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Abstract 

In this paper, we first briefly review the recent literature on climate change, resource scarcity and 

conflict. This is then followed by introducing an agent based computational model based on the 

theory of production and conflict which is capable of simulating the dynamics of micro-level 

resource conflicts. The model considers differences in resource attributes, differentiates between 

conflict subjects, takes into account bounded rationality, nonlinearity and feedback loops, and is 

enriched by a set of scenarios ranging between mild to severe resource shocks. Our results show 

that agents tend not to get engage in conflict during mild resource scarcity scenarios as they adapt to 

the changes and since the decreases in returns to resource predation and increases in their protective 

practices act as negative feedback loops, discouraging resource predators from allocating further 

effort to predation. The model results also show that scarcity is more likely to encourage product 

predation rather than resource predation among the agents. 

 

JEL: Q54, D74, Q34, C61, C63 

Keywords: Climate Change, Resource Scarcity, Conflict, Security, Agent-based Model 

NumWords: 11002  



Electronic copy available at: http://ssrn.com/abstract=2172669Electronic copy available at: http://ssrn.com/abstract=2172669

DRAFT PAPER      2 

 
 

1. Introduction 

On December 8, 2009, a day after United Nations Climate Change Conference started in 

Copenhagen, the Proceedings of the National Academy of Sciences (PNAS) published a paper by 

Marshall Burke and his colleagues claiming that the risk of civil war increases in Africa when the 

temperature is higher (Burke, et al., 2009). Almost a year later, the same journal published a paper 

by Halvard Buhaug (2010a) titled “Climate not to blame for African civil wars”, rejecting the 

results of Burke, et al. (2009). Few months later Burke and his colleagues responded to Buhaug’s 

paper (Burke, et al., 2010b) which in turn received a response from Buhaug (Buhaug, 2010b). 

Sutton et al. (2010) also published a letter in PNAS titled “Does warming increase the risk of civil 

war in Africa?”, raising concerns with the findings of Burke et al. (2009) which received a response 

later in the same year in an another letter to PNAS (Burke et al., 2010c). 

This is not an isolated or unusual exchange since academic debate continues on whether climate 

change might initiate new or intensify current conflicts (Salehyan, 2008; Scheffran, et al., 2012). 

Several recent studies were reported in the special issue of Journal of Peace Research where Nils 

Petter Gleditsch (2012, p.3) concludes: “Overall, the research reported here offers only limited 

support for viewing climate change as an important influence on armed conflict.”  

The editors of Climate Change, Human Security and Violent Conflict: Challenges for Societal 

Stability stated moreover that “climate change has no automatic effect on human security, on 

societal stability, or on violent conflict. Rather, there are multiple links in the chain between 

changes in the natural environment and these phenomena, which mitigate or multiply the effects of 

climate change” (Scheffran et al., 2012, p.797). 

This paper attempts to respond to a critical question that we believe has not been addressed 

comprehensively so far in the literature: Why, contrary to the theoretical perceptions and 

expectations, might climate change and its consequent resource scarcity not lead to conflict and 

when they do, why might climate-induced conflicts not be as severe as anticipated? 
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To respond to this question, instead of investigating case studies or analyzing large-N datasets 

which has caused controversy in this area so far, we present a theoretical computational model 

based on a well-known economic framework which, borrowing Schelling’s (1978) terms, associates 

individuals’ micro-motives with emergent macro-behaviors of conflict. 

Next section introduces the unsettled literature on the climate-conflict (CC) link and briefly reviews 

the current state of debate. After introducing our theoretical framework and analytical approach, the 

model is introduced and its verification and basic outputs are presented. Finally, the scarcity 

scenarios and their impacts on the results are discussed, followed by conclusions where we adress 

our primary research question.  

 

2. The Debate 

The security aspects of climate change have been highlighted by high-ranking policymakers and 

institutions. According to the Washington Post (Lynch, 2007), U.N. Secretary-General Ban Ki-

Moon first addressed the U.N. General Assembly on the issue in 2007, stating that future extreme 

climatic events such as droughts, floods our constant inundations may lead to scarcity of arable land 

and so drive war and conflict0F

1. In September 2009, New York Times also published Barak Obama’s 

speech on climate change at the U.N. General Assembly, warning against “conflict in places where 

hunger and conflict already thrive” (Obama, 2009). In July 2011, The Guardian reported on a UN 

Security Council meeting discussing the formation of “green helmets” as a peacekeeping force to 

act when climate-induced conflicts occur (Goldenberg, 2011)1F

2. 

                                                            
1 The full statement is available on the UN news centre at: 
http://www.un.org/apps/news/story.asp?NewsID=21720&Cr=global&Cr1=warming 
2 For further details see: Security Council 6587th meeting documents at: 
http://www.un.org/News/Press/docs/2011/sc10332.doc.htm 
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Researchers are not as confident as politicians, since the issue of resource-driven conflicts has been 

source of disagreement, when the impacts of both resource abundance and resource scarcity are 

investigated.  

In the final years of the last century, two studies, Sachs and Warner (1995) and Collier and Hoeffler 

(1998), caused a wave of academic debate by showing how natural resource abundance can lead to 

lower levels of economic growth and higher risks of war. 

Over the next decade, many studies tried to better investigate the channels which may link resource 

abundance to conflict and as time passed more evidence was presented concluding that in the 

majority of cases, it is the institutional capacity of a country or a region in managing its natural 

resource wealth which determines its growth and security, and not the resource abundance per se 

(Ross, 1999; Maxwell and Reuveny, 2000; Mehlum et al. 2006; Brunnschweiler, 2008; 

Brunnschweiler and Bulte 2009). 

The same story can be observed for resource scarcity. The potential links between resource scarcity 

and conflict, especially scarcity driven by climate change, have been discussed widely over the last 

couple of decades and almost every paper published in this area over the past few years has briefly 

or extensively reviewed how different studies have reached diverse, and sometimes even 

contradictory conclusions2F

3.  

