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aEdhec Bussiness School, 393, promenade des Anglais, BP 3116, 06202 Nice Cedex 3, France
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Abstract

The aim of this study is to show how a Kohonen map can be used to increase the forecasting

horizon of a financial failure model. Indeed, most prediction models fail to forecast accurately the

occurrence of failure beyond one year, and their accuracy tends to fall as the prediction horizon

recedes. So we propose a new way of using a Kohonen map to improve model reliability. Our re-

sults demonstrate that the generalization error achieved with a Kohonen map remains stable over

the period studied, unlike that of other methods, such as discriminant analysis, logistic regression,

neural networks and survival analysis, traditionally used for this kind of task.
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1. Introduction

A company that fails to fulfill its obligations, and especially to repay its debts, may then face

a critical situation that, in the worst cases, leads to its failure. So the ability to predict the

bankruptcy of a firm is crucial for an investor or a creditor who wishes to ensure that he will be

reimbursed on time. It is for this reason that many banks have developed models to assess the risk

associated with their loans or their receivables. These models allow them to decide whether to lend

money and on what terms, but also to assess the interest rate depending on the anticipated risk of

non-reimbursement.

This issue has been studied for many years by academics of many disciplines, and the very first

statistical models were developed in the late sixties [2]. As there is no general theory of business

failure, all these models are empirical [1, 35] and are designed mainly using data-mining techniques.
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Although these models differ greatly, depending on the modeling method, the variables or the

samples used [10], they share at least one common characteristic: their forecasting horizon does

not usually exceed one year. At horizons of more than one year, their accuracy falls substantially.

Indeed, model accuracy, at horizons of between one and three years, falls by an average of 15%.

For example, Altman’s [2] model had an accuracy rate of 95% one year before failure and only

48% three years before failure. Altman et al.’s [3] model had an accuracy rate of 97.1% one year

before failure and 69.7% three years before failure. With Blum’s [14] model, the respective figures

are 95% and 70%, with Brabazon and O’Neill’s [16] they are 76.7% and 56.7%, with Dimitras et

al.’s [24] 76.3% and 50%, with Moyer’s [40] model 84.1% and 68.2%, and, finally, with Sharma

and Mahajan’s [49] model they are 91.7% and 73.9%. Regardless of the modeling technique (linear

or non-linear, regression or classification), models always have the same drawback: a very short

forecasting horizon.

This drawback is especially severe when the forecasting period does not coincide with the terms

of the contract between the debtor and the creditor. Indeed, a creditor who accepts that his debt

will be repaid over several years, when his debtor’s risk has been assessed over a very short time

period (usually one year), may face much higher risk beyond the forecasting horizon of the model.

It is for this reason that we have studied a way to improve model accuracy over time. Our work

relies on a very interesting result that has not yet been used to design financial failure models.

Research has shown that failure is a dynamic process [21, 23, 28, 34], which may be analyzed over

time, hence that the health of a company assessed at a given time depends heavily on its history.

Thus, some firms can delay the onset of bankruptcy for many years because they have the resources

or because they make a strategic commitment that allows them to change their fate, whereas others

cannot. Still others may improve their situation, some more swiftly than others, even though their

financial profile, measured at a given time, shows that such an improvement is not possible.

But traditional models rely only on a snapshot of a firm’s financial situation measured at time

t to predict whether it is likely to fail at time t + 1 [50, 51]. Because these models assume that a

firm’s history has little or no influence on its future behavior, they are unlikely to make allowances

for a struggling firm’s ability to recover or muddle through. They are also unlikely to take into

account the effect of some signs of relative weakness which will result in failure only a few years

later. For these reasons, these models have very short forecasting horizons.

Although businesses may well take different paths to bankruptcy, the assumption that including

this time dimension might improve model accuracy has led to very little research. Pompe and
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Bilderbeek [46] have compared the performance of models using financial ratios measured over one

year, with other models using ratios measured over several consecutive years, and have analyzed

their performance by forecasting horizons of between one and seven years. Paradoxically, models

that incorporate a time dimension do no better than those that do not; indeed, models were not

able to stabilize the error with data calculated more than two years before failure.

As a consequence, the aim of this study is to use what some researchers have called the “tra-

jectory of corporate collapse” to examine another way of estimating the changes in firms’ financial

health. Instead of using financial variables measured at different time intervals to forecast failure, as

Pompe and Bilderbeek [46] did, we propose to use these variables as a means to design trajectories,

then to use these trajectories to make a forecast.

We used a Kohonen map to design these trajectories. First, the map was used to delimit

boundaries between areas representing various stages of company financial health. Second, we

analyzed how companies moved over time within these areas to estimate a typology of behavior we

called “trajectories”. Third, we used this typology to forecast financial failure at horizons of one,

two, and three years.

Finally, we compared the results achieved using the trajectories and results estimated using

the most common methods of designing financial failure models: discriminant analysis, logistic

regression, and neural networks. We also compared the results achieved using the trajectories with

those estimated with a survival analysis method. And these comparisons were done at each time

horizon.

The remainder of this paper is organized as follows. In section 2, we present a literature review

that explains our research question. In section 3, we describe the samples and methods used in our

experiments. Finally, in section 4, we present and discuss our results; in section 5, we summarize

our main findings.

2. Literature review

Most financial failure models are single-period models. They are estimated using variables

(mostly financial ratios) collected at time t, and their accuracy is measured at time t + 1. Since

Altman’s [2] seminal work a large number of models have been designed in such a way. These

models have come in for much criticism, mainly from a statistical point of view [10, 24]. Problems

such as the ways variables or samples are selected, the influence of exogenous variables on model

accuracy, the assumptions required by some methods, and the ways model accuracy is assessed
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have been highlighted.

