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Abstract

Balder’s (2002) model of games with a measure space of players is integrated
with the line of research on finite-player games with discontinuous payoff func-
tions which follows Reny (1999). Specifically, we extend the notion of continuous
security, introduced by McLennan, Monteiro, and Tourky (2011) and Barelli
and Meneghel (2012) for finite-players games, to games with a measure space of
players and establish the existence of pure strategy Nash equilibrium for such
games. A specification of our main existence result is provided which is ready
to fit the needs of applications. As an illustration, we consider several optimal
income tax problems in the spirit of Mirrlees (1971) and use our game-theoretic
result to show the existence of an optimal income tax in each of these problems.
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1 Introduction

The line of research initiated by Dasgupta and Maskin (1986) and continued, amongst
others, by Reny (1999) has been successful in obtaining equilibrium existence results
for finite-player games with discontinuous payoff functions. In this paper we extend
this approach to the context of generalized games with a measure space of players, a
class of games first considered by Schmeidler (1973), the state of the art now set by
Balder (2002). In particular, concerning existence of Nash equilibrium, we bring the
branch of game theory dealing with games with a measure space of players on par
with that dealing in a systematic way with games with discontinuous payoff functions.

Besides of being of general game-theoretic interest, the motivation is that several
economic problems which are addressed in the literature can be modeled as games
with a continuum of players, but where payoff functions need neither be continuous
nor satisfy the assumptions in Balder (2002). As an example, we will consider a version
of Mirrlees’s (1971) model of optimal taxation (see Section 3).

Our approach to deal with discontinuous payoff functions in the setting of games
with a measure space of players is based on the notion of C-security, which was
developed in the context of finite-player games by McLennan, Monteiro, and Tourky
(2011). More precisely, we take a version of this notion, called continuous security,
which was introduced by Barelli and Meneghel (2012), and adapt it to the particular
measurability needs arising when there may be a continuum of players.1 We remark
that the notion of C-security generalizes that of better-reply security, which was
introduced in the pioneering paper of Reny (1999).

Our notion of continuous security covers, in particular, games where, as in Balder
(2002), payoff functions are assumed to be upper semi-continuous and the value func-
tions of the players are assumed to be lower semi-continuous.2 In fact, when value
functions are assumed to be lower semi-continuous, it allows for payoff functions that
are merely weakly upper semi-continuous (as defined in Carmona (2009)).

In addition to the pure strategy existence result of Balder (2002), our result covers
that of Khan and Sun (1999). In this latter result, payoff functions are continuous
but the entire distribution of the actions of players with non-convex action sets may
be relevant for the payoff of each single player, whereas in Balder (2002) only a finite-
dimensional vector of summary statistics of the actions of such players may matter
for payoffs. We remark that the key assumption in Khan and Sun (1999) amounts
to a strengthening of the hypothesis that the measure on a set of players with non-

1Actually, in Barelli and Soza (2009), which is an earlier version of Barelli and Meneghel (2012),
continuous security is called “generalized B-security,” in line with early versions of McLennan, Mon-
teiro, and Tourky (2011) where C-security was called “B-security”.

2See Section 2.2 for the formal definition of the value function of a player.
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convex action sets be non-atomic. Our result will show, in particular, that such a
strengthening of non-atomicity still allows to obtain pure-strategy Nash equilibria,
with payoff dependence modeled as in Khan and Sun (1999) and non-convex action
sets, when payoff functions may be discontinuous.3,4

The paper is organized as follows. In Section 2 we introduce some notation and
terminology (Section 2.1), present the general model (Section 2.2), our definition of
continuous security (Section 2.3), and our main existence results (Section 2.4). The
relationship between these results and that of Balder (2002) is detailed in Section 2.5.
In Section 2.6, we present a special case of the general model where, in particular,
there are at most countably many atomic players, and where each player’s payoff
depends on his choice, on the choices of the atomic players, and on the vector of
the joint distributions of the actions and players’ attributes appearing in each one
of countably many sub-populations of the atomless players. Sufficient conditions for
continuous security are presented in Section 2.6 and Section 2.7, where generalized
better-reply secure games are considered. Section 3 applies our results to several
optimal income taxation problems. The proofs of our results, as well as the lemmas
needed for them, are in Section 4. For convenience of the reader, our main results are
restated in Section 4 before theirs proofs.

2 Definitions and results

2.1 General notation and terminology

(a) ϕ : A ⇒ B denotes a correspondence from the set A to the set B, i.e., a map
from A to the power set of B.

(b) We use “usc” as abbreviation for “upper semi-continuous,” “lsc” for “lower semi-
continuous,” and “uhc” for “upper hemi-continuous.”

(c) If A and B are topological spaces, a correspondence ϕ : A ⇒ B is called
well-behaved if it is uhc and takes non-empty and closed values.

(d) For a topological space X, B(X) denotes the Borel σ-algebra of X.
(e) If A and B are as in (c), and (T,Σ, ν) is a measure space, we call a corre-

spondence ϕ : T ×A⇒ B a Caratheodory correspondence if ϕ(t, ·) is well behaved for
3Further papers on existence of equilibrium with a measure space of players include Barelli and

Duggan (2012), Khan (1986), Khan, Rath, and Sun (1997), Martins da Rocha and Topuzu (2008),
Mas-Colell (1984), Páscoa (1993), and Rath (1996).

4Recent papers on finite-player games with discontinuous payoff functions include Bagh and
Jofre (2006), Balder (2011), Bich (2009), Bich and Laraki (2012), Carmona (2011), Carmona (2012),
de Castro (2011), Nessah (2011), Prokopovych (2011), Prokopovych (2012), Reny (2009), Reny
(2011a), and Reny (2011b).
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each t ∈ T , and if for each a ∈ A, the graph of ϕ(·, a) is measurable, i.e., belongs to
Σ⊗ B(B).

(f) Given functions f : X → Y and g : X → Z, we denote by (f, g) the function
x 7→ (f(x), g(x)) : X → Y × Z.

(g) coE denotes the convex hull of a subset E of a topological linear space.
(h) A measure space (T,Σ, ν) is called separable if L1(ν) (with its usual norm) is

separable. We will also say that a measure ν ′ on a set T ′ is separable to mean that
(T ′,Σ′, ν ′) is separable if Σ′ ⊆ 2T

′ is the domain of ν ′.
(i) A measure space (T,Σ, ν) is called super-atomless if for every E ∈ Σ with

ν(E) > 0, the subspace of L1(ν) consisting of the elements of L1(ν) vanishing off E

is non-separable. (For equivalent definitions, see Podczeck (2009).) We also say that
a measure ν ′ on a set T ′ is super-atomless to mean that (T ′,Σ′, ν ′) is super-atomless
if Σ′ ⊆ 2T

′ is the domain of ν ′.
We remark that atomless Loeb probability spaces are super-atomless. Also, as

follows from Fremlin (2008, Proposition 521P(b)), Lebesgue measure on the unit
interval can be extended to a super-atomless probability measure (see Podczeck 2009).

2.2 The general model

The model of games we consider is (the pure strategy part of) that of Balder (2002),
with some modifications.

There is a measure space (T,Σ, ν) of players. The measure space (T,Σ, ν) may be
non-atomic or purely atomic, or may have both an atomic part and a non-atomic part.
This allows for non-atomic games as well as for finite-player games as special cases,
but also covers situations where finitely many large players and players belonging to
a continuum of negligible players interact. The following is supposed to hold.

(A1) (T,Σ, ν) is a complete non-trivial finite measure space (“non-trivial finite” mean-
ing 0 < ν(T ) <∞).

In Balder (2002), it is assumed in addition that (T,Σ, ν) is separable. However, we
will also consider spaces of players where this condition does not hold, and for this
reason we will introduce this condition as part of a special assumption in Section 2.4.

The set T of players is grouped into two measurable subsets T̄ and T̂ with T̄∩T̂ = ∅
and T̄ ∪ T̂ = T . The set T̄ is the set of those players for which convexity assumptions
will be made in (A4) below and in our notion of continuous security stated in the
next section. It is assumed:

(A2) T̂ is contained in the non-atomic part of (T,Σ, ν).

Action sets of players are subsets of a universe X where
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(A3) X is a Souslin locally convex topological vector space.

Recall that a topological space X is called Souslin if it is Hausdorff and if there is a
continuous surjection from a Polish space onto X. Thus any Polish space is a Souslin
space. Examples of locally convex spaces that matter in several economic models and
which are Souslin but not Polish are separable Banach spaces with the weak topology
and duals of separable Banach spaces with the weak∗ topology.

The action set of player t ∈ T is denoted by Xt, and by ΓG we denote the graph
of the action sets correspondence t 7→ Xt. It is assumed:

(A4) (i) For each t ∈ T , the action set Xt is a non-empty compact subset of X.

(ii) ΓG is a measurable subset of T ×X, i.e., belongs to Σ⊗ B(X).

(iii) For every t ∈ T̄ , Xt is convex.

A strategy profile (or, for short, a strategy) is a measurable function f : T → X

such that f(t) ∈ Xt for almost all t ∈ T . By SG we denote the set of all strategies
in the game G. Thus SG is just the set of all measurable a.e. selections of the action
sets correspondence t 7→ Xt.

A player’s payoff depends on his own action and on a so-called externality which
reflects the choices of all players. This externality is modeled in the following way.

Let S̄G = {f |T̄ : f ∈ SG}. That is, S̄G is the set of the restrictions of the elements
of SG to T̄ , or, in other words, the set of all strategy profiles of the players in T̄ . In
addition, let Ĉ be a countable set of functions q : ΓG ∩ (T̂ ×X)→ R such that (i) q is
measurable, (ii) q(t, ·) is continuous for each t ∈ T̂ , (iii) there is an integrable function
θq : T̂ → R+ such that sup{|q(t, x)| : x ∈ Xt} ≤ θq(t) for each t ∈ T̂ . (It is understood
in (i), as well as in the sequel, that, whenever it matters, products of measurable spaces
are endowed with the product σ-algebra, and subsets of measurable spaces with the
subspace σ-algebra.) Let ē : SG → S̄G be given by ē(f) = f |T̄ , and ê : SG → RĈ by
ê(f) = 〈

∫
T̂
q(t, f(t))dν(t)〉q∈Ĉ. Note that the integrals are indeed defined. Now define

e : SG → S̄G × RC by setting e(f) = (ē(f), ê(f)) for each f ∈ SG. The map e is the
externality map of the game. Together with the own actions, its values determine the
payoff of a single player.

Actually, in Balder (2002) it is assumed that the set Ĉ is finite. We will look at
this condition in Section 2.4.

Let EG ⊆ S̄G ×RĈ denote the image of SG under e, i.e., EG = e(SG). The set EG
is given a topology specified as follows. First, the set S̄G is given the feeble topology.
Recall from Balder (2002) that the feeble topology on S̄G is the coarsest topology
such that the map h 7→

∫
T̄
q(t, h(t))dν(t) : S̄G → R is continuous for each q ∈ Ḡ,

where Ḡ is the set of all functions q : T̄ × X → R such that (i) q is measurable, (ii)
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q(t, ·) is linear and continuous for each t ∈ T̄ , (iii) there is an integrable function
θq : T̄ → R+ such that sup{|q(t, x)| : x ∈ Xt} ≤ θq(t) for each t ∈ T̄ . Secondly, RĈ is
given the product topology defined from the usual topology of R. Now EG is given
the subspace topology defined from the product topology of S̄G × RĈ.

Each player t ∈ T has a payoff function ut : Xt×EG → [−∞,+∞]. Thus, given a
strategy profile f ∈ SG, player t’s payoff is determined by his own action f(t) and by
the externality e(f).

In addition to the payoff function, for each player t ∈ T there is a constraint
correspondence At : EG ⇒ Xt. The set At(y) specifies the actions that are actually
available for player t given the externality y ∈ EG. As elements of EG represent
social outcomes given choices of all players, the set At(y) can be viewed as a socially
constrained action set of player t given y ∈ EG.

We summarize a game as just outlined by a listG = ((T,Σ, ν), X, 〈Xt, ut, At〉t∈T , e).
Given such a game G, we denote by wt the value function of player t ∈ T ; that is,
wt : EG → [−∞,+∞] is the function defined by setting

wt(y) = sup{ut(x, y) : x ∈ At(y)}, y ∈ EG.

A strategy f is called a Nash equilibrium (for short, an equilibrium) of the game G
if f(t) ∈ At(e(f)) and ut(f(t), e(f)) = wt(e(f)) for almost all t ∈ T .

We note that several assumptions in addition to those presented above are made in
the pure strategy Nash equilibrium existence result in Balder (2002). These additional
assumptions will be listed in Section 2.5 below.

A couple of remarks are in order.

Remark 1. (a) Assuming that all the action sets are included in the same Souslin
locally convex space X is not a big restriction. Indeed, suppose for instance that, for
two Souslin locally convex spaces X0 and X1, we have Xt ⊆ X0 for all t ∈ T̄ and
Xt ⊆ X1 for all t ∈ T̂ , without imposing any relationship between X0 and X1. In
this case, we can set X = X0 ×X1 and identify with X0 with the subspace X0 × {0}
of X, and X1 with the subspace {0} × X1, noting that the product of two locally
convex Souslin spaces is again a space of this kind (directly from the definition of
such space.)

(b) In fact, it suffices to assume that X1 is just a completely regular Souslin space
(without imposing any linear structure on X1). The reasons are the following. First,
no convexity assumptions are made with respect to the players in T̂ . Second, if X1 is
a completely regular Souslin space then, writing M(X1) for the space of all bounded
signed Borel measures on X1 with the narrow topology, M(X1) is a locally convex
Souslin space (Schwartz (1973, p. 387, Corollary)) and the identification of the points
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in X1 with the corresponding Dirac measures defines a homeomorphic embedding
of X1 into M(X1).

Remark 2. Note that for players in T̄ , action and externality are not independent
of each other, as a given value of the externality determines the action of a player
in T̄ . However, as pointed out by Balder (2002, Section 2.4), this does not imply any
inconsistency in the way payoffs are modeled.

This is easy to see in the simple special case where T̄ is countable and {t} ∈ Σ

for each t ∈ T̄ . Indeed, in this case, S̄G is the same as
∏

t∈T̄ Xt. Thus, writing πt
for the projection of

∏
t′∈T̄ Xt′ ×RĈ onto

∏
t′∈T̄\{t}Xt′ ×RĈ, we can assume that, for

each t ∈ T̄ , the payoff function ut is such that ut(x, y) = vt(x, πt(y)) for any x ∈ Xt

and y ∈ EG, where vt is a function defined on Xt × πt(EG), and this resolves any
consistency issues.

As for the general case, let T̄1 be the set of the non-negligible players in T̄ (i.e.,
those t ∈ T̄ for which the outer measure of {t} is strictly positive), and let T̄2 be the
set of negligible players in T̄ . For an element g ∈ S̄G, write g• for the ν-equivalence
class of g in the space of measurable functions from T̄ to X, and let S̄•G be the set of
all these equivalence classes. Define π : S̄G × RĈ → S̄•G × RĈ by setting

π(y) = (g•, h), y = (g, h) ∈ S̄G × RĈ.

We can assume that for players t belonging to T̄2, the payoff function ut satisfies
ut(x, y) = vt(x, π(y)) for every x ∈ Xt and y ∈ EG, where vt is a function defined on
Xt × π(EG), and this resolves any consistency issues for the players in T̄2. Consider
any t ∈ T̄1. As T̄ is a measurable subset of T , there is an atom F ⊆ T̄ such that
t ∈ F . Let S̄FG be the set of restrictions of the elements of S̄G to T̄ \F , and define
πF : S̄G × RĈ → S̄FG × RĈ by setting

πF (y) = (g|T̄\F , h), y = (g, h) ∈ S̄G × RĈ.

We can assume that, for some function v defined on Xt×πF (EG), the payoff function
ut′ of each player t′ ∈ F satisfies ut′(x, y) = v(x, πF (y)) for every x ∈ Xt′ and y ∈ EG,
and this resolves any consistency issues for the players belonging to F .

Similarly as with the payoff functions, the fact that, for players in T̄ , action and
externality are not independent of each other does not imply any inconsistency in the
way the constraint correspondences are modeled.

However, this whole issue will not play any role in the arguments concerning
existence of Nash equilibrium.

Remark 3. If T̄ is countable and {t} ∈ Σ for each t ∈ T̄ , then S̄G is the same as∏
t∈T̄ Xt. Moreover, if ν({t}) > 0 and the action set Xt is compact for each t ∈ T̄ ,
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then the feeble topology on S̄G is the same as the product topology on
∏

t∈T̄ Xt. This
is so for two reasons. First, compactness of Xt means that the weak topology of the
locally convex space X coincides on Xt with the given topology of X; thus a net 〈xα〉
in Xt converges to some x ∈ Xt if and only if p(xα)→ p(x) for each continuous linear
function p : X → R. Second, if {t} ∈ Σ and Xt is compact for each t ∈ T̄ , then, for
any such p, the function q : T̄ ×X → R, where q(t, ·) = p for one t ∈ T̄ and q(t, ·) is
the zero functional elsewhere in T̄ , belongs to the set Ḡ in the definition of the feeble
topology. Thus, given that ν({t}) > 0 for each t ∈ T̄ , it follows that if a net 〈hα〉 in
S̄G converges to some h ∈ S̄G for the feeble topology, then it converges to this h for
the product topology of

∏
t∈T̄ Xt. In view of (iii) in the definition of Ḡ, it is clear that

the reverse implication also holds, given that T̄ is countable.

Remark 4. The model presented above contains the standard (normal-form) model
of finite-player games as a special case (as long as action sets are contained in locally
convex Souslin spaces). Indeed, suppose for the measure space (T,Σ, ν) of players
that T is finite, Σ = 2T , and ν is the counting measure. In accordance with (A2), set
T̄ = T . Then SG = S̄G and thus, by what was noted in the previous remark, SG is the
same as

∏
t∈T Xt and the feeble topology on SG is the same as the product topology

on
∏

t∈T Xt. Concerning the payoff functions, we refer to the second paragraph of
Remark 2.

The model described in this section is intended as a general framework that can
encompass several simpler models. This point has been emphasized in Balder (2002).
In this line, we show in Section 2.6 that the class of games where each player’s
payoff depends on the own action and the distribution of the actions of all players
(considered in Schmeidler (1973) and Mas-Colell (1984)) is included in the framework
of this section. Example 1 shows this for a simple game and illustrates the general
model of this section.

Example 1. A non-atomic game where each player’s payoff depends on his own
action and on the distribution of the actions of all players. Suppose the space of
players is the unit interval with Lebesgue measure and that each player’s action set
is {a1, a2, a3}, where a1, a2, a3 are distinct points of R. Then, writing ∆ for the unit
simplex in R3, a distribution of actions can be described by a point y ∈ ∆, with the
interpretation that the ith coordinate yi is the fraction of players choosing action ai.
In this notation, payoff functions such that a player’s payoff is determined by the own
action and the distribution of the actions of all players are functions with domain
{a1, a2, a3}×∆. Assume for simplicity that all players have the same payoff function
u : {a1, a2, a3} ×∆→ R.

To represent this game in the setting of this section, let (T,Σ, µ) be the unit
interval with Lebesgue measure, let X = R, and for all t ∈ T , let Xt = {a1, a2, a3}.
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Thus ΓG = T × {a1, a2, a3}. Define functions qi : ΓG → R, i = 1, 2, 3, by setting

qi(t, x) =

1 if x = ai

0 otherwise.

Let T̂ = T , and let e : SG → R3 be the externality map defined from Ĉ = {q1, q2, q3}.
Write ei for the ith coordinate function of e, i = 1, 2, 3, and note that for any f ∈ SG,
ei(f) = ν({t ∈ T : f(t) = ai}). In particular, we have EG ≡ e(SG) = ∆.

Finally, for each t ∈ T , let ut = u and At(y) = {a1, a2, a3} for all y ∈ EG. It is
clear that the game G defined in this way satisfies (A1)–(A4).

2.3 Continuous security

The notion of continuous security was introduced in the case of finite-player games
by Barelli and Meneghel (2012) (see also Barelli and Soza (2009)), building on the
notion of multiple security, which was developed by McLennan, Monteiro, and Tourky
(2011). We first present the definition of continuous security for finite-player games
and then extend this notion to games with a continuum of players.