For instance, while authors such as Grossman and Mendoza (2003) and Homer-Dixon (1991 and 

1994) used theoretical and empirical models to associate resource scarcity and conflict, interestingly, 

many recent studies such as Adano et al. (2012), Benjaminsen et al. (2012), Butler (2012) and 

Buhaug and Theisen (2012) highlights the social, economic and political institutions as the main 

factors affecting the conflict decisions of individuals, communities or states. Raleigh and Urdal 

(2007, p.674) concluded that: “political and economic factors far outweigh those between local 

                                                            
3 We avoid repeating the entire literature here since it has been broadly covered by Theisen (2008), Salehyan (2008), 
Brauch (2009) and Scheffran et al. (2012).  
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level demographic/environmental factors and conflict”. Nevertheless, there are still studies 

published recently, showing how conflict is significantly affected by resource scarcity such as 

freshwater availability, land degradation and rainfall (Hendrix and Salehyan, 2012; Urdal, 2008). 3F

4  

In this paper, we apply a widely-used economic framework, called the theory of Production and 

Conflict 4F

5 (P&C) and implement it by developing an agent-based computational model to examine 

what circumstances in which climate change might or might not cause conflict. 

 

3. Theory and Modeling Approach 

The building blocks of production and conflict theory are simple. According to this theory, 

economic entities do not merely allocate effort to produce goods and services, but they may also 

allocate some unproductive effort to predate others’ resources (raw materilas), final products, rights 

and wealth, or protect themselves from being predated by others (Hirshleifer, 1988; Grossman, 

1998, 2001).  

While these types of models were originally developed to study topics in property rights protection, 

later versions were applied to explore issues such as rent-seeking behavior and resource conflicts 

(Garfinkel and Skaperdas, 2007; Hausken, 2005; Lahiri, 2010; Muthoo, 2004).  

At least three studies have used this framework so far to explore the relations between resource 

access and conflict. Grossman and Mendoza (2003) presented an equation-based model of this 

theory where they found that resource scarcity, especially when it is transitory leads to further 

appropriative competition. Reuveny et al. (2011) developed a game theoretic model based on this 

theory and being able to replicate some of the real-world patterns and trends, concluded that 

“increasing the resource carrying capacity and growth rate intensifies the fighting” (p.709). Butler 
                                                            
4 Authors such as Hartmann (2010), Brauch (2009) and Oels (2012) have warned against the securitization of climate 
change. Slettebak (2012, p.163) satates that “one worrying facet of the claims that environmental factors cause conflict 
is that they may contribute to directing attention away from more important conflict-promoting factors, such as poor 
governance and poverty.” It has also been claimed that scarcity can even lead to cooperation among stakeholders and 
provide motivation for innovation in the affected communities (Dinar, 2009, 2011). 
5 As called by Hausken (2005) 
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and Gates (2012) also introduced a model partially based on this theory and showed that conflict is 

sensitive to property rights protection asymmetries.  

In order to analyze the complexity of conflict decision at the micro and macro level, we have 

applied an agent-based model to simulate how individuals interact in an environment where they 

can both produce and predate. Agent-based modeling is “the computational study of systems of 

interacting autonomous entities, each with dynamic behavior and heterogeneous characteristics” 

(Heckbert, et al., 2010, p.40). In economics, this approach is also known as Agent-based 

Computational Economics defined by Tesfatsion (2003, p.264) as “the computational study of 

economies modeled as evolving systems of autonomous interacting agents.”5F

6  

In agent-based models, the computer provides a “flight-simulator-like interface” (Holland, 1992, 

p.29) where agents can represent entities such as individuals, communities, firms, cars, agricultural 

crops or climatic factors. Each agent is defined based on some features and functions and various 

embedded rules which control its actions and reactions. This approach provides the opportunity of 

taking into local interactions between heterogeneous autonomous players which can generate non-

equilibrium states which better explain the nature of a system (Epstein, 2006). 

Various studies have discussed the advantages of using agent-based models, including being able to 

address unsatisfactory features of conventional approaches such as the perfect rationality of the 

agents (Axtell, 2000). Agent-based models are highly flexible and so are better able to represent the 

“natural description of a system” (Bonabeau, 2002), especially when we want to present the human-

environment relations (Li and Liu, 2008). 

Many authors suggest that the conflict analyses should be undertaken at more disaggregated levels. 

Allouche (2011) believes that while long-term high-level data, such as international wars datasets, 

can provide insights into how scarcity may lead to conflict, moving toward applying short-term data 

                                                            
6 Other definitions and introductory material on ABM are presented by Axelrod (1997) and also the second volume of 
Handbook of Computational Economics (Tesfatsion and Judd, 2006), Macal and North (2010), Heath et al. (2009) and 
Squazzoni (2009). 
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at more disaggregated levels can be more beneficial, especially when food and water security are 

studied. This has been echoed by other authors such as Nordås and Gleditsch (2007), Trombetta 

(2012), Scheffran et al. (2012), Hendrix and Glaser (2007) and Theisen (2008), who suggest that 

local, sub-national, small-scale and less intense conflicts should be taken in to account in CC 

analysis6F

7.  

ABMs can also address the data limitation challenges that scholars face in CC research (Buhaug 

and Theisen, 2012; Scheffran et al. 2012), by providing the opportunity to run the model under 

different scenarios and study a range of possible outcomes. 

Moreover, analyzing the associations between climate change and conflict, we are dealing with a 

complex adaptive system (Brauch and Scheffran, 2012; Nardulli and Leetaru, 2012; Butler and 

Gates, 2012). Following Ramalingam et al.’s (2008) framework of defining a complex system, 

different features of complexity can be identified in our model:  

Firstly, conflict as discussed in this paper, is an interaction between at least two parties (Hirshleifer, 

1988) and so an agent’s decisions will directly and indirectly affect others’ conflict decisions. This 

interdependence among system actors may lead to the formation of feedback loops such as violence 

leading to further violence (Adano, et al., 2012). Also, as Trombetta (2012) discusses, assigning 

deterministic behavior to humans in CC models and then aggregating them, is one of the issues 

which needs to be corrected in these types of models since, as Grossman and Kim (2000) and 

Reuveny (2011) discuss, the complex outcomes of these models at the macro level emerge from the 

interactions among the individuals rather than decisions being aggregated. 

Secondly, nonlinear patterns of behavior have been found in at least at two different levels in CC 

models. Hendrix and Salehyan (2012) show how there is a nonlinear relation between rainfall and 

social conflict in their studied group of countries in Africa and Scheffran et al. (2012) remind us of 

                                                            
7 It has been argued that what is concluded from micro-level conflicts can be considered as a warning for problems at 
higher levels of aggregation considering their “incremental destabilizing effects” (Nardulli and Leetaru, 2012, p.73). 
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the “possible tipping points” and “possible critical thresholds” that may exist in agents’ behaviors 

that are capable of triggering climate-induced conflicts.  

