
MPRA
Munich Personal RePEc Archive

Diversifying Risks in Bond Portfolios: A
Cross-border Approach

David Sun and Shih-Chuan Tsai

Kainan University

14 December 2013

Online at https://mpra.ub.uni-muenchen.de/44767/
MPRA Paper No. 44767, posted 10 January 2014 09:43 UTC

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Munich Personal RePEc Archive

https://core.ac.uk/display/213942867?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://mpra.ub.uni-muenchen.de/
https://mpra.ub.uni-muenchen.de/44767/


 

 

Diversifying Risks in Bond Portfolios: 
A Cross-border Approach  

 
 
 
 

David Sun * 

Kainan University 

 
Shih-Chuan Tsai 

National Taiwan Normal University 
 
 

ABSTRACT 
 

This study recalibrates corporate bond idiosyncratic risks in an international context. Applying a 
statistically powerful risk decomposition scheme, we show in this study that diversification is 
improved by the addition of a global risk benchmark. We build a long-run stationary yield spread 
decomposition scheme which provides better diversification effect. In addition to global liquidity 
and default risk factors, we also include country-specific default risk component, and all of them are 
free of measurement or availability issues. The idiosyncratic risk component is estimated as a fixed 
effect along with all the parameter estimates, rather than separately from an exogenous generating 
process. Our linear model is simple, yet it can be easily and promptly applied by practitioners. 
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1. Introduction  

In the recent European sovereign debt crisis, corporate yield spreads are unusually high in 

some countries or regions, but not necessarily so elsewhere. It implies then opportunities for 

further cross-border diversification for fixed income portfolios. According to Bank of America, out 

of the overall 12 trillion dollars corporate bond market, 20% is held by ETF and mutual funds. 

Bond mutual funds invested $1.44 trillion in corporate bonds, up by almost $380 billion since the 

year of 2000. In studying systemic risks of corporate bonds, more studies than before now focus on 

global as well as regional factors, beyond those affecting only a certain country. As a result, it is 

also more important than ever to identify idiosyncratic risks in bonds so they that can be 

diversified away adequately in cross-border portfolios. 

The composition and forming process of yield spreads over risk-free benchmarks determine if 

spreads are adequately assessed and practically applicable for practitioners to revise timely. Given 

that default risks, political or business cycle risks, as well as liquidity risks have been considered 

as three major corporate bond risk components in literature (see, among others, Dastidar & Phelps, 

2011; Xie, Shi & Wu, 2008; Longstaff, Mithal & Neis, 2005; Chen, Lesmond & Wei, 2007; Block 

& Vaaler, 2004), signals used to proxy these components are often difficult to observe or measure 

with precision, making it impractical to utilize them directly. As international capital markets 

integrate, domestic economy is not the primary source of systemic risk any more. Duffie and 

Singleton (1999, 2003) ascribe fluctuations of sovereign yield spreads to international risk factors. 

Dungey, Martin and Pagan (2000) demonstrate a factor model incorporating both world as well as 

country risks is necessary. Collin-Dufresne, Goldstein and Martin (2001) examine the validity of 

structural model and find that credit spread changes are not so much related to firm-specific factors 

as systemic factors, and US bond liquidity factors are ideal candidates. Longstaff, Pan, Pedersen 

and Singleton (2011) show further that CDS spreads for many countries are more related to certain 

common and global factors than local economic variables. Ang and Longstaff (2013) employ both 

common and country-specific factors to demonstrate that systemic risk factors for U.S. and 

European CDS spreads are highly correlated with one another through financial markets, rather 

than macroeconomy. 

The importance of global and cross-border risk factors makes it necessary to reconsider how 

idiosyncratic risks can be located properly for the purpose of portfolio management. Lerner and 

Wu (2005) suggest that full spreads could be under- or over-estimated under different credit 

ratings.  Lin and Curtillet (2007) also indicate that it is inappropriate to just analyze full credit 
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spreads. Wilson (1998) starts the research on credit spreads decomposition by studying systemic 

and idiosyncratic risks in the loss distribution. Duffee (1999) adopts a reduced-form model to 

decompose credit spreads, while Gatfaoui (2003) uses a structural model instead. Jarrow, Lando 

and Yu (2005) assume a perspective of investment portfolio and discuss how idiosyncratic risk can 

diversify risks in the portfolio. Churm and Panigirtzoglou (2007) incorporate the choice of default 

point in the calculation of spread decomposition1 as an extension of Liu, Longstaff and Mandell 

(2006), where swap spreads are adopted as an estimation basis for idiosyncratic credit spreads. 

Huang and Huang (2012) contend that credit risk accounts for less than 30% of the investment 

grade corporate yield spreads according to various forms of structural frameworks. Chacko, Das 

and Fan (2012) argue that bond market illiquidity could be explained in part by illiquidity in equity 

market. On the method of decomposition, this project will extend the spread decomposition 

scheme proposed in Sun, Lin and Nieh (2008) to a three-factor model with cross-border context. 

This study proposes a model to locate idiosyncratic risks in corporate yield spreads with the aid 

of global as well as country-specific systemic factors. Our model employs observed market risk 

measures rather than imputed default or liquidity risk variables. Specifically, on global systemic 

risks, we adopt a US capital market liquidity index as the liquidity factor, and US sovereign CDS 

as the default factor. While to account for country specific risks we employ the implied equity 

index volatility measures relative to VIX from US. Observed risk factors are better than imputed 

ones as they are produced by the same capital markets that price other market instruments so it is 

clear to market participants in trading corporate bonds what the implications of the risk factors are. 

With the aid of a statistically powerful risk decomposition scheme, we show in this study that 

diversification is improved significantly. 

In terms of the econometric treatment on yield data, changes had been used (.e.g., Wilson, 1998; 

Duffee, 1999; Collin-Dufresne, et al., 2001;Dastidar & Phelps, 2011; Lee, Xie & Yau, 2011) to 

avoid partially problems arising from non-stationarity and autocorrelation in the level of credit 

spreads. But it is accompanied by fundamental drawbacks such as the loss of information, and 

being leptokurtic as indicated by Pedrosa and Roll (1998). Changes of yield spreads are also found 

to persist over time in Duffee (1998). Extending the credit spread decomposition model of Sun, 

Lin and Nieh (2008) and panel decomposition model of Lin and Sun (2007), we conduct our 

analysis centering on the Pooled Mean Group (PMG) panel time series model of Pesaran, Shin and 

                                                 
1 This perspective is similar to Lin and Sun (2009), which is based on the model of Merton 1974) and analyzes 
nonlinear price changes of debt claims in the neighborhood of default point, whose direct contribution is to account for 
the differences in idiosyncratic credit spreads between investment and high-yield corporate bonds. 
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Smith (1999). The model emphasizes long-run relations, in addition to short-run cointegrations, 

among economic variables, and helps us building a long-run stationary yield spread decomposition 

scheme in the study.  

We find from our analysis that, for all the countries, both the global and domestic systemic 

components are significant in constituting yield spreads of individual issues in each country. The 

inclusion of global risk, as well as liquidity, component performs better than alternative methods. 

The contributions of both the global and the domestic risk benchmarks are estimated with a 

statistically more powerful time series model in an econometrically long-run context. The 

idiosyncratic risk component is estimated as a fixed effect in our data panel along with all other 

parameter estimates, rather than being introduced separately from an exogenous generating process. 

As a result, parameter estimates from our yield decomposition model can be used to construct 

yield spreads directly, simply by employing observed market data. Our linear decomposition 

model may contain other econometric imperfections, but our estimates can be applied promptly 

and easily by practitioners. 

Yield spread panels are often studied in regressions with fixed or random effects, in which 

homogeneity of parameters is imposed across all the group time series. While the long-run 

relationship can be predicted by economic theory, both the short-run dynamics and particularly the 

speed of adjustment to equilibrium mainly depend on group-specific factors. This study employs a 

panel estimation approach which allows heterogeneous short-run dynamics and how they revert to 

long-run equilibrium. Yet the approach constrains long-run equilibrium to be homogeneous across 

groups of corporate yield spreads. This modification of traditional methods proves to be 

consequential. For each country, the portfolio Value at Risk (VaR) measure on idiosyncratic risk 

falls significantly, which implies better cross-border diversification. 