Consider a game G = 〈Xi, ui〉i∈I with finitely many players, where I is the set of
players, Xi is player i’s action space, and ui :

∏
j∈I Xi → R player i’s payoff function.

Assume that, for each i ∈ I, Xi is a nonempty, compact, and convex subset of a
Hausdorff locally convex topological vector space and ui is bounded. The game G is
called continuously secure if for each y ∈

∏
i∈I Xi which is not a Nash equilibrium

of G, there exists a neighborhood U of y in
∏

i∈I Xi, a vector α ∈ RI and, for every
i ∈ I, a well-behaved correspondence ϕi : U ⇒ Xi such that:

(a) For every i ∈ I and every y′ ∈ U , ϕi(y′) is convex or included in a finite-
dimensional subspace of Xi.

(b) For every i ∈ I, ui(x, y′−i) ≥ αi for all y′ ∈ U and x ∈ ϕi(y′).

(c) For each y′ ∈ U there is an i ∈ I such that y′i /∈ co{x ∈ Xi : ui(x, y
′
−i) ≥ αi}.

Here y′i is the projection of y′ onto Xi, and y′−i that on
∏

j∈I\{i}Xj.5

5The definition of “continuously secure” in Barelli and Meneghel (2012) is not exactly equal to
the one presented here. Actually, Barelli and Meneghel (2012) do not require (a). Unfortunately, the
proof of Theorem 2.2 in Barelli and Meneghel (2012) does not go through without (a). The reason
is that the correspondence Φ in that proof is not necessarily closed-valued, because the convex hull
of a compact set need not be closed in an infinite-dimensional space. To solve this problem, one can,
as we did here, require ϕi(y

′) to be convex, as in Barelli and Soza (2009), or to be included in a
finite-dimensional subspace of Xi, as in McLennan, Monteiro, and Tourky (2011).
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Unlike in the finite-player case, measurability properties are not trivially satisfied
when there is a continuum of players, but have to be assumed explicitly. In regard to
an adaption of the above notion of continuous security to games as described in the
previous section, this means the following. First, the analogs of the correspondences
ϕi must, as correspondences taking values in the universal action space X, be linked
together over the space of players in a measurable way, which can be done using the
notion of Caratheodory correspondence as stated in Section 2.1. Second, the analog
of the vector α must be a measurable function on the space players. Third, the single
player i in (c) of the definition of continuous security must be replaced by a non-
negligible set of players.

Another point concerns the notion of neighborhood of a strategy that is involved
in the above definition. Now in the games we consider, the way the payoff of a single
player is affected by the actions of the other players is modeled by the externality map
e, and therefore it is natural to take, as analogs of the sets U in the above definition,
subsets of the externality space EG.

Summarizing this discussion leads to the following definition, where EG is regarded
as being endowed with the topology introduced in Section 2.2, and CS abbreviates
“continuous security.” For sake of generality, we allow for a restriction operator X in
the spirit of McLennan, Monteiro, and Tourky (2011) (see Remark 5 for a discussion).

Definition 1. A game G = ((T,Σ, ν), X, 〈Xt, ut, At〉t∈T , e) is said to satisfy CS if
there is a correspondence X : T ×EG ⇒ X, with X (t, y) ⊆ Xt for all (t, y) ∈ T ×EG,
such that whenever y ∈ EG is such that there is no equilibrium strategy f with
e(f) = y, there is a neighborhood U of y in EG, a Caratheodory correspondence
ϕ : T × U ⇒ X, and a measurable function α : T → [−∞,+∞] such that:

(a) For each y′ ∈ U , ϕ(t, y′) ⊆ X (t, y′) for all t ∈ T .

(b) For all y′ ∈ U and all t ∈ T̄ , ϕ(t, y′) is convex or included in a finite-dimensional
subspace of X.

(c) For each y′ ∈ U , ut(x, y′) ≥ α(t) for almost all t ∈ T and all x ∈ ϕ(t, y′).6

(d) If f is a strategy with e(f) ∈ U , f(t) ∈ X (t, e(f)) for almost all t ∈ T̂ , and
f(t) ∈ coX (t, e(f)) for almost all t ∈ T̄ , then there is a non-negligible set T ′ ⊆ T

such that for every t ∈ T ′ ∩ T̂ , ut(f(t), e(f)) < α(t), and for every t ∈ T ′ ∩ T̄ ,
f(t) /∈ co{x ∈ X (t, e(f)) : ut(x, e(f)) ≥ α(t)}.

Concerning the players in T̄ , we note that the analogs of the projections y−i in the
definition of continuous security for finite-player games stated above are now involved
implicitly in the sense of what was pointed out in Remark 2.

6Note that the exceptional set of measure zero may vary with y′.
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Remark 5. A particular case of Definition 1 is obtained when X (t, y) = At(y) for
all (t, y) ∈ T × EG. Actually, in Section 2.5 we show that, under assumptions as
in Balder (2002), CS is satisfied for this specification of X . However, even when no
constraint correspondences in the sense of the At’s of our model are specified in a
game, it is useful to allow for general restriction operators X because, in regard to
applications, it means, to quote McLennan, Monteiro, and Tourky (2011), “that the
analyst is allowed to specify restrictions” on the strategy profiles that have to be
considered in (d). In our context, this is illustrated in Example 3 in Section 2.6.

The following remark may be useful in applications of CS.

Remark 6. (i) If for each t ∈ T̄ , ut(·, y) is quasi-concave and X (t, y) is convex for all
y ∈ EG, then (d) in this definition is equivalent to the simpler statement:

(d’) If f is a strategy with e(f) ∈ U and f(t) ∈ X (t, e(f)) for almost all t ∈ T , then
there is a T ′ ⊆ T with ν(T ′) > 0 such that ut(f(t), e(f)) < α(t) for all t ∈ T ′.

(ii) In the case where X (t, y) = Xt for all t ∈ T and y ∈ EG, (d) in the definition
reduces to the statement:

(d”) If f is a strategy with e(f) ∈ U , then there is a T ′ ⊆ T with ν(T ′) > 0

such that for all t ∈ T ′ ∩ T̂ , ut(f(t), e(f)) < α(t), and for all t ∈ T ′ ∩ T̄ ,
f(t) /∈ co{x ∈ Xt : ut(x, e(f)) ≥ α(t)}.

(iii) In particular, if for every t ∈ T and y ∈ EG, X (t, y) = Xt, and for every t ∈ T̄ ,
Xt is convex and ut(·, y) is quasi-concave for all y ∈ EG, then (d) is equivalent to:

(d’”) If f is a strategy with e(f) ∈ U , then there is a T ′ ⊆ T with ν(T ′) > 0 such
that ut(f(t), e(f)) < α(t) for all t ∈ T ′.

Remark 7. As noted in Remark 4, a special case of the general model of Section 2.2
is that of finite-player games in normal-form (provided that the action spaces of the
players are included in a Souslin locally convex space). For this special case, it may
be seen that Definition 1 is exactly equivalent to the definition of continuous security
presented earlier for finite-player games, given that payoff functions are real-valued
and bounded, so that the α(t)’s in Definition 1 can be assumed to be real numbers.

Remark 8. We note that the framework of Balder (2002) has been extended in
Martins da Rocha and Topuzu (2008) by allowing players to have non-ordered pref-
erences. However, the notion of continuous security requires players to have payoff
functions, and this is the reason why we adopted Balder’s (2002) model. Recently,
two conditions were introduced to deal with discontinuous finite-player games when
players may have non-ordered preferences. These are condition B (and Bg) in Barelli
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and Soza (2009) and the condition of point security in Reny (2011b). We leave it for
future research whether our results extends to games in the framework of Martins da
Rocha and Topuzu (2008) by using some adaptations of these conditions.

2.4 The main existence results

In this section we state our two main results on existence of Nash equilibrium. They
correspond to two scenarios, described in assumptions (S1) and (S2) below.

As mentioned in Section 2.2, in Balder (2002) the set Ĉ in the definition of the
externality map e is assumed to be finite and the measure space of players is assumed
to be separable. We gather these two conditions in the following assumption.

(S1) (T,Σ, ν) is separable, and the set Ĉ in the definition of e is finite.

Theorem 1. Let G = ((T,Σ, ν), X, 〈Xt, ut, At〉t∈T , e) be a game satisfying (A1)-(A4),
(S1), and CS. Then G has a Nash equilibrium.

(See Section 4.4 for the proof.) Theorem 1 generalizes the pure strategy Nash equilib-
rium existence result of Balder (2002). Indeed, by Theorem 3 in Section 2.5, Theorem 1
implies Balder’s result. By the example in that section, the converse fails.

We remark that Theorem 1 also implies the Nash equilibrium existence result for
continuously secure finite-player games by Barelli and Meneghel (2012), provided the
action sets of all the players are included in a Souslin locally convex space (however,
recall footnote 5). Indeed, suppose for the space (T,Σ, ν) of players that T is finite
and ν is the counting measure. Then, by what was pointed out in Remark 4, with
T = T̄ our setting of games reduces to that of standard normal-form finite-player
games. In particular, the measurability assumption (A4)(ii) trivially holds, and so do
(A1)-(A3), as well as (S1) (with Ĉ being the empty set). The remaining assumptions
of Theorem 1 are CS and (i) and (iii) of (A4), and these are the assumptions in the
result by Barelli and Meneghel (2012) (concerning CS, see Remark 7).

Turning back to the setting of games which allows for a continuum of players, note
that the requirement in (S1) for the set Ĉ to be finite implies that the externality map
cannot necessarily distinguish between two strategy profiles with different distribu-
tions of the actions of the players in T̂ . To cover the case where payoffs may depend
on the entire distribution of the actions of the players in T̂ , we need to allow the
set Ĉ to be countably infinite, unless the action sets of the players in T̂ are included
in a common finite subset of X. However, in order for a convexifying effect of large
numbers still to be present with a countably infinite Ĉ, we have to strengthen the
non-atomicity assumption in (A2) by requiring the subspace measure on T̂ defined
from ν to be super-atomless. The following assumption formulates this requirement
in a way that avoids any other hypothesis on the measure ν.

12



(S2) T̄ is equal to the atomic part of (T,Σ, ν) and the subspace measure on T̂ defined
from ν is super-atomless.

Theorem 2. Let G = ((T,Σ, ν), X, 〈Xt, ut, At〉t∈T , e) be a game satisfying (A1), (A3),
(A4), (S2), and CS. Then G has a Nash equilibrium.

(The proof may be found in Section 4.4.) As may be seen in Section 2.6, Theorem 2
indeed implies a pure strategy Nash equilibrium result for games where the payoff
of each single player may depend on the entire distribution of the actions of the
players in T̂ . In particular, Theorem 2 implies the existence results in Khan and Sun
(1999), Carmona and Podczeck (2009), and Keisler and Sun (2009) (see Remark 13
in Section 2.7 below). We note that, in fact, Theorem 2 applies to situations where
payoffs may depend on the vector of the distributions of the actions played in each
one of countably many sub-populations of T̂ .

2.5 Connection to Balder (2002)

In the framework of Section 2.2, consider the following additional assumptions.

(A5) The map (t, x) 7→ ut(x, y) : ΓG → [−∞,+∞] is measurable for each y ∈ EG.

(A6) (i) For each t ∈ T , the correspondence At is well-behaved.
(ii) For each y ∈ EG, the graph of the correspondence t 7→ At(y) is measurable,

i.e., belongs Σ⊗ B(X).

(A7) For every t ∈ T , ut is usc and wt is lsc.

(A8) For every t ∈ T̄ , the set {x ∈ At(y) : ut(x, y) = wt(y)} is convex for all y ∈ EG.

In the existence result about pure strategy Nash equilibria in Balder (2002), these
assumptions are made in addition to (A1)-(A4) and (S1). The following theorem
shows that our notion of continuous security covers this case.

Theorem 3. Let G = ((T,Σ, ν), X, 〈Xt, ut, At〉t∈T , e) be a game satisfying (A1)-(A4)
and (S1) or (S2). If (A5)-(A8) hold in addition, then G satisfies CS.

(See Section 4.5 for the proof.)
Note that (A7) is satisfied whenever all constraint correspondences are lower hemi-

continuous and all payoff functions are continuous. Furthermore, if for each t ∈ T̄ ,
At takes convex values and ut(·, y) is quasi-concave for all y ∈ EG, then (A8) is sat-
isfied. Thus Theorem 3 shows that for games satisfying (A1)-(A6) and (S1) or (S2),
continuous security according to our notion holds whenever all constraint correspon-
dences and all payoff functions are continuous, and for players belonging to T̄ , the
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constraint correspondences take convex values and the payoff functions are quasi-
concave in the own action. In particular, if T = T̂ , and if there are no constraint
correspondences (in other words, if At(y) = Xt for all t ∈ T and y ∈ EG), then CS
holds, as it should be, whenever all payoff functions are continuous.

It is well known that in finite-player games, continuous security does not imply
that payoff functions are usc or that value functions are lsc (see, e.g., Carmona (2009)).
The example below shows that this is so also in the context of the present paper. In
particular, the example shows that the converse of the implication in Theorem 3 does
not hold in general.

Example 2. A continuously secure non-atomic game where payoff functions are not
usc and value functions are not lsc. Consider the game G defined in Example 1 and
specify u by setting, for all y ∈ EG and some ε > 0,

u(a1, y) =

{
y1 if y1 6= 1/2,

y1 + ε if y1 = 1/2,

u(a2, y) =

{
1− y1 if y1 < 1/2,

1− y1 − ε if y1 ≥ 1/2,

and

u(a3, y) =

{
1/2 if y1 6= 1/2,

1/2 + ε if y1 = 1/2.

As already noted, the game G satisfies (A1)-(A4). Clearly, (A5), (A6), and (S1) are
also satisfied, and so is (A8) as T̄ = ∅. Evidently u is not usc and the corresponding
value function is not lsc. However, with X (t, y) = Xt for all (t, y) ∈ T ×EG, the game
satisfies CS. To see this, note first that if f ∈ SG satisfies e1(f) = 1/2, then f is a
Nash equilibrium of this game if and only if e3(f) = 1/2.

Let y ∈ EG be such that there is no equilibrium strategy with e(f) = y. The case
y1 6= 1/2 is easy because, in this case, there is a neighborhood V of y in EG such that
u is continuous on K×V . Hence, assume y1 = 1/2. Since y 6= e(f) for any equilibrium
strategy f , then y2 > 0.

Let U = {y′ ∈ EG : y′1 > 0 and y′2 > 0}, so that U is a neighborhood of y
in EG, and let α : T → R be given by α(t) = 1/2 for all t ∈ T , and ϕ : T ×U ⇒ X by
ϕ(t, y′) = {a3} for all (t, y′) ∈ T ×U , so that α is measurable and ϕ is a Caratheodory
correspondence. Clearly, with this choice of ϕ, (a) of CS holds, and since T̄ = ∅, so
does (b) of CS. Also, ut(x, y′) ≥ 1/2 for all t ∈ T , y′ ∈ U and x ∈ ϕ(t, y′), so (c) of
CS is satisfied for ϕ and α. But (d) of CS is satisfied as well: If f is a strategy with
e(f) ∈ U , then e1(f) > 0 and e2(f) > 0; hence, as ei(f) = ν(f−1{ai}), setting

T ′ =

{
f−1({a1}) if e1(f) < 1/2,

f−1({a2}) if e1(f) ≥ 1/2,
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it follows that ν(T ′) > 0 and that ut(f(t), e(f)) < α(t) for all t ∈ T ′.

The following definition places a weakening of the condition on payoff functions to
be upper semi-continuous, introduced in Carmona (2009), in the context of our model.

Definition 2. A game G = ((T,Σ, ν), X, 〈Xt, ut, At〉t∈T , e) is said to be weakly upper
semi-continuous (abbreviated “weakly usc” in the sequel) if the following holds for all
t ∈ T : Whenever (xn, yn) → (x, y) in Xt × EG and limut(xn, yn) 6= ut(x, y), there is
an x′ ∈ At(y) such that ut(x′, y) > limut(xn, yn).

Remark 9. As x′ 6= x is not required in this definition, a game with usc payoff
functions and well-behaved constraint correspondences is weakly usc. On the other
hand, it is easy to find examples showing that the converse need not hold.

Theorem 4. Let G = ((T,Σ, ν), X, 〈Xt, ut, At〉t∈T , e) be a game satisfying (A1)-(A4)
and (S1) or (S2). If, in addition, G is weakly usc, wt is lsc for all t ∈ T , and (A5),
(A6), and (A8) hold, then G is continuously secure.

(See Section 4.6 for the proof.)

2.6 A concretization of the general model

In this section we will present a specification of the model laid out in Section 2.2,
illustrating what is covered by the notion of externality map, and in particular aiming
to provide a bridge to potential applications.

In typical applications with a measure space of players, large atomic players appear
as singletons, and no convexity assumptions are made on the non-atomic part of the
space of players. In view of this, we replace (A2) by the following condition.

(A9) The set T̄ is countable, and for each t ∈ T̄ , {t} ∈ Σ with ν({t}) > 0.

Note that by what was stated in Remark 3, (A9) implies that the set S̄G of restrictions
of strategy profiles to T̄ is equal to

∏
t∈T̄ Xt and that if (A4)(i) holds in addition, then

the feeble topology on S̄G is the same as the topology of pointwise convergence, i.e.,
the product topology of

∏
t∈T̄ Xt.

We are going to present a specification of the externality map so that, in an
explicit way, the entire distribution of the actions of the players in T̂ may matter for
the payoff of each single player. However, in some contexts, such a specification is still
too narrow. For example, payoffs of players may depend on both the distribution of
actions chosen by men and that of the actions chosen by women. We will cover this
kind of example by allowing the payoffs of players to depend on the distributions of
the actions played in each one of countably many sub-populations of T̂ .
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One may also think of examples of the following kind. Suppose the players in T̂ are
workers, which may be of different productivity. Now if the total output of workers is
relevant for payoffs, then it is not just the distribution of actions, efforts say, of the
players in T̂ that matters for payoffs, but rather the joint distribution of actions and
productivity attributes of these players. To capture this sort of example, we consider
a space C of players’ attributes (or characteristics) and a map c : T̂ → C assigning
attributes to the players in T̂ . The following is supposed to hold.

(A10) (i) C is a completely regular Souslin space.
(ii) The map c : T̂ → C is measurable.

In most applications, C will be a Polish space. However, for sake of generality, and for
symmetry with assumption (A3) on the actions universe X, we just assume (A10)(i).

At a first glance it may look odd to have the function c to be defined only on
the subset T̂ of T . However, this is not a restriction. In fact, the externality of the
game will be defined in such a way that the payoff of any single player may depend
on the entire action profile of the players in T̄ , and attributes of a player in T̄ that
are relevant for payoffs of other players may be considered as incorporated already in
the identity of this player as point in T̄ .

Summing up, we want to give a specification of the externality of a game so
that, in an explicit way, situations are described where each player’s payoff may
depend on the strategy profile of the players in T̄ and on the vector of the joint
distributions of the actions and players’ attributes appearing in each one of countably
many sub-populations of T̂ . To this end, let M1

+(X × C) denote the set of all Borel
probability measures on X × C. Let J be a non-empty countable set and suppose
that for each j ∈ J a non-negligible measurable subset Tj of T̂ is given. Finally, let
ẽ : SG →

∏
t∈T̄ Xt ×

(
M1

+(X × C)
)J be the map given by setting

ẽ(f) =
(
f |T̄ ,

〈
(1/ν(Tj))(ν|Tj) ◦ (f |Tj , c|Tj)−1

〉
j∈J

)
for every f ∈ SG. Note that if (A10)(ii) holds, then the distributions involved in the
above expression are defined. The map ẽ is now taken to be the externality map of
a game. Let ẼG denote the image of SG under ẽ, i.e., ẼG = ẽ(SG). Now the payoff
function of player t is taken to be a function ut : Xt × ẼG → [−∞,+∞], thus being
of the form that was intended.