However, the approach to failure at the root of these models is also a legitimate target of

criticism. First, models assume that the length of the period during which a firm has been exposed

to a risk of failure has no influence on its probability of failure, because they do not take into

account the history of the company. So the probability of failure does not depend on the age of the

company. However, this assumption does not necessarily hold, as age is a major cause of failure

[38, 46, 53].

Second, models assume that failure is the result of a sudden event, as their forecasting timeframe

does not usually exceed one year. But companies may show signs of relative weakness many years

before they fail [23, 34, 41]. They may survive in the face of evidence that suggests they might not.

Third, models do not take into account the diversity of paths to terminal failure, some of which

can be more chaotic or more gradual than others [6, 23, 34]. Nevertheless, depending on the

trajectory taken by the firm or on the way a company moves down a given trajectory, its horizon

and its probability of failure may change considerably [34].

Because models fail to account for these factors, their forecasting ability is reduced. Indeed,

their accuracy will depend heavily on the frequency of each distinctive path in the sample used to

estimate them [10, 34]. If firms in the terminal phase of failure are used to design a model, it will

perform poorly with firms in an earlier phase.

The consequence of all these factors is presented in table 1, which shows the studies devoted to

designing financial failure prediction systems (failure is usually defined from a legal standpoint as

liquidation or reorganization), within a timeframe varying from one to three years, and sometimes

beyond three years. These studies dealt with models designed using data usually taken from the

last accounts published before failure, that is, with an average lag of twelve to eighteen months.

Table 1 clearly shows that only very few models achieved stable results over time. Prediction

rates are rather good one year before failure, but less so as the horizon recedes to two and three

years.

Table 2 shows the same percentages, but classified as healthy or unsound companies. Overall,

prediction rates fall, regardless of the company’s status. But the larger the size of the sample used

in the study, the lower the prediction rates of failed firms; it seems that, when the sample size is

large and selection bias is thus reduced, the future of healthy companies is easier to forecast.

Some authors have mentioned that incorporating a time dimension into a model is an efficient

way to improve its accuracy. Edmister [26] speculated that measures of variation over several years
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of financial ratios might be relevant variables to predict corporate failure. To test this hypothesis,

he first selected a set of nineteen ratios and added to this set a three-year trend (measured using up-

and down-trend dummies) and a three-year average of each ratio. He then used an automatic search

procedure to select the best of the variables and found that the measures representing variation of

ratios were among the best predictors. Unfortunately, as he did not compare the results achieved

with a model that includes measures of variation and those of another that might have been

estimated without such variables, his research does not demonstrate whether data measured over

time improve model accuracy. This hypothesis was finally examined by Dambolena and Khoury

[22], as well as by Betts and Belhoul [13]. Both studies show that a model using variation of ratios

calculated over time performed better than a model including only single-year ratios, up to five

years before failure. However, this improvement is not sufficient to stabilize model accuracy over

time. In fact, the correct prediction rates calculated one year before failure are far better than

those calculated between three and five years before failure (see table 1). Pompe and Bilderbeek

[46] also examined this issue but used financial ratios alone. They too failed to obtain stable results

over time.

There is a consensus, then, that considering the nature of failure and its historical dimension

will increase the reliability of the model. However, for the moment research has failed to stabilize

model accuracy over time. For this reason, we have decided to study this issue, though not in the

same way as previous research. Instead of using financial indicators measured over several years to

design a model, we chose to build a typology of failure paths and to use these paths as a prediction

model. Our research builds on that of Laitinen [34], who considered that the performance of a

model depends on its ability to represent the trajectories companies are likely to take in the real

world. Kohonen maps were used to estimate trajectories, and their performance was then compared

to that of traditional models at horizons of one, two, and three years.

3. Samples and methods

3.1. Sample selection

Data used in this study were selected from the French database Diane, which provides financial

data on more than one million French companies. We chose only companies required by law to file

their annual reports with the French commercial courts. And to control for size and sector effects,

we selected large samples made up of companies of the same size (assets of less than e750,000)

and in the same activity (retail). We collected three samples of companies; no company appeared
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in more than one sample. The first sample was used to select variables that were used to design

models. The second (a learning sample) was used to estimate the parameters of the models and

the third (a test sample) to estimate their generalization error, i.e., their true error. These samples

are made up of income statement and balance sheet data, which have been the main sources of

information for failure models since Altman [2]. We used these data to calculate a set of financial

ratios and one financial variable (shareholder funds) measured over two consecutive years.

The first sample is made up of 250 sound and 250 unsound firms, and we chose data published

in 2002 (with one variable, shareholder funds, from 2001). Failed companies were liquidated or

reorganized in 2003, and healthy companies were still in operation in 2005. These firms were chosen

at random from among those in the database when they complied with the criteria described above.

The second sample (learning sample) is made up of 740 sound and 740 unsound firms, and data

were published between 1996 and 2002. We collected data from seven consecutive years to calculate

variables over a six-year period (the variation of shareholder funds is measured over two consecutive

years). Healthy companies were selected at random from among those still in operation in 2003;

likewise, failed companies were selected at random from among those liquidated or reorganized in

2003.

The third sample (test sample) is made up of 440 healthy and 440 failed companies. To compute

the same variables as those calculated with the second sample, but over an eight-year period, we

collected data published between 1995 and 2003. Healthy and failed companies were selected at

random from among those that were still active in 2004 and from those that were liquidated or

reorganized by court decision in 2004.

3.2. Variable selection

The first sample (250 sound and 250 unsound firms) was used to select variables. We first chose

forty-one variables (forty ratios and one measure of variation of a balance sheet statement) from

among those commonly used in the failure prediction literature. To select the final set of variables,

and to ensure that these variables were as sample- and selection-technique-independent as possible,

we used six selection methods and finally chose the variables selected at least twice. We used the

same sample, the same variables, and the same selection techniques as those used in du Jardin [29].

