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Abstract 

In this paper we apply an additive two-stage data envelopment analysis (DEA) 

estimator on a panel of 27 Annex I countries for the time period 2006-2010 in order to 

create sustainability efficiency indexes. The sustainability efficiency indexes are 

decomposed into economic and eco-efficiency indicators. The results reveal 

inequalities among the examined countries between the two stages. The eco-

efficiency stage is characterized by large inequalities among countries and 

significantly lower efficiency scores than the overall or/and the economic efficiency 

stage. Finally, it is reported that a country’s high economic efficiency level does not 

ensure a high eco-efficiency performance. 

 

 

 

Keywords:  Additive two-stage DEA; Sustainability efficiency index; Annex I 

countries.   

 

 

 

JEL Codes: C14; O44; Q50 



 2 

1. Introduction 
 

Environmental degradation and pollution due to human economic activities 

have entered the public and political dialogue the last few decades. The major 

environmental problems such as global warming, ozone depletion, contamination of 

air and water and acidification are complex and can not be dealt with by a single 

nation, therefore international cooperation is needed. Tol (2001) claimed that separate 

individual attempts are unlikely to have a significant impact on the environment.  

In the past, traditional policies dealt with the environmental problems by 

applying an ex-post management which is likely to cause devastating and irreversible 

outcomes to the environment (Zofio and Prieto, 2001). This situation began to change 

from the Earth Summit in Rio in June 1992. From then on, a great number of nations 

have adapted sustainable development and sustainability principals (Callens and 

Tyteca, 1999). Sustainability is multidimensional and envelops socio-economic, 

biological and ecological aspects. According to Brundtland’s report (1987) 

sustainable development refers to the “development that meets the needs of the 

present without compromising the ability of future generations to meet their own 

needs”. 

An important instrument of sustainable development is eco-efficiency. 

Kuosmanen and Kortelainen (2005) define eco-efficiency as the ability to produce the 

maximum level of economic output while causing the least possible environmental 

deterioration. It is clear that the notion of eco-efficiency encompasses both economic 

and ecological aspects and it can be applied either at firm or national level. Huppes 

and Ishikawa (2005) note that eco-efficiency is a misinterpreted concept and describe 

the four possible types of eco-efficiency, that are: environmental productivity, 

environmental intensity, environmental cost improvement and environmental cost 



 3 

effectiveness. Environmental productivity is the ratio of economic output to 

environmental pressure while environmental intensity is exactly the opposite ratio, 

thus environmental pressure to economic output. In addition, environmental cost 

improvement is the ratio of environmental improvement cost divided by 

environmental improvement while environmental cost effectiveness is exactly the  

inverse ratio. In this study we use the notion of environmental intensity to assess eco-

efficiency. 

Judging from the above indices, one might think that a rise in economic 

activity is considered as a negative factor for the environment which is a rather static 

view of the reality (Porter and van der Linde, 1995). In a dynamic point of view this 

may not be the case. Tyteca (1996) notes that there are a large number of firms which 

have realized the benefits they might gain by building a more environmental friendly 

profile. This concept is in line with dynamic competitiveness (Porter and van der 

Linde, 1995) which defines a firm as a competitive if it constantly makes 

advancements and innovations in every sector, such as the environment.  

In order for a firm, an organization, a country or a multinational panel of 

countries to achieve dynamic competitiveness, it must embrace sustainable 

development. To this end, researchers have to provide the policy makers with the 

appropriate tools for measuring sustainability and eco-efficiency. Consequently, 

measures of economic performance have to be adjusted in order to incorporate 

environmental impacts. A widely used approach is the construction of environmental 

indices by using data envelopment analysis (DEA). DEA is an appropriate tool for 

efficiency measurement when there is a need to aggregate multiple inputs and outputs, 

which are measured in different units, into a single index. DEA evaluates the 

efficiency of simple structures, decision making units, which utilize inputs to produce 
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outputs. When the situation demands complex structures there is a need for more 

sophisticated models such as two-stage DEA models. 

In this paper we see the environmental sustainability problem as a composite 

problem consisting by economic and eco-efficiency. In order to create countries’ 

sustainability efficiency indexes we apply the additive two-stage DEA model (Chen et 

al., 2009) at a group of 27 Annex I countries.
1
 We construct an index of economic 

efficiency at the first stage and an index of eco-efficiency in the second stage, which 

are combined into an overall sustainability efficiency index. 