Our results help enhancing the performance of global fixed income portfolio diversification as 

we extend a domestic framework to a cross-border one. Secondly, the analysis of risk factors in 

international investment portfolio adds insights to the practice of pricing and risk management of 

international asset management, especially in effective cross-border and cross-segment 

management. A theoretical model for decomposition is introduced in Section 2, with details given 

in the Appendix. Section 3 gives an empirical decomposition scheme to fit our international bond 

data. Findings of empirical analysis are given in Section 4. Section 5 discusses robustness issues of 

our study and results, followed by concluding remarks in Section 6.  
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2. Risk decomposition in a global context  

To characterize systematic and idiosyncratic risks driving corporate yield spreads, we use a 

framework adapted from Duffie and Singleton (1999), Liu, Longstaff and Mandell (2006) as well 

as Diaz and Gemmill (2006). We use the theoretical model of the former two to evaluate a 

corporate bond with global liquidity and credit risks and country-specific business risks, on top of 

firm level idiosyncratic risk. The reduced-form setup lends itself to our subsequent empirical 

analysis for the convenience of utilizing various observed risk measures. The rich implications of 

our analysis owe themselves to the separation of relevant risks. 

 We assume there are two types of fixed income securities, with one riskless and the other 

risky due to liquidity and credit risks. (A.1) gives the value of the riskless security based on a 

comm.on affine specification. (A.2) formulates the value of the risky security, which contains 

liquidity and default risks. The value of the globally riskless bond responds to one myopic and one 

hedging demand as in the standard affined model of Duffie and Singleton (1997) as in (A.3). A 

global liquidity factor is driven by a third state variable in (A.4), but the default risk has two 

components in (A.5). The first one is a global default factor related to the two global state variables 

in (A.3), while the second factor reflects default risks specific to a certain country. The solution, 

which follows Liu, et al. (2006) with variations, is given by (A.8).   

The formulation of our model in terms of global liquidity relates in part to the findings of 

Chakco (2009), which indicates that liquidity risk factor is important and properly priced in 

corporate bond returns. In relatively less liquid bond portfolios, approximately one-third of the 

returns come from liquidity effect. Besides the systemic nature of liquidity risks argued in that 

study, Ericsson and Renault (2002), Longstaff, Mithan and Neiw (2005), and Chen Lesmond and 

Wei (2007) also ascribe yield spreads to corporate bond liquidity. Alessi and Detken (2011) 

compare the performance of a large number of global and domestic variables and find that global 

liquidity measures, based on the aggregate for 18 OECD countries, are the best early warning 

indicators. Bierut (2013) also shows that global liquidity measures outperform domestic measures 

as early warning indicators of asset price booms. 

As data on CDS spread become more available, it serves well to measure systematic default 

risks (e.g., Blanco, Brennan & Marsh, 2005; Longstaff et al., 2005). Ang and Longstaff (2011) find 

that systemic credit risk in the Eurozone is collectively strongly related to US financial market 

variables rather than to macroeconomic fundamentals of each country, using CDS spreads. In light 

of this finding, it seems less reasonable to relate country-specific risks in bond yields to sovereign 
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CDS spreads. Aizenman, Hutchinson and Jinjarak (2011) attempt to use macroeconomic 

fundamentals as an explanation to country-specific risk factors besides the default risk reflected in 

sovereign CDS spreads. Attinasi, Checherita and Nickel (2009) and De Santis (2012) suggest that 

risk aversion can be estimated by US top-grade corporate yield spreads. Equation (A.5) in this 

study makes a distinction between global and country-level default risks by relating the former to 

sovereign CDS spreads and the latter to implied volatility index of each country. 

There is also literature stresses on the contagious effect of risks within a region as argued in 

Ang and Bekaert (2002). Diaz and Gemmill (2006) also suggest, using South American data, the 

distance-to-default measure owes 45% of its variance to regional factors. We leave discussions on 

regional influences later on in the study and assume for our main model that there is no more 

cross-country factors beyond the global liquidity and default risk factors. Although Bedendo and 

Colla (2013) provide evidence on spillover effects of credit risk in the Eurozone, their finding also 

contend that domestic demand still stands as an important factor. Our proxy of country-level 

default risk factor depends on the VIX-type measures to proxy risk appetite of individual countries 

covered in our study. 

3. Three-factor Credit Spread Decomposition 

Instead of using the usually seen change-based short-run model, we decompose yield spread 

with a level-based long-run model which has better implications for cross-border diversification. 

Duffee (1998) and Xie, et al. (2008) both examine a three-factor reduced form model for corporate 

yield spreads, but the focus is on the idiosyncratic rather on the systemic risks. Xie, et al. (2008) 

indicate that findings of Duffee (1998) omit certain common factors in a firm’s default risk, while 

arguing that macroeconomic variables, in addition to term structure and default intensity, affect 

corporate yield spreads. Our focus in this study lies instead on systemic risks to capture the 

unexplained variations in yield spreads. 

Based on the specification of (A.1)~(A.8) in the Appendix, the yield spread of a corporate bond 

issued in a particular country can be modeled to reflect the influence of short rate, global liquidity 

risk, default risks in the international and domestic markets, and the idiosyncratic risk of the issuer. 

Following the common practice in literature, we establish corporate bond yield spreads against 

corresponding government bond yields, which incorporates both state variables in (A.3) for 

instantaneous and term effects. The global liquidity measure is proxied by a publicly available 

global liquidity index. While the US sovereign CDS spread is used to proxy the global default risk 
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factor. For country level credit risk, we take the relative implied volatility index of the country of 

interest against the S&P 500 VIX. Combining (A.3) through (A.8), we could consider, for a 

corporate bond issued by firm j at time t in a non-US country i , the yield spread against 

government bond yield as j
itSP  which is expressed in a linear form like 

j
it

D
it

G
t

Gj
it ξDRDRLRSP

t
 j

i
j
i

j
i

j
i 3210  , j=1,2,…,M, i=1,2,…,N, t=1,2,…,T (1) 

where G
tLR is the global liquidity factor, reflecting s in (A.2). G

tDR , which is related to the 

second term of (A.5), denote the global systematic default risk benchmark, while D
itDR  stands for 

the country-specific default risk factor as implied by X4 in (A.5). j
i0  is considered as the 

idiosyncratic spread and assumed, without loss of generality, to be invariable in time. Under the 

specification above, j
itξ  would be a disturbance. 

A commonly used empirical model for (1) is a pooling panel OLS regression on changes of 

jSP  with fixed or random effects (Duffee, 1998; Jacoby, Liao & Batten, 2009), but that would 

require estimated coefficients for regressors to be the same across all firms. Besides, yield spreads 

and term structure parameters are autocorrelated. Disturbances in (1) maybe nonstationary as 

Morris, Neal, and Rolph (2000) argue. Taking simple changes of jSP  only leads to discarding 

valuable information without helping much due to possible higher order autocorrelations. To avoid 

these problems we employ an ARDL version of (1) according to Pesaran and Smith (1995) in the 

following form, for a given country, 

jtjktj,ktj, εμXSP  







q

k

'
jk

p

k
jkjt δSP

11

 , j=1,2,…,M, t=1,2,…,T, (2) 

where j denotes a certain firm, Xjt=( G
tLR , G

tDR , D
itDR )’, δjk=( 1

jkδ , 2
jkδ , 3

jkδ )’, and jtε  is the 

disturbance independently distributed across j and t with mean 0 and 02 j . jμ  is assumed to 

be the fixed effect for firm j in the panel ARDL model of (2), and can be considered as reflecting 

the idiosyncratic risk in this firm’s corporate bond yield in the sense of decomposition argued by 

Sun, et all (2007) as well as Dastidar and Phelps (2011).  