In the context of an externality map ẽ as defined here, we summarize a game by
a list G = ((T,Σ, ν), X, 〈Xt, ut, At〉t∈T , ẽ), on the understanding that the constraint
correspondences At are defined on ẼG, and the payoff functions ut on the respective
sets Xt × ẼG. As may be seen from the proof of Theorem 5 below, the form of the
map ẽ is just a concrete version of the form in which the externality map was defined
in Section 2.2.
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As payoff functions are now defined on the respective sets Xt× ẼG, and constraint
correspondence on ẼG, we have to adjust the definition of continuous security stated
in Section 2.3, putting it into terms of ẽ and ẼG. In particular, we have to choose a
topology on the set ẼG. With the following choice we will get a statement of continuous
security, in terms of ẽ and ẼG, which will turn out to be topologically equivalent to
that in Section 2.3. Assuming that (A3) and (A10) hold, we regard M1

+(X × C) as
being endowed with the narrow topology,7 and the action sets Xt of the players in
T̄ as being endowed with the subspace topology defined from the topology of X.
Now we give the set ẼG the subspace topology defined from the product topology of∏

t∈T̄ Xt ×
(
M1

+(X × C
))J .

We use the abbreviation CS’ to differentiate the following notion of continuous
security from the version called CS in Section 2.3.

Definition 3. A game G = ((T,Σ, ν), X, 〈Xt, ut, At〉t∈T , ẽ) is said to satisfy CS’ if
there is a correspondence X : T × ẼG ⇒ X, with X (t, y) ⊆ Xt for all (t, y) ∈ T × ẼG,
such that whenever y ∈ ẼG is such that there is no equilibrium strategy f with
ẽ(f) = y, there is a neighborhood U of y in ẼG, a Caratheodory correspondence
ϕ : T × U ⇒ X, and a measurable function α : T → [−∞,+∞] such that:

(1) For each y′ ∈ U , ϕ(t, y′) ⊆ X (t, y′) for all t ∈ T .

(2) For all y′ ∈ U and all t ∈ T̄ , ϕ(t, y′) is convex or included in a finite-dimensional
subspace of X.

(3) For each y′ ∈ U , ut(x, y′) ≥ α(t) for almost all t ∈ T and all x ∈ ϕ(t, y′).

(4) If f is a strategy with ẽ(f) ∈ U , f(t) ∈ X (t, ẽ(f)) for almost all t ∈ T̂ , and
f(t) ∈ coX (t, ẽ(f)) for almost all t ∈ T̄ , then there is a non-negligible set T ′ ⊆ T

such that for every t ∈ T ′ ∩ T̂ , ut(f(t), ẽ(f)) < α(t), and for every t ∈ T ′ ∩ T̄ ,
f(t) /∈ co{x ∈ X (t, ẽ(f)) : ut(x, ẽ(f)) ≥ α(t)}.

The following example illustrates the above notion, and in particular what is
gained by allowing for restriction operators.

Example 3. Consider the static benchmark game in Angeletos, Hellwig, and Pavan
(2007). The space of players is the unit interval with Lebesgue measure. Players
simultaneously choose either to attack the status quo, represented by 1, or refrain

7Recall that the narrow topology on the setM1
+(Z) of Borel probability on a topological space Z is

defined to be the smallest topology onM1
+(Z) for which all sets of the form {µ ∈M1

+(Z) : µ(G) > α}
are open, where G is an open subset of Z, and α a real number, and note that if Z is completely regu-
lar, then this topology agrees with the topology of pointwise convergence on the bounded continuous
functions on Z, evaluation being given by integration.

17



from attacking, represented by 0. Each player’s payoffs is as follows: Refraining from
attacking yields a payoff of zero. The payoff of attacking is 1− c, where 0 < c < 1, if
the fraction of the players who attack is at least θ, where θ ∈ (0, 1], and is −c if the
fraction of the players who attack is less than θ.

To represent this game in the setting of this section, let (T,Σ, ν) be the unit
interval with Lebesgue measure, T̄ = ∅,X = R, and, for all t ∈ T , At(y) = Xt = {0, 1}
for all y ∈ EG. Note that ẼG can be identified with [0, 1], with y = e(f) ∈ [0, 1]

denoting the fraction of players choosing 1 in the strategy profile f . Finally, for all
t ∈ T , let ut be defined by

ut(x, y) =


0 if x = 0,

1− c if x = 1 and y ≥ θ,

−c if x = 1 and y < θ,

for all (x, y) ∈ Xt × ẼG.
Now this game satisfies CS’ for the restriction operator X defined by setting

X (t, y) = {0} for all t ∈ T and y ∈ [0, 1]. Indeed, let y ∈ ẼG be such that there is
no equilibrium strategy f with e(f) = y. Then y ∈ (0, 1) as may easily be seen. Let
U = (0, 1) and define ϕ : T × U ⇒ {0, 1} by ϕ(t, y′) = {0} for all (t, y′) ∈ T × U .
Then ϕ is a Caratheodory correspondence such that (1) and (2) of CS’ hold. Define
α : T → R by setting α(t) = −c for all t ∈ T . Then (3) of CS’ holds, and so
does (4), vacuously, because there is no strategy profile f satisfying both e(f) ∈ U
and f(t) ∈ X (t, e(f)) for almost all t ∈ T . Thus, CS’ holds.

The next theorem will be proved as a consequence of Theorem 2. The proof will
show, in particular, that CS’ can be reduced to CS.

Theorem 5. Let G = ((T,Σ, ν), X, 〈Xt, ut, At〉t∈T , ẽ) be a game satisfying (A1), (A3),
(A4), (A9), (A10), (S2), and CS’. Then G has a Nash equilibrium.

(See Section 4.7 for the proof.)

Remark 10. The case where there is no attribute function can be regarded as a
special case of the framework of this section, by simply letting the attribute space C
be any singleton in this case. Thus Theorem 5, as well as Theorem 6 below and
the theorems in the next section, continues to be true for a game where there is no
attributes function c, and ẽ is defined just in terms of distributions of actions.

The next result provides sufficient conditions for CS’ to hold. The two conditions
in this result, presented in the following definitions, are versions of the notions of
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“generalized payoff security” and of “better-reply closed” game, introduced for finite-
player games by Barelli and Soza (2009) and Carmona (2011), respectively.8

Definition 4. A game G = ((T,Σ, ν), X, 〈Xt, ut, At〉t∈T , ẽ) is said to satisfy GPS if
for all y ∈ ẼG and ε > 0 there is a neighborhood U of y in ẼG, a Caratheodory
correspondence ϕ : T × U ⇒ X, and a measurable function α : T → R such that:

1. For each y′ ∈ U , ϕ(t, y′) ⊆ At(y
′) for all t ∈ T .

2. For all y′ ∈ U and all t ∈ T̄ , ϕ(t, y′) is convex or included in a finite-dimensional
subspace of X.

3. For each y′ ∈ U , ut(x, y′) ≥ α(t) for almost all t ∈ T and all x ∈ ϕ(t, y′).

4. ν({t ∈ T : α(t) ≥ wt(y)− ε}) ≥ 1− ε.

Definition 5. A game G = ((T,Σ, ν), X, 〈Xt, ut, At〉t∈T , ẽ) is said to satisfy BRC if
the following holds for any strategy profile f : If there is a sequence 〈fn〉 of strategy
profiles with ẽ(fn) → ẽ(f) such that, for almost all t ∈ T , (a) fn(t) ∈ At(ẽ(fn)) for
all n ∈ N, (b) f(t) ∈ LS fn(t), and (c) limn ut(fn(t), ẽ(fn)) ≥ wt(ẽ(f)), then f is an
equilibrium of G.

Note that under (A9) and (A4), e(fn)→ ẽ(f) implies fn(t)→ f(t) for each t ∈ T̄
(see the definition of ẽ and the paragraph after the statement of (A9)), so that (b) in
this definition reduces to a condition on the restrictions of strategy profiles to T̂ .

It is common in applications to assume for an atomic player that his action set is
convex, that his constraint correspondence takes convex values, and that his payoff
function is quasi-concave in his action. Such convexity properties make the definition
of CS’ easier as we have noted in Remark 6, and therefore we will assume them in
the following theorem as well as in the theorems in the next section. Convexity of the
action sets of such players is already part of (A4). Thus we introduce here:

(A11) For every t ∈ T̄ , At(y) is convex and ut(·, y) is quasi-concave for all y ∈ ẼG.

Theorem 6. Let G = ((T,Σ, ν), X, 〈Xt, ut, At〉t∈T , ẽ) be a game satisfying (A1), (A3),
(A4), (A9)-(A11), (S2), GPS and BRC. Then G also satisfies CS’, and consequently,
by Theorem 5, G has a Nash equilibrium.

(See Section 4.8 for the proof.)
8For finite-player games, our definition of generalized payoff security is equivalent to the original

definition of that notion in Barelli and Soza (2009). Note also that for finite-player games, the
property of a game being better reply closed is equivalent to the property of “weak reciprocal upper
semi-continuity at all non-equilibrium strategies;” see Carmona (2011, Theorem 5), and see Bagh
and Jofre (2006) for the definition of weak reciprocal upper semi-continuity.
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2.7 Better-reply secure games

In this section we consider games as specified in the previous section and look at the
notion of generalized better-reply security, introduced by Barelli and Soza (2009) for
finite-player games, based on the concept of better-reply security, which was developed
by Reny (1999); see also Barelli and Meneghel (2012).

Fix a game G = ((T,Σ, ν), X, 〈Xt, ut, At〉t∈T , ẽ). To avoid technical complications,
following Barelli and Soza (2009) we assume in this section:

(A12) For every y ∈ ẼG, ut(·, y) is bounded for all t ∈ T .

In addition, (A1), (A3)-(A6), and (A11) are assumed to hold in the following.
Now for any y ∈ ẼG, let Py be the set of all triples (U,ϕ, α) where U is a neigh-

borhood of y in ẼG, ϕ : T × U ⇒ X a Caratheodory correspondence, and α : T → R
a measurable function such that

(i) For each y′ ∈ U , ϕ(t, y′) ⊆ At(y
′) for all t ∈ T .

(ii) For all y′ ∈ U and all t ∈ T̄ , ϕ(t, y′) is convex or included in a finite-dimensional
subspace of X.

(iii) For each y′ ∈ U , ut(x, y′) ≥ α(t) for almost all t ∈ T and all x ∈ ϕ(t, y′).

Let Qy be the set of all measurable functions α : T → R which are a component of
some (U,ϕ, α) ∈ Py and, for each α ∈ Qy, write α• for the ν-equivalence class of α,
i.e., the element of L0(ν) determined by α. We regard L0(ν) as endowed with its usual
partial order. Note that by (A1), (A3)-(A5), and (A12), for each y ∈ ẼG there are
measurable functions β1

y : T → R and β2
y : T → R such that β1

y(t) ≤ ut(x, y) ≤ β2
y(t)

for each t ∈ T and x ∈ Xt (see Castaing and Valadier (1977, Lemma III.39)). Thus,
by (A6) and (A11), the set {α• : α ∈ Qy} is a non-empty bounded subset of L0(ν)

for each y ∈ ẼG. Therefore, since L0(ν) is Dedekind-complete (see Fremlin (2001,
241G)), for each y ∈ ẼG there is a w•y ∈ L0(ν) such that w•y = sup{α• : α ∈ Qy}.

The following definition provides a notion of generalized better reply security in
our context.

Definition 6. A game G = ((T,Σ, ν), X, 〈Xt, ut, At〉t∈T , ẽ) is said to satisfy GBRS •

if the following holds for any strategy profile f : If there is a sequence 〈fn〉 of strategy
profiles with ẽ(fn) → ẽ(f) such that for almost all t ∈ T , (a) fn(t) ∈ At(ẽ(fn)), (b)
f(t) ∈ LS fn(t), and (c) limn ut(fn(t), ẽ(fn)) ≥ w•ẽ(f)(t), then f is an equilibrium of G.

As in the context of GPS, if (A9) and (A4) hold then (b) in the definition of
GBRS• reduces to a condition on the restrictions of strategy profiles to T̂ .
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Theorem 7. Let G = ((T,Σ, ν), X, 〈Xt, ut, At〉t∈T , ẽ) be a game satisfying (A1), (A3)-
(A6), (A9)-(A12), (S2), and GBRS •. Then G also satisfies CS’, and consequently,
by Theorem 5, G has a Nash equilibrium.

(See Section 4.9 for the proof.)
In the rest of this section we consider games without constraint correspondences. In

particular, we will relate Definition 6 to the notion of generalized better reply security
in Barelli and Soza (2009). We indicate a game without constraint correspondences
by a list G = ((T,Σ, ν), X, 〈Xt, ut〉t∈T , ẽ). Fix such a game.

For each y ∈ ẼG and each t ∈ T , let P ty be the set of all triples (U,ϕ, α) where
U is a neighborhood of y in ẼG, ϕ : U ⇒ Xt a well-behaved correspondence, and
α a real number such that ut(x, y′) ≥ α for all y′ ∈ U and x ∈ ϕ(t, y′), and such
that if t ∈ T̄ , ϕ(t, y′) is convex or included in a finite-dimensional subspace of X
for all y′ ∈ U . Let Qty be the set of all real numbers α which are a component of
some (U,ϕ, α) ∈ P ty. Now for each t ∈ T , define a function wt : EG → R by setting
wt(y) = sup{α : α ∈ Qty} for each y ∈ ẼG.

Definition 7. A game G = ((T,Σ, ν), X, 〈Xt, ut〉t∈T , ẽ) is said to satisfy GBRS if
the following holds for any strategy profile f : If there is a sequence 〈fn〉 of strategy
profiles such that (a) ẽ(fn)→ ẽ(f) and, for almost all t ∈ T , (b) f(t) ∈ LS fn(t) and
(c) limn ut(fn(t), ẽ(fn)) ≥ wt(ẽ(f)), then f is an equilibrium of G.

Clearly, if T is countable and (A9) holds, then for all y ∈ ẼG we have w•y(t) = wt(y)

for all t ∈ T , so that GBRS• and GBRS are equivalent. By the characterization of
generalized better reply security in Carmona (2011), this means in particular that for
finite-player games (without constraint correspondences) the definition of generalized
better reply security in Barelli and Soza (2009) is equivalent to GBRS•.

The equivalence between GBRS• and GBRS also holds in the following setting of
large games, considered, e.g., in Mas-Colell (1984, remarks after Theorem 1), Rath
(1992), or Khan, Rath, and Sun (1997). These papers assume a common action set for
all players in a game, continuous payoff functions, and that the map assigning payoff
function to players is measurable as a map from the measure space of players to the set
of payoff functions when this latter set is given the topology of uniform convergence.
In the terminology of Section 2.6, this way of setting up a game can be captured with
the following assumption, without requiring continuous payoff functions.

(A13) (i) For some X̂ ⊆ X, Xt = X̂ for all t ∈ T̂ .
(ii) ut is bounded for all t ∈ T .
(iii) The map t 7→ ut : T̂ → B(X̂ × ẼG) is measurable, where B(X̂ × ẼG)

denotes the space of real-valued bounded functions on X̂ × ẼG, endowed
with the sup-norm.

(iv) {ut : t ∈ T̂} is separable as a subset of B(X̂ × ẼG).
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For the rest of this section, note that (A13) implies both (A5) and (A12), and
that if there are no constraint correspondences specified in a game then (A6) reduces
to (i) and (ii) of (A4), and (A11) reduces to the following statement:

(A11’) For every t ∈ T̄ , ut(·, y) is quasi-concave for all y ∈ ẼG.

Theorem 8. Let G = ((T,Σ, ν), X, 〈Xt, ut〉t∈T , ẽ) be a game satisfying (A1), (A3),
(A4), (A9), (A10), (A11’) and (A13). Then for each y ∈ ẼG, w•y(t) = wt(y) for
almost all t ∈ T .

(See Section 4.10 for the proof.)

Remark 11. Note that under (A13)(i), parts (ii) and (iv) of (A13) hold automatically
if action and externality set of the game are compact and metrizable, and all payoff
functions are continuous. We remark that if there does not exit a probability space
(Ω,Σ, ν) with ν atomless and Σ = 2Ω (which is consistent with ZFC, while the
existence of such a probability space cannot be proved to be consistent with ZFC),
then (A13)(iii) implies that (A13)(iv) holds essentially, i.e., for some null set N in T̂ ,
the set {ut : t ∈ T̂ \N} is a separable subset of B(X̂×ẼG) (see Fremlin (2003, 438D)).
Thus, given that (A13)(iii) is assumed to hold, (A13)(iv) should not be viewed as an
additional restriction.

Remark 12. If (A13)(i) and (A3) hold, and all payoff functions are continuous, then,
according to a well-known fact, (A13)(iii) and (A5) are equivalent. However, when
payoff functions need not be continuous, then (A3)(iii) imposes more restrictions than
(A5). E.g., take (T,Σ, ν) to be [0, 1] with Lebesgue measure, let T̂ = T , X̂ = [0, 1],
and suppose that for each t ∈ T̂ and each y ∈ ẼG, ut(·, y) is the characteristic function
of [t, 1]. Then (A5) is satisfied, but as t 7→ ut is an injection, and any E ⊆ [0, 1] has
a relatively open image in {ut : t ∈ T̂} under this map, (A13)(iii) fails.

Combining Theorems 7 and 8 we get the following result.

Theorem 9. Let G = ((T,Σ, ν), X, 〈Xt, ut〉t∈T , ẽ) be a game satisfying (A1), (A3),
(A4), (A9), (A10), (A11’), (A13), (S2), and GBRS. Then G also satisfies CS’, and
consequently, by Theorem 5, G has a Nash equilibrium.

Using Theorem 9, it is easy to relate our results to those of Khan and Sun (1999),
Carmona and Podczeck (2009), and Keisler and Sun (2009):

Remark 13. In these papers, a game is given by a super-atomless complete prob-
ability space (T,Σ, ν) of players,9 a finite partition 〈Ti〉i∈I of T into non-negligible

9Recall that an atomless Loeb probability space is super-atomless, and that the notion of satu-
rated probability space in Keisler and Sun (2009) and that of super-atomless probability space are
equivalent.
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measurable sets, a common compact metric action space K for all players, and a pay-
off function V (t) for each t ∈ T , where V (t) is the value at t of a measurable function
V : T → C(K ×M1

+(K)I), denoting by M1
+(K) the space of Borel probability mea-

sures on K, endowed with the narrow topology, and by C(K ×M1
+(K)I) the space

of real-valued continuous functions on K × M1
+(K)I , endowed with the sup-norm.

In terms of the present section, this yields a game G = ((T,Σ, ν), X, 〈Xt, ut〉t∈T , ẽ)
specified as follows, so that Theorem 9 applies. For every t ∈ T , let Xt = K. By
what was noted in Remark 1(b), K can be viewed as a subset of a Souslin locally
convex space X, so that (A3) holds for G. Concerning the externality, let T̂ = T and
define ẽ : SG →M1

+(X)I by setting ẽ(f) =
〈
(1/ν(Ti))(ν|Ti) ◦ (f |Ti)−1)

〉
i∈I for f ∈ SG.

Observe that for each i ∈ I, (1/ν(Ti)(ν|Ti) is an atomless probability measure on T ,
so that for any y ∈ M1

+(K) we have y = (1/ν(Ti))(ν|Ti) ◦ (f |Ti)−1) for some f ∈ SG.
Hence, because 〈Ti〉i∈I is a partition of T , we have ẼG ≡ ẽ(SG) = M1

+(K)I . Thus for
each t ∈ T , we may set ut = V (t). Evidently (A1), (A4), (A9), and (A11’) hold for G
(note that T̄ = ∅). Clearly (i)-(iii) of (A13) hold. Concerning (A13)(iv), just note that
C(K×M1

+(K)I) is separable, becauseK×M1
+(K)I is a compact and metrizable by the

fact that K is a compact metric space. The game G satisfies GBRS. Indeed, note first
that the continuity of the payoff functions implies that wt(y) = wt(y) for each t ∈ T
and y ∈ ẼG. Now another appeal to the continuity of the payoff functions shows that
GBRS holds. Finally, as the space (T,Σ, ν) of players is super-atomless, (S2) holds
for G. Thus, by Remark 10, Theorem 9 applies, showing that G has an equilibrium.
Thus Theorem 9 implies Theorem 1 in Khan and Sun (1999), Corollary 4(4) in Car-
mona and Podczeck (2009), as well as the necessity part of Theorem 4.6 in Keisler
and Sun (2009). In fact, these latter results are implied by Theorem 2, as existence of
equilibrium in Theorem 9 follows from Theorem 5, and Theorem 5 is a consequence
of Theorem 2 (see Section 4.7).

