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Abstract 

 
This paper presents an endogenous growth model in which the economy grows without either 

scale effects or population growth. The key mechanisms are an increase in uncompensated 

knowledge spillovers from an increased number of firms and substitution between investments 

in capital and technology. The model indicates that an increase in population does not make 

investments in technology more attractive than those in capital because of increased 

uncompensated knowledge spillovers as a result of both Marshall-Arrow-Romer and Jacobs 

externalities. Scale effects are generated by the non-rivalness of technology, but they are 

cancelled out by increases in the amount of uncompensated knowledge spillovers that are also 

generated by the non-rivalness of technology. 
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1  INTRODUCTION 
 

Scale effects have been a central issue in the study of endogenous growth. Early endogenous 

growth models (e.g. Romer, 1986, 1987; Lucas, 1988) commonly included scale effects. 

However, the existence of scale effects in present-day economies is not supported by empirical 

evidence (Jones, 1995a). The source of scale effects lies in the assumption of a linear relation 

between capital (Kt) and technology (At). Given a Harrod-neutral production function such that 
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ttt kAy , the familiar optimal growth path is  
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c  ; Yt (≥ 0) is output, Kt (≥ 0) is capital input, Lt (≥ 0) is 

labor input, At is technology, Ct (≥ 0) is consumption, and 
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 is the population growth 

rate in period t. In addition, θ is the rate of time preference, ε is the coefficient of relative risk 

aversion, and α is a constant. Hence, if 
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 and nt are both constant, the growth rate 

of consumption is constant; that is, the economy can proceed on a balanced growth path. 

 To make 
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 constant, it is necessary that  
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where φ1 is a constant. The simplest solution to construct a model that satisfies 
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is to assume that there is a linear relation between Kt and At and that 0
t

t

L

L
. Early endogenous 

growth models such as the familiar “AK” model adopted this strategy (e.g., Romer, 1990; 

Grossman and Helpman, 1991; Aghion and Howitt, 1992).
1
 Assuming a linear relation between 

At and  ttt LkK   means that  
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where φ2 is a constant. Hence, Lt plays an important role for growth because, as Lt increases, 

t

t

c

c
 also increases. This relationship is known as scale effects.  

 Jones (1995b) adopts a completely different strategy (see also Kortum, 1997; 

Segerstrom, 1998; Eicher and Turnovsky, 1999), which focuses on the relation between Lt and 

                                                           
1 Early human-capital-based endogenous growth models also belong to this category of models. 
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At instead of that between Kt and At. A linear relation between 
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is selected to be relevant because only this case simultaneously satisfies the relation 
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1  and achieves a balanced growth path. This model can eliminate scale effects because 

there is no linear relation between Kt and At. Instead, the population growth rate 

t

t

L

L
 plays a 

crucial role, as equation (1) clearly exhibits. In this sense, Jones’s (1995b) model still does not 

appear to be successful as a model of endogenous growth. 

 To eliminate the influence of population growth, Young (1998), Peretto (1998), 

Aghion and Howitt (1998), and Dinopoulos and Thompson (1998) propose a third approach. 

They assume a relation between 
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, where φ4 and φ5 are 

constants. Hence, 
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if the relation 
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1  holds and the economy is on a balanced growth path. Therefore, 

if 15 φ , the economy grows at the constant rate φ1φ4 even if 0
t

t

L

L
; that is, the influence of 

population growth and scale effects can both be eliminated. However, Jones (1999) shows that 

this model crucially depends on a very special assumption, that 15 φ . 

 Peretto and Smulders (2002) take a fourth approach. They assume that AtLt and Kt are 

positively linked instead of At and Kt, and  
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where φ6 is a constant. Hence, the scale effects asymptotically vanish. In addition, population 

growth is unnecessary for economic growth unlike in the non-scale model developed by Jones 

(1995b). 