The remainder of this paper is organized as follows. Section 2 is a review of 

the DEA literature on environmental indices and on two-stage DEA models. Section 3 

introduces the data and the methodology of two-stage DEA models while in Section 4 

the empirical application is provided. The last section concludes the paper. 

 

2. Literature review 

2.1. DEA environmental indices 

In order for a model to represent the true production process, the joint 

production of desirable and undesirable outputs is necessary (Pasurka, 2006). The 

most challenging aspect in constructing an environmental DEA index is the 

incorporation of undesirable outputs. Traditional DEA models can not deal with 

undesirable outputs because in such a model we can only decrease inputs and increase 

outputs, hence we can not decrease an output even if it is not desirable. Here we 

present a number of approaches which deal with undesirable outputs. For a more 

detailed review Tyteca (1996) presents environmental performance at a firm base and 

Zhou et al. (2008a) review DEA techniques on energy and environment. 

                                                 
1
 Annex I countries are industrialized countries which are members of the OECD and economies in 

transition, who have signed the Kyoto protocol. 
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We can categorize the available environmental DEA models either by their 

reference technology or by the type of the efficiency measurements (Zhou et al., 

2008a). Relatively to the reference technology one can apply a monotone decreasing 

transformation, such as the use of the outputs’ reciprocals (Lovel et al., 1995) and the 

data translation at undesirable outputs while assuming strong disposability for inputs, 

desirable outputs and the transformed undesirable outputs (Seiford and Zhu, 2002, 

2005).  

The other approach is to apply weak disposability at undesirable outputs 

proposed by Fare et al. (1989). The weak disposability implies that in order to 

decrease undesirable outputs we must also decrease desirable outputs proportionally
2
. 

In a different approach, Sueyoshi and Goto (2012a, b) introduce the concept of natural 

and managerial disposability into DEA analysis. Natural disposability refers to the 

case where a firm reduces its inputs in order to reduce its undesirable outputs as a 

negative reaction to a change in environmental regulation. Managerial disposability 

refers to the case where a firm increases its inputs in order to exploit the business 

opportunity after a change in environmental regulation. 

Relatively to the type of efficiency, radial efficiency measurements imply 

proportional increases or decreases for both desirable and undesirable outputs (Zhou 

et al., 2008b; Sueyoshi and Goto, 2012c). Non-radial efficiency measurements imply 

non-proportional change in both types of outputs (Zhou et al., 2007; Sueyoshi and 

Goto, 2011). Hyperbolic efficiency measurements allow for a simultaneous increase 

in desirable outputs and decrease in undesirable outputs (Färe et al., 1989; Zaim and 

Taskin, 2000; Zofio and Prieto, 2001; Taskin and Zaim, 2001). Directional distance 

function efficiency measurements allow for a simultaneous increase in desirable 

                                                 
2
 For an interesting discussion regarding weak disposability see the works by Kuosmanen (2005), Färe 

and Grosskopf (2009), Kuosmanen and Podinovski (2009) and Kuosmanen and Matin (2011). 
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outputs and decrease in undesirable outputs based on a predetermined direction vector 

(Chung et al., 1997; Picazo-Tadeo et al., 2005; Picazo-Tadeo and Prior, 2009; Picazo-

Tadeo et al., 2012; Halkos and Tzeremes, 2013). 

Specifically, Zhou et al. (2008b) apply a radial DEA model with non-

increasing returns to scale (NIRS) and variable returns to scale (VRS) at eight world 

regions. They employ energy to produce GDP as a desirable output and CO2 as an 

undesirable output. Sueyoshi and Goto (2012c) utilize a radial DEA model to assess 

the efficiency of US coal fired power plants. CO2, SO2 and NOX are the air pollutants 

which are considered in the model. Conversely, Zhou et al. (2007) employ a non-

radial model to measure the environmental performance of 26 OECD countries and a 

non-radial Malmquist Productivity Index to assess the efficiency over time. The 

authors use labor force and primary energy consumption as inputs, GDP as desirable 

output and CO2, SOX, NOX and CO as undesirable outputs. Furthermore, they argue 

that since non-radial model has higher discriminating power, it is more appropriate to 

be used in assessing environmental efficiency. Sueyoshi and Goto (2011) evaluate the 

efficiency of Japanese fossil fuel power generation by utilizing a non-radial DEA 

model with separation between desirable and undesirable outputs and also between 

energy and non-energy inputs. The authors use CO2 as the only bad output. 