Conflict models also present high dependency on initial conditions and heterogeneity of features. 

Beardsley and McQuinn (2009) comprehensively studied the history and characteristics of two 

rebel groups in Asia, the Free Aceh Movement (GAM) in Indonesia and the Tamil Tiger 

(Liberation Tigers of Tamil Eelam, LTTE) in Sri Lanka and explore how the differences among the 

groups led to two totally different outcomes in the aftermath of the 2004 Indian Ocean earthquake 

and tsunami.  

ABMs have been widely used in modeling conflict, as presented by Rousseau and van der Veen 

(2005), Epstein (2002), and Bhavnani and Miodownik (2009) and Hassani-Mahmooei and Parris 

(2009, 2013). 

 

4. Model 

To ensure that the model is replicable, it is described using the Overview, Design concepts, and 

Details (ODD) protocol (Grimm 2006; Grimm, et al., 2010). The associated Unified Modeling 

Language (UML) diagrams (Booch, et al., 2005) are also provided as supplementary material. 

Among numerous platforms available for implementing an agent-based model, we have used 

NetLogo (Wilensky, 1999). Studies have shown that NetLogo is well equipped with the features 

necessary for modeling in the social sciences (Blikstein, et al., 2005; Railsback, et al., 2006).  

4.1. Purpose 

The main purpose of this model is to implement an agent-based environment which is capable of 

simulating effort allocation decisions between productive and conflict activities which is then used 

to investigate how resource scarcity is likely to affect agents’ effort allocation between production 

and predation. 
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4.2. Entities, state variables, and scales 

The model has four main entities including the agent, the network, the environment and the 

resource.  

Each agent represents an individual with six main variables. The variable mxage holds the 

maximum expected age of the agent. Over time age, which is initially 1, increases and when it 

reaches to mxage, the agent leaves child number of offspring and dies. child holds an integer with 

uniform distribution which minimum and maximum values are determined based on the population 

scenarios. mxage is a normally distributed random value. To associate agents’ allocation decisions 

with their heterogeneous attitude, each agent has a variable which determines its risk taking level, 

rsktl. When rsktl is higher, agents are more likely to allocate further effort to predation and less to 

protection. 

Over the simulation, agents select an effort allocation strategy from the pool of strategies. The 

strategy is represented using a bit vector [X1 X2 X3 X4], where:  X1 stands for a binary variable 

representing predation of resource type 1, X2 similarly represents predation of resource type 2, X3 

is for product predation and X4 shows whether the agents produces or not. So, if a bit is 1, the agent 

allocates effort to that option and if 0, it does not. For example, the [0 0 1 1] strategy means an 

agent predates other agents’ products along with producing itself. In the models which have just one 

type of resource, the first two bits are combined and the strategy takes the [X1 X2 X3] format. For 

simplicity, a strategy like [1 0 1] is presented as S101 from now on. 

Agents are connected to each other through an undirected incomplete network where if A is 

connected to B, B is connected to A as well. The connection priority is set so that agents will 

connect to the agents spatially closer to them. Sensitivity analyses show that while this does not 

affect the results, it improves the model interface. The links are fixed and if a link is broken for any 

reason the agent will not attempt to establish new links, unless all of them are broken. The average 

number of links an agent creates is proportional to the population. 
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The environment is a 50 × 50 bounded square grid where each cell is called a patch. Patches all 

have the same physical size in the model’s graphical user interface, representing an area able to 

accommodate only one agent. 

In our model, four different types of resources are studied. Land which represents agricultural land 

is a private resource which can be accumulated and stored by the agent over the long-term and be 

inherited between generations. Water-D represents a resource such as drinking water which has 

only consumption usage. It is a common resource and can be preserved over a predefined short-term. 

Water-P on the other hand has similar features to Water-D, but it represents irrigation water since it 

yields utility through the production function. Finally, Water-B (water for Both uses) can be directly 

consumed and can also be used in the production process.  

The resource scarcity scenarios are mainly controlled by two variables: 1) the Duration of the 

resource scarcity, D, and 2) the spatial Area which is affected by the resource scarcity, A. We also 

allow for single or multiple occurrences of scarcity, the impacts of which are discussed later. 

4.3. Process overview and scheduling 

The model runs for 25,000 ticks, where each tick is the smallest discrete unit of time in the model. 

During a tick there is a non-zero probability of all of the modules of the model being executed at 

least once. Model outputs are recorded every 10 ticks and the first 500 observations are discarded 

since they are highly affected by the initial conditions, finally leading to 2000 data points. Each 

agent goes through seven steps as described below:  

1. Measuring Insecurity: During each tick each agent measures the insecurity in its surrounding 

environment. Equation 1 shows how insecurity (insec) is measured for the agent i, at each point of 

time T, where attkdit-1 shows how intensively the agent i has been attachked predated in round t – 1. 

The intensity of predation is the previous rounds is determined by how much effort the predators 

have allocated to predate agent i.  
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1

1 ∑
 

(1) 

In Equation 1, by using ∑ , at every point of time (T), the agent takes into 

account his experience of being predated from time = 0 to time = T and measures a weighted 

average value of those experiences by giving more attention to more recent incidents. The process is 

adjusted using ϑ and σ. This is then taken to a logistic function to provide a nonlinear distribution of 

values between zero and one. After calibrating the module, we have selected ϑ = 0.02 and σ = 1.001 

based on the life-span of each agent.  

2. Allocate resources: Each agent has one unit of effort to allocate during each tick. The first 

decision an agent makes is about how much resources it wants to allocate to protection. Equation 2 

shows the resources allocated to protection (protn) based on insecurity (insec) and risk-taking level 

(rsktl) of agent i at time t. 

1  (2) 

Considering Equations 1 and 2, agents who are more risk-averse and have been frequently attacked 

recently, allocate more effort to protection. 