 If the variables in (2) are processes of I(1) and cointegrated2, then the error term should be of 

                                                 
2 Neal, Rolph, Dupoyet and Jiang (2012), among others, have argued that levels of the intermediate and long-term 
corporate as well as government bond yields are nonstationary while their changes appear to be stationary. Before that, 
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I(0) for all j. (2) can be reparameterized as an error correction form like 

jtjktj,ktj,
*

jt
'
j1tj,jt εμXSP)XθSP(SP  









1-

1

1

1

q

k
jk

p

k
jkj δ ΔΔΔ '* , (3) 

where j=-(1- 


p

k
jk

1

 ), j= 


q

k
jk

0

 /(1- 


p

k
jk

1

 ), 



p

km
jmjk

1

- * and 



q

km
jm

1

- *
jkδ according to 

Pesaran, et al. (1999). j is the speed of error-correction on the process’ deviation from its long 

term equilibrium, which is the expression jt
'
j1j,t XθSP   in (3). If jSP and ( G

tLR , G
tDR ,

D
itDR )’are cointegrated then j should be significantly negative in order for for εt to revert to 0. 

The vector jθ  characterizes the long run relation between jSP  and ( G
tLR , G

tDR , D
itDR )’. Short 

run effects are reflected by j, 
*
jk  and the vector *

jkδ . The ARDL model retains the level terms of 

1, tjSP  and jtX , and is therefore superior to models employing only changes of yield spreads and 

explanatory variables. 

Pesaran and Smith (1995) show that a panel model like (3) can be estimated separately for 

each firm (j=1,2,…,M) first and then make inferences on the averages of coefficients from 

individual ARDL equations and standard errors of these averages. This approach, or the Mean 

Group (MG) estimation, is superior to a pooling panel model which has distinct fixed effects for 

each firm but common slope coefficients across all firms. The latter does not distinguish short-run 

effects from long-run ones, and also produces inconsistent results for a dynamic heterogeneous 

panel. The MG estimation is the first ARDL method used in this study for decomposing corporate 

yield spreads within a given country. 

The second decomposition method is a Pooled Mean Group (PMG) model according to 

Pesaran, et al. (1999), which allows the intercept, short-run coefficients, and error variances to 

differ across groups, similar to the MG estimation method. The long-run coefficients under PMG 

are, however, constrained to be equal across groups like in a pooling model with fixed effects. So 

the second method requires the assumption of θθ j  , j. To compare against the PMG method, 

we also include in our analysis a third method, which is the traditional pooling panel model with 

fixed effects, where both long- and short-run parameters are constrained to be equal across all 

firms within each country. To tell which model utilizes information better, tests according to 

                                                                                                                                                                 
Mehra (1994) and Campbell and Shiller (1987) have found similar results for long-term nominal interest rates. 
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Hausman (1978) is utilized. 

Model in (15) estimates idiosyncratic spreads of each firm μj separately. Its accuracy depends 

on whether all the other coefficients are estimated correctly. Although traditional pooling panel 

estimation could allow the fixed effect μj to serve as an estimate for idiosyncratic spread, 

restricting all other coefficients to be the same would just result in inconsistent estimates of μj. The 

two main ARDL methods, MG and PMG, we employ both allow short-run coefficients and μj to 

differ across firms. So their estimates for (3) would produce more accurate idiosyncratic spreads 

than the traditional change-based panel model, and thus benefit practitioners more in 

diversification within or across borders.   

4. Empirical Findings    

Table 1 
Summary Statistics of Investment-Grade Corporate Bond Spreads 

 No. of 
Issues 

Average 
Maturity 

Average 
Ratinga  

AA Average 
Spreads (bp) 

A Average 
Spreads (bp) 

BBB Average 
Spreads (bp) 

     

3 to 7-year Maturities 

Canada 44 4.64 3.57 83.76 107.38 152.58 

Germany 196 4.95 3.11 61.54 83.22 110.17 

France 104 5.12 4.25 94.61 119.74 157.21 

UK 119 5.56 4.90 113.30 149.04 187.69 

US 221 5.03 4.14 92.76 115.46 148.39 

 

8 to 12-year Maturities 

Canada 29 8.87 3.98 137.20 169.63 204.66 

Germany 147 9.25 3.42 104.76 133.17 173.43 

France 110 10.18 4.73 168.03 201.71 249.13 

UK 134 10.96 5.66 202.19 243.29 293.52 

US 194 9.77 4.51 154.62 181.84 230.54 

Value 1 2 3 4 5 6 7 8 9 10 
Moody’s Aaa Aa1 Aa2 Aa3 A1 A2 A3 Baa1 Baa2 Baa3
Standard & Poors AAA AA+ AA AA- A+ A A- BBB+ BBB BBB-

Monthly investment-grade industrial corporate bond yields reported in this table are obtained from Bloomberg 
for the period between 2006 and 2011. Issues with floating coupon rates and embedded options are not included. 
Also, issues with unreasonably high or low prices are eliminated. Spreads for each issue in the corresponding 
maturity category are calculated against yields of average government bond with the closest matching maturity 
in the respective country. 
a Rating scales are in the following chart. 

For the estimation of (3) we use monthly pricing data of corporate bonds issued in Canada, 
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Germany, France, UK and US from Bloomberg between January 2006 and December 2012. Only 

yields of investment-grade industrial coupon bonds with maturities between 3 and 12 years, and 

Standard & Poor credit ratings of AA, A or BBB, are collected and those with floating coupon rates 

and embedded options are not included. Unreasonably high or low prices are also discarded. Issues 

from other countries are not included as there are too few concurrent issues available to support the 

construction of spot yields. Table 1 shows that issues from France and UK have the longer 

maturities and lower credit ratings among the five countries. Government bond yields are obtained 

from Thompson Datastream for the same period.  

The global liquidity index (GLI) data is compiled by the CrossBorder Capital using data from 

80 countries worldwide. This measure predicts movements in international fixed income, equity, 

credit, currency, futures and options markets. The overall liquidity index of GLI between 1976 and 

2012 is given in Figure 1. 

 

Figure 1  Monthly levels of overall Global Liquidity Index between 1976 and 2012  
Index values are calculated as normalized ‘Z scores’ for each the 30 variables from 80 economies. The normalized 
values lie between 0 and 100, with an average of 50 as being neutral to a 40-month rolling average. Readings above 50 
signal an improvement or increase against recent trend. Readings below 50 signal a deterioration or decrease compared 
to trend. The overall index values are weighted average of the Total Liquidity Index (TLI) of all individual countries. 
For each country, TLI is made up of four sub-indices, including the Central Bank Liquidity Index (CBLI), the Private 
Sector Liquidity Index (PSLI), the Cross-border Flow Index (FLI) and the Funding Condition Index (FCI). 

The 5-year US CDS data, as the proxy for global default risk, comes from Datastream. In 

terms of country-specific default risk, we use a volatility ratio with country-specific implied 

volatility of country stock index as the numerator and the CBOE S&P 500 option VIX as the 
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denominator. For UK, it is the FTSE 100 30-day implied volatility from Financial Times. 30-day 

implied volatility VDAX-New for DAX30 compiled by Deutsche Borse at Frankfurt is used for 

Germany. The Canadian implied volatility VXC is compiled from the S&P/TSX 60 Index options 

for 30 days. For France, VCAC provided by NYSE-EuroNext gives the implied volatility measure 

of CAC40 index options. 

Yields of zero-coupon government bonds, as well as corporate bonds of each credit rating, 

with rounded maturities between 3 and 12 years are used. Individual corporate spreads are 

calculated for each rating-maturity category and then combined and averaged into a short maturity 

group (3 to 7 years) as well as a long maturity group (8 to 12 years). Table 1 also shows that 

average yield spreads for the former group are about 50 to 90 basis points lower than the latter in a 

given rating class. The yield spreads of long maturity US issues reported in Table 1 are compatible 

with the average yield spread between Moody’s seasoned Baa corporate bond portfolio and 

30-year US Treasury bond, which amounts to 223 basis points. For the Moody AA portfolio spread 

is around 152 bps. Our spread estimates for the long-maturity category are higher probably 

because our spreads are based on spot yields and also Moody portfolio includes issues from utility 

and financial companies. 