3 An Application: Optimal Income Taxation

We consider a version of the model of Mirrlees (1971) on optimal income taxation.
Specifically, we use our main results to address the existence of an optimal income
tax in several optimal taxation problems.

The economy consists of a continuum of individuals, described by a super-atomless
complete probability space (T̂ , Σ̂, ν̂), and a government. There is a single consumption
good, which can be produced using labor. Each individual t ∈ T̂ is endowed with one
unit of time and is described by his skill level nt, which is the quantity of labor
provided by t per unit of time. We assume that there is an upper bound n̄ > 0 on the
level of skills and an upper bound m̄ ≥ n̄ on consumption. Writing M = [0, m̄] and
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L = [0, 1], an individual t is further characterized by a continuous utility function
ũt : M ×L→ R+, so that his utility is ũt(m, l) when his individual consumption is m
and his effort level is l. Let N = [0, n̄] and let n̂ : T̂ → N denote the function t 7→ nt.
We make the following assumptions:

(T1) The map t 7→ ũt : T̂ → C(M × L) is measurable, where C(M × L) denotes the
space of real-valued continuous functions onM×L endowed with the sup-norm.

(T2) For every t ∈ T̂ , ũt is strictly increasing in m, strictly decreasing in l, and
0 ≤ ũt(m, l) ≤ 1 for all (m, l) ∈M × L.

(T3) The map t 7→ nt : T̂ → N is measurable.

(T4) The distribution ν̂ ◦ n̂−1 is atomless.

As in Golosov, Kocherlakota, and Tsyvinski (2003), one unit of labor is trans-
formed into one unit of consumption. This assumption is made for simplicity since,
normalizing the price of consumption to one, it implies that the equilibrium price of
labor is equal to one, too.10

The government chooses an income tax, which, as in Mirrlees (1971), is described
by a function λ : [0, n̄] → R+, with the interpretation that someone with income
z cannot consumer more that λ(z) after tax (note that [0, n̄] is the set of possible
incomes). As in Mirrlees (1971), income taxes are non-decreasing and right-continuous
(see Proposition 2 in Mirrlees (1971)). In addition, we assume that λ(n̄) ≤ m̄.

The underlying assumption, here as well as in Mirrlees (1971), is that the govern-
ment can observe the income level of an individual but neither her skill nor her effort
level. Thus, we assume that the government observes neither the function n̂ assigning
skills to individuals nor the effort level chosen by individuals. Specifically, the gov-
ernment observes only the joint distribution of skills, utility functions, consumption
and effort levels.

Let Λ be the set of all non-decreasing right-continuous functions λ : [0, n̄] → R+

satisfying λ(n̄) ≤ m̄. To get a suitable topology on Λ, we identify Λ with the space of
Borel measures µ on [0, n̄], with µ([0, n̄]) ≤ m̄, via the map λ 7→ µλ, where µλ is the
unique Borel measure on [0, n̄] that satisfies µλ([0, z]) = λ(z) for all z ∈ [0, n̄]. Now
we give Λ the topology that is carried over through this map from the narrow topology
on the space of Borel measures on [0, n̄], so that Λ becomes a compact metrizable
space.

We will address the existence of an optimal income tax via a game played by
the government and the individuals. Modeling income taxes as above is technically

10Without this assumption, we would need to add an auctioneer to the game used to show existence
of equilibrium.
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convenient since it implies that the government’s choice set is compact. This would
not be the case would one focus on income taxes that are continuous or on general
incentive-feasible mechanisms (the latter being considered in Golosov, Kocherlakota,
and Tsyvinski (2003)).11 However, allowing for discontinuous income taxes implies
that the individuals’ and the government’s payoff functions are discontinuous. Nev-
ertheless, despite of such discontinuities, continuous security will hold and will allow
to prove existence of an optimal income tax.

To unify several optimal taxation problems, we consider the possibility that the
choice of the income tax by the government is restricted. To this end, let Ĉ be the
closure of {u ∈ C(M × L) : u = ũt for some t ∈ T̂}, C = Ĉ × N the set of players’
attributes, c : T̂ → C the attribute function, defined by c(t) = (ũt, nt) for all t ∈ T̂ ,
and K = {γ ∈M1

+(C×M ×L) : γC = ν̂ ◦ c−1} the set of distributions over attributes
and actions. The set K is regarded as being endowed with the narrow topology. Let
Θ: K ⇒ Λ be a correspondence with the interpretation that, given γ ∈ K, the
government may choose income taxes only from Θ(γ).

Given γ ∈ K, the distribution of the map (u, n,m, l) 7→ nl : C ×M × L → [0, n̄]

is denoted by γ̂. Thus γ̂ is the distribution of outputs determined by γ, or, in other
words, the pre-tax income distribution given by γ. We write K̂ ⊆ M1

+([0, n̄]) for the
image of K under the map γ 7→ γ̂. As no confusion can arise, the symbol γ̂ will also
be used to denote generic elements of K̂. We give K̂ the subspace topology defined
from the narrow topology of M1

+([0, n̄]), so that the map γ 7→ γ̂ becomes continuous.
Below we will consider an optimal tax problem where the government cannot com-

mit to an income tax announced to the individuals before they make their decisions
(see Example 8). In this case, an optimal income tax should have the property that
after the individuals have made their choices, the government has no incentive to
change the tax. This is in contrast with the commitment case, considered in Exam-
ple 4, where no such requirement is made. Despite this difference, we can treat these
two cases, as well as other optimal tax problems, in an unified way by introducing
an auxiliary utility function v : Λ ×K → R for the government and specifying it in
accordance with the different cases we want to capture.

We are now ready to state the following assumptions.

(T5) Θ is well-behaved and takes convex values.

(T6) v is usc, v(·, γ) is quasi-concave for all γ ∈ K, v(λ, ·) is continuous for each
continuous λ ∈ Λ, and v(λ, γ) ≥ 0 for all (λ, γ) ∈ Λ×K.

11Another reason for focusing on taxes instead of general incentive-feasible mechanisms has to do
with decentralization; see, for instance, Section 4.3 in Kocherlakota (2010).
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(T7) For all γ ∈ K and ε > 0, there exists an open neighborhood O of γ and a
continuous ψ : O → Λ such that for all γ′ ∈ O,

(i) ψ(γ′) ∈ Θ(γ′),

(ii)
∫
ψ(γ′)(z)dγ̂′(z) =

∫
zdγ̂′(z),

(iii) v(ψ(γ′), γ′) > v(λ, γ)−ε for all λ ∈ Θ(γ) such that
∫
λ(z)dγ̂(z) =

∫
zdγ̂(z).

Specifying the correspondence Θ and the function v, we can obtain several par-
ticular cases.

Example 4. Let Θ(γ) = Λ and v(λ, γ) = 0 for all (λ, γ) ∈ Λ × K. This is the
case considered in Mirrlees (1971). It is clear that (T5) and (T6) are satisfied in this
example. As for (T7), simply let O = K and ψ(γ′) = λ0 for all γ′ ∈ O, where λ0 is
the identity, i.e. λ0(z) = z for all z ∈ N .

Example 5. Let Θ(γ) = {λ : λ(n̄ − ξ) ≥ ζ} for all γ ∈ K, where ξ > 0 is a small
number, and 0 < ζ < n̄ − ξ a high number. This case can be interpreted as one
where the government commits to income taxes that give high work incentives for
highly skilled individuals. Alternatively, this case can be regarded as arising because,
if taxed at a high tax rate, high skill individuals will choose to evade taxation. Clearly
Θ takes convex values, and by Lemma 7 in Section 4.11, Θ is well-behaved. Thus (T5)
holds. Let v(λ, γ) = 0 for all (λ, γ) ∈ Λ×K. Then (T6) also holds. As in the previous
example, letting O = K and ψ(γ′) = λ0 for all γ′ ∈ O shows that (T7) holds, too.

Example 6. In this example we consider the case where the government ceases
to function as total output approaches zero. This is modeled by specifying Θ as
follows. First, only the 0% income tax λ0 is allowed if total output is zero, with
the interpretation that in this case the government no longer exists and thus, in
particular, cannot redistribute income. Second, for total output larger than zero, the
income taxes the government can implement are those with a distance to the 0%
income tax not exceeding a number which depends continuously on γ̂, i.e., on the
distribution of outputs.

Specifically, let γ̂0 ∈ K̂ be Dirac measure at 0 ∈ [0, n̄]. Set Θ(γ) = {λ0} if γ̂ = γ̂0,
and for some continuous function γ̂ 7→ ε(γ̂) : K̂ → R, with ε(γ̂0) = 0 and ε(γ̂) > 0 for
γ̂ 6= γ̂0, set Θ(γ) = Cε(γ̂)(λ0) for γ ∈ K with γ̂ 6= γ̂0, writing Cε(γ̂)(λ0) for the closed
ball of radius ε(γ̂) around λ0 for the metric on Λ induced by Huntingdon’s metric on
the space of Borel measures on [0, n̄].12 Further, let v(λ, γ) = 0 for all (λ, γ) ∈ Λ×K.

12Recall that Huntingdon’s metric on the space M+([0, n̄]) of Borel measures on [0, n̄] is the
metric ρ defined by setting ρ(µ, µ′) = sup{

∣∣∫ hdµ−
∫
hdµ′

∣∣ : h ∈ L} for all µ, µ′ ∈M+([0, n̄]), where
L = {h ∈ C([0, n̄]) : ‖h‖∞ ≤ 1 and h is 1-Lipschitz}. Recall also that Huntingdon’s metric induces
the narrow topology (see Fremlin (2003, 437L and 437Y(i))).
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As in the previous two examples, (T6) and (T7) hold. Clearly Θ is well-behaved, as
both the maps γ 7→ γ̂ and γ̂ 7→ ε(γ̂) are continuous. Also, Cε(γ̂)(λ0) is convex for all
γ ∈ K, by the definition of Huntingdon’s metric. Thus (T5) holds.

Two additional examples will be given below.
An economy is a list E = 〈(T̂ , Σ̂, ν̂),M,L,N, n̂,Λ,Θ, v, 〈ũt, nt〉t∈T̂ 〉. An equilibrium

for an economy E consists of an income tax λ∗ and a pair g∗ = (m∗, l∗), where
m∗ : T̂ →M and l∗ : T̂ → L are measurable functions, such that:

(a) λ∗ solves maxλ v(λ, ν̂ ◦ (c, g∗)−1) subject to the conditions λ ∈ Θ(ν̂ ◦ (c, g∗)−1) and∫
T̂
λ(ntl

∗(t))dν̂(t) =
∫
T̂
ntl
∗(t)dν̂(t).13

(b) For almost all t ∈ T̂ , g∗(t) solves max(m,l)∈M×L ũt(m, l) subject to m ≤ λ∗(ntl).

Conditions (b) and (a) together imply that g∗ is a competitive equilibrium allocation.
Indeed, by the monotonicity assumption in (T2), we must have m∗(t) = λ∗(ntl

∗(t))

for almost all t ∈ T̂ . Hence
∫
T̂
m∗(t)dν̂(t) =

∫
T̂
λ∗(ntl

∗(t))dν̂(t) =
∫
T̂
ntl
∗(t)dν̂(t) and

thus market clearing holds.
Note that when an individual’s effort equals l, then she provides a quantity of

labor equal to ntl, and thus λ∗(ntl) is the maximum amount of consumption she can
consume. In an equilibrium, individual t’s effort equals l∗(t) and the amount of tax she
pays equals ntl∗(t) − λ∗(ntl∗(t)), which is the difference between the pre-tax income
ntl
∗(t) and the after-tax income λ∗(ntl∗(t)). Thus, condition (a) means, in particular,

that the government has a balanced budget.
In choosing an optimal income tax, the government is constrained by an imple-

mentability condition: the allocation g that results from the choice of a given income
tax λ must be such that (λ, g) is an equilibrium of the economy. Thus, writing S(E)

for the set of equilibria of E, the government’s optimization problem is

max(λ,g)∈S(E)

∫
T̂

ũt(g(t))dν̂(t).

An income tax λ∗ is an optimal income tax if there exists a g∗ : T̂ →M ×L such that
(λ∗, g∗) is a solution of the government’s optimization problem.

We can now consider a fourth example, obtained by specifying Θ so as to capture
the basic idea of the credible income taxation problem in Farhi, Sleet, Werning, and
Yeltekin (2011).

Example 7. As in Golosov, Kocherlakota, and Tsyvinski (2003), assume, in addition
to (T1) and (T2), that ũt(m, l) = π(m)+η(l) for all t ∈ T̂ and (m, l) ∈M ×L, where

13Abusing notation, we sometimes write m to denote a function from T̂ to M , instead a generic
element of M ; similarly for l and L. The meaning should be clear from the context.
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π : M → R and η : L→ R are functions with π strictly concave and π(0) = η(0) = 0.
Let

Θ(γ) =

{
Θ̃(γ) if π

(∫
zdγ̂(z)

)
+
∫
η(l)dγ(u, n,m, l) > 0,

Λ otherwise,

γ ∈ K, where

Θ̃(γ) =

{
λ′ ∈ Λ :

∫
π(λ′(z))dγ̂(z) + δ

∫
η(l)dγ(u, n,m, l) ≥ (1− δ)π

(∫
zdγ̂(z)

)}
.

Further, let v(λ, γ) = 0 for all (λ, γ) ∈ Λ×K. In Lemma 13 in Section 4.14 it is shown
that, for this specifications of Θ and v, assumptions (T5)-(T7) are satisfied and for
an equilibrium (λ∗, g∗) of E the following must hold, writing g∗(t) = (m∗(t), l∗(t)):

(1)
∫
T̂

(
π(λ∗(ntl

∗(t))) + η(l∗(t))
)
dν̂(t)

≥ (1− δ)
(
π

(∫
T̂

λ∗(ntl
∗(t))dν̂(t)

)
+

∫
T̂

η(l∗(t))dν̂(t)

)
.

This condition is analogous to the credibility condition of Farhi, Sleet, Werning, and
Yeltekin (2011) and implies that the government credibly commits to λ∗ in the follow-
ing sense. Suppose that in each one of infinitely many periods k ∈ N, the government
and the individuals simultaneously choose an income tax λk and consumption/effort
pairs (mk(t), lk(t)), respectively, knowing the entire history of previous taxes and joint
distributions over attributes and actions.14 In addition, assume that for each individ-
ual and the government the utility in the repeated interaction is the discounted sum of
the period-wise utilities, with discount factor δ ∈ (0, 1), where the period-wise utility
function of the government is given by

∫
T̂

(
π(λk(ntlk(t)))+η(lk(t))

)
dν̂(t) for all k ∈ N,

λk being the income tax and lk the effort allocation in period k.15 In this setting, the
14Note that we are restricting the government to choose income taxes that do not depend on the

tax paid previously by individuals, which is something that the government observes. This is an
important restriction. In fact, if the outcome in the first period is fully revealing (i.e. individuals
with different skills have different income levels) then the first-best could be achieved from period
2 onwards. Alternative assumptions to rule out this case include: (1) the government is legally
obliged to tax only individual’s income, or (2) each individual lives only for one period and so pays
taxes only once. Assumption (2) means that individuals are short-lived and the government is long-
lived; this poses no difficulties within a repeated-game framework and is, in fact, standard (see, for
instance, Mailath and Samuelson (2006, Section 2.7) or Sabourian (1990)). Finally, we note that
Assumption (2) is similar to the overlapping generations assumption in Farhi, Sleet, Werning, and
Yeltekin (2011).

15Note that
∫
T̂

(π(λk(ntlk(t))) + η(lk(t)))dν̂(t) =
∫
N×L(π(λk(nl)) + η(l))dν̂ ◦ (n̂, lk)−1(n, l) for all

k ∈ N, so all the government needs to know is the joint distribution of skills and efforts.
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above credibility condition states that the stationary outcome with (λ∗, g∗) in every
period is a subgame perfect equilibrium of the repeated game just described.16

At the core of the above example is the inability of the government to commit to
an income tax. In fact, the right-hand side of condition (1) describes the best short-
run deviation of the government, which, by the fact that individuals’ choices are made
simultaneously, consists in choosing an income tax that gives all individuals the same
after-tax income.

In a final example, we consider another non-commitment problem. Specifically, it
is supposed that, after individuals have made effort decisions but before they carry
out consumption, the government may revise a tax announced earlier.

Example 8. Let Θ be as in Example 6, and set v(λ, γ) =
∫
u(λ(nl), l)dγ(u, n,m, l)

for all (λ, γ) ∈ Λ × K. Then, as in Example 6, (T5) holds. If, in addition to what
is supposed in (T1) and (T2), ũt(·, l) is concave for all t ∈ T̂ and l ∈ L, then by
Lemma 14 in Section 4.14, (T6) and (T7) hold, too. Now under the assumption
stated in the previous paragraph, an equilibrium implementing an optimal income
tax must have the property that the income tax maximizes aggregate utility subject
to the feasibility constraints set by Θ and the given total output. In view of (a) of
the equilibrium definition, this is guaranteed by specifying the government’s auxil-
iary utility function v as above. (Recall in this regard that the specification of Θ

in Example 6 means, in particular, that the feasibility sets Θ(γ) of the government
do not depend on individuals’ consumption, but only on the distribution of outputs.
While in the previous examples an equilibrium can be easily constructed (there is an
equilibrium with a 0% income tax in Examples 4-6, and an equilibrium with a 100%
income tax in Examples 4 and 7), this is not the case in this example. In particular,
there cannot be an equilibrium with a 0% income tax given the specification of v, and
there cannot be an equilibrium with a 100% income tax given the specification of Θ.

Here is our theorem on existence of an optimal income tax.

Theorem 10. If the economy E = 〈(T̂ , Σ̂, ν̂),M,L,N, n̂,Λ,Θ, v, 〈ũt, nt〉t∈T̂ 〉 satisfies
(T1)-(T7), then there exists an optimal income tax.

(See Section 4.13 for the proof.) The proof of this theorem requires, in particular,
to show that the choice set S(E) of the government is non-empty. We will do this by
using Theorem 5 to establish existence of a Nash equilibrium in the following game.

Let E = 〈(T̂ , Σ̂, ν̂),M,L,N, n̂,Λ,Θ, v, 〈ũt, nt〉t∈T̂ 〉 be an economy satisfying (T1)-
(T7). The government will be denoted by player t̄, where t̄ 6∈ T̂ . Let T̄ = {t̄} and set

16Condition (1) is also necessary for a stationary outcome to be subgame perfect (see Chari and
Kehoe (1990)) since the payoff of the government in the worst subgame perfect equilibrium from its
point of view is π(0) + η(0) = 0.
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T = T̄∪T̂ , Σ = Σ̂∪{B∪T̄ : B ∈ Σ̂} and, for all B ∈ Σ, ν(B) = ν̂(B∩T̂ )+χB(t̄), where
χB is the characteristic function of B. Since (T̂ , Σ̂, ν̂) is a super-atomless complete
probability space, it follows that Assumptions (A1), (A9) and (S2) are satisfied.

Concerning players’ action spaces, let Xt̄ = Λ and Xt = M × L for all t ∈ T̂ . As
said above, we may identify Λ with the set of Borel measures µ on [0, n̄] satisfying
µ([0, n̄]) ≤ m̄. Let X0 be the vector space of all finite signed Borel measures on [0, n̄],
endowed with the narrow topology. Then X0 is a Souslin locally convex space. Let
X1 = R2, and let X be obtained from X0 and X1 in the sense of Remark 1(a). We
may then identify Λ andM×L with subsets of X, so that (A3) and (A4) are satisfied.
Moreover, we may view strategy profiles as functions from T to X.

The attribute space C and the attribute function c are defined as above. Thus, it
follows from (T1) and (T3) that (A10) is satisfied.