 The model developed in this paper superficially has this same feature, but the 

mechanism through which scale effects vanish is fundamentally different. The key assumption 

in Peretto and Smulders (2002) is that uncompensated knowledge spillovers diminish as the 

number of firms (and thus the population) increases. However, this assumption is problematic 

because the concepts of Marshall-Arrow-Romer (MAR) externalities (Marshall, 1890; Arrow, 

1962; Romer, 1986) and Jacobs externalities (Jacobs, 1969) both predict that, if the number of 
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firms increases, uncompensated knowledge spillovers will also increase. Hence, the key 

assumption of Peretto and Smulders (2002) contradicts the theory of knowledge spillover. This 

problem arises primarily because they neglect Jacobs externalities and focus only on the 

negative side of MAR externalities; that is, as the number of sectors increases, knowledge 

spillovers will work less effectively. Many empirical studies support the existence of Jacobs 

externalities (e.g., Glaeser et al., 1992; Chen, 2002; Stel and Nieuwenhuijsen, 2002), and 

neglecting them will heavily bias the structure of model. 

 The model in this paper, in contrast to that of Peretto and Smulders (2002), is 

consistent with knowledge spillover theory because uncompensated knowledge spillovers are 

assumed to increase when the number of firms increases. This opposite interpretation of the 

effect of knowledge spillovers could potentially make scale effects much worse, but it does not 

because of substitution between investments in capital and technology. Because of the 

non-rivalness of technology, identical technologies can be simultaneously utilized at any 

production site, and thus 

t

t
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 increases as Lt increases. In contrast, because of the rivalness of 

capital, capital can be used only by workers at the production sites where the capital is installed. 

Thus, 

t

t

K

Y




 is unchanged even if Lt increases. Therefore, firms will invest more in technology 

than in capital as population increases because returns on investing in technology become more 

attractive than those on capital. However, at the same time, uncompensated knowledge 

spillovers increase with an increase in population because of the non-rivalness of technology. 

The model presented in this paper indicates that an increase in population does not necessarily 

make investments in technology more attractive than those in capital because of increased 

uncompensated knowledge spillovers. Therefore, the non-rivalness of technology generates 

scale effects, but it simultaneously cancels them out with an inevitable increase in 

uncompensated knowledge spillovers. As a result, scale effects disappear, and an increase in 

population does not accelerate the growth rate. The model can eliminate both scale effects and 

the influence of population growth.  

 The paper is organized as follows. In Section 2, the production of technology and 

uncompensated knowledge spillovers are examined, and an endogenous growth model that 

incorporates substitution between investments in capital and technology is constructed. 

Section 3 shows that scale effects asymptotically diminish as population increases and shows 

that population growth is unnecessary for economic growth in the model. Concluding remarks 

are offered in Section 4. 

 

2  THE MODEL 
 

2.1  Production of technologies 
Outputs Yt are the sum of consumption Ct, the increase in capital, and the increase in technology 

such that 
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where  0ν  is a constant, and a unit of Kt and 1ν  of a unit of At are equivalent; that is, they 

are produced using the same quantities of inputs (capital, labor, and technology). This means 

that technologies are produced with capital, labor, and technology in the same way as consumer 

goods and services and capital. Unlike most idea-based growth models, no special mechanism is 

required for the production of technology because endogenous balanced growth (i.e., constant 

t

t

k

A
) is not materialized by any special property of the production function of technology but by 

uncompensated knowledge spillovers and arbitrage between investments in capital and 

technology. 

 Because balanced growth paths are the focal point of this paper, Harrod-neutral 

technical progress is assumed.
2
 Hence, the production function is  αtt

α

tt LAKY
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; thus, 
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It is assumed for simplicity that the population growth rate (nt) is constant and not negative such 

that nt = n ≥ 0. 

 

2.2  Substitution between investments in Kt and At 
For any period,  
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 ,                                (2) 

 

where Mt is the number of firms (which are assumed to be identical) and m (> 0) is a constant. 