Treating US as the benchmark country, we apply (3) on the spot yield spreads of the other 

four countries with the help of the xtpmg procedure provided in the Stata package, which is 

available only after 2007. Allowing heterogeneous short-run dynamics helps giving better 

statistical properties to long-run parameters, which are jθ  under the MG method and θ  under 

the PMG method. For comparison, we add in a traditional panel fixed-effect model, which 

constrains j, 
*
jk  and the vector *

jkδ  to be the same across j. For simplicity, we adopt the error 

correction form of an ARDL(1,1,1,1) version of (3), for all of the four maturity-rating categories3, 

as follows, 

,εμXδSP)XθSP(SP jtj1tj,
'*
j1tj,

*
jt

'
j1tj,jt   ΔΔΔ jj  , (4) 

where j=-(1- j ), jθ = j /(1- j ), jj  -*  and jδ-*
jδ . The traditional panel fixed-effect model 

                                                 
3 According the Variable Addition Test (VAT) specified in Pesaran, et al. (2001), ARDL(2,2,1,1) should be chosen for 
the short maturity-rating A category, with lags selected based on Schwarz Bayesian Criterion. ARDL(1,2,2,1), 
ARDL(2,2,1,1) and ARDL(1,1,2,1) are the appropriate models according to VAT for the long maturity-rating A, short 
maturity-rating BBB and long maturity-rating BBB respectively. Analyzing the ARDL(1,1,1,1) model instead, 
however, affects mainly the short-run estimates. Long-run estimates, which are our focus, are only slightly different.  
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constrains j, *
j  and vector *

jδ  to be the same across j, while the MG method loops through all 

firms in each country and reports the unweighted average of jθ , j, *
j  and *

jδ . The PMG 

method constrains jθ  to be equal to θ  for all j but reports also the average of j, 
*
j  and *

jδ .  

Table 2 gives the results, for issues with short maturities and the rating of A, from the 

dynamic Fixed Effect (FE), Mean Group (MG) ARDL and Pooled Mean Group (PMG) ARDL 

estimations based on (4). Few of the long-run decomposition coefficients ( jθ ) and the short-run 

ones ( *
jδ ) from the dynamic FE model are significant, except for the long run coefficient for tRP  

and the error correction coefficient. Most of the long-run decomposition coefficients from the 

PMG ARDL model are significant at the 1% level, while only half of the coefficients from the MG 

ARDL mo del are significant. The short-run decomposition coefficients are mostly insignificant. 

The error correction coefficients (j) are, however, uniformly significant across all three models, 

with the PMG and MG models exhibiting stronger significance. Across the four countries studied, 

estimates for issues in Germany and UK appear to exhibit stronger statistical significance in 

general. Hausman tests results indicate that PMG model utilization information better than the MG 

and dynamic FE models. 

Estimated coefficients for G
tSP , the global systematic benchmark, are also uniformly more 

significant than D
tSP , the local systematic benchmark across all four countries in Table 3. The lack 

of significance in estimated decomposition coefficients from the dynamic FE model suggests that 

its weaker statistical power stems from cross-panel constraining both the long- and short-run 

coefficient estimates to be the same across spread time series of all firms. The highly significant 

Hausman test result in comparing the dynamic FE against the MG method is consistent with the 

statement above, so is the fact that coefficient estimates from the latter model are in general more 

significant those from the former. Although the PMG model requires, for each country, all the 

long-run decomposition coefficients to be the same across individual corporate spread series, 

which causes the estimated standard deviations from the PMG method to be higher than those from 

the MG method, significance in long-run coefficients and Hausman tests between the two models 

are in favor of PMG over MG.   
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Table 2 
Cross-border Yield Spread Decomposition with ARDL Error Correction Estimations, 

Short maturities and credit rating A 
 Canada Germany France UK 

Dynamic FE Model 

Error correction (long-run)  
G
tLR  0.2807 (0.1713) 0.2141 (0.1342) 0.3159 (0.1984) 0.3026** (0.1185) 
G
tDR  0.1739 (0.1362) 0.1031 (0.0755)  0.1552 (0.1236) 0.1218 (0.1094) 
D
tDR  0.2404** (0.0837) 0.1364** (0.0556) 0.1835* (0.0878) 0.3135** (0.0992) 

 
Short-run 
  -0.1236* (0.0538) -0.1481** (0.0419) -0.1148* (0.0557) -0.1669** (0.0542) 

G
tLRΔ  0.0203 (0.1014) -0.0317* (0.0168) 0.0183 (0.1125) -0.0545* (0.0252) 
G
tDRΔ  0.4165 (0.9836) -0.9006 (0.8815)  0.2455 (1.1356) -1.3793 (1.0066) 
D
tDRΔ  -2.2980 (1.7361) -1.5059* (0.8213) -3.0773 (1.9980) -3.3837* (1.6061) 

 
MG Model 

Error correction (long-run)  
G
tLR  0.3171** (0.1461) 0.2224** (0.0846) 0.3479** (0.1376) 0.3631** (0.1064) 
G
tDR  0.1998 (0.1010) 0.1313* (0.0625)  0.1928* (0.0861) 0.1893* (0.0887) 
D
tDR  0.2605** (0.0481) 0.2139** (0.0491) 0.2858** (0.0776) 0.3007** (0.0713) 

 
Short-run 
  -0.2377** (0.0401) -0.2678** (0.0338) -0.2273** (0.0446) -0.2761** (0.0385) 

G
tLRΔ  -0.0475* (0.0221) -0.0647** (0.0188) 0.0019 (0.0449) -0.0529** (0.0164) 
G
tDRΔ  -0.2098 (0.2046) -0.7293 (0.4756)  -0.1786 (0.5327) -0.4489 (0.2855) 
D
tDRΔ  -2.7776* (1.3592) -1.6331** (0.6695) -3.3015* (1.6234) -3.1903** (1.1220) 

PMG Model 

Error correction (long-run)  
G
tLR  0.3628** (0.1493) 0.2561** (0.0521) 0.3733** (0.1443) 0.4101** (0.1246) 
G
tDR  0.2264 (0.1215) 0.1787** (0.0649)  0.2512* (0.1208) 0.2418* (0.1025) 
D
tDR  0.2718** (0.0527) 0.2220** (0.0655) 0.2945** (0.0790) 0.3252** (0.0706) 

 
Short-run 
  -0.2686** (0.0419) -0.2709** (0.0375) -0.2554** (0.0497) -0.2888** (0.0320) 

G
tLRΔ  -0.0431 (0.0249) -0.0626** (0.0201) -0.0550* (0.0276) -0.0501** (0.0188) 
G
tDRΔ  -0.3551 (0.8035) -0.7559 (0.5213)  -0.1603 (0.6081) -0.3445 (0.9294) 
D
tDRΔ  -2.2520 (1.5335) -1.7893** (0.6804) -3.1314 (1.8525) -3.2107** (1.0049) 

Hausman Tests 
MG (unrestricted) over Dynamic FE (restricted)  χ2(2)=11.37 (p=0.0034) MG is preferred over FE 
MG (unrestricted) over PMG (restricted) χ2

(2)=7.35 (p=0.0253) PMG is preferred over MG 
For simplicity, we adopt the error correction form of the ARDL(1,1,1,1) version of (1) like 

,εμXδSP)XθSP(SP jtj1tj,
'*
j1tj,

*
jt

'
j1tj,jt   ΔΔΔ jj   

where j=-(1- j ), jθ = j /(1- j ), jj  -*  and jδ-*
jδ . The traditional panel fixed-effect model constrains j, 

*
j  and 

vector 
*
jδ  to be the same across j, while the MG method loops through all firms in each country and reports the unweighted 

average of jθ , j, 
*
j  and 

*
jδ . The PMG method constrains jθ  to be equal to θ  for all j but reports also the average of j, 

*
j  and 

*
jδ .  