Färe et al. (1989) construct a hyperbolic environmental efficiency measure 

which satisfies weak disposability. Thus this model seeks to simultaneously increase 

the good output and decrease the bad output. Zaim and Taskin (2000) apply 

hyperbolic efficiency model to OECD countries for the period 1980-1990, using 

capital stock and total labor as inputs, GDP as desirable output and CO2 as the only 

undesirable output. Zofio and Prieto (2001) study 14 OECD countries and mark the 

significance of carbon dioxide in air pollution which along with the other greenhouse 
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gases (CH4, N2O and CFCs) is responsible for global warming. Taskin and Zaim 

(2001) use Zaim and Taskin’s (2000) model and investigate the existence of the 

environmental Kuznets curve (EKC). 

EKC hypothesis implies an inverted U-shaped relationship between income 

per capita and environmental quality and takes its name from Kuznets (1955). An 

increase in income per capita results into environmental degradation up to a certain 

threshold beyond which an additional increase in income per capita results into an 

increase in environmental quality. This can be explained by the demand of relatively 

wealthy people for environmental quality. Taskim and Zaim (2001) confirm EKC 

hypothesis and they also find significant impact of trade openness on environmental 

quality. 

Halkos and Tzeremes (2009) employ a DEA window analysis and investigate 

the existence of EKC for 17 OECD countries. The authors use sulphur emissions as 

an undesirable variable and they find no evidence of support for the EKC hypothesis. 

In fact, Dinda (2004) in a detailed review of the literature draws the conclusion that 

specific air pollutants like sulphur dioxide, suspended particulate matters, carbon 

monoxide and nitrous oxides exhibit an inverted U-shaped relationship while other 

pollutants such as carbon dioxide does not. Particularly, carbon dioxide reveals a 

monotonic increase as per capita income increases. 

The directional distance function (DDF) approach originates from Luenberger 

(1992). Chung et al. (1997) utilize a DDF to construct a Malmquist-Luenberger 

productivity index which is then applied at Swedish paper and pulp industry. This 

novel index allows to credit for contractions in undesirable outputs. Picazo-Tadeo et 

al. (2005) examine the Spanish ceramic tile industry and argue the DDF provides the 

necessary flexibility for the cost assessment of pollution restrictive rules. Picazo-
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Tadeo and Prior (2009) examine the case that the biggest producer of the good output 

is not the biggest polluter of the bad output. In this scenario, the appropriate 

environmental policy can result in a pollution decrease while maintaining the 

desirable output at the same level.  

Picazo-Tadeo et al. (2012) apply the DDF at Spanish olive growing farms and 

consider alternative scenarios for the direction vector which may correspond to 

alternative targets and policies. In a novel approach, Halkos and Tzeremes (2013) 

incorporate bad outputs in the conditional directional distance function proposed by 

Simar and Vanhems (2012) and measure the regional environmental efficiency in the 

UK. The authors use total labor force and capital stock as inputs, GDP as good output 

and three greenhouse gases (CO2, CH4 and N2O) as bad outputs. 

All the above approaches consider pollutants as undesirable outputs because 

they are by-products of the production of the desirable outputs. In contrast with this 

traditional view, a number of researchers treat pollutants as undesirable inputs. 

Reinhart et al. (2000) employ DEA and stochastic frontier analysis (SFA) and use 

undesirable inputs, to study Dutch diary firms. Hailu and Veeman (2001) extend 

Chavas-Cox transformation to DEA approach with the incorporation of undesirable 

outputs which are treated as inputs. This approach has caused some debate about its 

validity (Färe and Grosskopf, 2003; Hailu, 2003). De Koeijer et al. (2002) investigate 

Dutch sugar beet growers and argue that the incorporation of detrimental inputs 

supports the construction of a sustainability index. Lansik and Bezlepkin (2003) 

include CO2 as undesirable input in their DEA model and examine the environmental 

efficiency of greenhouse firms in the Netherlands. Seiford and Zhu (2002) argue that 

the treatment of undesirable outputs as inputs violates the true production procedure. 
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The vast majority of the above studies construct the environmental indices in 

order to measure eco-efficiency and consequently sustainability. Specifically, 

according to Huppes and Ishikawa’s (2005) definition, most studies use 

environmental productivity to measure eco-efficiency, which is the ratio of economic 

output to environmental pressure. Typical examples of this approach are, among 

others, the models of Korhonen and Luptacik (2004), Färe et al. (2004), Zhang et al. 