Equation (2) presents a natural assumption that the population and number of firms are 

proportional to each other. Equation (2) therefore indicates that any firm consists of the same 

number of employee regardless of Lt. Note that, unlike the arguments in Young (1998), Peretto 

(1998), Aghion and Howitt (1998), and Dinopoulos and Thompson (1998), Mt is not implicitly 

assumed to be proportional to the number of sectors or researchers in the economy (see also 

Jones, 1999). Equation (2) merely indicates that the average number of employees per firm in an 

economy is independent of the population. Hence, Mt is not essential for the amount of 

production of At. As will be shown by equations (3) and (4), production of At does not depend 

on the number of researchers but on investments in technology. In contrast, Mt plays an 

important role in the amount of uncompensated knowledge spillovers.  

 The constant m implicitly indicates that the size of a firm is, on average, unchanged 

even if the population increases. This assumption can be justified by Coase (1937) who argued 

that the size of a firm is limited by the overload of administrative information. In addition, 

Williamson (1967) argued that there can be efficiency losses in larger firms (see also Grossman 

and Hart, 1986 and Moore, 1992). Their arguments equally imply that there is an optimal firm 

size that is determined by factors that are basically independent of population.  

 Next, for any period,  
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 ;                         (3) 

 

                                                           
2 As is well known, only Harrod-neutral technological progress matches the stylized facts presented by Kaldor 

(1961). As Barro and Sala-i-Martin (1995) argue, technological progress must take the labor-augmenting form in the 

production function if the models are to display a steady state.  
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thus,  
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is always kept, where  1  and  10  ρρ  are constants. The parameter ρ describes the 

effect of uncompensated knowledge spillovers, and the parameter   indicates the effect of 

patent protection. With patents, incomes are distributed not only to capital and labor but also to 

technology. For simplicity, the patent period is assumed to be indefinite, and no capital 

depreciation is assumed. An extended model with a finite patent period and capital depreciation 

is examined in Section 3.5.  

 Equations (3) and (4) indicate that returns on investing in capital and technology for 

the investing firm are kept equal. The driving force behind the equations is that firms exploit all 

opportunities and select the most profitable investments at all times. Through arbitrage, this 

behavior leads to equal returns on investments in capital and technology. With substitution 

between investments in capital and technology, the model exhibits endogenous balanced growth. 
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 by equations (2) 

and (3), which lucidly indicates that 

t

t

k

A
= constant, and the model can therefore show balanced 

endogenous growth. 

 

2.3  Uncompensated knowledge spillovers 
Equations (3) and (4) also indicate that the investing firm cannot obtain all of the returns on its 

investment in technology. That is, although investment in technology increases Yt, the investing 

firm’s returns are only a fraction of the increase in Yt, such that 
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, because 

knowledge spills over to other firms without compensation and other firms possess 

complementary technologies.  

 Broadly speaking, there are two types of uncompensated knowledge spillovers: 

intra-sectoral knowledge spillovers (MAR externalities: Marshall, 1890; Arrow, 1962; Romer, 

1986) and inter-sectoral knowledge spillovers (Jacobs externalities: Jacobs, 1969). MAR theory 

assumes that knowledge spillovers between homogenous firms are the most effective and that 

spillovers will primarily emerge within sectors. As a result, uncompensated knowledge 

spillovers will be more active if the number of firms within a sector is larger. On the other hand, 

Jacobs (1969) argues that knowledge spillovers are most effective among firms that practice 

different activities and that diversification (i.e., a variety of sectors) is more important in 

influencing spillovers. As a result, uncompensated knowledge spillovers will be more active if 

the number of sectors in the economy is larger. If all sectors have the same number of firms, an 

increase in the number of firms in the economy results in more knowledge spillovers in any case, 

as a result of either MAR or Jacobs externalities. 