 
*  Significant at the 5% level. 
** Significant at the 1% level. 
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Results in Table 2 also exemplify the advantage of applying an ARDL model in a 

hetergeneous panel. As level of terms retain more information than the difference terms of yield 

spreads, stronger significance exhibited by the long-run decomposition coefficients than the 

short-run ones demonstrates that an ARDL model works better in studying corporate yield spreads, 

possibly due to the information provided by level terms of lagged dependent variable as well as the 

level term of current independent variables. Based on the average yield and interest rate data 

within our data period, the PMG analysis in Table 2 predicts that the average long-run Canadian 

rating A short maturity corporate yield spread to amount to roughly 152 bps, only 13 bps below the 

observed average, while for UK that difference is about 10 bps. Through properly estimated 

long-run decomposition coefficients and μj, the fixed effect or the proxy for idiosyncratic risk in 

individual corporate spreads, our analysis would substantially help managing risks of holding 

corporate bond portfolios in a long period of time. 

Table 3, 4 and 5 give results from the same procedures for the categories of long-maturity 

with rating BBB, short-maturity with rating A, as well as long-maturity with rating BBB. 

Uniformly significant error correction coefficients suggest apparent cointegration relationships 

exist among yield spreads and the four independent variables. Both the long- and shor-run 

coefficients go up in magnitude and the extent of significances is stronger with longer maturities 

and lower bond ratings4. Similar to the pattern in Table 3, across all the maturity-rating categories 

and countries, PMG model produces the largest coefficients and dynamic FE the smallest. The 

pattern of standard deviations is just the opposite. Hausman test results reported in each of the 

three tables also suggest the PMG procedure is superior to the MG and dynamic FE ones. In 

general, reconstructed yield spread estimates from coefficients given by the PMG model are 

slightly lower than the observed figures shown in Table 1, possibly due to apparent down-trend of 

yield spreads within the data period. It is also worth noting that the responses of yields to country 

default risk are in general stronger for issues with lower credit rating, validating the notion, 

brought up initially in Section 2, that the direct influence of short rate on yield spread should 

increase with credit risks.  

                                                 
4 This is also consistent with findings in Lin and Sun (2009), which are based on US data and predict that yield 
spreads of bonds with lower credit rating would be more responsive to systematic risks. 
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Table 3 
Cross-border Yield Spread Decomposition with ARDL Error Correction Estimations, 

Short maturities and credit rating BBB 
 Canada Germany France UK 

Dynamic FE Model 
Error correction (long-run)  

G
tLR  0.2887 (0.3921) 0.2242* (0.1042) 0.3056 (0.3559) 0.3350** (0.1623) 
G
tDR  0.2125 (0.1406) 0.1671 (0.1293)  0.2271 (0.1642) 0.2489 (0.2094) 
D
tDR  0.2514 (0.1308) 0.1770** (0.0758) 0.2692 (0.1425) 0.3953** (0.1218) 

 
Short-run 
  -0.1839* (0.0964) -0.1682** (0.0521) -0.1305* (0.0585) -0.1895** (0.0638) 

G
tLRΔ  0.0287 (0.1495) 0.0198 (0.0344) 0.0290 (0.0955) 0.0808 (1.1563) 
G
tDRΔ  0.2332 (0.6697) -0.9234 (0.9705)  0.0276 (0.6529) -1.0005 (1.2560) 
D
tDRΔ  -1.8239 (1.9069) -1.6434 (1.3371) -1.1239 (1.4101) -1.1191 (1.3987) 

 

MG Model 
Error correction (long-run)  

G
tLR  0.3049** (0.1086) 0.2433** (0.0846) 0.3274** (0.1178) 0.3454** (0.1369) 
G
tDR  0.2390* (0.1115) 0.1835** (0.0425)  0.2638* (0.1235) 0.2993 (0.1661) 
D
tDR  0.3323** (0.0774) 0.2571** (0.0551) 0.3558** (0.0848) 0.4007** (0.0992) 

 
Short-run 
  -0.2854** (0.0593) -0.3036** (0.0451) -0.2518** (0.0604) -0.3157** (0.0522) 

G
tLRΔ  -0.0535* (0.0269) -0.0777** (0.0232) -0.0733* (0.0349) -0.0529** (0.0164) 
G
tDRΔ  -0.4198 (0.2834) -0.7548 (0.4234)  -0.5985 (0.5610) -0.8758 (0.6949) 
D
tDRΔ  -3.2528* (1.5678) -2.2480* (1.1294) -3.6420* (1.7881) -2.5596** (1.1027) 

 

PMG Model 
Error correction (long-run) 

G
tLR  0.3287** (0.0959) 0.2834** (0.0669) 0.3635** (0.1031) 0.3834** (0.1156) 
G
tDR  0.2791** (0.0982) 0.2206** (0.0404)  0.3017** (0.1093) 0.3208** (0.1200) 
D
tDR  0.3494** (0.0695) 0.2689** (0.0425) 0.3740** (0.0704) 0.4203** (0.0775) 

 
Short-run 
  -0.2994** (0.0501) -0.3237** (0.0404) -0.2994** (0.0385) -0.3753** (0.0480) 

G
tLRΔ  -0.0510* (0.0252) -0.0714** (0.0230) -0.0677* (0.0325) -0.0488** (0.0156) 
G
tDRΔ  -0.3915 (0.1994) -0.7878 (0.4101)  -0.4065 (0.6081) -0.7932 (0.5825) 
D
tDRΔ  -3.0511* (1.5492) -1.9676** (0.8180) -3.4298* (1.7332) -2.7685** (1.0032) 

 
Hausman Tests 

MG (unrestricted) over Dynamic FE (restricted)  χ2
(2)=10.86  (p=0.0044) MG is preferred over FE 

MG (unrestricted) over PMG (restricted) χ2
(2)=6.21 (p=0.0448) PMG is preferred over MG 

*  Significant at the 5% level. 
** Significant at the 1% level. 
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Table 4 
Cross-border Yield Spread Decomposition with ARDL Error Correction Estimations, 

Long maturities and credit rating A 
 Canada Germany France UK 
Dynamic FE Model 
Error correction (long-run)  

G
tLR  0.3796* (0.1793) 0.2169** (0.0908) 0.3878* (0.1827) 0.4154* (0.2110) 
G
tDR  0.2550 (0.1599) 0.1894 (0.1009)  0.2029 (0.1684) 0.3038 (0.1889) 
D
tDR  0.2778** (0.1047) 0.1964** (0.0719) 0.2957** (0.1068) 0.3343** (0.1201) 

 
Short-run 
  -0.1695** (0.0828) -0.1553** (0.0517) -0.1284** (0.0523) -0.1774** (0.0567) 

G
tLRΔ  -0.0392 (0.1115) 0.0198 (0.0344) 0.0290 (0.0955) 0.0808 (1.1563) 
G
tDRΔ  0.2567 (0.5883) -0.9234 (0.9705)  0.0276 (0.6529) -1.0005 (1.2560) 
D
tDRΔ  -2.2376 (1.3506) -1.6434 (1.3371) -1.1239 (1.4101) -1.1191 (1.3987) 

 

MG Model 
Error correction (long-run)  

G
tLR  0.3927** (0.1675) 0.2253** (0.0704) 0.3968** (0.1774) 0.4292** (0.1998) 
G
tDR  0.2835** (0.1363) 0.2189** (0.0921)  0.3086** (0.1410) 0.3168* (0.1544) 
D
tDR  0.3769** (0.0902) 0.2123** (0.0570) 0.3629** (0.0928) 0.3705** (0.1092) 

 
Short-run 
  -0.2620** (0.0565) -0.2744** (0.0409) -0.2485** (0.0546) -0.3011* (0.0473) 

G
tLRΔ  -0.0621** (0.0249) -0.0824** (0.0222) -0.0841** (0.0286) -0.0793** (0.0147) 
G
tDRΔ  -0.4776 (0.2613) -0.8135 (0.4202)  -0.6502 (0.4568) -0.8086 (0.5097) 
D
tDRΔ  -3.8814** (1.4485) -2.5371** (1.0076) -3.9749** (1.5135) -2.7419** (1.0203) 