(2008), Picazo-Tadeo et al. (2011).  

Alternatively, Zaim (2004) utilizes distance functions to construct an index of 

desirable outputs and an index of undesirable outputs. The first index reveals the 

ability of a decision making unit (DMU) to expand the good output while maintaining 

the level of inputs stable. The second index shows the ability of a DMU to reduce the 

environmental pressures while maintaining the level of good output stable. The ratio 

of the second index to the first index gives a pollution intensity index. The author use 

capital and labor as inputs, gross state product as good output and SOX, NOX and CO 

as bad outputs. Wursthorn et al. (2011) employ a pollution intensity index to assess 

the eco-efficiency of German industry. The authors argue that an environmental 

intensity index offers the opportunity of simultaneously being used as a decoupling 

indicator. Decoupling indicators measure the ability of an economy to expand without 

damaging the environment. 

It is clear that sustainability consists of economic efficiency and ecological 

efficiency which can be seen as two different stages. The above studies adapt this 

complex two-stage structure to a unified framework of one stage DEA type models. In 

a similar case, Chen et al. (2012) construct a two-stage DEA model to assess the 

sustainable product design performances of automobile industry. In the first stage, the 

model evaluates the industrial design module efficiency and in the second stage 
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evaluates the bio design efficiency. The first stage is the typical design procedure 

where the traditional inputs are converted into outputs. This is equivalent to the 

economic efficiency. The second stage measures the environmental intensity of the 

design process. This is equivalent to the eco-efficiency. The authors use a centralized 

cooperative two-stage DEA model introduced by Liang et al. (2008). Hwang et al. 

(2013) introduce simultaneous rise in desirable outputs and decrease in undesirable 

outputs into the above centralized model. 

2.2. Multistage DEA models 

Typical DEA models evaluate the efficiency of a DMU while treating its 

internal structures as a “black box” which utilizes inputs to produce outputs without 

considering the internal structures, an assumption which is usually sufficient (Sexton 

and Lewis, 2003). However in some cases DEA models consist of multiple stages 

which are linked with intermediate variables. These variables are considered as inputs 

in one stage and outputs in the other stage. We can classify these models into four 

categories. First, standard DEA models which evaluate the efficiency of each stage 

separately, without considering the interaction and possible conflicts between the two 

stages. Second, models which consider the interaction between the stages. The third 

category is about network DEA models and the last is about game theoretic two-stage 

DEA models. 

Seiford and Zhu (1999) were the first to study two-stage DEA models. They 

use standard DEA methodology to evaluate the profitability in the first stage and the 

marketability in the second stage of the top commercial banks in the USA. The 

drawback of this methodology is that it fails to incorporate the interactions between 

the two stages. This shortcoming is corrected by the VRS model of Chen and Zhu 

(2004) which evaluates only the overall efficiency. Multiplicative models (Kao and 
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Hwang, 2008) and additive models (Chen et al., 2009) capture the interactions 

between the two stages by treating the intermediate variables in a simultaneous 

manner and in addition they can evaluate the efficiencies of the individual stages. 

Network DEA is rather a group of models which share some common attributes. Färe 

and Grosskopf (1996) developed a series of models in which exogenous inputs are 

allowed, final outputs may exist in any stage and the model may consists of more than 

two stages.  

Liang et al. (2006, 2008) investigate the two stage DEA problem under the 

view of game theory where the two stages can be considered as two players. The 

authors construct a centralized cooperative model where the two players wish to 

simultaneously increase both the overall and the individual efficiencies and a non-

cooperative Stackelberg type model where one player is the leader and the other is the 

follower. According to Cook et al. (2010) the cooperative model is equivalent to the 

multiplicative model of Kao and Hwang (2008). Similarly, in this paper we model for 

the first time countries’ sustainability efficiency levels by applying the additive two-

stage DEA model introduced by Chen et al. (2009).  