After deciding on the amount of effort to allocate to protection, the agent is left with (1– protn) 

units of effort. This will be allocated between production, resource predation and product predation 

as shown in Table 1. In this table, the allocation of effort is presented when only one resource is in 

the model. If we have two types of resources, there are three steps for dividing the resource 

predation effort (rprdn): 1) agents measure how much of the resource of they have, 2) agents 

calculate how important each of these resources as a factor in their production function are, and 3) 

agents consider the average of both step 1 and step 2. So, each agent at any point of time measures 

the comparative benefit of predating Water-B against Land, and also considers how much Land and 

Water-B it already owns to decide how it should allocate its resource predation efforts. 
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Table 1: Effort allocation patterns based on the strategy selected by the agents 

 
Protection 

protn 

Production 

prodn 

R-Predation 

rprdn 

P-Predation 

pprdn 

S001 insec 0 0 0 

S001 insec 1 – protn 0 0 

S010 insec 0 1 – protn 0 

S011 insec 1 – (protn + predn) 0 (1 – protn) *  rsktl 

S100 insec 0 0 1 – protn 

S101 insec 1 – (protn + predn) (1 – protn) *  rsktl 0 

S110 insec 0 (1 – protn) / 2 (1 – protn) / 2 

S111 insec 1 – (protn + predn) ((1 – protn) *  rsktl) / 2 ((1 – protn) *  rsktl) / 2 

Strategy: SXYZ, where:  X = 1 if the agent predates other agents’ resources and 0 if it does not; Y = 1 if the agent 

predates other agents’ products and 0 if it does not; and Z = 1 if the agent engages in production and 0 if it does not. 

insec = Insecurity, protn = Protection, predn = Predation, rsktl = Risk-taking Level 

3. Predate resources: Equation 3 is an extended standard success function, showing how the subject 

of a particular conflict, such as the resource, is transferred from one agent to another during a 

conflict. For a conflict between agents i and j, the transfers from agent i to agent j are a function of 

their mutual predation and protection efforts and wealth, where θ is the predation factor and the 

relative value of σ and τ determines the effectiveness of the prey’s protective efforts against the 

attacker’s predatory effort. Wealth is measured as the accumulation of income. 

. .
 (3) 

By including both the allocation options (predn and protn) and wealth (welth), we ensure the 

financial powers of the parties are considered as well as their individual effort. Predating resources 

takes place before the production in each tick so the stolen resources can be used. 

4. Produce: Equation 4 shows a Cobb-Douglas production function, where prodn represents the 

effort allocated to production, techy is the technology, spcln is the agent’s degree of specialization 

in production, welth is its wealth and resrs is its resources. 

1 . 1  (4) 
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Total capital,	 1 . , is measured by combining an agent’s access to 

technology with its degree of production specialization and its wealth (financial capital). In 

Equation 4, α, β and γ are random variables normally distributed in a way to ensure decreasing 

returns to production factors for the majority of agents. At the end, prodd will contain the total 

amount of goods produced by the agent i at time t.  

5. Predate production: The process of predating products is similar to what was discussed for 

resource predation, only the objects of predation are the products produced by the prey, rather than 

the raw material as in resource predation. 

6. Record: Over time, agents continuously observe their output based on different combinations of 

strategies and allocation levels and keep records of the strategy which on average yields the greatest 

returns, which is called the best strategy (bstry). In other words, bstry, which is initially set to [0 0 0] 

or [0 0 0 0], always contains the strategy with the highest outcome resulting from production and 

predation.  

The learning module is then implemented through three genetic operators: 1) a mutation which 

continuously introduces random changes into agents’ strategies, thereby guaranteeing that each 

agent tries different strategies while looking for the strategy yielding the highest returns; 2) a 

crossover between the parent’s strategy and the child’s strategy which provides strategy inheritance; 

and 3) another crossover which occurs between an agent’s most recent strategy and its best strategy 

(bstry), implementing the genetic learning process. The probability of each of these operations to 

occur is controlled using mutation-rate, inheritance-rate and crossover-rate, respectively. 

7- Check age and reproduce: at the final step, agents increase their age by one. If age is equal to 

mxage, new agents are born. The offspring select a new random location and inherit their parent’s 

resources, wealth, strategy and best strategy. The model stops if time is equal to 25000 ticks. 
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4.4. Design concepts 

As Grimm et al. (2010, p. 2765) mention, this design concepts section “does not describe the model 

per se” but it is an attempt to review the main “characteristics” of the model.  

Basic principles: As discussed earlier, the basic principles of actions and interactions in the model 

are based on the theory of production and conflict, which shows how effort can be allocated 

between productive and unproductive activities. 

Emergence: We expect the final resource allocation trends to emerge from individual actions and 

interactions rather than simply being the aggregation of micro-level effort allocation decisions. 

Adaptation: The adaptive traits in the model can be direct and indirect. One direct adaptation occurs 

when agents increase their protection in response to higher predation from their neighbors. Also, in 

response to the changes in the environment such as population, technology or resource access, 

agents can change their strategy and so their effort allocation patterns, to ensure that they gain the 

highest outcome. 

Objectives: The main objective of agent is to increase its outcome by taking into account its 

personal features such as risk taking level and its neighbors’ and environment’s characteristics.  

Learning: As our strategy framework revealed earlier, we have applied three genetic operators to 

embed learning in our agent. This allows us to easily change the number of strategies and at the 

same time to implement agents with bounded rationality, since they do not reflect on each strategy 

at every point of time (Brenner, 2006), but instead search for a better situation over time and are 

affected by a random process which manages the mutation and crossover probabilities. The strategy 

framework with genetic operator also enables us to have inter-generational learning.  

Prediction: The main prediction that the agent does is using a weighted measurement of its history 

of being-attacked to form expectations about future insecurity.  

Sensing: The agents detect the resource availability in the environment, the number of their 

neighbors, whether the patches are occupied or not, and other global values.  
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Interaction: The main interaction channel between the agents is through the predation process 

where resources or products are transferred between them. 

Stochasticity: The probability values for the genetic operators are considered to be random. Also a 

random variable is also embedded in the predation function to control the success rate of predation.  

Collectives: No collective actions are implemented in the model. 

Observation: Two main sets of variables are observed in the model, including the mean efforts 

allocated by all agents to each activity, production, resource predation, product predation and 

protection and the share of each strategy selected from the pool. 

4.5. Simulation Details 

The further details of the model, especially the initial conditions and sensitivity analysis are 

presented in this section. 