 

PMG Model 
Error correction (long-run) 

G
tLR  0.4214** (0.1559) 0.3107** (0.0592) 0.4235** (0.1610) 0.4454** (0.1635) 
G
tDR  0.3033* (0.1243) 0.2293** (0.0840)  0.3252** (0.1307) 0.3438** (0.1349) 
D
tDR  0.4120** (0.0700) 0.2976** (0.0463) 0.4198** (0.0729) 0.4335** (0.0917) 

 
Short-run 
  -0.2828** (0.0533) -0.3110** (0.0387) -0.2754** (0.0332) -0.3555** (0.0426) 

G
tLRΔ  -0.0767** (0.0199) -0.0887** (0.0230) -0.0885** (0.0251) -0.0861** (0.0127) 
G
tDRΔ  -0.4898* (0.2207) -0.8381* (0.4006)  -0.7047 (0.4250) -0.8889* (0.4843) 
D
tDRΔ  -3.9624** (1.2321) -2.7885** (0.7354) -4.0095** (1.4039) -3.2473** (0.0844) 

 
Hausman Tests 

MG (unrestricted) over Dynamic FE (restricted)  χ2(2)=11.09  (p=0.0039) MG is preferred over FE 
MG (unrestricted) over PMG (restricted) χ2(2)=6.44 (p=0.0399) PMG is preferred over MG 

*  Significant at the 5% level. 
** Significant at the 1% level. 
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Table 5 
Cross-border Yield Spread Decomposition with ARDL Error Correction Estimations, 

Long maturities and credit rating BBB 
 Canada Germany France UK 

Dynamic FE Model 
Error correction (long-run)  

G
tLR  0.3610* (0.1761) 0.2743* (0.0915) 0.3702* (0.1810) 0.4132** (0.1234) 
G
tDR  0.3134 (0.1847) 0.2667 (0.1396)  0.3273 (0.1997) 0.3218 (0.2021) 
D
tDR  0.3887* (0.1520) 0.2929** (0.0787) 0.3914* (0.1518) 0.4133** (0.1349) 

 
Short-run 
  -0.2071** (0.0915) -0.1920** (0.0709) -0.1556** (0.0863) -0.1895** (0.0661) 

G
tLRΔ  -0.0411 (0.1346) 0.0048 (0.0344) 0.0076 (0.0955) -0.0639 (0.0624) 
G
tDRΔ  0.1024 (0.6004) -1.1453 (1.2232)  -1.3897 (0.8055) -1.0005 (1.4981) 
D
tDRΔ  -2.4435 (1.3883) -1.8896 (1.5904) -1.4465 (1.6274) -1.1191 (1.5734) 

 

MG Model 
Error correction (long-run)  

G
tLR  0.4032** (0.1158) 0.3099** (0.0827) 0.4209** (0.1025) 0.4665** (0.0842) 
G
tDR  0.3682** (0.1504) 0.3160** (0.1053)  0.3741** (0.1621) 0.3817** (0.1698) 
D
tDR  0.4306** (0.0883) 0.3215** (0.0692) 0.4322** (0.1033) 0.4464** (0.0756) 

 
Short-run 
  -0.2881** (0.0849) -0.2912** (0.0675) -0.2769** (0.0721) -0.3305* (0.0539) 

G
tLRΔ  -0.0731** (0.0277) -0.0893** (0.0319) -0.0841** (0.0286) -0.0869** (0.0201) 
G
tDRΔ  -0.5104 (0.2900) -0.9494 (0.4445)  -0.6502 (0.4568) -0.8818 (0.7360) 
D
tDRΔ  -4.1035** (1.5885) -2.7344** (1.1769) -3.9749** (1.5135) -2.8323** (1.1783) 

 

PMG Model 
Error correction (long-run) 

G
tLR  0.4466** (0.0914) 0.3576** (0.0710) 0.4663** (0.0933) 0.4960** (0.0728) 
G
tDR  0.3830* (0.1102) 0.3421** (0.0923)  0.4102** (0.1267) 0.4273** (0.1413) 
D
tDR  0.4653** (0.0668) 0.3693** (0.0505) 0.4723** (0.0914) 0.4857** (0.0680) 

 
Short-run 
  -0.3008** (0.0801) -0.3354** (0.0502) -0.2995** (0.0665) -0.3764** (0.0498) 

G
tLRΔ  -0.0840** (0.0229) -0.0915** (0.0289) -0.0885** (0.0251) -0.0928** (0.0175) 
G
tDRΔ  -0.5457* (0.2621) -0.9648* (0.4213)  -0.7047 (0.4250) -0.9190* (0.5679) 
D
tDRΔ  -4.3478** (1.3796) -3.1308** (0.8405) -4.0095** (1.4039) -3.1415** (1.1062) 

 
Hausman Tests 

MG (unrestricted) over Dynamic FE (restricted)  χ2
(2)=9.15  (p=0.0103) MG is preferred over FE 

MG (unrestricted) over PMG (restricted) χ2
(2)=5.79 (p=0.0553) PMG is preferred over MG 

*  Significant at the 5% level. 
** Significant at the 1% level. 

 

To demonstrate the crucial implication of potential diversification benefit from our PMG 

ARDL estimation method, we take jμ , the estimated fixed effect or proxy for idiosyncratic 

component in (4), and compare it against the following model, 

jtiiii   tt
D
tit TSRPDRSP ΔΔΔΔ 311 ,  i=1,2,…,N, (5) 

for specific country. In (5), tRP  is a short-term interest rate measure and we use th
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jtiiii   tt
D
tit TSRPDRSP ΔΔΔΔ 311 e repo rate for this model. The term tTS  is term 

premium measure and the yield difference between 10- and 1-year government bonds is used. ηj 

would be the alternative idiosyncratic component and νjt is the disturbance term. (5) emulates the 

commonly adopted change-based domestic yield spread decomposition model, like the one in 

Duffee (1998), as a benchmark for our performance comparison.  

Table 6 
VaR Analysis of Corporate Bond Portfolios, 

Cross-border PMG ARDL approach versus traditional domestic approach 
 Canada Germany France UK 

 Cross-  Cross-  Cross-  Cross-   
 Border Domestic Border Domestic  Border Domestic Border Domestic  

Short Maturities, A 

Portfolio 1% VaR
a
 -119.35 -139.97 -103.29 -111.94 -128.68 -146.89 -132.68 -145.80 

S.D. of individual VaR’s
a
 30.83 45.11 29.45 43.26 41.71 59.64 32.63 47.36 

Paired t-tests t
d.f.:19

=-1.83 p=0.0129 t
d.f.:78

=-2.14 p=0.0176 t
d.f.:44

=-2.43b p=0.0096 t
d.f.:49

=-2.34 p=0.0116 

R2 0.2664 0.2235 0.2110 0.1938 0.2849 0.2375 0.3001 0.2423 

Short Maturities, BBB 

Portfolio 1% VaR
a
 -131.21 -154.14 -109.38 -119.15 -134.77  -153.32 -134.64 -148.45 

S.D. of individual VaR’s
a
 35.27 50.51 32.91 48.55 43.85 61.41 34.69 50.08 

Paired t-tests t
d.f.:21

=-2.50b p=0.0104 t
d.f.:89

=-2.31 p=0.0116 t
d.f.:52

=-2.59b p=0.0062 t
d.f.:51

=-2.37 p=0.0107 

R2 0.2216 0.1711 0.1979 0.1653 0.2442 0.1856 0.2556 0.1889 

Long Maturities, A 

Portfolio 1% VaR
a
 -135.46 -163.38 -113.81 -125.74 -136.22 -156.89 -136.54 -151.07 

S.D. of individual VaR’s
a
 34.09 50.26 33.53 49.59 44.63 63.19 40.81 55.11 

Paired t-tests t
d.f.:12

=-2.34 p=0.0187 t
d.f.:65

=-2.36 p=0.0106 t
d.f.:52

=-2.82b p=0.0034 t
d.f.:59

=-2.37b p=0.0104 

R2 0.2983 0.2644 0.2525 0.2441 0.3040 0.2617 0.3139 0.2665 

Long Maturities, BBB 

Portfolio 1% VaR
a
 -138.06 -170.86 -118.42 -132.34 -140.13 -164.18 -139.96 -157.48 