Given the above specification, we obtain the following regarding the externality
map ẽ. Given f ∈ SG (i.e. a measurable f : T → X with f(t̄) ∈ Λ and f(t) ∈ M × L
for almost all t ∈ T̂ ), let f̂ = f |T̂ and note that ẽ(f) = (f(t̄), ν̂ ◦ (c, f̂)−1). Thus, with
K as defined above, we have ẼG = Λ×K. In view of this, given y ∈ ẼG, we will often
write (λ, γ) for y.

Regarding players’ payoff functions, define ut̄ : Λ× ẼG → R by setting

ut̄(λ
′, λ, γ) =

{
v(λ′, γ) if

∫
(z − λ′(z)) dγ̂(z) = 0,

−1 otherwise,

for all λ′ ∈ Λ and (λ, γ) ∈ ẼG. For t ∈ T̂ , define ut : M × L × ẼG → R by setting
ut(m, l, λ, γ) = ũt(m, l) for all (m, l) ∈M × L and (λ, γ) ∈ ẼG.

Finally, we specify the constraint correspondences. Define At̄ : ẼG ⇒ Λ by setting
At̄(y) = Θ(γ) for all y = (λ, γ) ∈ ẼG. For t ∈ T̂ , define At : ẼG ⇒ M × L by setting
At(y) = {(m, l) ∈ M × L : m ≤ λ(ntl)} for y = (λ, γ) ∈ ẼG. Since the three sets
Θ(γ), {λ′ ∈ Λ :

∫
(z − λ′(z)) dγ̂(z) = 0}, and {λ′ ∈ Λ : v(λ′, γ) ≥ α}, α ∈ R, are

convex, it follows that (A11) is satisfied.
Let G = ((T,Σ, ν), X, 〈Xt, ut, At〉t∈T , ẽ) be the game just defined. It is clear that

every equilibrium of the economy E is a Nash equilibrium of G, and that by (T6) and
(T7), every Nash equilibrium of G is an equilibrium of E.

We note that the payoff function ut̄ in the game G need not be usc, so that the
existence result of Balder (2002, Theorem 2.2.1) cannot be applied to conclude the
existence of an equilibrium of G. E.g., suppose ν̂ ◦ n̂−1 is uniform on [0, n̄], Θ(γ) = Λ

for all γ ∈ K, and v(λ, γ) = 0 for all (λ, γ) ∈ Λ×K. Define λ′ ∈ Λ by setting

λ′(z) =

{
z if z < n̄/2,

n̄ if z ≥ n̄/2.
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Let f̂ : T̂ →M×L and f̂k : T̂ →M×L, k ∈ N\{0}, be given by f̂(t) = f̂k(t) = (nt, 1)

if nt < n̄/2, and by f̂k(t) = (n̄/2 − nt/k, n̄/(2nt) − 1/k) and f̂(t) = (n̄/2, n̄/(2nt))

otherwise. Fix any λ ∈ Λ. Set yk = (λ, ν̂ ◦ (c, f̂k)
−1) and y = (λ, ν̂ ◦ (c, f̂)−1). Then

(λ′, yk) → (λ′, y). Also,
∫

(λ′(nl)− nl) dν̂ ◦ (c, f̂k)
−1(u, n,m, l) = 0 for all k, and∫

(λ′(nl)− nl) dν̂ ◦ (c, f̂)−1(u, n,m, l) = n̄/4 > 0. Thus ut̄(λ′, yk) = 0 for all k, but
ut̄(λ

′, y) = −1, showing that ut̄ is not usc. (In fact, ut̄ is not even weakly usc.)
As announced, we will establish existence of an equilibrium of the economy E by

showing that the game G has an equilibrium. To this end, we will show that G is
continuously secure:

Theorem 11. The game G satisfies CS’.

(The proof may be found in Section 4.12.) In view of this theorem and of what
was noted above, the game G satisfies the assumptions of Theorem 5. Thus:

Theorem 12. The game G has an equilibrium.

4 Appendix: Proofs

4.1 Notation

Let Z be a topological space. For a sequence 〈zn〉 in Z, LS zn denotes the set of its
cluster points. For a sequence 〈An〉 of subsets of Z, KLSAn denotes the Kuratowski
limes superior, i.e., the set of those points z in Z such that for every neighborhood U
of z there are infinitely many n with An ∩ U 6= ∅.

The fact in the following lemma is more or less well-known.

Lemma 1. Let K be a compact subset of a Hausdorff locally convex vector space X.
If 〈Fn〉 is a sequence of subsets of K, then co KLS coFn ⊆ co KLSFn.

Proof. Suppose x /∈ co KLSFn. Then by the separation theorem (see e.g. Aliprantis
and Border (2006, Theorem 5.79, p. 207)) there is an open half-spaceH ⊆ X (i.e., a set
of the form {y ∈ X : p(y) < r} where p is a continuous linear functional on X, and r
a real number) such that co KLSFn ⊆ H and x /∈ H̄, where H̄ is the closure of H.
Since K is compact, so is K\H. Hence since Fn ⊆ K for each n, and since a compact
space is countably compact, for large n we must have Fn∩ (K \H) = ∅, i.e., Fn ⊆ H.
Hence also coFn ⊆ H for large n, so KLS coFn ⊆ H̄, and thus co KLS coFn ⊆ H̄.
Thus x /∈ co KLSFn implies x /∈ co KLS coFn.

31



4.2 Young measures

This section contains, in particular, the material needed for the fixed point part of
the proof of our results on existence of Nash equilibrium. The idea to perform the
fixed point argument in a space of Young measures is taken from Balder (2002).

We start by stating some definitions. Let us fix a complete measure space (T,Σ, ν)

with 0 < ν(T ) <∞ and a completely regular Souslin space X.
Recall that a Young measure from T to X is just a function g : T → M1

+(X)

which is measurable for the narrow topology of M1
+(X). Recall that this property is

equivalent to the property that the map t 7→ g(t)(B) is measurable for each B ∈ B(X),
and also to the property that, for each bounded continuous p : X → R, the map
t 7→

∫
pdg(t) is measurable. The first equivalence shows in particular that if f : T → X

is a measurable map, then the map t 7→ δf(t) is a Young measure, where δf(t) denotes
Dirac measure at f(t).

LetR denote the set of all Young measures from T to X, endowed with the narrow
topology for Young measures. Recall that this topology is defined to be the coarsest
topology on R such that for each q ∈ G the functional

g 7→
∫
T

∫
X

q(t, x)dg(t)dν(t) : R → R

is continuous, where G is the set of all measurable functions q : T ×X → R such that
q(t, ·) is continuous for each t ∈ T and such that, for some integrable θq : T → R+,
sup{|q(x)| : x ∈ X} ≤ θq(t) for each t ∈ T . It should be noted that, in general, the
narrow topology for Young measures is not a Hausdorff topology.

In the sequel, if κ : T ⇒ X is a correspondence, then Rκ denotes the subset of R
defined by setting

Rκ = {g ∈ R : supp g(t) ⊆ κ(t) for almost all t ∈ T}.

With (T,Σ, ν) and X as before, we next collect some facts that are fundamental.
In the following theorem, the compactness part is a result due to Balder (1989), which
provides the mathematical basis for the fixed point part of the proof of our equilibrium
existence result.

Theorem 13. Let κ : T ⇒ X be a correspondence with measurable graph such that
κ(t) is non-empty and compact for all t ∈ T . Then the subset Rκ of R is non-empty,
closed, compact, and sequentially compact.

Proof. As noted above, if f : T → X is measurable, then the map t 7→ “Dirac measure
at f(t)” belongs to R. Thus non-emptiness of Rκ is implied by the von Neumann-
Aumann-Sainte Beuve measurable selection theorem (see Castaing and Valadier (1977,
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Theorem III.22)). From Balder (1989, Theorem 2.2 and Remark 2.4) it follows that
Rκ is both relatively compact and relatively sequentially compact. Hence, given that
Rκ is closed, it is both compact and sequentially compact. That Rκ is indeed closed
may be seen as follows. Recall that a Souslin space is separable and that on any such
space, if it is completely regular, there is metric that gives a topology weaker than the
original one but such that the Borel sets for both topologies are the same.17 Choose
such a metric, say ρ, on the space X under consideration. In particular, then, X is
separable for ρ. Define qρ : T ×X → R by setting

qρ(t, x) = min{1, ρ(x, κ(t))}, (t, x) ∈ T ×X.

Using Castaing and Valadier (1977, Theorems III.22, III.9, and Lemma III.14) it may
be seen that q belongs to the set G defined above. Now as κ takes closed values, an
element g ∈ R belongs to Rκ if and only if

∫
T

∫
X
qρ(t, x)dg(t)dν(t) = 0. Thus, by the

definition of the narrow topology for Young measures, Rκ is closed in R.

Corollary 1. Let κ : T ⇒ X be as in Theorem 13, and Sκ the set of all measurable a.e.
selections of κ. Then the set

{
1

ν(T )
ν ◦ f−1 : f ∈ Sκ

}
of distributions of the members

of Sκ is a relatively compact subset of M1
+(X) for the narrow topology.

Proof. For each g ∈ Rκ, define µg ∈ M1
+(X) by setting µg(B) = 1

ν(T )

∫
T
g(t)(B)dν(t)

for every B ∈ B(X). (That µg is indeed countably additive may be easily seen with
the help of the monotone convergence theorem). Note that, for any f ∈ Sκ, setting
g(t) = δf(t) for t ∈ T , where δf(t) is Dirac measure at f(t), defines an element g of Rκ

for which µg = 1
ν(T )

ν ◦ f−1. Now the map g 7→ µg : Rκ → M1
+(X) is continuous for

the narrow topology of M1
+(X) (see Balder (2002, proof of Theorem 3.1.1)), and thus

the assertion follows from Theorem 13.

The following version of Corollary 1 is appealed to in the proof of Theorem 5 given
below in Section 4.7.

Lemma 2. Let C be another completely regular Souslin spaces, c : T → C a measur-
able function, and κ : T ⇒ X a correspondence as in Theorem 13. Then the set{

1
ν(T )

ν ◦ (f, c)−1 : f is a measurable a.e. selection of κ
}

is a relatively compact subset of M1
+(X × C) for the narrow topology.

17Recall that a Souslin space X is Hausdorff by definition, and therefore, if it is completely regular,
the set of continuous functions on X separates the points of X. But on a Souslin space X, any set
of continuous functions that separates the points of X contains a countable subset with the same
property (Castaing and Valadier (1977, III.31)). This yields the assertion concerning the metric.
Now the assertion concerning the Borel sets follows from Schwartz (1973, p. 101 Corollary 2).
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Proof. Note first that the facts that c is measurable and C is a Souslin space imply
that c has a measurable graph (see Castaing and Valadier (1977, p. 74)). Thus the
correspondence κ1 : T ⇒ C, where κ1(t) = {c(t)} for each t ∈ T , has a measurable
graph. Define κ2 : T ⇒ X × C by setting κ2(t) = κ(t)× κ1(t) for each t ∈ T . By the
fact that B(X × C) ⊇ B(X)⊗ B(C), it is elementary to check that the properties of
κ and κ1 to have a measurable graph imply that κ2 has a measurable graph. Finally
note that as both X and C are completely regular Souslin spaces, so is X × C. The
lemma is now easily seen to follow from Corollary 1, with X there replaced by X×C,
and κ there replaced by κ2. (Note that if h is any measurable a.e. selection of κ2, we
may modify h on a null set, if necessary, so that the C-component of h takes value c(t)
for each t ∈ T .)

The final result stated in this section is just a translation of Theorem 4.15 in
Balder (2000) into our notation.

Theorem 14. If gn → g in R, then supp g(t) ⊆ KLS supp gn(t) for almost all t ∈ T .

4.3 A purification result

We need the following purification result, which will be proved as a consequence of a
result in Podczeck (2009). As in the previous section, (T,Σ, ν) is a complete measure
space with 0 < ν(T ) <∞, and X a completely regular Souslin space.

Theorem 15. Let κ : T ⇒ X be as in Theorem 13. Writing Γκ for the graph of κ, let C
be a countable set of functions q : Γκ → R such that (i) q is measurable for the subspace
σ-algebra of Γκ defined from Σ⊗B(X), (ii) q(t, ·) is continuous on κ(t) for each t ∈ T ,
(iii) there is an integrable θq : T → R+ such that sup{|q(t, x)| : x ∈ κ(t)} ≤ θq(t) for
almost all t ∈ T . Suppose (T,Σ, ν) is super-atomless. Then given any g ∈ Rκ, there
is a measurable f : T → X such that

(1) f(t) ∈ supp g(t) for almost all t ∈ T ;

(2)
∫
T

∫
X
q(t, x)dg(t)(x)dν(t) =

∫
T
q(t, f(t))dν(t) for all q ∈ C;

(3)
∫
T
g(t)(B)dν(t) = ν(f−1(B)) for all B ∈ B(X).

Proof. By Podczeck (2009), the theorem is true in the special case where X is a
compact metric space and the maps q are defined on all of T ×X, with (i) assumed
to hold with T ×X in place of Γκ, and (ii) and (iii) with X in place of κ(t). We will
show that the situation of the present theorem can be reduced to this case.

As in the proof of Theorem 13, recall that a Souslin space is separable and that
on any such space there is metric that gives a topology weaker than the original one
but such that the Borel sets for both topologies are the same.
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This fact implies that we may view X as a subset of a compact metric space K
such that the inclusion map i : X → K is continuous and such that B(X) coincides
with the subspace σ-algebra defined from B(K) (use Engelking (1989, Theorem 3.5.2),
which is a compactification result, and for the assertion on the Borel σ-algebras, use
Castaing and Valadier (1977, Lemma III.20) in addition). In particular, for each t ∈ T ,
since κ(t) is a compact subset of X, κ(t) is also compact as a subset of K, and the
topologies of X and K give the same subspace topology on κ(t). Furthermore, a map
f : T → X is measurable for B(X) if and only if it is measurable for B(K) when
viewed as a map into K.

Fix any g ∈ Rκ. As the inclusion i : X → K is continuous, we may define a map
g1 : T → M1

+(K) by setting g1(t) = g(t) ◦ i−1 for each t ∈ T (i.e., g1(t) is the image
measure of g(t) under i). In particular, for any continuous map p : K → R, we have∫
K
pdg1(t) =

∫
X
p ◦ idg(t) for every t ∈ T , and therefore the map t 7→

∫
K
pdg1(t) is

measurable, by the fact that g is a Young measure. Moreover, because supp g(t) ⊆ κ(t)

for almost t ∈ T by definition of Rκ, we must have supp g1(t) = supp g(t) for almost
all t ∈ T , by what was noted in the previous paragraph about the sets κ(t).

We assert the following.

Claim: For each q ∈ C there is a q′ : T × K → R such that (a) q′|Γκ = q, (b) q′ is
measurable, (c) q′(t, ·) is continuous for each t ∈ T , (d) sup{|q′(t, x)| : x ∈ K} ≤ θq(t)

for almost all t ∈ T .

Assuming the claim has been established, the theorem can be proved as follows. By
Podczeck (2009, Corollary and Lemma 2), the fact that t 7→

∫
K
pdg1(t) is measurable

for each continuous p : K → R implies that there is a measurable f : T → K such
that (1)-(3) of the theorem hold with g1 substituted for g, B(K) for B(X), and with
each q ∈ C replaced by an element q′ associated with q according to the claim. Now
since supp g1(t) = supp g(t) for almost all t ∈ T , (1) of the theorem must also hold
with f and g, i.e., f(t) ∈ supp g(t) for almost all t ∈ T , and therefore, in view of (a) of
the claim, (2) must actually hold with f , g, and the given C, because supp g(t) ⊆ κ(t)

for almost all t ∈ T , and because g1(t) = g(t) ◦ i−1 for each t ∈ T . Note that since
f(t) ∈ κ(t) for almost all t ∈ T , we have f(t) ∈ X for almost all t ∈ T . Changing
f on a null set of T , if necessary, we may assume that f takes all of its values in X.
Now, because for every B ∈ B(X) there is a B′ ∈ B(K) with B = B′ ∩X = i−1(B′),
f must be measurable for B(X), and the fact that (3) of the theorem holds with f ,
g1, and B(K) implies that (3) of the theorem holds with f , g, and B(X) as well.

Thus it remains to establish the above claim. Take any q ∈ C and note first that
continuity of q(t, ·) on κ(t) as subspace ofX, which holds for each t ∈ T by hypothesis,
implies continuity on κ(t) as a subspace of K, by what was noted above. Define
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q1 : Γκ → R by setting

q1(t, x) = 3/2 + (1/2) arctan q(t, x), (t, x) ∈ Γκ.

Then q1 is measurable for the subspace σ-algebra on Γκ defined from Σ ⊗ B(X),
because q is. Also, q1(t, ·) is continuous on κ(t) for each t ∈ T , and q1 takes all of its
values in (1, 2).

Let ρ denote the metric of K. As κ(t) is compact and therefore closed in K for
each t ∈ T , and as q1 takes values in (1, 2), we can define a function q2 : T ×K → R,
also taking values in (1, 2), by setting q2(t, x) = q1(t, x) if x ∈ κ(t) and

q2(t, x) = inf

{
q1(t, u)ρ(x, u)

ρ(x, κ(t))
: u ∈ κ(t)

}
otherwise. Note that for each t ∈ T , q2(t, ·) is a continuous extension of q1(t, ·) to K
(see, e.g., Mandelkern (1990)). We claim that q2 is measurable. As q2(t, ·) is continuous
for each t ∈ T , to establish this claim it suffices by Castaing and Valadier (1977,
Lemma III.14) to show that q(·, x) is measurable for each x ∈ K.

To this end, we appeal to Castaing and Valadier (1977, Theorem III.22) to choose a
countable set {hi : i ∈ I} of measurable functions hi : T → X such that {hi(t) : i ∈ I}
is a dense subset of κ(t) for each t ∈ T . By the measurability property of q1 mentioned
before, measurability of the hi’s implies in particular that the maps t 7→ q1(t, hi(t))

are measurable. By what was said in the third paragraph of this proof, each hi is
measurable also when viewed as map into K, and for each t ∈ T , {hi(t) : i ∈ I} is
dense in κ(t) also for the topology of K. Taking some x ∈ K now as given, it follows
that for each i ∈ I the map t 7→ ρ(x, hi(t)) is measurable, and therefore the map
t 7→ ρ(x, κ(t)) must be measurable as well. Thus if we set T1 = {t ∈ T : ρ(x, κ(t)) > 0}
and define ei : T → R, i ∈ I, by setting

ei(t) =


q1(t, hi(t))ρ(x, hi(t))

ρ(x, κ(t))
if t ∈ T1,

q1(t, x) if t ∈ T \ T1,

then ei is measurable (recall that the sets κ(t) are closed in K, so ei is indeed defined
on T \T1). Now because {hi(t) : i ∈ I} is dense in κ(t), and because the function
u 7→ q1(t, u)ρ(x, u)/ρ(x, κ(t)) is continuous on κ(t) for each t ∈ T1, we must have
q2(t, x) = inf{ei(t) : i ∈ I} for each t ∈ T . As I is countable, it follows that q2(·, x) is
measurable.

Recalling that q2 takes values in (1, 2), define q3 : T ×K → R by setting

q3(t, x) = tan(2q2(t, x)− 3), (t, x) ∈ T ×K.

36



Then, because q2 is measurable, so is q3, and as q2(t, ·) is continuous for each t ∈ T ,
so is q3(t, ·) for each t ∈ T . Thus (b) and (c) of the claim above hold for q3. By
construction, for each t ∈ T we have q3(t, x) = q(t, x) if x ∈ κ(t), i.e., (c) of the claim
holds for q3. As for (d), consider any t ∈ T , and note that the choice of q2(t, ·) implies
that for any x ∈ K\κ(t),

inf{q1(t, y) : y ∈ κ(t)} ≤ q2(t, x) ≤ sup{q1(t, y) : y ∈ κ(t)},

and therefore, by choice of q3(t, ·), since q3(t, x) = q(t, x) for all y ∈ κ(t),

inf{q(t, y) : y ∈ κ(t)} ≤ q3(t, x) ≤ sup{q(t, y) : y ∈ κ(t)},

from which it follows that sup{|q3(t, x)| : x ∈ K} = sup{|q(t, x)| : x ∈ κ(t)} ≤ θq(t).
Thus (d) of the claim holds for q3. This completes the proof.