 As uncompensated knowledge spillovers increase, the investing firm’s returns on 

investment in technology decrease. 

t

t

A

Y




 indicates the total increase in Yt in the economy by an 

increase in At, which consists of increases in both outputs of the firm that invested in the new 

technologies and outputs of other firms that utilize the newly invented technologies, regardless 

of whether the firms obtained the technologies by compensating the originating firm or through 

uncompensated knowledge spillovers. If the number of firms increases and uncompensated 



 7 

knowledge spillovers increase, the compensated fraction in 
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 that the investing firm can 

obtain becomes smaller, as do its returns on the investment in technology. The parameter ρ 

describes the magnitude of this effect. If ρ = 0, the investing firm’s returns are reduced at the 

same rate as the increase of the number of firms. 10  ρ  indicates that the investing firm’s 

returns diminish as the number of firms increase but not to the same extent as when ρ = 0. 

 Both types of externalities predict that uncompensated knowledge spillovers will 

increase as the number of firms increases, and scale effects have not actually been observed 

(Jones, 1995a), which implies that scale effects are almost canceled out by the effects of MAR 

and Jacobs externalities. Thus, the value of ρ is quite likely to be very small. From the point of 

view of a firm’s behavior, a very small ρ appears to be quite natural. Because firms intrinsically 

seek profit opportunities, newly established firms work as hard as existing firms to profit from 

knowledge spillovers. An increase in the number of firms therefore indicates that more firms are 

trying to obtain the investing firm’s technologies.  

 Because of the non-rivalness of technology, all firms can equally benefit from 

uncompensated knowledge spillovers, regardless of the number of firms. Because the size of 

firms is independent of population and thus constant as argued in Section 2.2, each firm’s ability 

to utilize the knowledge that has spilled over from each of the other firms will not be reduced by 

an increase in population. In addition, competition over technologies will increase as the 

number of firms increases, and any firm will completely exploit all opportunities to utilize 

uncompensated knowledge spillovers as competition increases.
3
 Hence, it is quite likely that the 

probability that a firm can utilize a unit of new technologies developed by each of the other 

firms without compensation will be kept constant even if the population and the number of 

firms increase. As a result, uncompensated knowledge spillovers will increase eventually to the 

point that they increase at the same rate as the increase in the number of firms. 

 The investing firm’s fraction of 
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 that it can obtain will thereby be reduced at the 

same rate as the increase in the number of firms, which means that ρ will naturally decrease to 

zero as a result of firms’ profit-seeking behavior. Based on ρ = 0, 
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by equations (3) and (4); thus,  
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is always maintained. 

 Complementary technologies also reduce the fraction of 
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 that the investing firm 

can obtain. If a new technology is effective only if it is combined with other technologies, the 

returns on investment in the new technology will belong not only to the investing firm but also 

to the firms that possess the other technologies. For example, an innovation in computer 

software technology generated by a software company increases the sales and profits of 

                                                           
3 Moreover, a larger number of firms indicates that firms are more specialized. More specialized and formerly 

neglected technologies may become valuable to the larger number of specialized firms. Hence, knowledge spillovers 

will increase. 
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computer hardware companies. The economy’s productivity increases because of the innovation 

but the increased incomes are attributed not only to the firm that generated the innovation but 

also to the firms that possess complementary technologies. A part of 

t

t
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 leaks to these firms, 

and the leaked income is a kind of rent revenue that unexpectedly became obtainable because of 

the original firm’s innovation. Most new technologies will have complementary technologies. 

Because of both complementary technologies and uncompensated knowledge spillovers, the 

fraction of 
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 that an investing firm can obtain on average will be very small; that is,   

will be far smaller than Mt except when Mt is very small.
4
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 As a whole, the optimization problem of the representative household is to maximize 

the expected utility 

 

   dtθtcuE t 


exp
0

 

 

subject to equation (7) where u(•) is a constant relative risk aversion (CRRA) utility function 

and E is the expectation operator. 