S.D. of individual VaR’s
a
 30.83 45.11 35.31 53.76 46.61 66.24 43.67 58.02 

Paired t-tests t
d.f.:13

=-2.69b p=0.0090 t
d.f.:68

=-2.63b p=0.0053 t
d.f.:53

=-3.17b p=0.0013 t
d.f.:63

=-2.79 p=0.0035 

R2 0.2723 0.2345 0.2406 0.2227 0.2889 0.2492 0.2945 0.2417 

We calculate jμ  according to (2) based on parameter estimates from Table 2 through 5 for all firms in each country, as the proxies 
for idiosyncratic component of our corporate yield decomposition. Then we construct a traditional domestic approach counterpart in 
an ordinary panel OLS model, for each country, like, 

 
jtiiii   tt

D
tit TSRPDRSP ΔΔΔΔ 311 , i=1,2,…,N,  

where ηj is corresponding idiosyncratic component from the alternative model. To compute VaR estimates, we rank jμ  and ηj 
derived from the two models for all the firms in a given country. The bottom values of μ and η for each firm are identified as our 
approximated historically simulated 1% VaR (quantile) estimates for the two models respectively. For each of the four countries, 
equally weighted portfolios are constructed separately for short and long maturities, as well as for ratings A and BBB. Each 
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country’s portfolio VaR is the average of all the individual firm VaR’s. 
a  Numbers are in basis points. 
b  Significant at the 1% level. 

 

In each of the four countries studied, historically simulated 1% one-tailed Value-at-Risk (VaR) 

estimates from ranked individual PMG-produced jμ  are identified for every single issue within a 

given maturity-rating category in the country. As there are only at most 66 observations for any 

issue, the smallest jμ  is selected as a proxy for the VaR estimate. A similar procedure is carried 

out on ranked ηj, and VaR estimates are obtained accordingly. For each of the four countries, 

equally weighted portfolios are constructed separately for short and long maturities, as well as for 

ratings A and BBB. The average of all individual firm’s VaR’s in each country would be adopted, 

in the spirit of Venkatesh (2003), as portfolio VaR of that country. Paired t-test results are given in 

Table 6 for each country and each maturity-rating category respectively. 

Overall, the down side VaR estimates for the PMG model average at -132.93 b.p., while the 

average for the alternative model is -155.73 b.p.. The results of paired t tests are barely significant 

at the 1% level, except for France, within the category of short maturity and rating A. Lower and 

more significant p values appear as we move to longer maturity and lower credit rating, across all 

countries. The VaR analysis of bond portfolios in Table 6 indicates that the benefit of diversifying 

idiosyncratic risks produced by our PMG ARDL procedure is substantially greater than an 

alternatively constructed change-based domestic panel OLS procedure. Furthermore, combining all 

the VaR estimates across all four countries for a given maturity-rating category yields t-statistics 

more than twice as large, suggesting potential existence of further cross-border diversification 

benefits very much needed by managers of international bond portfolios.  

The R-squared values given in Table 6 also indicate the cross-border approach produces lower 

residual variations than the domestic model. Residual errors in the cross-border model on average 

account for 10% to 15% more yield spread variations than an alternative domestic model. The 

differences are more prominent in a lower credit rating or longer maturity. Countries with higher 

bond risks, such as France and UK, are also where a cross-border model performs much better.  

5. Robustness Discussions 

We have adopted global liquidity index to account for the influence of world capital market 

liquidity on yield spreads of corporate bonds in our data set. The alternative measure could be the 

Capital Markets Liquidity Index (CPMKTL), which is the only benchmark of the component of the 
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U.S. capital markets and a modified market value weighted index. The index includes about 98% 

of the U.S. long term investment grade liquidity markets of investment grade fixed income 

securities issued by U.S. government and agencies, as well as U.S. corporations. Municipal 

securities, Asset-Backed Securities, Collateralized Debt Obligations, Mortgage-Backed Securities 

and floating rate securities are however excluded. Index values between 2006 and 2013 are given 

in Figure 2. 

 

Figure 2  Monthly Levels of Capital Market Liquidity Index between 2006 and 2013  

Index values are compiled by Dorchester Capital Management, LLC and include 1,443 securities. The index is 
rebalanced monthly. 105 daily, weekly, monthly and quarterly statistics are combined to determine the current 
allocation of assets in the U.S. investment grade capital markets. The inputs to this weighting process are taken from 
U.S. Federal Deposit Insurance Corporation statistics, U.S. Federal Reserve Board statistical reports, and derived from 
Dorchester’s own extensive database. 

 This alternative index reflects the liquidity situation of the most important capital market of 

the world. It can also be seen that this index is much less volatile than the Global Liquidity Index. 

We substitute the Capital Market Liquidity Index in place of the Global Liquidity Index in (4). 

Compared with coefficients estimated for the latter in Tables 2 to 5, the alternative global liquidity 

proxy produces coefficient estimates with less significance. The reduction of significance is 

particularly prominent in a lower credit rating or longer maturity. The advantage of the PMG 

method over the MG or the FE methods remains. If we also substitute GLI for CPMKTL in the 

VaR analysis in Table 6, we find similar results, where the paired t-test results are less significant 

for lower credit rating or longer maturity. This robustness test indicates that the GLI used for our 

study is more relevant as a global liquidity measure in explaining the yield spreads of the four 
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countries. 

 On the global default risk proxy, we look into the FitchSolutions’ Probability of Default Index 

for North America as well as Europe as alternatives. It is estimated to provide a view of a firm’s 

credit condition given its current equity price and available financial information. Fitch’s model 

incorporates an option-based barrier model with hybrid adjustment of firms’ financial and market 

information. Our barrier-option based PD provides a forward-looking structural default probability. 

Changes in this structural default probability provide leading information about changes in the 

credit quality of a debt issuer, and thus help to understand impending rating change and default. 

The model makes use of a small, but very carefully selected subset of accounting and market 

variables. The Fitch model covers approximately 27,000 entities globally, with 13,000 in the US 

and Canada, plus another 14,000 firms from more than 70 other countries. For all firms, the model 

provides daily output of estimated default probability (PD) for both one-year and five-year 

horizons.  

 

Figure 3  FitchSolutions Probability of Default Index, North America, 2001-2008  
The index reveals a point-in-time estimate of market and/or sector-level credit quality. The ranking of these regions’ 
indices implies their relative risk levels. Included for the North America region are nine industries are selected and 
both 1-year and 5-year PD indices are calculated. These industries are defined according to Industry Classification 
Benchmark codes offered by Dow Jones Indexes and FTSE and include Basic Materials, Consumer Goods, Consumer 
Services, Health Care, Industrials, Oil and Gas, Technology, Telecommunications and Utilities. The levels of the index 
reflects the likelihood of a default event occurring in a specified horizon (1-year or 5-year) provided that one randomly 
picked a debt from the applicable universe. For a given universe, FitchSolutions’ PD index is computed as the average 
of individual firms’ PDs weighted by their outstanding debt. It is a weighted sum of conditional probabilities of 
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default with weights being the probability of that condition being satisfied, which, by Bayes’ rule in probability theory, 
yields an unconditional probability of default once a universe is fixed. The PD index is unconditional in the sense that 
the probability is not firm specific, but it is still conditioning on the available information up to date. Recall that each 
individual PD is estimated on market information and financial performance metrics. By simply pooling individual 
PDs together, the PD index naturally inherits this information and ensures itself a well informed estimator of sector 
and/or segment credit risk. However, information enters the index in such a way that no one firm’s PD movement can 
dominate the index behavior and the effect of big increases in one firm can be offset by reverse movements of others. 
Therefore, our PD index indeed reflects the systematic credit risk rather than firm specific or idiosyncratic risk. 