The model starts with 25 agents in a 50 by 50 cell environment. The main variables and their initial 

values are listed in Table 3. Resources, agents and their children are distributed randomly in the 

environment. The land regime is set in a way that the children can not only inherit land, but they 

can also gain their own land over time. The mean value of initial resources in each cell is 10 and the 

model has only one type of agent.  

The Cobb-Douglas production function powers from Equation 4, α, β and γ, are all distributed 

normally with mean = 0.3 and s.d = 0.05, which means that less than 10% of the entities experience 

constant or increasing returns to scale.  

4.5.1 Sensitivity Analysis 

We ran a set of sensitivity analysis simulations to select the appropriate initial conditions for some 

of the variables. As expected, changes in mutation, optimization and inheritance rates significantly 

affect the model outputs since they determine how frequently agents’ bit patterns are updated over 

time. High mutation and low inheritance rates increase the stochastic behavior, decreasing the 

opportunity for adaptation for agents, but at the same time improving their chances of finding the 
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most beneficial strategy. On the other hand, while frequent optimization can ensure that agents 

follow the best strategy, it prevents them from searching for global optimums.  

Based on the calibration results and considering each agents’ life cycle, the value of the mutation 

rate is set in a way to guarantee, on average, four mutations over its life time. Based on this, the 

optimization rate is set to ensure that between each two mutations, on average, ten optimizations are 

undertaken. Finally, the value of the inheritance rate is assigned to provide a 50% probability of the 

agent following its parent across the whole bit thread. 

The predation success rates for both product and resource are 25%. As expected, lower rates of 

predation success decrease agents’ interest in attacking others, but since lower predation is a factor 

encouraging agents to predate more as others protect themselves less and returns to predation are 

high, the success rate impacts are not as high as expected, but still statistically significant. 

Table 2: Sample initial conditions 

Title Value Title Value 

Environment Variables 

Resource Distribution  Random (Uniform) Agent Distribution Random (Uniform) 

Land Regime Increasing Child Placement Random 

Initial agents 25 Mean Initial Resource 10 

Agent Types 1 Simulation Length 25000 ticks 

Production Function Factors 

α (mean) 0.3 α (s.d.) 0.05 

β (mean) 0.3 β (s.d.) 0.05 

γ (mean) 0.3 γ (s.d.) 0.05 

Learning and Activity Rates 

Mutation Rate 0.04% per tick Max degradation rate 0.5% per tick 

Optimization Rate 0.4% per tick Cycle Length 50 ticks 

Strategy Trans Rate 50% per tick Risk Taking Level Uniform (0,1) 

PPred Success Rate 25% per tick RPred Success Rate 25% per tick 

Agent Variables 

Initial Strategy [0 0 0] Initial BEST [0 0 0] 

Average Children 1.5 Life Length N (2500, 300) 

Avg. Initial Wealth 5 Initial Technology 1 

Linking 5% Initial age Random ELIFE 
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Agents are each linked to 5% of the population in the environment. The impacts of different levels 

of connectivity are mixed. While a higher level of connectivity leads to an increase in the chances 

of predating, since the agents have more options to attack, it decreases the probability of one agent 

being predated by one specific neighbor over time and these forces neutralize each other and the 

changes in connectivity do not significantly affect the model output.  

4.5.2. Randomness Sensitivity Analysis 

The model is affected by two sets of factors. Firstly, the initial conditions which were reviewed in 

the previous section, as well as the random seed which is selected by the software package. 

NetLogo uses a pseudo-random number generating system which means that while the random 

numbers are “random”, their generation process is deterministic, so choosing the same random seed 

in different simulations ensures that the final thread of numbers produced will be the same. As these 

differences can affect our results, we checked how sensitive the model is to the random seeds, by 

running the model 30 times, each with a different random seed.  

The results are presented in Figure1. Here, there are one line for each x and y coordinate making a 

grid line of 900 crossovers when the lines cross. When a x crosses a y line, it produces a black area 

if the two seed outputs are statistically significantly different7F

8. Then, we consider all of these 870 

values (900 observations minus 30 of them where a series is compared with itself) as one single 

dataset and test if the mean of this sample is more than 0.01 which is rejected at 99% concluding 

that there in not enough evidence to claim that the model outputs are significantly different under 

different random seeds. 

                                                            
8 When a series is compared to itself, we have manually taken the value to zero. 
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Figure 2: Trends of pure production (S001), pure product predation (S010), and pure resource predation (S100). 

Regressing the productive allocations against the strategies (excluding the S000), Table 3 shows 

that majority of the strategies have significant impacts on the agents’ productive effort allocation 

decision. As expected, the pure product predation strategy has the highest negative and the pure 

production strategy has relatively the highest positive impact on the productive allocations, while 

the dual production-predation strategies have lower or even insignificant effects. The insignificance 

of the triple and dual strategies is due to the fact that these strategies, by omitting the protective 

efforts, divide the rest of the effort between production and predation and so have unclear impacts 

on productive allocations. The insignificant effect of S100 is due to the fact that the strategy is not 

practiced by many agents and so its proportion value is close to zero. 

Table 3: Productive allocation against the main strategies 

Y: Productive Allocation  

Durbin-Watson stat 2.087326 Standard Error 0.007744 

R Square 0.957432 Observations 2150 

  Coefficients Standard Error t Stat 

Intercept 0.2866 0.05859 4.8932 

S001 0.2240 0.0628 3.5654 

S010 -0.1945 0.0690 -2.819 

S011 0.0985 0.0655 1.5023 

S100 -0.0770 0.1055 -0.7304 

S101 0.1072 0.0625 1.7131 

S110 -0.1670 0.0696 -2.3976 

S111 0.0545 0.0646 0.8442 
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Figure 3 presents the mutual resource allocation patterns between each pair of options. As expected 

there is a negative relation between production and each of predation options, and between 

protection and production, and both predation options lead to higher levels of protection.  

 

Figure 3: Mutual relations between any two effort allocation options for random observations. 

In addition to the presented outputs and also using NetLogo debugging capabilities, each module 

was tested separately, to ensure that the intended design is implemented correctly based on a simple 

version of what is called abstract interpretation (Hermenegildo, 2005) in computer science, as well 

as running the model under two sample agents to ensure correct communications and interactions.  