3.3. Model development

We selected two types of methods to design models. First, with a procedure presented below, we

used a Kohonen map to design trajectories of failure. Second, we chose three of the most commonly
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used modeling techniques in the financial literature [10]: discriminant analysis, often used as a

benchmark of the forecast skill of other models since Altman’s [2] research; logistic regression, first

introduced as a way to design bankruptcy models by Ohlson [43]; a neural network, and especially

a multilayer perceptron, whose usefulness in firm failure prediction was popularized by Odom

and Sharda [42], (this method makes it possible to overcome the shortcomings of such parametric

methods as discriminant analysis and to account for any non-linearity between a probability of

failure and a set of financial ratios [33]). We also chose a fourth modeling technique (survival

analysis) as a special benchmark of our trajectories. The three aforementioned methods, unlike

the trajectories, rely not on data that measure changes to a firm’s financial health over several

consecutive years but on a snapshot of a company’s financial profile taken at a particular point in

time. To assess the performance of trajectories, and to control for the influence of this difference

between data used with each method (single period data vs. time-series data), we selected a survival

analysis method, Cox’s proportional hazard model [20]. We chose this technique because it has

proven reliable in the field of bankruptcy prediction [35, 50, 54].

3.3.1. Kohonen map

Serrano-Cinca [48] demonstrated that a Kohonen map might be used to delimit and visualize

“failing and non-failing regions”. Indeed, a Kohonen map is the result of a process in which a high-

dimensional input space is mapped onto a two-dimensional map. This author has shown that the

resulting quantization of data that characterized sound and unsound firms, made it possible to show

different zones on the map, each of these zones accounting for a particular financial profile. Some

regions, for example, correspond to very profitable, healthy companies, others to very unsound

companies, still others to firms in intermediate financial situations.

As a consequence, a Kohonen map may be used to delimit boundaries between regions at risk of

failure and other regions at low risk or without any risk; each region accounts for a given financial

profile associated with a probability of failure. If one considers a trajectory a change in the financial

situation of a company over time, then one may use a Kohonen map to design it: a trajectory shows

the way companies move on the map, in regions at risk, over several consecutive years. A trajectory

is then a sequence of positions on the map over a given period.

To design these trajectories, we used data from the learning sample (740 sound and 740 unsound

firms) and a Kohonen map made up of 100 neurons, 10 per row and 10 per column. The number

of neurons we chose is somewhat arbitrary as there are no theoretical guidelines for the size of the
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map. We used 100 units because it is common practice [19]. We also used Sammon’s mapping

method [47] to examine the topology of the data and determine the form of the map (i.e., the

number of rows and columns). This map provides a general overview of the shape of the data and

makes it possible to determine whether we may use a rectangular or a square map. We chose a

square map as there was no evidence that a rectangular one was better.

We used a two-step procedure to design company trajectories.

First, we used data from 2002 to calculate a map. The algorithm used during the learning phase

of the map can be described as follows:

1. Initialize the weights of the neurons and set the value of the initial learning parameters; all

neurons have the same dimension as the vector of data that characterized each company.

2. Repeat step 3 to step 7 until a stopping criterion is reached.

3. For each vector x representing data belonging to one company, compute the distance (usually

the Euclidean one):

4. For each neuron j:

D(j) = d(x,wj)

where wj is the weight vector of neuron j.

5. Find neuron wi that is the closest to x according to the distance defined in 4.

6. Update the weights of the neurons that lie within the neighborhood of neuron wi found in 5:

wj(t) = wj(t− 1) + α ∗ hij ∗ (x− wj(t− 1))

where t is time, α the learning step, hij the neighborhood function, and x the input vector. The

neighborhood function is traditionally a decreasing function of both time and the distance between

any neuron wj on the map and neuron wi that is the closest to the input vector at time t.

7. Adjust learning parameters.

At the end of the learning process, the resulting map depicts an ordered, abstract space of the

variable space. Indeed, each neuron, the weights of which were updated during the learning process

so as to get closer to the input vectors that were close to them, represents a particular company

financial profile. Moreover, thanks to the neighborhood function, the topology of the input space

is preserved: all companies that are close to each other in the variable space are also close on the

map.
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Once the learning phase was completed, we looked for neurons that can be considered prototypes

of failed and non-failed companies. For this, we compared data from the learning sample and all

neurons one more time, then we calculated the percentage of healthy and failed companies that

were the closest to each neuron. Finally, neurons were given the label of the class (healthy or failed)

whose percentage was higher. If the percentages were equal, neurons were assigned to the class to

which the majority of its nearest neighbors belongs. Once neurons are labeled, the map makes it

possible to visualize two regions−a failure region and a non-failure one−and their boundaries.

Second, we computed company trajectories, that is, the positions of companies on the map over

the six-year period for which we gathered data. The length of this period is the same as that used

by Laitinen [34]. To calculate the different positions of a company on the map, we compared its

vector of data to all neurons, for a given year, and we looked for the closest neuron. These neurons

represent the six positions of a company on the map over the period analyzed here. A trajectory

is then a sequence of six positions.

However, since the map is made of a huge number of units, the number of combinations of

neurons is also huge and it makes it impossible to analyze all possible trajectories. For this reason,

we used a classification method to reduce the number of possible positions and to group the 100

neurons into a small number of groups called super-classes. Because of the self-organizing nature

of the Kohonen algorithm, such a clustering ensures that the resulting super-classes are made of

contiguous neurons [19] and that these super-classes are fairly distinct and easily analyzable.

We used a clustering method (hierarchical ascending classification) to group all neurons and

we assessed the quality of a few partitions made up of six to eleven super-classes. The clustering

was done using three different aggregation criteria (average linkage, complete linkage, and Ward

criterion) to avoid criterion-dependant classification. Within each partition, neurons were assigned

the label of the class selected by at least two criteria. When all criteria led to different results,

neurons were labeled with the class to which the majority of their nearest neighbors belong (there

were no ties).

