and constant when f ′(x0) = f(x0)/x0, for any function f(x).
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without affecting its efficiency, for example by running half a process at the efficiency

maximizing scale, thus violating our fundamental hypothesis, and making returns to

scale constant by assumption.

When the number of production processes must be a positive integer,

Y = max

{
0, a log (bK) , 2a log

(
b
K

2

)
, 3a log

(
b
K

3

)
, . . .

}
≡ F (K) (6)

is the most output that can be produced with a given amount of input K. We imagine

that the number of production processes must be varied in discrete units, while the

input can be varied continuously. As an example, one can think of the number of

workers and the hours that each works. It is not possible to hire half a worker, but

it is possible to hire one to work part-time. The distinction is relevant when, as we

assume, a worker’s productivity depends on the number of hours worked. As one can

easily imagine, the joint output of two part-timers working four hours each can differ

from that of someone working the full eight hours. Just as one can hire someone to

work eight hours a day, one can do so for eight hours and five minutes. Hence, while

the adjustment on the extensive margin is restricted to integers, that on the intensive

margin is not.

Figure 1, which plots F (K), AK and H(K,N) for N = 1, 2, 3, 4 and a = b =

1, illustrates how F (K) converges toward AK as K increases. Mathematically, the

convergence can be shown as follows. For any K such that N∗(K) = be−1K is a

positive integer, F (K) = AK. For any K such that N∗(K) is not a positive integer,

let

I (K) ≡ be−1K − λ (K) (7)

where I(K) ∈ N is the natural number closest to be−1K such that I(K) < be−1K,

implying that λ(K) ∈ (0, 1) and

F (K) = max

{
I (K) a log

(
b

K

I (K)

)
, (I (K) + 1) a log

(
b

K

I (K) + 1

)}
. (8)

From the definition of I(K) above (7), it follows that K = (I(K) + λ(K))b−1e, so

F (K) = max

{
I (K) a log

(
e+

λ (K)

I (K)
e

)
, (I (K) + 1) a log

(
e+

λ (K)− 1

I (K) + 1
e

)}
(9)

while

AK = N∗ (K) a log

(
b

K

N∗ (K)

)
= (I (K) + λ (K)) a. (10)
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Figure 1: Convergence of F (K) toward AK with efficient scaling.

According to Taylor’s theorem (see for example Sydsæter et al. (1991)), for any function

f that is twice continuously differentiable, there exists µ ∈ (0, 1) such that

f (x) = f (x0) + f ′ (x0) (x− x0) +
1

2
f ′′ (x0 + µ (x− x0)) (x− x0)

2 (11)

where the last element is Lagrange’s error term for a first-order approximation of

f(x) around x0. For any integer I, the function I log(K/I) is twice continuously

differentiable with respect to K, so log(e + λ(K)/I(K)e) is too, and (setting x =

e+ λ(K)/I(K)e and x0 = e) we have

log

(
e+

λ (K)

I (K)
e

)
= 1 +

λ (K)

I (K)
−

(λ(K))2

2(I(K))2(
1 + φλ(K)

I(K)

)2 (12)

for some φ ∈ (0, 1). Multiplying by I(K)a yields

I (K) a log

(
e+

λ (K)

I (K)
e

)
= I (K) a+ λ (K) a−

a (λ(K))2

2I(K)(
1 + φλ(K)

I(K)

)2 (13)
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so that

I (K) a log

(
e+

λ (K)

I (K)
e

)
= AK −

a (λ(K))2

2I(K)(
1 + φλ(K)

I(K)

)2 (14)

exploiting the decomposition above (10). Similarly, Taylor’s theorem implies that

(I (K) + 1) a log

(
e+

λ (K)− 1

I (K) + 1
e

)
= AK −

a (λ(K)−1)2

2(I(K)+1)(
1 + ϕλ(K)−1

I(K)+1

)2 (15)

where ϕ ∈ (0, 1). As K grows, N∗(K) = be−1K increases, making I(K) rise, and it

follows from the expressions above (9, 14 and 15) that F (K) converges toward AK.

Hence, as replication increases with input use, returns to scale become constant, even

if the number of production processes cannot be varied continuously.4

Producers seek to maximize profits, and producing efficiently, getting the most

output possible from any amount of input, as determined above, is necessary for this.