 

5. Scarcity Models’ Results 

The model provides us with an extended set of results which cannot all be presented in the course of 

this paper. As a result, we only discuss the major outputs.  

5.1. Land Scarcity 

In Figure 4 the vertical dash of lines indicate the start and the end of a medium-intensity resource 

shock period.  
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Figure 4: Changes in the efforts of all agents allocated to product predation (PPred) and percentage of product 

predators (S010) in the population in a simulation with medium shock 

Two main issues can be seen in the figure. On one hand, during the resource scarcity period, there is 

an upward trend in product predation resource allocation, which finishes as soon as the shock 

disappears. But this 25% increase in product predation is not unprecedented since as can be seen in 

the figure, between times 5100 and 5200 another increase with similar amplitude but shorter time 

period is experienced where no scarcity scenario is active. When the model is run under a set of 

weak, medium and severe scarcity scenarios and the average of all is measured, at 95% confidence 

level, the trends are similar to the models without any scarcity. 

To better explore the role of Land shocks in the changes observed in the predatory trend, we 

analyze the impulse responses in two different models. First, the model is run with one resource 

shock at a predetermined time (t = 1100), while in the second, the model is hit by four shocks (t = 

300, 700, 1100, 1400).   

Confirming our initial findings, analyzing the impulse impacts shows that in the majority of cases 

the changes in the allocation trends are temporary, if not insignificant and according to the results, 

less than 5% of the changes in effort allocation patterns can be attributed to the resource shocks. 

The model also shows that a single shock is more likely to cause a structural break in the effort 

allocation trends, compared to multiple shocks. 
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Water-D shock changes the average proportion of agents who prefer to be pure producers. As can 

be seen, when the affected area extends, more agents decide to leave the pure production strategy 

and become predator by enabling their predation bit. 

 

Figure 6: The final value for the proportion of pure producers in simulations with different levels of affected 

areas affected by the shock. 

To analyze the shock thoroughly, a set of impulse response tests was undertaken for all six main 

strategies (leaving out S000 and S100) to investigate the short- and long-run impacts of the shocks, 

at different levels of scarcity. Table 4 contains the results for these tests.  

Table 4: Agent populations’ selection of different strategies in reaction to the Water-D shocks for different 

spatial extents. NS = Not Significant, TD = Temporarily Decreasing, TI = Temporarily Increasing, PD: = 

Permanently Decreasing, PI = Permanently Increasing. 

 Strategy 

S001 S010 S011 S101 S110 S111 

Shock Extent 
(% of area) 

10% TD NS NS TI NS NS 

20% PD NS NS PI NS NS 

30% PD NS TD PI NS TI 

40% PD NS TD PI NS TI 

50% PD TD PD PI NS PI 

60% PD TD PD PI TI PI 

70% PD PD PD PI TI PI 

80% PD PD PD PI PI PI 

90% PD PD PD PI PI PI 
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As the table suggests, at the lower levels of shocks the producer agents (SXX1) temporarily switch 

from just producing to predating Water-D as well as producing. At 20% level of shock, a similar 

impact is found, but this time it is permanent since a bigger group of agents experience the shock. 

As the shocks become more extensive the second group of non-resource-predating agents (S0XX) 

gradually joins the formerly-pure producers, by first temporarily and then permanently allocating 

effort to predating others’ resources. The results show that after the shock level passes 50% of the 

area, almost all non-resource-predating agents are affected, since they attack others to gain Water-D 

and survive. This becomes permanent when the shock is at its full extent, so model responses 

changes in the long term changes. 

To identify possible structural breaks, the Chow test is applied to the allocation trends. As presented 

in Figure 7, low intensity scenarios do not cause any breaks immediately after the shock, while 

when the shocks become severe, the model responds by a significant change in the output trends. 

 

Figure 7: Shock and structural breaks in a sample run with Water-D as the resource - single run. 

While the severe scarcity of a resource such as Water-D should lead to severe consequences for the 

agents, such as death, we did not allow the agents to die due to resource scarcity in the initial model 

in order to be able to follow the dynamics of their strategy selection over time. When we relax that 

constraint allowing the extremely thirsty agents die after passing a pre-defined threshold, the 

population trends react as shown in Figure 8. As the figure shows, while Water-D scarcity does not 
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affect population trends at low or medium levels of shock intensity, at higher levels the population 

drops very fast during the simulation. 

 

Figure 8: Final population and affected area in a Water-D model with death – 30 runs 

We relax another limitation by allowing the agents to move in response to Water-D scarcity, 

searching for resources in the environment. As can be seen in Figure 9 where the natural log of the 

number of movements is presented against the affected area, the number of movements increases 

exponentially as a result of increasingly severe resource scarcities. 

 

Figure 9: Changes in the number of moves in the model based on the different levels of scarcity – Multiple run.  

Migration is an effective strategy also as Figure 10 shows, in the models with the migration option 

active (white boxplots), the effort allocated to productive action has decreased less due to different 

extents of shock, compared to the equivalent cases where migration is not allowed (grey boxplots).  
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Figure 10: Decreases in productive allocation when migration is active (white) and inactive (grey). 

5.3. Water-P Scarcity 

Figure 11 shows how allocation trends react to a Water-P (such as water for production) scarcity 

scenario. As can be seen, during the shock, productive efforts are replaced by product predation, 

which increases gradually when the shock starts and to a large extent disappears after the shock 

finishes. As for the strategies, the significant increases in S010 (product predation) and S011 

(product predation and production) are considerable, while effort allocated to the pure productive 

strategy falls when the shock starts and returns to its top position when the shock fades out.  

 

Figure 11: Changes in a sample individual-run effort allocation due to Water-P shock – single run. 

Figure 12 shows how different levels of resource shock can affect the average proportion of effort 

allocated to production in a model with Water-P as the resource.  