 

3. Variable description and methodology 

3.1. Variable description 

 For the needs of our analysis we use data collected from the World Bank
3
 and 

the United Nations Framework Convention on Climate Change (UNFCC)
4
 for the 

time period 2006-2010. The data refer to a list of 27 Annex I countries. As we have 

already presented, our model consists of two stages. In the first stage, the economic 

efficiency stage, we utilize the economic output which is a good output and two 

                                                 
3
 Available from: http://databank.worldbank.org/ddp/home.do?Step=2&id=4&hActiveDimensionId=WDI_Series  

4
 Available from: http://unfccc.int/ghg_data/items/3800.php  
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inputs. The first stage inputs are capital stock and total labor force. Capital stock is 

not available, therefore we have calculated it following the perpetual inventory model 

(Feldstein and Foot, 1971; Epstein and Denny, 1980) as: 

Kt = It + (1- δ) Kt-1 

where Kt is the gross capital stock in current year, Kt-1 is the gross capital stock in the 

previous year, It is the gross fixed capital formation and δ is the depreciation rate of 

capital stock. Here, we follow Zhang et al. (2011) and set δ to 6%. Real Gross 

Domestic Product (GDP) in 2000 prices is the intermediate variable in our model and 

it is used as a good and the only output in the first stage and as an input in the second 

stage. 

In the second stage, the eco-efficiency stage, we incorporate the environmental 

pressures which are bad outputs and we use the real GDP as input. In this study we 

use the most important greenhouse gases (GHGs) as a measure for environmental 

pressures which are carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O) and 

fluorinated greenhouse gases (F-gases)
5
, all measured in gigagrams of CO2 equivalent 

including land use, land-use change and forestry. GHGs absorb and re-emit thermal 

radiation which causes a number of dangerous situations such as global warming. In 

addition, Tol (2001) notes that GHGs are responsible for making the planet more 

vulnerable to climate change.  

According to IPCC (2007), in 2004 the 77% of GHGs was accounted to CO2, 

14% to CH4, 8% to N2O and 1% to F-gases. Although it may seems that CO2 is the 

primary and only responsible gas for greenhouse gas effect, if we exam the Global 

Warming Potential
6
 (GWP) of each gas we can make a better understanding of the 

                                                 
5
 F-gases are a family of three man-made gases HFCs, PFCs and SF6. 

6
 GWP is a relative measure of the heat that a GHG traps in the atmosphere for 20, 100 or 500 years. 

GWP for CO2 is 1 and if one gas has GWP of 10 for 100 years it means that this gas traps 10 times 

more heat in the atmosphere over a period of 100 years. 
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situation. The GWP for 100 years of CO2 is 1, of CH4 is 21, of N2O is 310 and of F-

gases ranges from 140 to 23,900
7
. With this information in mind, one can easily 

understand the magnitude of the ecological and economic consequences of GHGs. For 

a detailed review about the marginal costs of greenhouse gas emissions and the 

economic impact of climate change see Tol (2008) and for the F-gases see Halkos 

(2010). 

Finally, we use Seiford and Zhu (2002) transformation, f(U) = -U +β, to deal 

with undesirable outputs. U is the vector of undesirable outputs which is incorporated 

as a vector of desirable outputs by multiplying it with -1. Then, a proper translation 

vector β is added in order for the variables to become positive, thus f(U)>0. Table 1 

gives the descriptive statistics of the data. 