4.4 Proof of Theorems 1 and 2

Let us fix a game G = ((T,Σ, ν), X, 〈Xt, ut, At〉t∈T , e) such that (A1)-(A4) hold. Thus
X is now a locally convex space in addition to being Souslin.

Note that assumptions (S1) and (S2), which are involved in Theorems 1 and 2,
respectively, are incompatible. However, the following condition contains (S1) and
(S2) as special cases.

(S3) (i) The subspace measure on T̄ defined from ν is separable; (ii) the set Ĉ is finite
or the subspace measure on T̂ defined from ν is super-atomless.

Assumption (S3) is an auxiliary assumption, introduced just to get in a position to
prove our existence results with (S1) and (S2) in a unified way. It is not a general-
ization of (S1) and (S2) at a deeper level. It is assumed in the sequel that (S3) is
satisfied.

As before, R denotes the set of all Young measures from T to X, endowed with
the narrow topology for Young measures. By RG we denote the subset of R defined as

RG = {g ∈ R : supp g(t) ⊆ Xt for almost all t ∈ T}.

Now by Balder (2002, Corollary 4.2.1), (A4)(i) and (A4)(iii) together imply that
there is a map h1 : RG → S̄G such that for each g ∈ RG, h1(g)(t) is the barycenter
of g(t) for almost all t ∈ T̄ , i.e., the unique element x ∈ Xt for which p(x) =

∫
Xt
pdg(t)

for every continuous linear functional p on X. Define h2 : RG → RĈ by setting
h2(g) =

〈∫
T̂

∫
Xt
q(t, x)dg(t)(x)dν(t)

〉
q∈Ĉ for each g ∈ RG, where Ĉ is the countable

set involved in the externality map e. Finally define h : RG → S̄G × RĈ by setting
h(g) = (h1(g), h2(g)) for g ∈ RG.
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Recall from Section 2.2 that RĈ is endowed with the product topology, S̄G with
the feeble topology, S̄G × RĈ with the corresponding product topology, and the set
EG ≡ e(SG) ⊆ S̄G × RĈ with the subspace topology.

Lemma 3. The following hold for the map h.

(a) h takes values in EG.

(b) h is continuous as map from RG to EG

(c) Given any g ∈ RG, there is an f ∈ SG, with e(f) = h(g), such that for almost all
t ∈ T̂ , f(t) ∈ supp g(t), and for almost all t ∈ T̄ , f(t) ∈ co supp g(t).

Proof. We first show that (c) holds. Consider any g ∈ RG. If the set Ĉ is finite, then
by Lyapunov’s theorem for Young measures (see Balder (2002, Theorem, 4.2.3)),
assumption (A2) implies that there is a measurable function f̂ : T̂ → X such that
h2(g) =

〈∫
T̂
q(t, f̂(t))dν(t)

〉
q∈Ĉ and such that f̂(t) ∈ supp g(t) for almost all t ∈ T̂ .

If Ĉ is countably infinite, then by (S3), the subspace measure on T̂ defined from ν is
super-atomless, and we get an f̂ : T̂ → X with the same properties by Theorem 15
(with T there replaced by T̂ , and C by Ĉ), noting that by (A4), Xt is compact for
each t ∈ T̂ and the graph of the correspondence t 7→ Xt : T̂ → X is measurable.

Define f : T → X by setting f(t) = h1(g)(t) for t ∈ T̄ , and f(t) = f̂(t) for t ∈ T̂ .
Thus f |T̄ = h1(g) ∈ S̄G. In particular, f |T̄ is measurable and we have (f |T̄ )(t) ∈ Xt for
almost all t ∈ T̄ . As g ∈ RG means supp g(t) ⊆ Xt for almost all t ∈ T , the fact that
f̂(t) ∈ supp g(t) for almost all t ∈ T̂ implies that we have f(t) ∈ Xt also for almost
all t ∈ T̂ . Thus f(t) ∈ Xt for almost all t ∈ T , and because T̄ and T̂ are measurable
subsets of T , it follows that f is measurable. That is, f ∈ SG. In particular, e(f) is
defined. Recalling that the definition of e says e(f) = (f |T̄ ,

〈∫
T̂
q(t, f̂(t))dν(t)

〉
q∈Ĉ),

we may conclude that e(f) = (h1(g), h2(g)) = h(g). Now by construction, we have
f(t) ∈ supp g(t) for almost all t ∈ T̂ . Also, because f(t) = h1(g)(t) for t ∈ T̄ , and
because by the definition of h1, h1(g)(t) is the barycenter of g(t) for almost all t ∈ T̄ ,
we must have f(t) ∈ co supp g(t) for almost all t ∈ T̄ , by the definition of barycenter
and by the separation theorem. Thus (c) holds.

Now as EG = e(SG) by definition, (a) is directly implied by (c). As for (b), by
Balder (2002, Theorem 4.2.2) it follows that the map h1 continuous, and by the
argument in Step 1 in the proof of Theorem 2.2.1 in Balder (2002), it follows that for
each q ∈ Ĉ the map g 7→

∫
T̂

∫
Xt
q(t, x)dg(t)dν(t) : RG → R is continuous. Thus, by

choice of the topologies of S̄G × RĈ and EG, (b) follows.

Lemma 4. Given any sequence 〈fn〉 in SG, there is an f ∈ SG and a subsequence 〈fk〉
of 〈fn〉 such that e(fk) → e(f) and such that for almost all t ∈ T̂ , f(t) ∈ LS fn(t),
and for almost all t ∈ T̄ , f(t) ∈ co LS fn(t).
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Proof. For each n let gn ∈ RG be defined by setting gn(t) = δfn(t) for t ∈ T , where
δfn(t) denotes Dirac measure at fn(t). Then by Theorem 13 there are a g ∈ RG and
a subsequence 〈gk〉 of the sequence 〈gn〉 such that gk → g in R. By Theorem 14,
then, supp g(t) ⊆ KLS supp gk(t) ⊆ KLS supp gn(t) for almost all t ∈ T , and by
Lemma 3(b), h(gk)→ h(g). Choose f ∈ SG such that f corresponds to g according to
Lemma 3(c), and let 〈fk〉 be the subsequence of 〈fn〉 corresponding to 〈gk〉. Observing
that h(gn) = e(fn) for each n, and that KLS supp gn(t) = LS fn(t) for each t ∈ T by
definition of the gn’s, we may see that f and 〈fk〉 are as required.

Lemma 5. The set EG is compact and pseudo-metrizable.

Proof. Assumption (S3)(i) implies that S̄G is pseudo-metrizable (see Balder (2002,
Remark 4.3.1)), and because Ĉ is countable, RĈ is metrizable. Thus EG ⊆ S̄G×RĈ is
pseudo-metrizable. As EG = e(SG), Lemma 4 implies that EG is sequentially compact.
As EG is pseudo-metrizable, this means EG is compact.

In the proof of Theorem 3 below, it will be convenient to also have the following
consequence of Lemma 4 to hand.

Lemma 6. Let 〈fn〉 be a sequence in SG with e(fn)→ y for some y ∈ EG. Then there
is an f ∈ SG such that e(f) = y and such that for almost all t ∈ T̂ , f(t) ∈ LS fn(t),
and for almost all t ∈ T̄ , f(t) ∈ co LS fn(t).

Proof. Let ρ be a pseudo-metric for EG. Note that if y, y′ ∈ EG are both limits of the
same sequence 〈yk〉 in EG, then ρ(y, y′) = 0. In view of Lemma 4, it suffices therefore
to show that if y ∈ EG and f1 ∈ SG are such that ρ(e(f1), y) = 0, then there is an
f2 ∈ SG with e(f2) = y such that f2(t) = f1(t) for almost all t ∈ T .

Let any such elements y and f1 be given. Pick any f ′ ∈ SG with e(f ′) = y. Define
f2 ∈ SG by setting f2(t) = f1(t) for each t ∈ T̂ , and f2(t) = f ′(t) for each t ∈ T̄ .
Then for the maps ê and ē from the definition of e, we have e(f2) = (ē(f ′), ê(f1)).
Now, because ρ(e(f1), e(f ′)) = 0, we must have ê(f1) = ê(f ′), and it follows that
e(f2) = e(f ′) = y. Suppose there is a non-negligible F ⊆ T̄ such that f1(t) 6= f2(t)

for all t ∈ F . By (A3) and what was noted in footnote 17, there is a countable set D
of continuous linear functions on X which separates the points of X. Since the maps
f1 and f2 are measurable and disagree on a non-negligible subset of T̄ , the properties
of D imply that there are a p ∈ D and a measurable non-negligible G ⊆ T̄ such that
p(f1(t)) 6= p(f2(t)) for all t ∈ G. But this means that we can construct an element
q ∈ Ḡ for which

∫
T̄
q(t, f1(t))dν(t) 6=

∫
T̄
q(t, f2(t))dν(t), where Ḡ is the set of functions

from the definition of the feeble topology on S̄G. Since h 7→
∫
T̄
q(t, h(t))dν(t) : S̄G → R

is continuous for the feeble topology, the composition of this map with the projection
of EG onto S̄G is continuous as well. As the projections of e(f1) and e(f2) onto S̄G
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are just f1|T̄ and f2|T̄ respectively, it follows that ρ(e(f1), e(f2)) > 0, contradicting
the fact that e(f2) = y and ρ(e(f1), y) = 0. Thus f2(t) = f1(t) must hold for almost
all t ∈ T .

We are now ready for the proof of Theorems 1 and 2. Since condition (S3), which
was introduced at the beginning of this section, is implied by (S1) as well as by (S2),
both these theorems are special cases of the following auxiliary result (noting that
(A2), which is not explicitly assumed in Theorem 2, is implied by (S2)).

Theorem 16. Let G = ((T,Σ, ν), X, 〈Xt, ut, At〉t∈T , e) be a game satisfying (A1)-
(A4), (S3), and CS. Then G has a Nash equilibrium.

Proof. Note first that according to Lemma 5, EG is compact and pseudo-metrizable.
Let ρ denote a corresponding pseudo-metric.

Suppose by way of contradiction that the game G has no equilibrium. Then by CS
and compactness of EG, there is X : T × EG ⇒ X and a finite family 〈Uj, ϕj, αj〉j∈J
where 〈Uj〉j∈J is a covering of EG by open subsets, and ϕj, αj correspond to X and
Uj according to CS for each j ∈ J .

Recall that Lebesgue’s covering theorem holds in compact pseudo-metric spaces.
We can therefore find an ε > 0 so that each closed ρ-ball in EG of radius 2ε is included
in some member of the open covering 〈Uj〉j∈J of EG. Let 〈Bi〉i∈I be a finite covering of
EG by closed ρ-balls of radius ε. Then the choice of ε implies that whenever 〈Bi〉i∈I′
is subfamily of 〈Bi〉i∈I with

⋂
i∈I′ Bi 6= ∅, there is a j ∈ J such that

⋃
i∈I′ Bi ⊆ Uj.

Fix any i ∈ I. Define a Caratheodory correspondence ϕi : T ×Bi ⇒ X as follows.
Let H = {j ∈ J : Bi ⊆ Uj}. By the previous paragraph, H is non-empty. Using the
fact that the functions αj are measurable, we can find a finite partition 〈Tk〉k∈K of T
into measurable sets and a corresponding family 〈jk〉k∈K of elements of H such that
if t ∈ Tk then αjk(t) ≥ αj(t) for each j ∈ H. Now define ϕi : T × Bi ⇒ X by setting
ϕi(t, y) = ϕjk(t, y) for (t, y) ∈ Tk × Bi, k ∈ K. It is clear that ϕi(t, ·) is well-behaved
for each t ∈ T . Furthermore, for every y ∈ Bi, we have

graph(ϕi(·, y)) =
⋃
k∈K

(graph(ϕjk(·, y)) ∩ (Tk ×X)) ,

showing that the graph of ϕi(·, y) is measurable, because K is finite. Thus ϕi is a
Caratheodory correspondence. By (a) in the definition of CS, ϕi(t, y) ⊆ X (t, y) for
each (t, y) ∈ T × Bi. Also, given any y ∈ Bi, (c) in the definition of CS implies that,
for almost all t ∈ T , if x ∈ ϕi(t, y) then ut(x, y) ≥ αj(t) for each j with Bi ⊆ Uj.

Do this construction for each i ∈ I. For each y ∈ EG, set Iy = {i ∈ I : y ∈ Bi}.
Let ϕ : T × EG ⇒ X be the correspondence defined by setting

ϕ(t, y) =
⋃
i∈Iy

ϕi(t, y), (t, y) ∈ T × EG.
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Then, because each ϕi is a Caratheodory correspondence, so is ϕ. (Indeed, first it is
clear that ϕ takes non-empty values, and as I is finite, ϕ takes closed values. To see
that ϕ(t, ·) is uhc for each t ∈ T , fix t ∈ T and y ∈ EG, and consider an open O ⊆ X

such that ϕ(t, y) ≡
⋃
i∈Iy ϕ

i(t, y) ⊆ O. As each ϕi(t, ·) is uhc and Iy is finite, there is
a neighborhood V of y in EG such that

⋃
i∈Iy ϕ

i(t, y′) ⊆ O for each y′ ∈ V . As I\Iy is
finite and all the Bi’s are closed, setting V ′ = V\(

⋃
i∈I\Iy Bi), V ′ is still a neighborhood

of y, but such that Iy′ ⊆ Iy for all y′ ∈ V ′, implying that ϕ(t, y′) ⊆ O for all y′ ∈ V ′.
Finally, for any y ∈ EG, it is clear that since each ϕi(·, y) has a measurable graph, so
does ϕ(·, y), again since I is finite, and since the graph of ϕ(·, y) is the union over Iy

of the graphs of the correspondences ϕi(·, y).)
We claim that there are a y∗ ∈ EG and a measurable f ∗ : T → X such that

y∗ = e(f ∗) and for almost all t ∈ T , f ∗(t) ∈ ϕ(t, y∗) if t ∈ T̂ , and f ∗(t) ∈ coϕ(t, y∗)

if t ∈ T̄ . Assuming for the time being that this has been established, let us see how
to finish the proof.

Note first that by definition of ϕ, we have f ∗(t) ∈
⋃
i∈Iy∗ ϕ

i(t, y∗) for almost all
t ∈ T̂ , and f ∗(t) ∈ co

⋃
i∈Iy∗ ϕ

i(t, y∗) for almost all t ∈ T̄ . By (b) in CS, if t ∈ T̄ then
ϕi(t, y∗) is convex or included in a finite-dimensional subspace of X, in addition to
being compact, so we actually have f ∗(t) ∈ co

⋃
i∈Iy∗ ϕ

i(t, y∗) for almost all t ∈ T̄ (by
the general fact that the convex hull of the union of finitely many such subsets of a
Hausdorff topological vector space is closed; e.g., combine Lemma 5.29 and Corollary
5.33 in Aliprantis and Border (2006)). Now by definition of the sets Iy, applied to Iy∗ ,
we have y∗ ∈

⋂
i∈Iy∗ Bi. According to what was noted in the last sentence of the third

paragraph of this proof, this means there is a j∗ ∈ J such that Bi ⊆ Uj∗ for all
i ∈ Iy∗ . But from the fourth paragraph, if y∗ ∈ Bi ⊆ Uj∗ then, for almost all t ∈ T ,
x ∈ ϕi(t, y∗) implies ut(x, y∗) ≥ αj∗(t). As x ∈ ϕi(t, y∗) also implies x ∈ X (t, y∗),
we may conclude that f ∗(t) ∈ {x ∈ X (t, y∗) : ut(x, y

∗) ≥ αj∗(t)} for almost all t ∈ T̂ ,
and that f ∗(t) ∈ co{x ∈ X (t, y∗) : ut(x, y

∗) ≥ αj∗(t)} for almost all t ∈ T̄ . However,
by (d) in the definition of CS, this is impossible because e(f ∗) = y∗ ∈ Uj∗ , and this
contradiction establishes the theorem.

Thus it remains to be shown that the above claim is correct. To this end, consider
the correspondence ϕ1 : EG ⇒ RG defined by setting

ϕ1(y) = {g ∈ RG : supp g(t) ⊆ ϕ(t, y) for almost all t ∈ T}, y ∈ EG.

Then by Theorem 13, the fact that ϕ is a Caratheodory correspondence implies that
ϕ1 takes non-empty closed values. The fact that ϕ is a Caratheodory correspondence
means, in particular, that ϕ(t, ·) is well-behaved for each t ∈ T , which implies that if
y ∈ EG is a limit of a sequence 〈yn〉 in EG, then KLSϕ(t, yn) ⊆ ϕ(t, y) for each t ∈ T
(because ϕ(t, ·) takes its values in the compact, hence regular space Xt). Therefore,

41



by Theorem 14, ϕ1 has a sequentially closed graph in EG × RG. As EG is pseudo-
metrizable by Lemma 5, and RG is sequentially compact by Theorem 13, it follows
that ϕ1 is uhc as may readily be seen.

Let ϕ2 : RG ⇒ RG be the composition ϕ2 = ϕ1 ◦ h, where h is the map from
Lemma 3. Then ϕ2 is uhc, because ϕ1 is and because by Lemma 3, h is continuous.
Also, ϕ2 takes non-empty closed values. These properties of ϕ2 guarantee that ϕ2 has
a fixed point, g∗ say (see the discussion in steps 2 and 6 in the proof of Theorem 4.1.2
in Balder (2002)). Choose an element f ∗ ∈ SG which corresponds to g∗ according to
Lemma 3(c), and set y∗ = e(f ∗). Then g∗ ∈ ϕ1(y∗), and by the definition of ϕ1 it
follows that f ∗ and y∗ are as required in the claim above.

4.5 Proof of Theorem 3:

Let G = ((T,Σ, ν), X, 〈Xt, ut, At〉t∈T , e) be a game satisfying (A1)-(A4) and (S1) or
(S2). If (A5)-(A8) hold in addition, then G satisfies CS.

Proof. Let ϕ : T ×EG ⇒ X denote the best reply correspondence of the game. Thus
ϕ(t, y) = {x ∈ At(y) : ut(x, y) = wt(y)} for each (t, y) ∈ T × EG. We will show that
CS holds with certain restrictions of ϕ, and with X chosen to be (t, y) 7→ At(y).

Recall first that a compact subset of a Souslin space is metrizable (for the subspace
topology); see Schwartz (1973, p. 96, Theorem 3, and p. 106, Corollary 2). Thus (A3)
and (A4)(i) imply that the sets Xt are metrizable. Using this fact, it is easily seen
that upper semi-continuity of the payoff functions and (A6)(i) imply the following:

If yn → y in EG, xn ∈ At(yn) for each n, and limut(xn, yn) ≥ wt(y),

then x ∈ LSxn implies x ∈ At(y) and ut(x, y) = limut(xn, yn) = wt(y).
(∗)

From this fact together with (A4)(i) and the hypothesis that the functions wt are lsc
it follows that for any t ∈ T , ϕ(t, ·) is well-behaved and wt is actually continuous.
Also, by (A5) and (A6)(ii), for any y ∈ EG, the map t 7→ wt(y) is measurable and
ϕ(·, y) has a measurable graph (see Castaing and Valadier (1977, Lemma III.39 and
remarks in the sequel)18). In particular, ϕ is a Caratheodory correspondence.

Now fix any y ∈ EG and assume there is no f ∈ SG such that f is an equilibrium
strategy with e(f) = y. Note that by Lemma 5, EG is compact and pseudo-metrizable.
Choose a corresponding pseudo-metric ρ. For n ∈ N\{0}, write B1/n(y) for the open
ρ-ball around y of radius 1/n. Also, for each n ∈ N\{0} and each y′ ∈ B1/n(y), let

ϕn(t, y′) = {x ∈ At(y′) : ut(x, y
′) ≥ wt(y)− 1/n}.