 The FitchSolutions PD basically measures regional default risks. Adopting these measures in 

the spirit of Diaz and Gemmill (2006), we first replace US CDS with FitchSolutions PD North 

America in (4) while leaving other terms unchanged. This alternative produces results less 

significant than the US CDS used originally, possibly because the latter is more familiar to market 

participants. If, however, we apply the Europen PD instead, the performance becomes better, 

especially in the lower credit rating group. 

 Next we examine the effect of replacing the country-specific default risk factor by regional 

volatility index in Europe. Instead of using the ratio between implied country equity volatility and 

VIS, we adopt the ratio between VSTOXX, the implied volatility of EURO STOXX 50 options, 

and VIX. The values of VSTOXX in the last five years are given in Figure 4. 

 

 

Figure 4  FitchSolutions Probability of Default Index, North America, 2001-2008  
The index reveals a point-in-time estimate of market and/or sector-level credit quality. The ranking of these regions’ 
indices implies their relative risk levels. Included for the North America region are nine industries are selected and 
both 1-year and 5-year PD indices are calculated. These industries are defined according to Industry Classification 

 The VSTOXX index, being a European market sentiment indicator, can serve as a regional 

credit risk factor for European countries, as how regional market volatility in South America 
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affects distance-to-default of individual countries in Diaz and Gemmill (2006). Applying the 

alternative volatility ratio in (4) yields estimates with less significance compared with volatility 

ratios based on individual country volatilities. In addition, we also analyze another model which 

include in (4) both this alternative ratio and the original country-specific ratios. Coefficient 

estimates for both ratios exhibit weaker significances, possibly due to multicollinearity between 

the two ratios. 

6. Conclusion 

This study recalibrates corporate bond idiosyncratic risks in the context of international 

portfolio diversification. Based on the ideas of Venkatesh (2003), Churm and Panigirtzoglou 

(2007), Xie, et al. (2008), Dastidar and Phelps (2011), Ang and Longstaff (2011) and Alessi and 

Detken (2011), we extend the model of Sun, et al. (2007) to a cross-border context. The empirical 

framework of Pesaran, et al. (1999) is used to process the cross-border heterogeneous panels. By 

introducing a statistically powerful risk decomposition scheme, we show in this study that 

diversification is improved as both global and domestic risk benchmarks are utilized. Not only 

fixed income portfolio management, but also the pricing of traditional and innovative financial 

instruments can benefit from the scheme proposed in this very study.  

 In addition to domestic default risk factor proxied by relative equity market volatility, we also 

include a global liquidity and default risk benchmarks. The ARDL panel time series model of 

Pesaran, et al. (1999), which emphasizes long-run relations among economic variables, helps us 

building a long-run stationary yield spread decomposition scheme in our study. We could use, in 

place of country-specific volatility measures, alternatively the European market relative volatility 

as a regional default risk factor. The US sovereign CDS measure can also be replaced by 

international CDS index. However, the inclusion of a global risk component provides more 

abundant and explicit information, which the traditional domestic model lacks, for pricing and risk 

management practices of fixed income portfolios. The global and domestic risk benchmarks are 

easily measurable and observable. The idiosyncratic risk component is estimated as a fixed effect 

in a data panel along with all the parameter estimates, rather than being introduced separately from 

a exogenous generating process. Our linear model may contain other econometric imperfections, 

but our estimates can be applied promptly and easily by practitioners. 

  The idiosyncratic component of yield spread has been estimated from three different models. 

Hauseman tests show that the PMG ARDL method is the best in utilizing available information. 
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The VaR analysis verifies that the idiosyncratic risks generated under this procedure have 

substantially better diversification implication than an alternatively constructed change-based 

domestic panel OLS procedure. So the results of our study not only extend a purely domestic fixed 

income model to a cross-border one, but they also help enhancing the diversification capability of 

international fixed income portfolios. 
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Appendix 
 

Assume there is a globally default-free zero-coupon bond maturing at T has at 

time t a value of 

 ( , ) exp
T

Q st
D t T E r ds     , (A.1) 

where sr  is the short rate and EQ is the expectation with respect to measure Q, the 

risk-neutral counterpart of the physical or objective measure P.  

A defaultable bond incorporates in addition a default intensity spread s  which 

is from a Poisson process with time varying parameter, as well as a liquid spread s  

to compensate for the illiquidity compared with default-free bonds5. The value of this 

bond would be 

  



 





   dsrETtB

T

t sssQ  321exp),( , (A.4) 

at time t. The three coefficients, 1 , 2  and 3 , are all positive and modeled in to 

reflect different sensitivity to the short rate, possible larger liquidity and default 

spreads. 1  could be considered as reflecting the agency effect argued by Leland and 

Toft (1996), should be greater than 1. So ),( TtB  or its yield is expected to be more 

responsive, than ),( TtD  or its yield, to the short rate. Similarly, 2  and 3  should 

both be greater than 1 as well, reflecting the fact that more risky bonds are more 

sensitive to changes in default intensity and market liquidity.  

The dynamics of the three endogenous variables are characterized by a general 

affine model with four state variables which are Markovian under the equivalent 

martingale measure Q and square-root diffusions. The short rate is assumed to be 

                                                 
5 As our focus in the study is on the yield spreads of corporate issues, the modeling here is essentially 
a mix of the illiquid default-free bond and a defaultable bond as presented in Liu et al. (2006). 
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driven by two state variables6 to represent common shocks to the economy,  

0 1 2sr X X   , (A.3) 

where 0  is a constant. The liquidity spread in the domestic high grade defaultable 

bond is assumed to take the form of 

1 3s X   , (A.4) 

where 1  is also a constant and the state variable X3 represents the premium required 

for the illiquid corporate issues, regardless of default risks. The default intensity is 

assumed such that 

2 4s sr X     , (A.5) 

where 2  and  are both constants and the latter stands for the sensitivity of 

default to the short rate. Structural models would predict   to be negative. The 

second term in (A.5) can be considered as a globally applicable default risk, while X4 

reflects default risks applicable only to a certain country. 

The state variable vector X = (X1, X2, X3, X4), with general Gaussian processes 

under an affine term-structure model, should be characterized by   

QdX Xdt dB    , (A.6) 

where   is a diagonal matrix and BQ is a vector of independent standard Brownian 

motions under the risk-neutral measure of Q. Σ is a lower diagonal matrix containing 

covariances among the state variables, and it is assumed also that the covariance 

matrix ΣΣ’ is of full rank to allow correlations of state variables. Corresponding to 

this affine structure is the dynamics under the physical measure P, 

                                                 
6 The interpretation of factors X1 and X2, which come from the affine model of Duffie and Singleton 
(1997), can be found in Longstaff and Schwartz (1992) and Duffee (2002). In a continuous time 
context, the first factor is related to a long term mean of instantaneous rate while the second one to the 
instantaneous variance. 


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( ) PdX X dt dB     , (A.7) 

where κ is also a diagonal matrix and   is a vector of long-term value of the state 

variables. The solutions to (A.1) through (A.2) can be solved under the risk-neutral 

dynamics (A.6). Generalizing the characterizations of (A) to bonds with various credit 

ratings, we could consider X1 and X2 as globally common risks as their effects are 

proportional across all bonds.  

The yield difference between the B(t,T) and riskless bond can be derived on the 

physical measure P as  

 )())((321 tXtrr b
t

a
stt  , (A.8) 

where )(ta  and )(tb  are functions of parameters. The first term in (A.8) is an 

instantaneous spread compensating for holding a risky bond which is less liquid than 

a riskless bond. The second term is also a short-run spread covering default related 

risk at current state, which is indirectly related to the interest rate. The third term is a 

long-run premium compensating for possible future default and liquidity related price 

changes. The last term is related to the risk-adjusted long-run level of bond yield 

spread. 

The yield spread of the corporate bonds containing idiosyncratic risks should 

exhibit in the long run stronger responses to X1 and X2 contained in the interest rate 

due to agency risk. It should be more sensitive to interest rate-induced default risk in 

the short run. Both have been well documented by Sun, Lin and Nieh (2007) using US 

corporate indices. 