 

 

Table 1: Descriptive statistics of the variables used 

  

Total Labour 

Force (in 

thousands $) 

Capital Stock  

(in million $) 

GDP 

(in million $) 
CO2 CH4 N2O F-gases 

Mean 22,082 3,855,340 1,059,945 461,132 71,891 35,579 10,496 

St. Dev. 32,577 9,445,671 2,318,478 943,939 151,064 65,215 26,457 

Min 2,128 114,966 48,534 13,528 3,798 3,152 456 
2006 

Max 155,132 44,595,279 11,442,690 4,908,648 664,637 336,824 138,830 

Mean 22,297 3,850,405 1,086,874 468,132 71,539 35,433 10,817 

St. Dev. 32,843 9,333,435 2,363,197 962,269 150,252 65,099 27,201 

Min 2,190 122,739 52,368 14,966 3,797 3,177 637 
2007 

Max 156,352 44,131,876 11,660,927 5,010,317 656,194 334,939 143,075 

Mean 22,520 3,839,358 1,085,954 446,927 71,519 34,686 10,797 

St. Dev. 33,124 9,202,590 2,351,600 928,997 152,404 62,407 26,445 

Min 2,199 129,869 53,572 8,577 3,876 3,194 728 
2008 

Max 158,012 43,568,326 11,619,054 4,836,805 667,881 317,080 139,100 

Mean 22,589 3,800,511 1,041,516 413,194 70,107 33,425 10,264 

St. Dev. 33,073 9,015,812 2,261,228 852,209 150,153 60,186 24,959 

Min 2,151 129,252 45,643 7,290 3,816 3,120 625 
2009 

Max 157,816 42,705,955 11,209,195 4,437,958 672,205 304,034 131,520 

Mean 22,653 3,767,440 1,073,417 432,823 70,990 33,168 11,031 

St. Dev. 33,022 8,845,244 2,334,175 890,245 151,895 60,183 27,061 

Min 2,126 129,023 47,515 12,496 3,816 3,081 635 
2010 

Max 157,493 41,926,217 11,547,905 4,631,685 666,543 306,243 142,665 

 

 

 

 

                                                 
7
 Available from: http://unfccc.int/ghg_data/items/3825.php  
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3.2. Methodology 

Our model consists of two stages. We name the first stage efficiency as the 

economic efficiency index and the second stage efficiency as the eco-efficiency index. 

In the second stage we use environmental intensity to measure eco-efficiency as 

defined by Huppes and Ishikawa (2005). Environmental intensity is the ratio of 

environmental pressure to economic output. The overall efficiency of the two-stage 

model is a sustainability efficiency index. The sustainability index in our model 

serves as a decoupling indicator as defined by Wursthorn et al. (2011) because it 

measures the ability of an economy to expand without damaging the environment and 

as such it fulfils the concept of sustainability. We approach this two-stage structure 

with a two-stage DEA model, specifically the additive model of Chen et al. (2009). 

 Next, we present the additive two-stage DEA models imposing the VRS 

assumption and in order to account for any scale effects between the countries. 

According to Chen et al. (2009) the overall efficiency 0E  is evaluated as follows: 
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where ξ1 and ξ2 are the weights which represent the significance of each stage. Instead 

of an arbitrary specification of these weights, the authors propose that a measure for 

the significance of each individual stage is their size, which can be proxied by the 

total inputs of each stage. Thus, the overall size is d0

D
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 Under proper calculations the VRS additive two-stage DEA model of Chen et 

al. (2009) for overall efficiency is the following: 
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2
 are free in sign. 

 Optimal weights in model (2) may not be unique and as a result the 

decomposition of the overall efficiency 0E  into the individual efficiencies, 1

0E  and 

2

0E , may not be unique either. Chen et al. (2009) propose the maximization of one of 

the individual efficiencies, say 1

0E , while maintaining the overall efficiency at 0E  as 

calculated in model (2). The other individual efficiency 2

0E  is calculated as 
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2ξ  are the optimal weights calculated in model (2) as 

defined in (1). In our model we choose to give priority at the eco-efficiency and so we 

first calculate the efficiency of the second stage 2

0E as: 
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4. Empirical results 

We solve the additive two-stage DEA model (2) and model (3) for the time 

period 2006-2010. In each model we calculate the overall efficiency which is the 

sustainability efficiency index, the first stage which is the economic efficiency and the 

second stage efficiency which is the eco-efficiency. As we already mentioned, we 

give pre-emptive priority at second stage. In addition, we provide the mean efficiency 

and the rankings for each country.  The results in Table 2 indicate these four countries 

are overall efficient in every year and that are Ireland, New Zealand, Norway and 

Ukraine. Also, Czech Republic and Sweden achieve maximum efficiency for one and 

four years respectively. Other countries which achieve very high mean overall 

efficiency above 90% are Switzerland, Hungary and Finland. In contrast, Spain 

achieves the lowest score in overall efficiency with a mean value of 0.365. 