Once the super-classes were designed within all partitions, we looked for the best one, that

is, the partition whose classes are as homogenous as possible. We used the three best indexes

mentioned in the research done by Milligan [39], and we selected the best partition according to

these measures.

We then ranked the super-classes on the financial health of the companies they represent,

ranging from companies in bad shape to those in good shape. This ranking enabled us to estimate
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a set of prototype trajectories according to firm position on the map over the first year of the period

covered by our study (1997). We first calculated trajectories of companies whose initial position

on the map in 1997 was super-class 1, then trajectories of companies whose initial position was

super-class 2, and so on. There are as many sets of trajectories as super-classes.

Each set of trajectories was designed using a one-dimensional, six-neuron Kohonen map. This

figure was assessed after several trials, and it corresponds to an optimal solution: with more than

six neurons, some trajectories were replicated several times; with fewer, some no longer existed.

We then calculated the percentage of healthy and failed firms whose trajectories were the closest

to each of all prototype trajectories. And we labeled each prototype trajectory with the class (sound

or unsound) whose percentage was higher.

Finally, we grouped all six-neuron maps into a final set, and we used it to complete the forecast.

3.3.2. Methods used as benchmark

With data from the learning sample and the year 2002, we estimated three models using methods

commonly found in the bankruptcy literature: one with discriminant analysis, one with logistic

regression, and a final one with a neural network called multilayer perceptron. We also estimated

one model with Cox’s proportional hazard method, and with data from the learning sample, but

the model was designed with data from the period from 2002 to 1997.

Network parameters were set up with data from 2002 using a ten-fold cross validation. We used

a steepest descent, as an optimization technique during the learning process, because this technique

has been widely used to design failure models since Odom and Sharda [42], and a hyperbolic tangent

as a neuron activation function. We used a network with only one hidden layer, but we tested several

combinations of parameters: learning steps, momentum terms, weight decays, numbers of hidden

nodes, and numbers of iterations of the learning process. Finally, the architecture that led to the

lowest error was selected for our experiments.

3.4. Evaluation of model performance

Models designed with discriminant analysis, logistic regression, neural networks, and Cox’s

method were used with data from the test sample (440 failed and 440 non-failed firms) to estimate

their generalization ability.

With the three aforementioned methods, forecasts up to one year ahead were achieved with

data from 2003, and compared with company status (failed or non-failed) in 2004. Forecasts up to

two years ahead were then estimated with data from 2002, and forecasts up to three years ahead,
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with data from 2001, and the results were compared to company status in 2004. With Cox’s model,

forecasts up to one year ahead were achieved with data from 2003 to 1998, forecasts up to two years

ahead with data from 2002 to 1997, and finally forecasts up to three ahead were achieved with data

from 2001 to 1996, and the results were also compared to company status in 2004.

As far as the trajectories are concerned, we first calculated the positions of companies on the

map over the eight-year period for which we collected data, using the test sample. Then, for each

period of six consecutive years (2003-1998, 2002-1997, 2001-1996), we calculated trajectories. As

a consequence, we got three trajectories per company: the first corresponds to the evolution of

its financial situation over the period that ends one year before the date on which its status was

assessed; the second corresponds to the same evolution but over a period that ends two years before

the date on which its status was assessed. It is the same for the third one, but with an additional

year.

Forecasting was done by comparing all company trajectories with the set of prototype trajecto-

ries using a Euclidian distance, and this was done for the three periods. A company was classified

as healthy (or failed) over a given period, if the prototype trajectory that was the closest to its own

trajectory was labeled as healthy (or failed).

4. Results and discussion

4.1. Variables used to design models

The first sample (250 sound and 250 unsound firms) was used to select the variables. Their

characteristics are presented in table 3 and table 4. Figures in table 4 were calculated with data

from the learning sample and year 2002, with zero mean and unit variance. The quartiles of each

variable show the discrepancy of the deviations in and between the two groups of firms. Table

4 also indicates the p-values of a Shapiro-Wilks normality test and the p-values of two tests for

differences between the means of each variable within each group. As the Shapiro-Wilks test shows

that none of the variables are normally distributed, the Mann-Whitney U test is more reliable than

Student t test. This test underscores that all variables present significant differences between the

two groups.

Table 5 shows the correlation matrix and points out that several variables are highly correlated,

as is often the case with financial ratios. These figures show that some of the assumptions on

which discriminant analysis relies are not met. As none of the variables are normally distributed,

the joint distribution cannot be multi-normal and some correlations are so high they certainly
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affect the estimation of discriminant function coefficients. However, we have still chosen to use this

method as a benchmark method, as Alfaro et al. [1] did, because discriminant analysis is certainly

the most widely used means of designing financial failure prediction models.

4.2. Kohonen map, super-classes and trajectories

Figure 1 shows the Kohonen map achieved at the end of the learning process. This map shows

to distinct areas: one representing sound companies (part of the map in light gray), coded using

sixty-seven neurons, and the other, more compact (in dark gray), representing unsound firms, and

coded using only thirty-three neurons.

The distribution of neurons within each group of companies shows that healthy firms have a

wider range of financial profiles than failed ones. To design the super-classes we took into account

this difference. Indeed, if the quantization of healthy firms requires twice as many neurons as

the quantization of unhealthy firms, we may suppose that a good clustering of neurons should

highlight such a difference. As we were seeking a relatively small number of super-classes (between

six and eleven), we analyzed several partitions made up of four to six super-classes encoding healthy

companies, and of two to five encoding failed ones.

The best partition assessed using three indexes of homogeneity [39], as shown in table 6, is

made up of four super-classes representing healthy companies, and two representing failed firms.

Within each super-class, we calculated the means of all variables to rank the super-classes by

financial health. These statistics, calculated with data with 0 mean and unit variance, are shown

in table 7.