 

3  AN ASYMPTOTICALLY NON-SCALE 

BALANCED GROWTH PATH 
 

3.1  Growth rate and transversality condition 
Let Hamiltonian H be 
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4 If Mt is very small, the value of   will be far smaller than that for sufficiently large Mt because the number of 

firms that can benefit from an innovation is constrained owing to the very small Mt. The very small number of firms 

indicates that the economy is not sufficiently sophisticated, and thereby the benefit of an innovation cannot be fully 

realized. This constraint can be modeled as   tM1~11~   , where  1~   is a constant. Nevertheless, for 

sufficiently large Mt (i.e., in sufficiently sophisticated economies), the constraint is removed such that 
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where
tλ is a costate variable. The optimality conditions for the optimization problem shown in 

the previous section are  
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Hence, by equations (8) and (12), the growth rate of consumption is 
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, and transversality condition (11) is 

satisfied. Conversely, if 0
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 for any period after a certain period, the transversality 

condition is not satisfied.    

 

3.2  Balanced growth path 
There is a balanced growth path on which all the optimality conditions are satisfied.  



 10 

 

Lemma: If and only if 
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 Rational households will set an initial consumption that leads to the growth path that 

satisfies all the conditions. The Lemma therefore indicates that, given an initial A0 and k0, 
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 With 

this household behavior, the growth rates of technology, per capita output, consumption, and 

capital converge at the same rate.  

 

Proposition: If all of the optimality conditions (equations [7]–[10]) are satisfied, 
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By Proposition and Lemma, the balanced growth path is  
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 .     (13) 

 

This balanced growth path can be seen as a natural extension of the steady state in the 

conventional Ramsey growth model with exogenous technology.  

 

3.3  Vanishing scale effects 
In contrast to the arguments in Peretto and Smulders (2002), uncompensated knowledge 

spillovers increase when the population increases as shown in Section 2.3. This nature of 

uncompensated knowledge spillovers is consistent with the theories of MAR and Jacobs 

externalities. They could potentially make scale effects much worse, but they do not. The 

balanced growth path shown in equation (13) is not a function of Lt.   

 Although knowledge spillovers increase as the population increases, their effects are 

simultaneously cancelled out through substitution between investments in capital and 

technology. If returns on investments in technology become more attractive because of an 

increase in population, firms will invest more in technology than in capital. Decisions about 

whether to invest in capital or technology are made by firms that compare returns on 

investments in capital (

t

t

K

Y




) with those in technology (

t

t
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Y
ψ



), where ψ is a variable that 

indicates the degree of uncompensated knowledge spillovers, that is, how much a firm that 
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invests in technology can obtain from 
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Y




 as the return on generating a new technology. By 

arbitrage, both returns are equalized such that 
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, as shown in equation (3).  

 As the size of the population becomes larger, 
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 increases, because a larger number 

of workers (Lt) can simultaneously utilize new technologies.
6
 The non-rivalness of technology 

enables this increase in 
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increases as Lt increases. To the contrary, because of the rivalness of capital, it cannot 

necessarily be used by the larger number of workers when the population increases. Capital 

inputs can only be used by the workers at the production sites where they are installed; that is, 
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. If 

t

t

k

y




 is constant, 
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 is also constant, even if the size of the population 

increases.  

 Therefore, if ψ is constant, familiar scale effects emerge. 

t

t
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Y
ψ



 would increase with 

an increase in population, and 

t

t

K

Y




 would not change. Returns on investments in technology 

would therefore become more attractive than those on investments in capital as the size of the 

population increases; thus, firms would invest more in technology than in capital. As a result, 

the growth rate would accelerate with an increase in population.  