In addition, producers, who are assumed to be price-takers in the input market, must

decide how much input to rent from consumers. Letting output be numeraire, having

a price of one, and assuming perfect competition also in the output market, they do so

by maximizing profits

π (K) = F (K)− (r + δ)K (16)

for a given rental rate r and depreciation rate δ ∈ (0, 1), imagining input K is physical

capital.5 We must have

r = A− δ (17)

4If instead of being a constant, b were a non-rival input among production processes, so that B = b,
the problem of choosing the optimal number of replications would remain unchanged and yield the
production function Y = ae−1BK, which has increasing returns to scale in inputs B and K jointly.
Romer (1990 and 1994) and Jones (1999) argue that replication leads to increasing returns to scale,
since technology, or ideas, are non-rival across production processes. Of course, not all innovations
are non-rival, and even those that are non-rival are not always non-excludable. Schumpeter (1934),
Griliches and Schmookler (1963), Schmookler (1966), Dasgupta and Stiglitz (1980), Grossman and
Helpman (1991a, b), Rivera-Batiz and Romer (1991), Aghion and Howitt (1992), and Romer (1993)
all stress the importance of profits, and thus excludability, in driving innovation. Because externalities
in production are non-rival inputs, they too can affect the returns to scale, as is illustrated by Romer
(1986) and Lucas (1988).

5The input does not have to be physical capital, but in order to complete the model, we need to take
a stand on what it is and how it is accumulated. The input could even be a composite. For example,
with the production process y = log(qαlβ), we have Y = N log((Q/N)α(L/N)β) ≡ H(Q,L,N), which
yields N∗(Q,L) = e−1Qα/(α+β)Lβ/(α+β) and Y = H(Q,L,N∗(Q,L)) = (α+ β)e−1Qα/(α+β)Lβ/(α+β).
Setting a = α+ β, b = 1 and k = qα/(α+β)lβ/(α+β) makes this framework identical to that above, with
constant returns to scale in the composite input K = Qα/(α+β)Lβ/(α+β).
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in a competitive equilibrium with nonnegative production. If the interest rate were

higher than this, profits would be negative for all input levels, since the average product

is at most A, so there would be no demand for input and no production. If the interest

rate were lower than A−δ, each producer would demand an infinite amount of input, as

this would make its average product equal A, which would be greater than its average

cost r + δ, making profits infinitely large. Inserting for the equilibrium interest rate

(17) into the profit function (16) yields

π (K) = F (K)−AK ≤ 0 (18)

which is strictly negative whenever F deviates from AK. As a result, a competitive

equilibrium is only feasible when all production occurs at points on the production

function where returns to scale are exactly constant.6 Hence, when the economy-wide

output changes, the number of producers and production processes adjusts so that

all that remain active have an average productivity of A, since otherwise their profits

would be strictly negative.

With imperfect competition in final goods, we have

r =
ε− 1

ε
F ′ (K)− δ (19)

where ε > 1 is the elasticity of substitution between differentiated final goods (or the

inverse of the elasticity of demand). This is the standard first-order condition for profit

maximization with imperfect competition, after normalizing the price to unity, see for

example Acemoglou (2008), and implies that producers apply a constant gross mark-up

of ε/(ε− 1) > 1 to the marginal cost of production (r + δ)/F ′(K).7 Each of the

H(K, I) = Ia log

(
b
K

I

)
(20)

functions that make up F (K), were I ∈ N+, is strictly concave inK for all I > 0. Hence,

unless profits are maximized at a point where the number of production processes

6This is in line with Romer (1990, 1994) and Jones’ (2005) point that perfect competition is in-
compatible with increasing returns to scale. In our setup it is also incompatible with K being at a
point where F (K) has decreasing returns, because a producer could then raise both her sales and profit
margin with a large enough increase in input use. If the returns to scale of F (K) were decreasing for
all K, decreasing returns would be compatible with perfect competition.

7For example, with an inverse demand function p(Y ) for the output Y of a particular producer,
yielding her relative price p as a function of her sales Y = F (K), her profits are p(F (K))F (K) −
(r + δ)K. Assuming an interior solution, profit-maximization is given by the first-order condition
(ε− 1)/ε p(F (K))F ′(K) = r + δ, where ε = p′(F (K))F (K)/p(F (K)).
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changes, and we transition betweenH(K, I) andH(K+I), or atK = 0, or for infinitely

large K, the first order condition (19) must hold. The latter two are not feasible in an

equilibrium with production, as they would imply a zero or infinite demand for input.