Table 7 shows that super-class 1 is made up of very healthy, profitable, and liquid companies,

as opposed to super-class 6, which is made up of unsound firms with the lowest profitability and

solvency. This table also indicates the p-values of a Kruskal-Wallis test and underscores that all

variables present significant differences between the six super-classes.

Figure 2 shows the Kohonen map depicted in figure 1 as well as the six super-classes within the

map. Companies located in the lower left part of the map are the strongest, whereas those in the

upper right part are those which face huge financial constraints and which are in very bad shape.

Companies located in the lower right part are also in bad shape, with a low profitability but are

rather liquid.

The positions of companies (1,480 firms from the learning sample) on the map over the six-year

period were used to calculate trajectories. As we designed six super-classes and six trajectories per
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super-class, we finally obtained thirty-six trajectories. Figure 3 shows these trajectories.

Each line represents a set of trajectories according to the initial position of companies on the

map in 1997. The first line (trajectories 1-6) corresponds to companies in super-class 1 in 1997,

the second line (trajectories 7-12) to those in super-class 2 in 1997, and so on. On each graph, the

scale of the X-axis corresponds to the six years and the scale of the Y-axis to the six super-classes.

The percentages in columns are the percentages of firms located in each super-class in 1997, and

the percentages in rows are the same but within each trajectory.

The first graph, in the upper left part of figure 3, displays a trajectory whose origin in 1997

is super-class 1, and whose destination six years later is the same super-class. This trajectory

represents the behavior of companies that were very healthy in 1997 and that remain in the same

financial state over time. Conversely, the sixth graph, in the upper right part, displays the behavior

of firms that were very healthy in 1997, but whose health has continued to deteriorate over time;

they shifted from super-class 1 to super-class 2, then 3, and so on, to super-class 6 in 2002.

4.3. Forecasting results

Forecasting results were estimated using the test sample. Table 8 shows the correct classification

rates calculated using the five methods (discriminant analysis, logistic regression, neural networks,

Cox’s model, and trajectories) and data collected one, two, and three years before the date on

which company status (failed or non-failed) was assessed.

Table 8 shows that, one year before failure, trajectories and the neural network achieved similar

results (with respective figures for correct classification of 82.73% and 82.61%), but slightly higher

than those obtained with discriminant analysis (81.93%), logistic regression (81.14%) and Cox’s

model (80.80%). Two years before failure, the correct classification rate achieved with trajectories

fell by only 1.03%, whereas the rate achieved with Cox’s model fell by 1.14%, that achieved with

logistic regression by 1.59%, that achieved with the neural network by 2.72% and that achieved with

discriminant analysis by 3.41%. Three years before failure, differences between the four models are

even greater: the correct prediction rate of trajectories−80.34%−was only 2.39 percentage point

lower than the rate one year before failure, whereas Cox’s model fell by 4.32 percentage point,

logistic regression fell by 5.80 percentage point, the neural network by 6.59 percentage point and

discriminant analysis by 6.70 percentage point.

Are the observed differences between the results achieved with the four models statistically

significant? Table 9 shows, for each pair of results achieved with two different methods one, two,
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and three years before failure, the p-value of a test for differences between proportions.

Table 9 shows that the differences between correct rates achieved with trajectories and the

four other methods become significant three years before failure, at the conventional threshold of

5%; the p-value is 0.010 between trajectories and discriminant analysis, 0.012 between trajectories

and logistic regression, 0.028 between trajectories and the neural network, and 0.049 between

trajectories and Cox’s model. However, the same differences one may observe between results

achieved two years before failure are not large enough, given the sample size, to be significant.

From a general standpoint, trajectories are significantly more stable than are conventional

methods; they are also more stable than Cox’s model, even though this model relies on the same

data as those used to design trajectories.

We have also analyzed the differences between the results achieved with the four models de-

pending on whether companies are healthy or have failed. Table 10 shows the percentage of correct

classification for these two groups.

Table 10 indicates that, in almost every case, discriminant analysis, logistic regression, the neural

network and Cox’s model do better than trajectories at predicting the fate of healthy companies,

especially two and three years before failure. Thus, for two and three years before failure trajectories

led to figures for correct classification of 81.14% and 80.91% respectively, compared to 87.27% and

85.00% for discriminant analysis, 87.95% and 84.77% for logistic regression, 87.27% and 83.64% for

the neural network and 82.27% and 83.64% for Cox’s model.

Nevertheless, when it comes to predicting the fate of failed firms, the results are completely

different. For one year before failure, trajectories had an accuracy rate of 84.09%, as opposed to

82.05% for the neural network, 81.82% for logistic regression, 81.59% for discriminant analysis and

80.00% for Cox’s model. The gap between trajectories and the other methods grows even wider

when accuracy two or three years out is measured. For trajectories the figures are 82.27% and

79.77%, for Cox’s model they are 77.05% and 69.32%, for the neural network they are 72.50% and

68.41%, for logistic regression they are 71.14% and 65.91%, and, finally, for discriminant analysis

they are 69.77% and 65.45%. Actually, the good performance of traditional methods achieved with

sound firms is at the expense of their accuracy with failed ones.

Analysis of the differences between correct classification rates, presented in table 11, shows that

traditional methods do not perform significantly better than trajectories, with healthy firms, and

when the forecasting horizon is one or three years. However, except for Cox’s model, they do when

the horizon is two years (the p-value of the difference between trajectories and logistic regression
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is 0.005, and 0.013 between trajectories and the neural network as well as between trajectories and

discriminant analysis). Conversely, with failed firms, such differences are statistically significant

when the horizon is two or three years. On the whole, with sound companies, trajectories did

slightly worse than other techniques, but much better with failed companies.

The results we obtain with conventional methods of designing failure models are consistent with

the results of many studies published in the financial literature.

First, as shown in tables 1 and 2, models tend to have asymmetric results; indeed, very few

models are as accurate with sound firms as they are with unsound firms. When a model does very

well with healthy firms, it does worse with failed firms, and vice-versa.