 However, ψ is not constant. As shown in Section 2.3, the theory of knowledge 

spillover predicts that the amount of uncompensated knowledge spillovers and number of firms 

are positively correlated. In addition, the number of firms will increase as the population 

increases, as shown in equation (2). Hence, the theory of knowledge spillover indicates that ψ is 

not constant but rather a function of population, and it decreases as the population increases. An 

increase in population increases returns on investments in technology, but at the same time, they 

decrease the returns on investments in technology because of the increase in uncompensated 

knowledge spillovers. In other words, the total reward per innovation increases as the 

population increases, but at the same time, those rewards are shared by an increased number of 

firms without compensation. Therefore, an increase in population does not necessarily make 

investments in technology more attractive than those in capital.  

 An increase in population therefore does not necessarily accelerate the growth rate. As 

shown in Section 2.3, ρ will be almost zero as a result of firms’ profit-seeking behavior. 

Equations (5) and (6) indicate that, because ρ = 0, an increase in 

t

t

A

Y




 caused by an increase in 

Lt is completely cancelled out by an increase in uncompensated knowledge spillovers 

represented by Mt = mLt. 

 However, if the population is small, scale effects still exist. Scale effects are measured 

by 
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 ; 

                                                           
6 In addition, an increase in population also indicates that a larger number of households can consume products 

produced by utilizing a unit of new technology. 
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that is, by the population related part of 
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. In the model, 
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If 
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, scale effects exist, and if 
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population is small, 
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 and scale effects exist. However, scale effects vanish 

asymptotically as population increases such that  
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and  

 

 
 

0lim 
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t

L dL
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 . 

 

As the population increases, scale effects asymptotically disappear. An economy with a 

sufficiently large population therefore can grow without scale effects. 

 Equations (14) and (15) indicate that scale effects are economically important if the 

size of population is very small (i.e., the number of firms is very small), which implies that scale 

effects played a crucial role in early human history. Conversely, in present-day industrialized 

economies, scale effects have been observed to have no influence on growth (Jones, 1995a) 

because these economies are integrated with the world economy and have a large total 

population. 

 

3.4  Growth without population increase 
The model also indicates that population growth is not necessary for economic growth. If 

0tn  for any period,  
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= constant 

 

because Lt = constant. Clearly, 

t

t

c

c
 is irrelevant to nt and is positive even though nt = 0.

7
 This 

result is important because it indicates that the economy can grow endogenously and 

indefinitely at a constant rate without population growth, which contrasts with the non-scale 

model shown in Jones (1995b). 

                                                           
7 As mentioned above, usually   01

1
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t , so this is the only case examined in this paper. 
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3.5  Extension to a finite patent period 
In the previous sections, for simplicity, an indefinite patent period was assumed and capital 

depreciation was not taken into consideration. In this section, these assumptions are relaxed. Let 

 0χ  be the length of the patent period and  0δ  be the rate of capital depreciation. After 

the patent period of a technology ends, the price of the technology is zero and the returns on 

investment in that technology are also zero indefinitely. Thereby, after the end of patent period, 

the increased income generated by use of the technology is only distributed to owners of capital 

and labor, not to the owner of the technology. Hence, the total return on investment in 

technology to the investing firm during the patent period is  
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Next, because capital depreciates by δ every period, the total return on investment in capital to 

the investing firm during the entire period is 
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Through the arbitrage between investments in capital and technology,  
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 .                          (16) 

 

Therefore, in an economy with a finite patent period and capital depreciation, equation (4) is 

replaced with equation (16). Equation (16) clearly shows that the original model’s conclusion 

still holds with a finite patent period and capital depreciation. In many countries, the patent 

period is 20 or more years (i.e., χ ≥ 20), and the useful life of capital is usually about 20 years (a 

depreciation rate of about 0.05). For χ = 20 and δ = 0.05, δχ = 1, which means that equation (4) 

and (16) will be practically identical for reasonable patent periods and depreciation rates. In this 

situation, it appears reasonable to assume for simplicity that the patent period is indefinite and 

the rate of capital depreciation is zero.  