18We mention that this reference involves a measurable selection theorem.
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We claim that there is an integer n1 > 0 such that (d) in the definition of CS holds,
with (t, y) 7→ At(y) substituted for X , and with U = B1/n1(y), α : T → [−∞,+∞]

given by α(t) = wt(y)− 1/n1, and with T ′ ⊆ T being measurable with ν(T ′) > 2−n1 .
Indeed, otherwise there would be a sequence 〈fn〉 of strategies, with e(fn)→ y, such
that for each n there is a Tn ⊆ T with ν(Tn) ≤ 2−n such that fn(t) ∈ ϕn(t, e(fn))

for almost all t ∈ T̂ \Tn, and fn(t) ∈ coϕn(t, e(fn)) for almost all t ∈ T̄ \Tn. Now by
Lemma 6 there is a strategy f , with e(f) = y, such that f(t) ∈ LS fn(t) for almost
all t ∈ T̂ , and f(t) ∈ co LS fn(t) for almost all t ∈ T̄ .19 Noting that the sequence〈⋃

n≥m Tn
〉
m∈N of sets is decreasing with ν

(⋃
n≥m Tn

)
→ 0, it follows that for almost all

t ∈ T̂ , f(t) ∈ KLSϕn(t, e(fn)), and for almost all t ∈ T̄ , f(t) ∈ co KLS coϕn(t, e(fn)).
By (∗) above, we have KLSϕn(t, e(fn)) ⊆ ϕ(t, y) for all t ∈ T . In particular, by
Lemma 1, co KLS coϕn(t, e(fn)) ⊆ coϕ(t, y). By (A8) and the fact that ϕ, being a
Caratheodory correspondence, takes closed values, we have coϕ(t, y) = ϕ(t, y) for
t ∈ T̄ . It follows that f(t) ∈ ϕ(t, y) for almost all t ∈ T . As e(f) = y, this means f is
an equilibrium strategy, and we get a contradiction to the assumption made about y.

Choose and fix an integer n1 according to the previous paragraph. We next claim
that there is an integer n2 > 0 and a T n2 ⊆ T such that ν(T n2) > 1− 2−n1 and such
that for each t ∈ T n2 , if y′ ∈ B1/n2(y) and x ∈ ϕ(t, y′) then ut(x, y′) > wt(y)− 1/n1.
To see this, for each n ∈ N\{0} let

T n = {t ∈ T : infy′∈B1/n(y) wt(y
′) ≥ wt(y)− 1/n1}.

As was noted above, the map wt is continuous for each t ∈ T , and the map t 7→ wt(y
′)

is measurable for each y′ ∈ EG. Also, as EG, being compact and pseudo-metrizable,
is separable, B1/n(y) contains a countable dense subset. Combining these facts, it
follows that the map t 7→ infy′∈B1/n(y) wt(y

′) is measurable, and hence that the set
T n is measurable. Now as each wt is continuous, we have T n ↑ T as n → ∞, and
it follows that ν(T n) > 1 − 2−n1 for n large enough. Thus, since x ∈ ϕ(t, y′) means
ut(x, y

′) = wt(y
′), n2 and T n2 with the desired properties do exist.

Choose such n2 and T n2 , and set n3 = max{n1, n2}. Let ϕy be the restriction of ϕ
to T × B1/n3(y). Then, since ϕ is a Caratheodory correspondence, so is ϕy. Modify
the function α of the penultimate paragraph on T \T n2 , if necessary, so as to get

α(t) =

wt(y)− 1/n1 if t ∈ T n2

−∞ otherwise.

Then, with (t, y) 7→ At(y) in place of X , (d) of CS still holds with U = B1/n3(y), as
1/n3 ≤ 1/n1 and ν(T \T n2) < 2−n1 . Also, by construction, (a) and (c) of CS hold for
U = B1/n3(y), ϕy, and α. Finally, by (A8), (b) of CS holds for ϕy, too.

19Recall that (S3), which is assumed for Lemma 6, is implied by both (S1) and (S2).
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4.6 Proof of Theorem 4:

Let G = ((T,Σ, ν), X, 〈Xt, ut, At〉t∈T , e) be a game satisfying (A1)-(A4) and (S1) or
(S2). If (A5)-(A8) hold in addition, with “usc” in (A7) replaced by “weakly usc,” then
G is continuously secure.

Proof. With the hypothesis that a game be weakly usc, it still follows that (∗) in the
proof of Theorem 3 holds, and therefore that proof still does the job (again with ϕ
being the best reply correspondence of the game).

4.7 Proof of Theorem 5:

Let G = ((T,Σ, ν), X, 〈Xt, ut, At〉t∈T , ẽ) be a game satisfying (A1), (A3), (A4), (A9),
(A10), (S2), and CS’. Then G has a Nash equilibrium.

Proof. Recall that any Hausdorff locally convex space is completely regular. Hence
by (A3) and (A10), X ×C is a completely regular Souslin space. By what was noted
in footnote 17, there is a countable family 〈pi〉i∈I of continuous bounded functions on
X×C which separates the points of X×C. We may assume that the family 〈pi〉i∈I is
stable with respect to multiplication. Then by Schwartz (1973, p. 388, Corollary 1),
the family of maps γ 7→

∫
pidγ : M1

+(X × C) → R, i ∈ I, separates the points of
M1

+(X×C). For each j ∈ J and i ∈ I, define a map qij : ΓG∩ (T̂ ×X)→ R by setting

qij(t, x) =

 1
ν(Tj)

pi(x, c(t)) if t ∈ Tj
0 if t ∈ T̂ \Tj

(where the sets Tj are the subsets of T̂ from the definition of the externality map ẽ).
Let Ĉ = {qij : i ∈ I, j ∈ J}, and with this choice of Ĉ let e : SG → S̄G ×RĈ be the

externality mapping of the general model as developed in Section 2.2. Note that Ĉ
satisfies the requirements in that model; in particular, Ĉ is countable. As in Section 2.2,
let EG = e(SG), endowed with the same topology as there.

We claim that there is a homeomorphism h : ẼG → EG such that e = h ◦ ẽ.
Given such an h, we may identify ẼG with EG via h. In particular, we may view the
constraint correspondences At as being defined on EG, and the payoff functions ut as
being defined on the respective sets Xt×EG. Moreover, under this identification, CS’
is equivalent to CS. The theorem under proof is therefore implied by Theorem 2.

To establish the claim, define h′ :
∏

t∈T̄ Xt ×
(
M1

+(X × C)
)J →∏

t∈T̄ Xt × RĈ by
setting

h′
(
z, 〈γj〉j∈J

)
=

(
z,

〈〈∫
X×C

pidγj

〉
i∈I

〉
j∈J

)
, z ∈

∏
t∈T̄

Xt , 〈γj〉j∈J ∈
(
M1

+(X×C)
)J
.
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Recall from Section 2.6 that we are viewing each Xt as being endowed with the
subspace topology defined from X, M1

+(X × C) as being endowed with the narrow
topology, and all products involving these spaces as being endowed with the product
topology. Thus h′ is continuous. Note also that by choice of the family 〈pi〉i∈I , h′ is
an injection. Let h be the restriction of h′ to ẼG.

For each f ∈ SG and each j ∈ J , set γj(f) = (1/ν(Tj))(ν|Tj) ◦ (f |Tj , c|Tj)−1. Note
that for any f ∈ SG, and each i ∈ I and j ∈ J , we have∫

X×C
pidγj(f) =

∫
Tj

1
ν(Tj)

pi(f(t), c(t))dν(t) =

∫
T̂

qij(t, f(t))dν(t).

Using this fact, it follows that e = h◦ ẽ, by the definitions of the three maps involved.
In particular, as EG = e(SG) by definition of EG, h is a surjection from ẼG onto EG.

Now by (A4),
∏

t∈T̄ Xt is compact, and by Lemma 2 in Section 4.2, (A3), (A4),
and (A10) imply that for each j ∈ J there is a compact set Kj ⊆ M1

+(X × C) such
that {(1/ν(Tj))(ν|Tj) ◦ (f |Tj , c|Tj)−1 : f ∈ SG} ⊆ Kj. Consequently there is a compact
K ⊆

∏
t∈T̄ Xt×

(
M1

+(X×C)
)J such that ẼG ⊆ K. Compactness ofK and the fact that

h′ is a continuous injection mean that the restriction of h′ to K is a homeomorphism
from K onto h′(K). As ẼG ⊆ K and h is the restriction of h′ to ẼG, it follows that
h is a homeomorphism from ẼG onto h(ẼG) (recall that the topology of ẼG is the
subspace topology defined from

∏
t∈T̄ Xt ×

(
M1

+(X × C)
)J). By what was stated in

Remark 3, (A9) means that the feeble topology on S̄G ≡
∏

t∈T̄ Xt, which is involved
in the definition of EG, is the same as the product topology of

∏
t∈T̄ Xt. By the fact

that h(ẼG) = EG, we may now conclude that h is a homeomorphism from ẼG to EG.
This completes the proof.

4.8 Proof of Theorem 6

Let G = ((T,Σ, ν), X, 〈Xt, ut, At〉t∈T , ẽ) be a game satisfying (A1), (A3), (A4), (A9)-
(A11), (S2), GPS and BRC. Then G also satisfies CS’, and consequently, by Theo-
rem 5, G has a Nash equilibrium.

Proof. Recall first from the proof of Theorem 5 that, for some choice of an externality
map e as defined in Section 2.2, ẼG ≡ ẽ(SG) may be homeomorphically identified with
EG ≡ e(SG). Consequently, Lemmas 6 and 5 continue to hold with ẽ in place of e, and
ẼG in place of EG. In particular, ẼG is pseudo-metrizable, therefore first-countable.

Let y ∈ ẼG be such that there is no equilibrium strategy f of G with ẽ(f) = y. We
claim that there is an ε > 0 and a neighborhood V of y such that if f ∈ SG satisfies
ẽ(f) ∈ V and f(t) ∈ At(ẽ(f)) for almost all t ∈ T , there is T ′ ⊆ T with ν(T ′) > ε

such that ut(f(t), ẽ(f)) < wt(y)− ε for all t ∈ T ′.
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Indeed, otherwise there is a sequence 〈fk〉 in SG with ẽ(fk) → y such that for
each k, fk(t) ∈ At(ẽ(fk)) for almost all t ∈ T , and for some Tk ⊆ T with ν(T\Tk) < 2−k,
ut(fk(t), ẽ(fk)) ≥ wt(y)−2−k for all t ∈ Tk. Now the sequence

〈⋃
n≥m Tn

〉
m∈N of sets is

decreasing with ν
(⋃

n≥m Tn
)
→ 0, and thus we must have limn ut(fn(t), ẽ(fn)) ≥ wt(y)

for almost every t ∈ T . Lemma 6 gives an f ∈ SG such that f(t) ∈ LS fn(t) for almost
all t ∈ T̂ and such that ẽ(f) = y. Note that ẽ(fk)→ ẽ(f) implies f(t) = limk fk(t) for
t ∈ T̄ ; see the paragraph following the statement of Assumption (A9). Thus we must
have f(t) ∈ LS fn(t) for almost all t ∈ T . By BRC, it follows that f is an equilibrium
of G, and as ẽ(f) = y we thus get a contradiction to the assumption made about y.

Fix a neighborhood V of y and a number ε > 0 as just established. Relative to
this ε, let U , ϕ, and α be chosen according to GPS, and let the correspondence X
required in the definition of CS’ be given by X (t, y′) = At(y

′) for all (t, y′) ∈ T × ẼG.
Then (U,ϕ, α) satisfies (1)-(3) in CS’. By (A11) and the choice of X , (4) in CS’ is
equivalent to the following statement: Whenever f is a strategy with ẽ(f) ∈ U and
f(t) ∈ At(ẽ(f)) for almost all t ∈ T , then there is a non-negligible set T ′ ⊆ T such
that ut(f(t), ẽ(f)) < α(t) for all t ∈ T ′. Thus, shrinking the set U , if necessary, so
that U ⊆ V , (4) in CS’ must hold because of 4 in GPS.

4.9 Proof of Theorem 7:

Let G = ((T,Σ, ν), X, 〈Xt, ut, At〉t∈T , ẽ) be a game satisfying (A1), (A3)-(A6), (A9)-
(A12), (S2), and GBRS •. Then G also satisfies CS’, and consequently, by Theorem 5,
G has a Nash equilibrium.

Proof. Consider any y ∈ ẼG and suppose there is no f ∈ SG with ẽ(f) = y such that
f is an equilibrium of G. Arguing similarly as in the proof of Theorem 6, but with
w•y in place of wt, and GBRS• in place of BRC, it follows that there is an ε > 0 and
a neighborhood V of y such that if f ∈ SG satisfies ẽ(f) ∈ V and f(t) ∈ At(ẽ(f)) for
almost all t ∈ T , there is T ′ ⊆ T with ν(T ′) > ε such that ut(f(t), ẽ(f)) < w•y(t)− ε
for all t ∈ T ′.

Recall that w•y = sup{α• : α ∈ Qy} ⊆ L0(ν) and note that the set {α• : α ∈ Qy}
is upwards directed. Therefore, because L0(ν) has the countable sup-property (see
Fremlin (2001, 241Y(d))), there is a sequence 〈αn〉 in Qy such that αn(t) → w•y(t)

for almost all t ∈ T . Using Egoroff’s theorem we may find an integer n0 and a set
T0 ⊆ T with ν(T0) > 1− ε such that αn0(t) > w•y(t)− ε for almost all t ∈ T0, where
ε is the number from the previous paragraph. By (A11) and the definition of the
set Qy, we may conclude that CS’ is satisfied, with X given by X (t, y) = At(y) for
all (t, y) ∈ T × ẼG (cf. the last paragraph of the proof of Theorem 6).
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4.10 Proof of Theorem 8:

Let G = ((T,Σ, ν), X, 〈Xt, ut〉t∈T , ẽ) be a game satisfying (A1), (A3), (A4), (A9),
(A10), (A11’) and (A13). Then for each y ∈ ẼG, w•y(t) = wt(y) for almost all t ∈ T .

Proof. Fix any y ∈ ẼG. It is straightforward to check that w•y(t) ≤ wt(y) for almost
all t ∈ T . To see that w•y(t) ≥ wt(y), note first that (A13)(iii) implies that the map
t 7→ inf{ut(x, y) : x ∈ X̂} : T → R is a measurable. In view of this and the definition
of w•y, it suffices to show that the map t 7→ wt(y) : T → R is measurable and that for
each integer n > 0 there is a neighborhood U of y, a Caratheodory correspondence
ϕ : T ×U ⇒ X̂, and a measurable set T ′ ⊆ T with ν(T \T ′) < 1/n such that for each
(t, y′) ∈ T ′ × U , ut(x, y) ≥ wt(y) − 1/n whenever x ∈ ϕ(t, y′), and such that ϕ(t, y′)

is convex or included in a finite-dimensional subspace of X for all t ∈ T̄ .
Fix any n ∈ N. Set U = {ut : t ∈ T̂} and let U be endowed with the subspace

topology defined from B(X̂× ẼG). By (A13)(iv) there is a countable partition 〈Ei〉i∈I
of U into Borel sets Ei, each with diameter less than 1/(3n). For each i ∈ I, let
Fi = {t ∈ T̂ : ut ∈ Ei} and pick a point ti ∈ Fi. Note that by (A13)(iii), Fi is a
measurable subset of T̂ for each i ∈ I. By definition of the functions wt, for each i ∈ I
there is a neighborhood Ui of y and a well-behaved correspondence ϕi : Ui ⇒ X̂ such
that uti(x, y′) > wti(y)− 1/(3n) whenever y′ ∈ Ui and x ∈ ϕi(y′).

There is a finite J ⊆ I such that ν(T̂ \
⋃
i∈J Fi) < 1/(2n). Furthermore, since T̄

is countable, there is a finite T̃ ⊆ T̄ such that ν(T̄ \ T̃ ) < 1/(2n). By definition of
the functions wt for t belonging to T̄ , for each t ∈ T̃ there is a neighborhood Ut of
y and a well-behaved correspondence ϕt : Ut ⇒ Xt such that ut(x, y′) > wt(y)− 1/n

whenever y′ ∈ Ut and x ∈ ϕt(y′) and such that ϕt takes convex values or is included
in a finite-dimensional subspace of X.

Set U =
(⋂

i∈J Ui
)
∩
(⋂

t∈T̃ Ut
)
. Then U is a neighborhood of γ. Define a corre-

spondence ϕ : T × U ⇒ X by setting

ϕ(t, y′) =


ϕi(y

′) if t ∈ Fi and i ∈ J,
ϕt(y

′) if t ∈ T̃ ,
Xt if t 6∈ T̃ ∪

⋃
i∈J Fi.

Clearly ϕ is a Caratheodory correspondence. Also, ϕ(t, y′) is convex or included in a
finite-dimensional subspace of X for all t ∈ T̄ and ν

(
T \
(
T̃ ∪

⋃
i∈J Fi

))
< 1/n.

Note that for any t, t′ ∈ T̂ we have

(∗) ‖wt − wt′‖∞ ≤ ‖ut − ut′‖∞.

Using this fact, we may see that for each t ∈
⋃
i∈J Fi we have ut(x, y′) ≥ wt(y)− 1/n

whenever y′ ∈ U and x ∈ ϕ(t, y′). As noted above, the same holds for all t ∈ T̃ .
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Using (∗) it may also be seen that the map t 7→ wt(y) : T → R is measurable.
Indeed, for each u ∈ U pick a point tu in T̂ so that u = utu . Define v : U → R by
setting v(u) = wtu(y) for every u ∈ U . Clearly, as wt(y) = wt′(y) whenever ut = ut′ ,
the function t 7→ wt(y) : T̂ → R can be written as the composition of the function
t 7→ ut with the function v. Now from (∗), |v(u)−v(u′)| ≤ ‖u−u‖∞ for any u, u′ ∈ U .
That is, v is continuous, and by (A13)(iii) we may conclude that t 7→ wt(y) : T̂ → R
is measurable. It now follows from (A9) that t 7→ wt(y) is measurable as a function
on the entire set T .

4.11 Lemmas for the proof of Theorems 10 and 11

For the following lemma recall that Λ is endowed with the topology obtained from
the narrow topology of M+([0, n̄]) by identifying an element λ ∈ Λ with the Borel
measure µλ on [0, n̄] defined by µλ([0, z]) = λ(z) for all z ∈ [0, n̄].

Lemma 7. Suppose λk → λ in Λ and zk → z in [0, n̄]. Then λ(z) ≥ limk λk(zk). If
z > 0 and z is a point of continuity of λ, then λ(z) = limk λk(zk).

Proof. As λk → λ implies λk(n̄) → λ(n̄), it is clear that the first assertion holds in
case λ = n̄. Suppose z < n̄ and pick any z∗ ∈ (z, n̄]. Then

limk λk(zk) = limk µλk([0, zk]) ≤ limk µλk([0, z
∗]) ≤ µλ([0, z

∗]) = λ(z∗).

As z∗ > z was arbitrary, limk λk(zk) ≤ λ(z) by right-continuity of λ.
Suppose z > 0 is a continuity point of λ. Then given ε > 0 there is a z′ < z with

λ(z′) > λ(z)− ε, and thus a z∗ < z such that µλ([0, z∗)) > λ(z)− ε. Now

limk λk(zk) = limk µλk([0, zk]) ≥ limk µλk([0, z
∗)) ≥ µλ([0, z

∗)) > λ(z)− ε.

As ε > 0 was arbitrary, limk λk(zk) ≥ λ(z).

For the next lemma, recall that if γ ∈ K then γ̂ ∈ K̂ denotes the distribution of
the map (u, n,m, l) 7→ nl : C×M×N → [0, n̄], and that the map γ 7→ γ̂ is continuous.

Lemma 8. Let λk → λ in Λ and γk → γ in K. Then (a)
∫
u(λ(nl), l)dγ(u, n,m, l) ≥

limk

∫
u(λk(nl), l)dγk(u, n,m, l) and (b)

∫
π(λ(z))dγ̂(z) ≥ limk

∫
π(λk(z))dγ̂k(z) if

π : [0, m̄]→ R is continuous and non-decreasing.