Second, that model accuracy tends to worsen over time has a similar effect on both classes.

Models seem no more accurate when they estimate a probability of failure than when they estimate

a probability of survival unless the sample size is taken into account; indeed, a few studies using

samples of more than 250 firms led to models that are more likely to predict accurately the fate of

healthy firms than that of failed firms. One possible rationale for this result is that, as demonstrated

in this research, and as stated by Pérez [44], sound companies have a much wider variety of financial

profiles than unsound companies. Since the sample size is reasonably large, this phenomenon seems

to affect the results. Indeed, in such a situation, the proportion of companies that manage to survive,

though their financial situation is similar to that of some failed firms, is so large that models fail

to discriminate between them. Classification errors then occur when models faced healthy firms

having profiles similar to those of failing companies; failed firms may continue to do business, but

it is much more unusual for healthy firms to go suddenly bankrupt.

Third, and finally, model accuracy tends to worsen as the forecasting horizon increases.

The advantage of trajectories over traditional methods should therefore be interpreted in light

of the results that these conventional methods usually achieved. First, trajectories lead to rather

well-balanced results for failed and non-failed firms, although they are slightly in favor of failed

companies when forecasts are made within a one- or two-year periods, and slightly in favor of non-

failed companies when made within a three-year period. Second, the decrease in their accuracy over

time is slight, making it a much more reliable tool for medium-term forecasts than traditional, single-

period and multi-period models. Cox’s model, using the same amount of data as the trajectories,

is unable to capture the information that is contained in time-series data in the same way as

trajectories do. Third, this slight decrease in accuracy does not come at the expense of failed

companies, even though it is more pronounced for the latter than for sound firms (a reduction of
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0.45% for healthy companies on a forecast made within a one-year period and a forecast within a

three-year period, against a reduction of 4.32% for failed companies). This point is of particular

importance. Indeed, the cost of misclassifying a failed firm (type I error) is far greater than the

cost of misclassifying a healthy firm (type II error). In the first case, for an investor or a creditor,

a type I error involves the loss of an investment or debt that will not be reimbursed, while a type

II error involves the loss of a potential bargain. This suggests that a good model should minimize

type I error.

5. Conclusion

In this research, we have proposed a new way of assessing a company’s financial health. Unlike

common practice in much of the financial literature, our proposal is to use what we called “tra-

jectories”, and a Kohonen map to quantize such trajectories, to measure it over time, rather than

at a given moment in time. We also suggested using such a representation to do forecasting, and

we compared the predictive ability of these trajectories to that of modeling methods traditionally

used to design financial failure models.

The performance of traditional models is fairly good when the forecast horizon is one year

but is much less good at more than one year; nonetheless, our results showed that trajectories

are as accurate as these models at short-term predictions (i.e., one year) and that their accuracy

declines less swiftly when medium-term predictions (i.e., two or three years) are made. Trajectories

are therefore a valuable tool for any financial institution whose aim is to assess the risk of an

investment or a debt over a longer period than usual. They are also a valuable tool for companies

seeking to measure their financial health, a tool that allows them, if necessary, to take corrective

action. Indeed, the forecast horizon of single-period models is far too short to enable companies

to react to financial threats. Trajectories, by contrast, make it possible to assess a medium-term

trend and to detect financial threats early enough for companies to deal with them.
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6. Figures

Figure 1: Distribution of neurons on the Kohonen map. Neurons in light gray represent healthy companies, those in
dark gray, failed companies. Figures are the proportion of healthy or failed companies used to assign each neuron a
label.

Figure 2: Distribution of super-classes on the map
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Figure 3: Distribution of trajectories by initial company position on the map in 1997

7. Tables
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Table 1: Results of the main studies dealing with financial failure prediction at forecasting horizons of between one
and three years

Studies % of correct classification Sample Size
All companies Healthy Failed Total

Years before failure
1 2 3

Altman [2] 95.0% 72.0% 48.0% 33 33 66
Altman et al. [3] 97.1% 88.2% 69.7% 34 34
Altman et al. [4] 91.0% 89.0% 84.0% 53 58 111
Altman et al. [5] 93.2% 91.1% 404 404 808
Atiya [7] 74.6% 66.7% 716 444 1,160
Aziz et al. [8] 91.8% 84.7% 78.6% 39 39 78
Back et al. [9] 97.3% 73.0% 83.5% 37 37 74
Barniv and Hershbarger [11] 89.3% 87.7% 77 70 147
Barniv and McDonald [12] 83.7% 80.0% 71.9% 153 141 294
Betts and Belhoul [13] 90.1% 72.4% 64.7% 39 93 132
Blum [14] 95.0% 80.0% 70.0% 115 115 230
Brabazon and Keenan [15] 80.7% 72.0% 66.0% 89 89 178
Brabazon and O’Neill [16] 76.7% 73.3% 56.7% 89 89 178
Charitou et al. [17] 83.3% 76.2% 75.0% 51 51 102
Coats and Fant [18] 92.9% 86.2% 81.9% 188 94 282
Dambolena and Khoury [22] 91.2% 84.8% 82.6% 23 23 46
Dimitras et al. [24] 76.3% 60.5% 50.0% 40 40 80
Doumpos and Zopounidis [25] 71.1% 60.5% 57.9% 59 59 118
Gombola et al. [27] 89.0% 86.0% 72.0% 244 77 321
Kotsiantis et al. [30] 71.8% 71.1% 68.8% 100 50 150
Lacher et al. [31] 94.7% 89.4% 84.1% 188 94 282
Laitinen and Laitinen [32] 86.6% 68.3% 41 41 82
Laitinen and Laitinen [33] 74.7% 65.3% 85 85 170
Laitinen and Kankaanpaa [35] 86.9% 65.8% 71.1% 38 38 76
Lau [36] 80.0% 79.0% 85.0% 700 100 800
Lee et al. [37] 78.6% 76.2% 84 84 168
Moyer [40] 84.1% 79.6% 68.2% 22 20 42
Nam and Jinn [41] 84.4% 76.1% 76.1% 46 46 92
Piramuthu et al. [45] 89.1% 87.0% 91 91 182
Pompe and Bilderbeek [46] 80.0% 70.0% 68.0% 1,800 1,800 3,600
Sharma and Mahajan [49] 91.7% 78.3% 73.9% 23 23 46
Tam and Kiang [52] 85.2% 88.8% 81 81 162
Yim and Mitchell [55] 92.0% 90.0% 80 20 100
Zurada et al. [56] 81.6% 76.6% 68.1% 253 92 345
Figures presented in this table correspond to the best results when many results were computed.
Empty cells correspond to results that were not mentioned.
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Table 2: Results of the main studies dealing with financial failure prediction at forecasting horizons of between one
to three years according to firm status (healthy vs. unsound)