 Although 20 years have been used as the patent period in many countries, there may 

be other possibilities. Because 
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as the patent period χ increases, the growth rate of consumption increases if the population is 

sufficiently large. This result suggests that the patent period should be indefinite. However, this 

is not the case because  
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for L . If the patent period is very long, the growth rate of consumption becomes negative 

because firms will restrain their accumulation of capital because investments in technology will 

be much more lucrative as compared with those in capital. Equation (16) indicates that, as χ → 

∞, firms will become extremely tempted to invest in technology rather than in capital and 

eventually no investment in capital will be made. Therefore, the patent period should be finite to 

achieve high growth rates. 

 The optimal length of the patent period depends on the parameter values. In addition, 

technological obsolescence may also have to be considered because, in many industrial 

countries, a technology is often replaced with other technologies or demands shift to other 

goods and services that use other technologies in a period that is shorter than the patent period. 

If we also consider obsolescence, equation (16) can be replaced with  
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exp1  , 

 

where μ is the obsolescence rate. For example, if μ = 0.1, then   χμμ  exp11 = 8.65 for χ = 

20, 9.50 for χ = 30 and 9.82 for χ = 40. If μ = 0.15, then   χμμ  exp11 = 9.50 for χ = 20, 

9.89 for χ = 30 and 9.98 for χ = 40. Hence, the value of   χμμ  exp11  is almost identical 

if χ > 20, which implies that an approximate 20-year patent period is sufficiently long and 

practically reasonable. 

 

4  CONCLUDING REMARKS 
 

Early endogenous growth models (e.g. Romer, 1986, 1987; Lucas, 1988) employed scale effects. 

Jones (1995b) presents a different type of endogenous growth model that eliminates scale 

effects, but the population growth rate plays a crucial role for economic growth. Models 

developed by Young (1998), Peretto (1998), Aghion and Howitt (1998), and Dinopoulos and 

Thompson (1998) eliminate the influence of population growth as well as scale effects, but 

Jones (1999) argues that those models crucially depend on a very special assumption. Using a 

fourth approach, Peretto and Smulders (2002) assume that AtLt (instead of At) and Kt are 

positively linked; thus, scale effects asymptotically vanish. 

 The model developed in this paper superficially has the same feature as the model 

developed in Peretto and Smulders (2002), but the mechanism through which scale effects 

vanish is fundamentally different. The concepts of MAR and Jacobs externalities both predict 

uncompensated knowledge spillovers will increase as the number of firms increases, and to be 

consistent with the theory of knowledge spillover, uncompensated knowledge spillovers 

increase when the number of firms increases in the model presented in this paper. Even though 

the direction of the effect of knowledge spillovers is reversed, scale effects still diminish as they 

do in Peretto and Smulders’ (2002) model because of increased uncompensated knowledge 

spillovers and substitution between investments in capital and technology.  
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 Because of the non-rivalness of technology, 

t

t

A

Y




 increases as Lt increases. In contrast, 

because of the rivalness of capitals, 

t

t

K

Y




 is unchanged even if Lt increases. This difference 

makes investments in technology more attractive when Lt increases. However, at the same time, 

an increase in population increases the amount of uncompensated knowledge spillovers, which 

makes investments in technology less attractive. Therefore, firms do not necessarily invest more 

in technology than in capital when Lt increases. That is, the non-rivalness of technology 

generates scale effects but simultaneously cancels them out as the amount of uncompensated 

knowledge spillovers increases. As a result, scale effects disappear, and an increase in 

population does not necessarily accelerate the growth rate. By combining the theory of 

knowledge spillover and substitution between investments in capital and technology, an 

asymptotically non-scale endogenous growth model that can eliminate both scale effects and the 

influence of population growth was constructed.  

 Asymptotically diminishing scale effects indicate that, if a population is very small, 

scale effects greatly influence growth, but if it is sufficiently large, scale effects vanish. This 

result suggests that scale effects were a crucial factor for economic growth in the early history 

of civilizations, but they are no longer important in present-day industrialized economies.  
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