MA1000 MA2000 MA3000 MA4000 MA5000 MA6000 MA7000 MA8000 MA9000

30
40

50
6

0

A
llo

ca
te

d 
E

ffo
rt 

(p
er

ce
nt

a
ge

)

5%

15%

25%

35%

45%

500 700 900 1100 1300 1500 1700 1900

A
ll

oc
at

io
n

Time

Prodn RPred PPred Shock



DRAFT PAP

 

As can be 

shocks, ch

shocks bec

efforts whe

According 

allocated t

overall resu

product pr

considering

time and so

We have a

If there ha

give the s

moving av

ER 

Figure 12: 

seen, the p

anges to alm

come longe

en the basic

to the resu

o product p

ults show th

redation, si

g the fact t

o agents nee

also tested f

s been a bre

cenario a s

verage of the

2

2

2

3

3

3

A
ll

oc
at

io
n

Changes in t

productive 

most 30% i

er and affec

c scenario is

ults, the de

predation, s

hat as for L

nce the ret

that Water, 

ed to consta

for the exist

eak immedi

score of 1, 

e data.  

15%
30%

25%

27%

29%

31%

33%

35%

Shock Area

27%

the average p

allocation w

in less inten

ct a larger 

s compared 

crease in th

ince further

and, resour

turns to res

as a comm

antly allocat

tence of a s

iately within

and otherw

45%
60%

75%

a

-29% 29%

 

productive eff

which was 

nse shock sc

area. The 

with very s

he producti

r resource p

rce shocks t

source pred

mon resourc

te effort to i

structural br

n 100 ticks

wise 0. Th

% 400
5000

%-31% 31

forts in Wate

more than 

cenarios, th

results show

severe shock

ive efforts m

predation is

o Water-P s

dation decr

e in this m

its predation

reak in the m

after the sh

e tests wer

3000
00 Sh

%-33% 33

r-P shocks m

35% in the

en to slight

w a 25% d

ks.  

mainly lead

s not efficie

shift the eff

rease due to

odel, canno

n. 

model outpu

hock at 99%

re undertak

1000
2000

hock Duration

3%-35%

multiple run. 

e basic mod

tly over 25%

decrease in 

d to more e

ent for the a

fort from pr

to the shoc

ot be stored

uts over the

% confidenc

ken using th

0

n

  27

 

del without

% when the

productive

effort being

agents. The

roduction to

ck and also

d for a long

e scenarios.

ce level, we

he 100-tick

t 

e 

e 

g 

e 

o 

o 

g 

. 

e 

k 



DRAFT PAP

 

Figure 13: T

area with va

Figure 13 

increases a

less extens

in the effo

we did no

occurrence

5.4. Water

Figure 14 

resource fo

impacts of

produce or

and produc

while prod

ER 

Testing for t

alue of 1, show

shows that

as well. In th

sive areas, b

ort allocation

ot find any

e.  

r-B Scarcit

(top) illustr

for both co

f shock dur

r not.  The 

ct predation

duct predatio

S
h

k
D

ti

he existence 

ws scenario c

t as the sho

he results, n

but with lon

n patterns b

y clear rela

ty 

rates how p

nsumption 

ration and a

middle and

n trends rea

on increases

D1000

D2000

D3000

D4000

D5000

A

S
h

oc
k

 D
u

ra
ti

on

of structura

combinations 

ocks becom

no structura

nger and mo

becomes mo

ation betwe

roductive e

and produ

area have s

d bottom pa

ct to the sca

s at high lev

0

0

0

0

0

1500 A3000

 

al break due 

s which have 

me more pow

al breaks are

ore extensiv

ore likely. D

een the sho

efforts decli

uction, Wate

significant 

anels respec

arcity. Reso

vels of shoc

0 A4500 A

Shock Are

to Water-P r

caused a stru

werful, the 

e experience

ve shocks t

Despite test

ock intensi

ne due to r

er-B. As ca

effects on 

ctively show

ource preda

ck intensity.

A6000 A7500

ea

resource shoc

uctural break

probability

ed for limite

he existenc

ting for diff

ty and the 

esource sho

an be seen

the agents’

w how avera

ation does n

0 A9000

 

ck scenarios.

k. 

y of a struc

ed shock du

ce of a struc

fferent scena

e timing of

ocks in a m

n, again the

’ decisions 

age resourc

no change s

  28

. The dashed

ctural break

urations and

ctural break

ario setups,

f the break

model with a

e combined

whether to

ce predation

ignificantly

d 

k 

d 

k 

, 

k 

a 

d 

o 

n 

y 



DRAFT PAP

 

Figure 14: 

Resource Pr

ER 

Changes in 

redation; Bot

Shoc

A
ll

oc
at

io
n

Sho

A
ll

oc
at

io
n

Shock

A
ll

oc
at

io
n

effort alloca

ttom: Produc

10
00

20
00

40%

45%

50%

55%

ck Duration

10
00

20
00

15%

20%

ock Duration

30
0040

0050
00

k Duration

ation due to 

t Predation

30
00

40
00

90%

40%-45%

30
00

40
00

90%
n

20
0030

00

15%

15%-20%

 

 Water-B re

60
75%

%

45%-50%

60
75%

%

15%-20%

30%
45%

20%-25%

esource shock

45%
0%

Shock A

% 50%-55%

45%
0%

Shock Are

%

60%
75%

Shock Are

% 25%-30%

ks. Top: pro

15%
30%

Area

%

15%
30%

ea

15%

20%

25%

30%

%
90%

ea

%

 

 

 

oductive effo

%

%

%

%

  29

orts; Middle:: 



DRAFT PAPER      30 

 
 

As we presented in previous cases, applying the impulse response tests shows that the impacts are 

only significant when severe shocks affect the model. 

5.5. Land and Water-B Scarcity 

To measure the possible impacts of parallel Land and Water scarcities on how agents allocate their 

efforts, different scenarios were designed based on low-, medium- and high-intensity Land and 

Water scarcity combinations. The model was then run 30 times and the average results over 

different random seeds were calculated separately for every scenario.  

According to the results, when the productive effort allocation is regressed against the scarcity of 

each resource, the coefficients are 0.004 and 0.003 for Land and Water, respectively. While the 

closeness of the values can be attributed to the fact that both resources, on average, have similar 

roles in linking the production function to scarcity, the larger coefficient of Land can be attributed 

to the agents’ abilities to preserve their Land over time, which makes its predation more desirable.  

Figure 15 shows how the productive allocation effort coefficients are distributed for Water and 

Land over the 54 scenarios. As can be seen, while the Land coefficient distribution is close to a 

normal distribution, the Water coefficient distribution is skewed. This shows that while Land, on 

average, contributes more to the production process in this model, its role in production is less 

sensitive to the scenarios, compared to Water which can generate utility via either predation or 

consumption.  