Studies % of correct classification Sample Size
Healthy companies Failed companies Total
Years before failure Years before failure
1 2 3 1 2 3

Altman [2] 66
Altman et al. [3] 97.1% 88.2% 69.7% 34
Altman et al. [4] 111
Altman et al. [5] 92.8% 90.3% 96.5% 86.4% 808
Atiya [7] 1,160
Aziz et al. [8] 98.0% 83.7% 77.6% 85.7% 85.7% 79.6% 78
Back et al. [9] 100.0% 2.22% 72.2% 94.7% 73.7% 94.7% 74
Barniv and Hershbarger [11] 89.3% 85.7% 89.3% 89.3% 147
Barniv and McDonald [12] 87.1% 84.2% 81.2% 80.0% 75.4% 61.1% 294
Betts and Belhoul [13] 132
Blum [14] 230
Brabazon and Keenan [15] 78.7% 69.33% 66.7% 82.7% 74.7% 65.3% 178
Brabazon and O’Neill [16] 178
Charitou et al. [17] 76.2% 76.19% 68.2% 90.5% 76.2% 81.8% 102
Coats and Fant [18] 97.9% 83.0% 83.0% 83.0% 89.4% 80.9% 282
Dambolena and Khoury [22] 100.0% 87.0% 87.0% 83.0% 83.0% 78.0% 46
Dimitras et al. [24] 57.9% 42.1% 57.9% 94.7% 78.9% 42.1% 80
Doumpos and Zopounidis [25] 63.2% 57.9% 63.2% 79.0% 63.2% 52.6% 118
Gombola et al. [27] 321
Kotsiantis et al. [30] 150
Lacher et al. [31] 97.9% 87.2% 78.7% 91.5% 91.5% 89.4% 282
Laitinen and Laitinen [32] 85.4% 61.7% 87.8% 65.9% 82
Laitinen and Laitinen [33] 75.3% 69.4% 74.1% 61.2% 170
Laitinen and Kankaanpaa [35] 89.5% 73.7% 84.2% 84.2% 57.9% 57.9% 76
Lau [36] 800
Lee et al. [37] 66.7% 71.4% 90.5% 1.0% 168
Moyer [40] 82.0% 86.0% 73.0% 95.0% 80.0% 70.0% 42
Nam and Jinn [41] 92
Piramuthu et al. [45] 92.7% 93.0% 85.4% 81.0% 182
Pompe and Bilderbeek [46] 3,600
Sharma and Mahajan [49] 46
Tam and Kiang [52] 88.6% 80.0% 81.8% 97.5% 162
Yim and Mitchell [55] 100
Zurada et al. [56] 82.5% 80.6% 68.0% 79.0% 65.8% 68.4% 345
Figures presented in this table correspond to the best results when many results were computed.
Empty cells correspond to results that were not mentioned.
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Table 3: Variables used to design models

Variables Description
SF/TA Shareholder Funds/Total Assets
TD/SF Total Debt/Shareholder Funds
CMS/TA (Cash + Marketable Securities)/Total Assets
C/CL Cash/Current Liabilities
C/TD Cash/Total Debt
EBITDA/TA EBITDA/Total Assets
EBIT/TA EBIT/Total Assets
CSE Change in Shareholders’ Equity
C/TS Cash/Total Sales
EBIT/TS EBIT/Total Sales

Table 4: Characteristics of variables

Variables Percentiles S-W t U

Healthy companies Failed companies Healthy Failed
25% 50% 75% 25% 50% 75%

SF/TA 0.14 0.33 0.55 -0.47 -0.05 0.23 0.0000 0.0000 0.0000 0.0000
TD/SF -0.02 0.00 0.05 -0.14 -0.02 0.07 0.0000 0.0000 0.0830 0.0000
CMS/TA -0.60 0.03 0.84 -0.81 -0.66 -0.17 0.0000 0.0000 0.0000 0.0000
C/CL -0.23 -0.05 0.25 -0.33 -0.26 -0.15 0.0000 0.0000 0.0000 0.0000
C/TD -0.24 -0.04 0.29 -0.36 -0.27 -0.16 0.0000 0.0000 0.0000 0.0000
EBITDA/TA 0.09 0.21 0.37 -0.38 -0.07 0.13 0.0000 0.0000 0.0000 0.0000
EBIT/TA 0.12 0.20 0.30 -0.31 -0.02 0.14 0.0000 0.0000 0.0000 0.0000
CSE -0.16 0.11 0.11 0.11 0.11 0.11 0.0000 0.0000 0.0000 0.0000
C/TS -0.13 0.01 0.21 -0.28 -0.15 -0.03 0.0000 0.0000 0.0000 0.0000
EBIT/TS 0.18 0.30 0.51 -0.66 -0.03 0.25 0.0000 0.0000 0.0000 0.0000
Figures were calculated with the learning sample and data from 2002.
S-W, p-value of a Shapiro-Wilks normality test.
t, p-value of a Student t test for differences between the means of the two groups.
U , p-value of a Mann-Whitney test for the equality of the sum of ranks of each group.