To see that profits cannot be maximized at any point KI where F transitions between

H(K, I) and H(K + I), note that this would require

ε− 1

ε
H ′

1(KI , I) ≥ r + δ ≥ ε− 1

ε
H ′

1(KI , I + 1) (21)

the first inequality so that profits do not rise as K is reduced along H(K, I), the second

so that they do not rise as K is increased along H(K, I + 1). The transition point KI

is given by H(K, I) = H(K, I + 1), which yields

KI =
(I + 1)I+1

bII
(22)

for I = 1, 2, 3, . . . Exploiting that H ′
1(K, I) = IaK−1, we have

H ′
1(KI , I) = ab

(I + 1)I

II
< ab

(I + 1)I+1

II−1
= H ′

1(KI , I + 1) (23)

for finite I, contradicting the condition (21) necessary for profits to be maximized at

KI , H
′
1(KI , I) ≥ H ′

1(KI , I + 1). The first-order condition (19) is also necessary for an

equilibrium with production on the linear parts of F , which equal AK, since otherwise

the marginal revenue (ε − 1)/εA of using an additional unit of input would always be

greater, or smaller, than the marginal cost r+ δ, making input demand infinitely large,

or zero, respectively. The condition with perfect competition (17) is a special case of

that with imperfect competition (19) for ε → ∞, so the more general expression is used

below. Inserted into the profit function (16) it yields equilibrium profits

π = F (K)− ε− 1

ε
F ′ (K)K (24)

which can be non-negative at points where F has increasing, decreasing or constant

returns to scale.

The production function F assumes that the allocation among the underlying pro-

cesses is optimal. Therefore, these must either be operated by the same producer, or be

coordinated across producers in an effort to maximize efficiency and reduce costs. This

can happen indirectly through outsourcing, or directly through arrangements such as

code sharing among airlines. Alternatively, the coordination can arise as a result of all
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producers choosing their production levels so as to satisfy the same profit-maximizing

first-order condition (19), assuming they have the same degree of market power. Hence,

F can represent the production function of each individual producer, or that of the econ-

omy as a whole. In either case there is convergence toward constant returns to scale as

the number of replications increases. With perfect competition, individual production

satisfies constant returns to scale at all levels of replication, so the same applies to

aggregate production.

3 Equilibrium

Consumers, who are assumed to be price-takers, rent out their capital S for a rate of

return r. In addition, they collect profits π generated by production. These resources

are used to accumulate capital and purchase consumption goods C. Consumption and

saving decisions are made so as to maximize the discounted lifetime utility∫ ∞

0

C (t)1−θ − 1

1− θ
e−ρtdt (25)

subject to the budget constraint

Ṡ (t) = r (t)S (t) + π(t)− C (t) (26)

with respect to the control C and the state S, given paths for the interest rate r and

profits π, and values for the constant relative risk-aversion parameter θ > 0, discount

rate ρ ∈ (0, 1) and initial capital stock S0 > 0. The first-order condition is

Ċ

C
=

r − ρ

θ
(27)

the usual requirement for the optimal consumption path.8

The market-clearing condition for the input

K = S (28)

determines the equilibrium rental rate r. Due to Walras’ law, this condition also

guarantees that the market for output clears. Combining the first-order conditions

8There is also a standard no-Ponzi game constraint, limt→∞ S(t) exp(−
∫ t

0
r(x)dx) ≥ 0, and transver-

sality condition, limt→∞ S(t) exp(−
∫ t

0
r(x)dx) = 0, see Acemoglou (2008).

10



from maximizing profits (19) and utility (27) yields

Ċ

C
=

ε−1
ε F ′ (K)− δ − ρ

θ
(29)

while the budget constraint (26) becomes

K̇ = F (K)− δK − C (30)

after substituting in for profits (16) and the market-clearing condition (28).

The production function F (K) is not concave, so the first-order condition for the

corresponding planner problem, Ċ/C = (F ′(K)−δ−ρ)/θ, does not necessarily charac-

terize the path that maximizes life-time utility (25) subject to the resource constraint

(30), even when competition is perfect (ε → ∞). However, when households take the

real interest rate and profits as given, their budget constraints (26) are linear, making

the first-order condition (27) necessary and sufficient for optimality. The two solutions

can differ because the planner might be willing to sacrifice current consumption to

move to a point where the input is used more efficiently, thus allowing for higher future

consumption. For individual households the rate of return, and efficiency with which

the input is used, is given, so they cannot consider such trade-offs. By separating the

decision of how much input to accumulate from that of how much to use in production,

the non-concave problem is isolated to the simpler non-dynamic profit-maximization.

4 Dynamics

When competition is perfect, we have a standard AK-model for all levels of input, with

consumption, production and capital always growing at the constant rate θ−1(A−δ−ρ)

(see Rebelo (1991)). With imperfect competition, the dynamics are more complicated.