Proof. (b) Note that γk → γ implies γ̂k → γ̂k. Let µ be Lebesgue measure on [0, 1].
By Skorokhod’s Theorem we can select measurable maps h, hk : [0, 1]→ [0, n̄], k ∈ N,
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such that γ̂ = µ ◦ h−1 and γ̂k = µ ◦ h−1
k for each k and such that hk(a) → h(a) for

almost all a ∈ [0, 1]. Using Fatou’s lemma, Lemma 7, and the properties of π, we get

limk

∫
π(λk(z))dγ̂k(z) = limk

∫
π(λ(hk(a)))dµ(a) ≤

∫
limk π(λk(hk(a)))dµ(a)

≤
∫
π(λ(h(a)))dµ(a) =

∫
π(λ(z))dγ̂(z).

This proves (b). Part (a) follows similarly, but this time with the maps h and hk going
to Ĉ×N ×M ×N , observing that if (uk, nk,mk, lk)→ (u, n,m, l) in Ĉ×N ×M ×N
and λk → λ in Λ, then limk uk(λk(nklk), lk) ≤ u(λ(nl), l), by Lemma 7 and because
(u, n,m, l) ∈ Ĉ ×N ×M ×N implies that u is non-decreasing in m.

Lemma 9. For each t ∈ T , the correspondence At is well-behaved. Furthermore, for
each y ∈ ẼG, the correspondence t 7→ At(y) has a measurable graph.

Proof. It follows from (T5) that At̄ is well-behaved. Consider any t ∈ T̂ . As λ(z) ∈ R+

for all z ∈ [0, n̄] and λ ∈ Λ, we have (0, 0) ∈ At(y) for all y ∈ ẼG. i.e., At takes
non-empty values. Let y = (λ, γ) ∈ ẼG, (m, l) ∈ M × L, and suppose 〈(λk, γk)〉
and 〈(mk, lk)〉 are sequences in ẼG and M × L, respectively, with (λk, γk) → (λ, γ),
(mk, lk) → (m, l) and (mk, lk) ∈ At(λk, γk) for all k. Then by Lemma 7, we have
m = limkmk ≤ limk λ(ntlk) ≤ λ(ntl), so (m, l) ∈ At(λ, γ). Thus At is closed and
therefore well-behaved as M × L is compact.

Let y = (λ, γ) ∈ ẼG. To show that t 7→ At(y) has a measurable graph, it suffices
to show that ΓA is measurable, where ΓA is the graph of the restriction of t 7→ At(y)

to T̂ . Define p : T̂×M×L→ R by p(t,m, l) = λ(ntl)−m for all (t,m, l) ∈ T̂×M×L.
Then p is measurable and ΓA = p−1(R+). Thus ΓA is measurable.

Lemma 10. Given y = (λ, γ) ∈ ẼG and ε > 0, there are measurable maps β : T̂ → R
and f : T̂ →M × L and a neighborhood W of λ in Λ such that:

1. f(t) ∈ At(y′) for all t ∈ T̂ and all y′ = (λ′, γ) ∈ ẼG with λ′ ∈ W .

2. ut(f(t), y′) ≥ β(t) for all t ∈ T̂ and all y′ = (λ′, γ) ∈ ẼG with λ′ ∈ W .

3. ν({t ∈ T̂ : β(t) ≥ wt(y)− ε}) ≥ 1− ε.

Proof. Let y = (λ, γ) ∈ ẼG and ε > 0 be given. Note first that (T1) implies that if
h : T̂ → M × L is measurable, then so is the map t 7→ ũt(h(t)) : T̂ → R. Moreover,
(T1) also implies that the map (t, x) 7→ ũt(x) : T̂ ×M ×L→ R is measurable. Thus,
by Lemma 9, since ũt is continuous for each t ∈ T̂ , the map t 7→ wt(y) is measurable
and there is a measurable g = (m, l) : T̂ → M × L such that m(t) ≤ λ(ntl(t)) and
ũt(g(t)) = wt(y) for all t ∈ T̂ (see Castaing and Valadier (1977, Lemma III.39 and the
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remarks following its proof)). Let D ⊆ N be the set of discontinuity points of λ, and
note that D is countable as λ is non-decreasing. Let D1 = {d1, d2, . . . } be a countable
dense subset of N such that D ∩D1 = ∅. Let T1 = {t ∈ T̂ : m(t) > 0, nt > 0, nt /∈ D}
and note that T1 is a measurable subset of T̂ . For i, j ∈ N\{0}, set

Tij =
{
t ∈ T1 : di/nt ≤ 1, ũt

(
j−1
j
m(t), di/nt

)
> wt(y)− ε, j−1

j
m(t) < λ(di)

}
.

Then Tij is measurable, and by the definition of T1 and the fact that λ is non-decreasing
and right-continuous, we have

⋃
i,j∈N\{0} Tij = T1. We can therefore find a measurable

map g1 = (m1, l1) : T1 → M × L such that for all t ∈ T1, ũt(g1(t)) > wt(y) − ε,
m1(t) < λ(ntl1(t)), and ntl1(t) ∈ D1. Now as each d ∈ D1 is a continuity point of λ,
and as D1 is countable, Lemma 7 implies that there are a neighborhood W of λ and
a measurable T2 ⊆ T1, with ν(T1 \T2) < ε, such that m1(t) < λ′(ntl1(t)) for each
t ∈ T2 and λ′ ∈ W . Now define f : T̂ → M × L by setting f(t) = g1(t) if t ∈ T2

and f(t) = (0, 0) otherwise, and β : T̂ → R by setting β(t) = ũt(f(t)) for all t ∈ T̂ .
Concerning t ∈ T̂ \T1, note that if m(t) = 0 then wt(y) = ut(0, 0) by (T2), and that
{t ∈ T̂ : nt ∈ D or nt = 0} is a null set by (T4), as D is countable.

Lemma 11. For all y ∈ ẼG, wt is lsc at y for almost all t ∈ T̂ .

Proof. Fix y = (λ, γ) ∈ ẼG. Clearly, if wt(y) = ũt(0, 0) then wt is lsc at y because
(0, 0) ∈ At(y′) for every y′ ∈ ẼG. Now by the proof of Lemma 10, for almost all t ∈ T ,
if wt(y) > ũt(0, 0) then, given ε > 0, there is a point (m, l) ∈ M × L, with m < ntl

and ũt(m, l) > wt(y)−ε, such that ntl is a continuity point of λ. In view of Lemma 7,
this shows that the assertion holds.

Lemma 12. Let f ∈ SG and 〈fk〉 a sequence in SG such that (a) ẽ(fk)→ ẽ(f) and,
for almost all t ∈ T , (b) fk(t) ∈ At(ẽ(fk)) for all k ∈ N, (c) f(t) ∈ LS fk(t), and (d)
limk ut(fk(t), ẽ(fk)) ≥ wt(ẽ(f)). Then f is an equilibrium of G.

Proof. By Lemma 9, (b) and (c) imply that f(t) ∈ At(ẽ(f)) for almost all t ∈ T . As
ũt is continuous for each t ∈ T̂ , (c) implies ũt(f(t)) ∈ LS ũt(fk(t)) for almost all t ∈ T̂ .
Hence, by the definitions of ut and wt for t ∈ T̂ , (d) implies ut(f(t), ẽ(f(t))) = wt(ẽ(f))

for almost all t ∈ T̂ .
It remains to see that f(t̄) is optimal for t̄ in At̄(ẽ(f)). For this, set γ = ν̂◦(n̂, f̂)−1,

and γk = ν̂ ◦ (n̂, f̂k)
−1 for k ∈ N. Write λ̄k = fk(t̄), k ∈ N, and λ̄ = f(t̄).

Now (a) implies both λk → λ and γk → γ. Thus
∫
nldγk(n,m, l)→

∫
nldγ(n,m, l)

as well as
∫
mdγk(n,m, l) →

∫
mdγ(n,m, l). Moreover, from Lemma 8(b), with π

being the identity on [0, m̄], we have
∫
λ̄(nl)dγ(n,m, l) ≥ limk

∫
λ̄k(nl)dγk(n,m, l).

Next, note that for all k, we have
∫
mdγk(n,m, l) ≤

∫
λ̄k(nl)dγk(n,m, l) because

fk(t) ∈ At(ẽ(fk)) for almost all t ∈ T̂ . Moreover,
∫
mdγ(n,m, l) =

∫
λ̄(nl)dγ(n,m, l)
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because for almost all t ∈ T̂ , both f(t) ∈ At(ẽ(f)) and ut(f(t), ẽ(f(t))) = wt(ẽ(f)),
and because the functions ut are strictly increasing in m. Hence, by the last two facts
stated in the previous paragraph,

∫
λ̄k(nl)dγk(n,m, l)→

∫
λ̄(nl)dγ(n,m, l).

Finally, note that by (T7) and the definition of ut̄, wt̄(ẽ(f)) ≥ 0, since v is
non-negative by (T6). Thus limk ut̄(λk, ẽ(fk)) ≥ wt̄(ẽ(f)) implies that we must have
v(λ̄k, γk) = ut̄(λ̄k, ẽ(fk)) as well as

∫
λ̄k(nl)dγk(n,m, l) =

∫
nldγk(n,m, l) for all suf-

ficiently large k, again by definition of ut̄ and non-negativity of v. By the fact that∫
nldγk(n,m, l) →

∫
nldγ(n,m, l) and the conclusion of the previous paragraph, it

follows that
∫
λ̄(nl)dγ(n,m, l) =

∫
nldγ(n,m, l) and hence that ut̄(λ̄, ẽ(f)) = v(λ̄, γ).

As v is usc by (T6), we can conclude that

ut̄(λ̄, ẽ(f)) = v(λ̄, γ) ≥ limk v(λ̄k, γk) = limk ut̄(λ̄k, ẽ(fk)) ≥ wt̄(ẽ(f)),

so that ut̄(λ̄, ẽ(f)) = wt̄(ẽ(f)). This completes the proof.

4.12 Proof of Theorem 11:

The game G satisfies CS’.

Proof. Lemma 12 implies that G satisfies BRC. We claim that G also satisfies GPS.
Once this claim is established, the result follows from Theorem 6.

Let y = (λ, γ) ∈ ẼG and ε > 0. LetW , f , and β be chosen according to Lemma 10,
and let O and ψ be chosen according to Assumption (T7). Set U = W × O. Define
ϕ : T × U ⇒ (M × L) ∪ Λ by setting ϕ(t, y′) = {f(t)} for t ∈ T̂ , and by setting
ϕ(t̄, (λ′, γ′)) = {ψ(γ′)}, y′ = (λ′, γ′) ∈ U . Define α : T → R by setting α(t) = β(t) for
t ∈ T̂ , and by setting α(t̄) = wt̄(y) − ε. It is now readily seen that (U,ϕ, α) satisfies
the requirements in GPS.

4.13 Proof of Theorem 10:

If the economy E = 〈(T̂ , Σ̂, ν̂),M,L,N, n̂,Λ,Θ, v, 〈ũt, nt〉t∈T̂ 〉 satisfies (T1)-(T7), then
there exists an optimal income tax.

Proof. Let
S̃(E) = {ẽ(f) : f is an equilibrium of G}

and let F : S̃(E) → R be defined by setting F (λ, γ) =
∫
u(m, l)dγ(u, n,m, l) for all

y = (λ, γ) ∈ S̃(E). Consider the problem maxy∈S̃(E) F (y). By change of variables,
this problem has a solution if and only if the problem maxf∈S(E)

∫
T̂
ut(f(t))dν(t) has

a solution, where S(E) is the set of all equilibria of G. As pointed out earlier, every
equilibrium of the game G defines an equilibrium of the economy E, with the same
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utilities for the individuals in T̂ , and vice versa. Thus it suffices to show that the
problem maxy∈S̃(E) F (y) has a solution.

To this end, note by Theorem 12, S̃(E) is nonempty. Moreover, as a subset of the
compact and metrizable space ẼG, S̃(E) is closed and therefore compact. To see this,
let y ∈ ẼG and 〈yk〉 a sequence in Ẽ(G) such that yk → y. For each k ∈ N, let fk be
an equilibrium of G such that ẽ(fk) = yk. By Lemma 6, there is an f ∈ SG such that
ẽ(f) = y and f(t) ∈ LS fk(t) for almost all t ∈ T . Since wt is lsc for almost all t ∈ T
(by Lemma 11 and (T7)), we must have

limk ut(fk(t), ẽ(fk)) = limk wt(ẽ(fk)) ≥ wt(ẽ(f))

for almost all t ∈ T . It now follows from Lemma 12 that f is an equilibrium of G,
and thus y ∈ S̃(E).

Finally, note that by (T1) the map (u, n,m, l) 7→ u(m, l) : S̃(E)→ R is continuous.
As S̃(E) is compact, it follows first that the map F is continuous, and then that the
problem maxy∈S̃(E) F (y) has a solution. This completes the proof.

4.14 Lemmas for Examples 7 and 8

Recall for the proofs below that if γ ∈ K then γ̂ ∈ K̂ denotes the distribution of the
map (u, n,m, l) 7→ nl : C ×M ×N → [0, n̄], and that the map γ 7→ γ̂ is continuous.

Lemma 13. Let Θ and v be as in Example 7. Then (T5)-(T7) hold. Moreover,
(1) holds for any equilibrium (λ∗, g∗) of E = 〈(T̂ , Σ̂, ν̂),M,L,N, n̂,Λ,Θ, 〈ũt, nt〉t∈T̂ 〉.

Proof. (T6) holds trivially. As for (T5), note that as π is concave, Θ has convex values.
To show that Θ is well-behaved, it suffices to show that Θ is closed. To see this, note
first that the two functions π and η must be continuous. Because π is increasing in
addition, Lemma 8 implies that the map (λ, γ) 7→

∫
π(λ(z))dγ̂(z) : Λ×K → R is usc.

Using these facts, in conjunction with the fact that Λ and K are endowed with the
narrow topology, is easily seen that Θ has a closed graph.

Concerning (T7), fix γ ∈ K and ε > 0. Let O = K and define ψ : O → Λ by setting
ψ(γ′) =

(∫
zdγ̂′(z)

)
χN for all γ′ ∈ O, where χN is the characteristic function of N .

Then ψ is continuous and (T7)(ii) holds. Also,
∫
π(ψ(γ′)(z))dγ̂′(z) = π

(∫
zdγ̂′(z)

)
.

Using this fact, it follows that (T7)(i) holds. Finally, it is clear that (T7)(iii) holds,
as v constantly takes value 0.

As for the last part of the lemma, suppose (λ∗, g∗) is an equilibrium of E and set
γ = ν̂◦(c, g∗)−1. Assume first that π

(∫
zdγ̂(z)

)
+
∫
η(l)dγ(u, n,m, l) > 0. By (a) of the

equilibrium definition, (1) is equivalent to
∫
π(λ∗(z))dγ̂(z) + δ

∫
η(l)dγ(u, n,m, n) ≥

(1− δ)π
(∫

zdγ̂(z)
)
. Thus (1) holds, since λ∗ ∈ Θ(γ) by definition of equilibrium.
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Assume π
(∫

zdγ̂(z)
)

+
∫
η(l)dγ(u, n,m, l) ≤ 0. Note that (b) of the equilibrium

definition implies π(λ∗(ntl
∗(t))) + η(l∗(t)) ≥ 0 for almost all t ∈ T̂ , because 0 ≤ λ∗(0)

and π(0) + η(0) = 0. Thus, by concavity of π and by (a) of the equilibrium definition,

0 ≤
∫
π(λ∗(z))dγ̂(z) +

∫
η(l)dγ(u, n,m, l)

≤ π

(∫
λ∗(z)dγ̂(z)

)
+

∫
η(l)dγ(u, n,m, l)

= π

(∫
zdγ̂(z)

)
+

∫
η(l)dγ(u, n,m, l) ≤ 0.

Now this shows that the first two sums must be zero, from which (1) follows.

Lemma 14. Let Θ and v be as in Example 8 and assume that ũt(·, l) is concave for
all t ∈ T̂ and l ∈ L. Then (T6) and(T7) hold.

Proof. To see that (T6) holds, note first that by Lemma 8, v is usc. Now if λ ∈ Λ

is continuous, then the bounded map (u, n,m, l) 7→ u(λ(nl), l) : C ×M × L → R is
continuous, and therefore the map γ 7→

∫
u(λ(nl), l)dγ(u, n,m, l) ≡ v(λ, γ) : K → R

is continuous (by definition of the narrow topology). By the assumption that ũt(·, l)
is concave for all t ∈ T̂ and l ∈ L, it follows that v(·, γ) is quasi-concave for all γ ∈ K.
Finally, by (T2), v(λ, γ) ≥ 0 for all (λ, γ) ∈ Λ×K. Thus (T6) holds.

As for (T7), fix γ ∈ K and ε > 0. Let ρ denote the metric on Λ induced by Hunting-
don’s metric on the space of of Borel measures on [0, n̄]. Recall that λ0 is the element of
Λ satisfying λ0(z) = z for all z ∈ [0, n̄]. LetB = {λ ∈ Λ:

∫
λ(z)dγ̂(z) =

∫
zdγ̂(z)} and

note that λ0 ∈ B. Let S = {λ ∈ B : ρ(λ, λ0) ≤ ε(γ̂)} and set s = sup{v(λ, γ) : λ ∈ S}.
Suppose

∫
zdγ̂(z) = 0. Then v(λ0, γ) = s. Since λ0 is continuous, by (T6) there is

a neighborhood O of γ such that v(λ0, γ
′) > v(λ0, γ)−ε for all γ′ ∈ O. Set ψ(γ′) = λ0

for all γ′ ∈ O. Evidently ψ is as required in (T7).
Suppose

∫
zdγ̂(z) > 0 which implies ε(γ̂) > 0. It suffices to find a λ ∈ B with the

following properties: (a) v(λ, γ) > s− ε, (b) ρ(λ, λ0) < ε(γ̂), and (c) λ is continuous.
Indeed, given such a λ, by (c) we have

∫
λ(z)dγ̂′(z) > 0 for all γ′ in some

neighborhood O of γ, and thus
∫
α(γ′)λ(z)dγ̂′(z) =

∫
zdγ̂′(z) for some number

α(γ′) > 0. Note that the map γ′ 7→ α(γ′) is continuous with α(γ) = 1. Consider
a sequence 〈γk〉 in O with γk → γ; in particular, α(γk) → 1. Now (c) implies that
we have uk(α(γk)λ(nklk), lk)) → u(λ(nl), l) whenever (uk, nk,mk, lk) → (u, n,m, l).
Using Billingsley (1968, Theorem 5.5, p. 34) and the definition of v, it follows that
v(α(γk)λ, γk) → v(λ, γ). In view of this and (a), shrinking the set O, if necessary,
we have v(α(γ′)λ, γ′) > s − ε for all γ′ ∈ O. Shrinking the set O another time, if
necessary, (b) implies that we can arrange to also have ρ(α(γ′)λ, λ0) < ε(γ̂′) for each
γ′ ∈ O, using the fact that the maps γ′ 7→ γ̂′ and γ̂′ 7→ ε(γ̂′) are continuous, together
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with continuity of a metric. Now define ψ : O → Λ by setting ψ(γ′) = α(γ′)λ for each
γ′ ∈ O. Then ψ is as required in (T7).

Now to find a λ as desired, choose some λ1 ∈ S such that (a) holds for λ1.
Note that the function α 7→ v(αλ1 + (1−α)λ0, γ) : [0, 1]→ R is continuous, and that
ρ(αλ1+(1−α)λ0, λ0) < ε(γ̂) for each 0 < α < 1, by definition of Huntingdon’s metric.
Therefore, by the definition of λ0, there is a λ2 ∈ S such that (b) holds in addition
to (a). Being non-decreasing and right-continuous, λ2 is usc, so there is a sequence
〈λk〉 of continuous elements of Λ such that λk ≥ λ2 for each k and λk(z) → λ2(z)

for each z ∈ [0, n̄]. Now there is a sequence 〈αk〉 of real numbers, with αk → 1, such
that

∫
αkλk(z)dγ̂(z) =

∫
zdγ̂(z) for each k. By Lebesgue’s dominated convergence

theorem, we must have v(αkλk, γ)→ v(λ2, γ), so λk satisfies (a) if k is large enough.
Moreover, viewing λ2 and each λk as Borel measures on [0, n̄], we have λk → λ2 in the
narrow topology (Billingsley (1968, p. 18)), so also (b) is satisfied by λk if k is large
enough. Thus, for sufficiently large k, λk is in B and satisfies all of (a)-(c) above.
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