Table 5: Correlation matrix

Variables SF/TA TD/SF CMS/TA C/CL C/TD EBITDA/TA EBIT/TA CSE C/TS
TD/SF 0.030
CMS/TA 0.148 -0.011
C/CL 0.172 -0.002 0.553
C/TD 0.204 -0.006 0.590 0.833
EBITDA/TA 0.504 0.013 0.097 0.125 0.081
EBIT/TA 0.606 0.008 0.034 0.066 0.075 0.715
CSE -0.071 -0.004 -0.108 -0.055 -0.066 -0.102 -0.093
C/TS 0.102 -0.009 0.392 0.557 0.352 0.053 0.044 -0.036
EBIT/TS 0.520 0.009 0.188 0.180 0.162 0.462 0.473 -0.196 0.016
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Table 6: Rank of the partitions by homogeneity indexes

Number Point C-Index- Gamma - Point- C-Index - Gamma -
of super- Biserial Hubert and Baker and Biserial Hubert and Baker and -
classes Correlation Levin Hubert Correlation Levin Hubert

Ranking Ranking Ranking
4-2 0.480 0.122 -0.172 1 6 2
5-2 0.478 0.116 -0.184 2 4 3
4-3 0.467 0.116 -0.367 3 3 4
5-3 0.466 0.109 -0.368 4 1 5
5-4 0.433 0.131 -0.037 5 8 1
6-2 0.428 0.133 -0.376 6 9 6
6-4 0.418 0.117 -0.377 7 5 9
6-3 0.417 0.123 -0.377 7 7 8
6-5 0.414 0.114 -0.377 8 2 7

Table 7: Characteristics of the variables within each super-class calculated with data from 2002

Variables Means H

Healthy Failed
Super-classes 1-4 Super-classes 5-6

1 2 3 4 5 6
SF/TA 0.46 0.29 0.36 0.06 -0.48 -0.39 0.00000
TD/SF 0.00 0.00 0.05 0.08 0.04 -0.08 0.00000
CMS/TA 1.11 -0.38 0.21 -0.73 0.21 -0.73 0.00000
C/CL 0.59 -0.16 0.21 -0.38 -0.09 -0.33 0.00000
C/TD 0.58 -0.16 0.30 -0.42 -0.05 -0.36 0.00000
EBITDA/TA 0.41 0.37 0.08 0.26 -0.56 -0.30 0.00000
EBIT/TA 0.35 0.31 0.09 0.25 -0.52 -0.25 0.00000
CSE -0.23 -0.09 0.01 0.04 0.08 0.15 0.00000
C/TS 0.40 -0.07 0.22 -0.33 0.06 -0.30 0.00000
EBIT/TS 0.62 0.51 0.11 0.41 -0.65 -0.56 0.00000
H, p-value of a Kruskal-Wallis test for the equality of the sum of ranks of each group.

Table 8: Correct classification rates calculated with data from the test sample

Methods Years before failure
1 2 3

DA 81.93% 78.52% 75.23%
LR 81.14% 79.55% 75.34%
NN 82.61% 79.89% 76.02%
CM 80.80% 79.66% 76.48%
TR 82.73% 81.70% 80.34%
DA: Discriminant analysis
LR: Logistic Regresssion
NN: Neural network
CM: Cox’s model
TR: Trajectories
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Table 9: Test for differences between correct classification rates achieved one, two, and three years before failure

Methods LR TR NN CM
Years before failure Years before failure Years before failure Years before failure
1 2 3 1 2 3 1 2 3 1 2 3

DA 0.667∗ 0.598 0.522 0.662 0.094 0.010 0.708 0.481 0.698 0.540 0.558 0.540
CM 0.855 0.953 0.577 0.294 0.277 0.049 0.324 0.906 0.823
NN 0.421 0.859 0.739 0.950 0.333 0.028
TR 0.386 0.252 0.012
* p-value of a test for differences between proportions.

Table 10: Correct classification rates calculated with data from the test sample by company group (healthy and
failed)

Healthy companies
Methods Years before failure

1 2 3
DA 82.27% 87.27% 85.00%
LR 80.45% 87.95% 84.77%
NN 83.18% 87.27% 83.64%
CM 81.59% 82.27% 83.64%
TR 81.36% 81.14% 80.91%

Failed companies
Methods Years before failure

1 2 3
DA 81.59% 69.77% 65.45%
LR 81.82% 71.14% 65.91%
NN 82.05% 72.50% 68.41%
CM 80.00% 77.05% 69.32%
TR 84.09% 82.27% 79.77%

Table 11: Test for differences between correct classification rates achieved one, two, and three years before failure by
company group

Healthy companies
Methods LR TR NN CM

Years before failure Years before failure Years before failure Years before failure
1 2 3 1 2 3 1 2 3 1 2 3

DA 0.489∗ 0.759 0.925 0.727 0.013 0.053 0.721 1.000 0.578 0.793 0.039 0.578
CM 0.667 0.018 0.644 0.931 0.663 0.289 0.536 0.039 1.000
NN 0.294 0.759 0.644 0.480 0.013 0.289
TR 0.732 0.005 0.129

Failed companies
Methods LR TR NN CM

Years before failure Years before failure Years before failure Years before failure
1 2 3 1 2 3 1 2 3 1 2 3

DA 0.931 0.658 0.887 0.325 0.000 0.000 0.861 0.372 0.352 0.549 0.015 0.222
CM 0.493 0.045 0.280 0.114 0.054 0.000 0.493 0.121 0.771
NN 0.930 0.653 0.430 0.419 0.001 0.000
TR 0.370 0.000 0.000
* p-value of a test for differences between proportions.
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