Whenever K ≤ 1/b, production F (K) is, and always will be, zero, so both consump-

tion and the stock of input approach zero. For K > 1/b, a steady-state equilibrium

with constant non-negative consumption and input use exists for any capital K̄ and

consumption C̄ satisfying

F ′ (K̄) = I∗
(
K̄
)
aK̄−1 = (δ + ρ)

ε

ε− 1
≡ κ (31)

and

C̄ = F
(
K̄
)
− δK̄ = I∗

(
K̄
)
a log

(
b

K̄

I∗
(
K̄
))− δK̄ (32)

11



where I∗(K) ∈ N denotes the optimal discrete number of processes associated with

input level K.

Figure 1 shows that before F (K) converges to AK, its slope varies with K. F goes

from one H-function to the next, so its slope F ′(K) is decreasing in K while moving

along any one H-function, but jumps up each time I∗(K) increases and F moves to a

new H-function. Inserting for the transition points KI and KI−1 from above (22) into

H ′
1(K, I) = IaK−1, we find that while moving along H(K, I), the slope

F ′ (K) ∈

(
ab

(
I

I + 1

)I+1

, ab

(
I − 1

I

)I−1
)

(33)

for I = 2, 3, 4, . . . Along H(K, 1), F ′(K) falls from ab to .25ab. As I increases, the

lower bound for F ′(K) rises, while the upper bound falls, both converging toward

A = abe−1 ≈ .368ab.9 Since the optimal number of processes I∗(K) is increasing in K,

it follows that an economy is more prone to getting stuck at a constant steady state

the smaller K is. That is, when κ ∈ (.25ab, .368ab), it is possible for an economy that

starts out with little input to stall completely, while one that starts out with just a little

more input could grow endogenously forever, even if the two economies were identical

in all other respects. Moreover, the rate of return of the input would be lower in the

stalled economy, preventing it from attracting input from the other.

If κ < .25ab (and K > 1/b), consumption growth is always strictly positive, and

therefore production and input use must also rise over time (though not necessarily in

every period). If κ > ab, consumption is always shrinking, which can only be optimal

if the economy itself is shrinking. If κ ∈ (.25ab, .368ab), consumption growth can be

positive or negative, but if the economy does not stagnate in a constant steady state and

accumulates enough input, the consumption growth rate converges toward a strictly

positive number. The closer κ is to .368ab, the greater input stock an economy can

have and still risk stalling. If κ ∈ [.368ab, ab), consumption growth can take any sign,

but there is a limit to how much the economy can grow, since consumption growth

would become negative, or zero, if it ever accumulated enough input for F to converge

to AK. Whenever K is large enough for F to be indistinguishable from AK, we have

a standard AK-model where consumption, input use and production are all growing

at the constant rate θ−1(A(ε− 1)/ε− δ − ρ) (see Acemoglou (2008)).

The less competitive an economy is, the smaller is ε, and the higher is the threshold κ

that the marginal product F ′(K) has to exceed in order to avoid stagnating in a steady-

9Convergence of F ′(K) toward A follows from F (K) converging toward AK, but also from the fact
that limx→∞(1 +m/x)x = em for any constant m.
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state without growth. Hence, according to our model, less competitive economies are

more prone to stalling.10 Of course, the degree of competition could easily change

over time, thereby affecting the growth dynamics. For example, an economy stuck

at a steady-state could start growing again endogenously if the degree of competition

increased sufficiently. Moreover, it could keep growing endogenously forever, even if

the increase in competition was just temporary.

5 Suboptimal replication

If the number of production processes could be varied continuously, returns to scale

would be constant no matter the scale the process is replicated at. However, when the

number of processes must be a positive integer, so that returns to scale are not constant

by assumption, replication only leads to constant returns to scale with the efficiency-

maximizing scaling. There are many circumstances that can distort a producers choice

of how many processes to operate. Some examples are the time and costs incurred when

setting up or dismantling a process, fixed costs associated with keeping it running,

regulatory requirements that vary with the size of the operation, and credit constraints

that inhibit producers from expanding at the efficiency-maximizing rate. For simplicity,

we assume that the distortion is due to a government imposed tax or subsidy of τ per

production process (transfered to the households). In addition, we imagine a perfectly

competitive economy, and let b = 1. As a result, a producer’s profits are given by

Na log
K

N
− τN − (r + δ)K ≡ G (K,N) (34)

which is concave in N . Hence, the profit-maximizing number of processes is determined

by the first-order condition

∂G (K,N)

∂N
= a

(
log

K

N
− 1

)
− τ = 0 (35)

assuming the maximum is non-negative (τ < −a(1 + log((r + δ)/a)). This yields the

profit-maximizing number of processes

N̂ (K) = e−1− τ
aK (36)

10The same applies for high depreciation and discount rates.
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and the production function

Y = H
(
K, N̂ (K)

)
= (a+ τ) e−1− τ

aK ≡ ÂK (37)

which is linear, and thus has constant returns to scale. For τ 6= 0, we have Â < A,

reflecting that production is inefficient whenever the scaling is distorted.