 

Figure 15: Distribution of regression coefficients for Land and Water 
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Individual regressions for each of the strategies were run against Water-B and Land levels in the 

model. The results are presented in Table 5.  

Table 5: Strategy selection changes resulting from Land and Water variations. Dependent variable = strategies, 

e.g. S0001 = f (Land, Water). SWXYZ: W: Water-B, X: Land, Y: Product Predation and Z: Production. 

SWXYZ Land Water R2 SWXYZ Land Water R2 

S0000 N/A N/A N/A S1000 
-0.00067 

(-47.8874) 

-0.00085 

(-11.5988) 
0.590902 

S0001 
0.00349 

(70.63291) 

0.002721 

(10.4183) 
0.739972 S1001 

-1.5E-05 

(-0.66624) 

-0.0021 

(-17.178) 
0.131499 

S0010 
-0.00083 

(-55.9514) 

0.000227 

(2.894349) 
0.597578 S1010 

-0.00095 

(-65.549) 

-0.00067 

(-8.74781) 
0.707277 

S0011 
0.000987 

(40.40638) 

0.001007 

(7.797153) 
0.493947 S1011 

0.000439 

(17.46697)

-0.00041 

(-3.07252) 
0.117016 

S0100 
-0.0002 

(-18.6174) 

-0.00012 

(-2.12893) 
0.160524 S1100 

-0.00025 

(-19.3265) 

-0.00094 

(-13.8646) 
0.284082 

S0101 
-0.00017 

(-6.96071) 

0.001391 

(10.97296) 
0.048042 S1101 

-0.00086 

(-44.0739) 

-0.00116 

(-11.3017) 
0.554038 

S0110 
-0.00044 

(-29.5389) 

-0.00028 

(-3.49163) 
0.325794 S1110 

-0.00057 

(-36.5186) 

-0.00089 

(-10.724) 
0.470349 

S0111 
0.000195 

(7.560805) 

0.002493 

(18.31933) 
0.203077 S1111 

-0.00027 

(-8.84087) 

-0.00055 

(-3.33685) 
0.053989 

 

According to the results, the pure production strategy, S0001, is significantly correlated with Land 

and Water access, enjoying the highest levels of significance and R2. This clearly shows that the 

number of producers decreases due to resource scarcity in the model. Pure product predation is 

negatively correlated with Land and positively with Water since Water scarcity shift efforts to 

resource predation rather than product predation. The positive, statistically significant and highly 

correlated coefficients for S0011 (production and product predation) illustrate the fact that during 

the time of scarcity, since production levels fall, there may not be enough incentives for agents to 

predate what others have produced, and it can also be due to the fact that this strategy is not capable 

of providing Water for direct consumption. 
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Pure resource predation strategies, S0100, S1000 and S1100, all increase due to scarcity, but since 

Land cannot generate utility individually, the R2 is much higher for the cases where Water 

predation is included in the strategy, S1XXX. 

Two more interesting findings can be observed in Table 5. First, S1010, or Water and product 

predation has a significant negative correlation with both Land and Water access. It seems that 

during times of scarcity, agents prefer to predate Water and the final product to survive, rather than 

Water and Land and produce themselves. The coefficients of S1101 (predating both resources and 

producing) and S1110 (predating both resources and product predation) are comparatively high, 

indicating that resource predation that is accompanied by either production or product predation 

seems to be a popular strategy when resources get scarcer. 

 

6. Discussion and Conclusions 

It is widely believed that climate-induced resource scarcity is the main factor causing climate-

driven conflicts. Applying the theory of production and conflict and using agent-based modeling 

enabled us to address three challenges that have been highlighted in the literature. First, following 

the suggestions by many researchers in this field, we applied disaggregated analysis to investigate 

the possible links between climate change and conflict. Secondly, we addressed a challenge 

highlighted by studies such as Theisen et. al (2011) and Scheffran et al. (2012) as we considered 

different levels of intensity for resource scarcity. Finally, we took into account the complexities 

involved in modeling conflict which arises from the interactions, feedback loops, thresholds and 

nonlinearities which exist when conflict decisions are made. 

In line with empirical studies such as Theisen (2008) and Raleigh and Urdal (2007), which claim 

that only high or very high levels of land and water scarcity are likely to cause conflict, we showed 

that while low levels of scarcity does not affect the effort allocation patterns significantly and 

medium-level scenarios only cause temporary changes in the dynamics of allocation, when the 
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As was shown and discussed across the paper, higher order polynomials are more successful in 

capturing the trends and relations of the agents’ conflict decisions, highlighting the nonlinearities 

and thresholds that may exist in real world when individuals or communities respond to climate-

driven resource scarcity. 

Considering our model results, it is time to respond to our main research question, namely: “Why, 

contrary to the theoretical perceptions and expectations, might climate change and its consequent 

resource scarcity not lead to conflict and when they do, why might climate-induced conflicts not be 

as severe as anticipated?” We highlight four main factors: 

1. The first factor that discourages agents from predating others’ resources or products is the 

protective efforts undertaken by the agents being attacked. Protection decreases the returns to 

predation for the predator in our model and a virtual economic limit emerges from such a reaction 

which acts as a negative feedback loop.  

2. Our results can also be attributed to the adaptive actions which are undertaken by the agents. In 

the other words, agents know that when resource access levels decrease temporarily, adaptation can 

be a better solution than predation. Interestingly, when agents are equipped with better adaptation 

capabilities, such as being able to migrate to unaffected areas, resource scarcity even leads to less 

increase in conflict than when migration is unavailable. 

3. Beyond the protective and adaptive capacities which can decrease the drivers for conflict, as has 

been mentioned in the literature (Benjaminsen et al., 2012; Theisen, 2012; Witsenburg and Adano, 

2009) and investigated in our paper, decreases in resource access or health levels acts as a negative 

feedback loop itself, discouraging the agents to predate others.  

4. To our knowledge, this is the first study which has separated the objects of conflict showing that 

when resource become scarcer, it is more likely for a conflict to occur over the products made out 

of a resource rather than the resource itself. Among different types of resources, the agents would 
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engage in conflicts mainly over more vital, more durable, more easily storable, and more privately 

owned resources. 

This model can be improved and extended by adding institutions such as government and also being 

modified to match the conditions of a specific country or region. 
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