When the number of processes must be a positive integer,

max

{
0, a logK − τ − (r + δ)K, 2a log

K

2
− 2τ − (r + δ)K, . . .

}
(38)

yields the most profits that can be generated with a given amount of input K. The

value of K at which one must switch from I to I+1 processes so as to maximize profits

is now given by the point where G(K, I) and G(K, I + 1) intersect, assuming profits

are non-negative at such a point (τ < a(log(aI/(r+ δ) log(1 + 1/I))− I log(1 + 1/I))).

This yields the transition points

K̂I =
(I + 1)I+1

II
e

τ
a (39)

for I = 1, 2, 3, . . ., which show that profit-maximizing producers use too few processes

when τ > 0, and too many when τ < 0, compared to what maximizes output (22).

Figure 2 illustrates what happens when producers use too few processes. For a =

b = τ = 1, it plots ÂK and H(K, I) for I = 1, 2, 3, . . . , 16 (the latter are not labeled

in the figure), together with the total production, labeled F̂ (K), that results with

the profit-maximizing transition points (39). These make production jump up as we go

from one H-function to the next, because the transitions are not where the H-functions

intersect (but instead where the G-functions intersect). One can easily show that

H
(
K̂I+1, I + 1

)
−H

(
K̂I , I

)
= τ (40)

implying that production jumps by τ units whenever the number of processes increases

by one. Hence, when replication happens at a suboptimal scale, production with a

discrete number of processes does not converge toward a linear production function.

Instead, it converges toward a piecewise linear function that jumps up or down each time

the number of production processes changes. Because of these jumps, the production

function does not satisfy constant returns to scale, even for large K.

Inserting for the transition points K̂I and K̂I−1 into H ′
1(K, I) = IaK−1, we find
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Figure 2: Lack of convergence toward AK with inefficient scaling.

that while moving along H(K, I),

F̂ ′ (K) ∈

(
a

(
I

I + 1

)I+1

e−
τ
a , a

(
I − 1

I

)I−1

e−
τ
a

)
(41)

for I = 2, 3, 4, . . ., which as I increases, converges towards ae−1−τ/a ( 6= Â). When

τ > 0, so that an inefficiently low number of processes is used, all operated at an

inefficiently high scale, F̂ ′(K) is lower than it would be if efficiency were maximized,

for all I, thus making the economy more prone to stalling in a steady-state without

growth, or even shrinking over time. If τ < 0, the number of processes is inefficiently

high, the scale inefficiently low, and F̂ ′(K) is higher than it would be if efficiency were

maximized, but the economy shrinks whenever the number of processes increases.

6 Conclusions

We show how the AK-model of economic growth can arise endogenously through the

efficiency-maximizing replication of an underlying production process with returns to

scale that vary with the intensity it is operated at. The result applies for a discrete
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number of replications, thus overcoming the so-called integer problem. When compe-

tition is perfect, the AK-model arises for all levels of input use and production. With

imperfect competition, it only arises for a large enough number of replications, so it is

possible for an economy to stagnate in a steady state without growth, while another

that starts out with just a little more input, but is otherwise identical, could go on

growing endogenously forever. Moreover, the marginal product of the input would be

lower in the stalled economy, making it unable to attract a flow of input from the

other. An economy is less prone to stalling the larger it is, and the higher the degree

of competition among its producers. Our model suggests that even a temporary inflow

of input, or transitory increase in competition, could start an everlasting growth spurt.

Even if replication leads to constant returns to scale in production, never-ending

endogenous growth might not materialize. The reason is that the economy might not

accumulate all inputs, making returns to scale decreasing in those it does accumulate

endogenously. For example, in the Solow (1956) model, returns to scale are constant

in capital and labor jointly, and therefore decreasing in capital alone, the only input

it assumes that the economy amasses endogenously. Of course, as Lucas (1988) shows,

what matters is not just what the economy accumulates in quantity, but also in quality.

If it does not endogenously amass more workers, but does accrue human capital in terms

of improved skills, it can still grow endogenously, even in per-capita terms. The same

is true if land, usually considered to be available in given amounts for the economy

as a whole, is used more intensively or efficiently. Because it is difficult to imagine an

input that cannot be accumulated in quantity or quality, or used more efficiently, non-

decreasing returns to scale all but guarantee sustained endogenous economic growth.
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