Furthermore, six other countries fail to achieve mean overall efficiency above 0.500 

and that are Italy, Greece, the Netherlands, Australia, France and Germany.  
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Table 2: The results of the additive model for years 2006-1010. 
 2006 2007 2008 

Countries 

 Sustainability 
Efficiency 

Index 

Economic 
Efficiency  

Index 

Eco- 
Efficiency  

Index 

Sustainability 
Efficiency 

Index 

Economic 
Efficiency  

Index 

Eco- 
Efficiency  

Index 

Sustainability 
Efficiency 

Index 

Economic 
Efficiency  

Index 

Eco- 
Efficiency  

Index 

Australia 0.475 0.826 0.096 0.474 0.806 0.100 0.482 0.825 0.100 

Austria 0.681 0.666 0.702 0.674 0.676 0.671 0.664 0.697 0.617 

Belgium 0.585 0.788 0.381 0.593 0.744 0.378 0.605 0.770 0.374 

Canada 0.507 1.000 0.057 0.504 0.975 0.061 0.506 0.972 0.062 

Czech Republic 1.000 1.000 0.873 0.968 0.968 0.727 0.939 1.000 0.710 

Denmark 0.821 0.820 0.833 0.875 0.778 1.000 0.882 0.791 1.000 

Finland 0.895 0.884 1.000 0.921 0.889 1.000 0.942 0.915 1.000 

France 0.485 0.926 0.034 0.484 0.916 0.035 0.488 0.923 0.036 

Germany 0.488 0.940 0.026 0.489 0.940 0.026 0.495 0.958 0.026 

Greece 0.465 0.465 0.463 0.470 0.476 0.378 0.478 0.487 0.362 

Hungary 0.921 0.921 1.000 0.931 0.931 1.000 0.937 0.925 1.000 

Ireland 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Italy 0.441 0.755 0.045 0.441 0.751 0.046 0.442 0.750 0.047 

Japan 0.505 1.000 0.011 0.505 0.995 0.016 0.506 1.000 0.011 

Netherlands 0.468 0.757 0.136 0.472 0.768 0.132 0.482 0.795 0.131 

New Zealand 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Norway 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Poland 0.721 0.987 0.254 0.711 1.000 0.246 0.699 1.000 0.238 

Portugal 0.519 0.428 1.000 0.555 0.457 1.000 0.588 0.486 1.000 

Russia 0.589 1.000 0.128 0.585 1.000 0.128 0.579 0.994 0.124 

Spain 0.363 0.526 0.077 0.363 0.525 0.076 0.368 0.533 0.077 

Sweden 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Switzerland 0.944 0.882 1.000 0.951 0.898 1.000 0.964 0.925 1.000 

Turkey 0.605 0.893 0.155 0.598 0.885 0.155 0.592 0.883 0.156 

Ukraine 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

United Kingdom 0.508 1.000 0.030 0.509 1.000 0.030 0.509 1.000 0.031 

United States 0.502 1.000 0.004 0.502 1.000 0.004 0.502 1.000 0.005 

 

Table 2: The results of the additive model for years 2006-1010 (continue). 
 2009 2010 Mean 

Counries Sustainability 

Efficiency 

Index 

Economic 

Efficiency  

Index 

Eco- 

Efficiency  

Index 

Sustainability 

Efficiency 

Index 

Economic 

Efficiency  

Index 

Eco- 

Efficiency  

Index 

Sustainability 

Efficiency 

Index 

Economic 

Efficiency  

Index 

Eco- 

Efficiency  

Index 

Rankings 

Australia 0.484 0.856 0.083 0.474 0.821 0.087 0.478 0.827 0.093 20 

Austria 0.638 0.679 0.577 0.650 0.693 0.591 0.661 0.682 0.632 9 

Belgium 0.602 0.791 0.354 0.611 0.783 0.351 0.599 0.775 0.368 10 

Canada 0.505 0.974 0.054 0.499 0.956 0.054 0.504 0.975 0.058 16 

Czech 
Republic 

0.936 0.994 0.790 0.889 0.978 0.683 0.946 0.988 0.756 4 

Denmark 0.867 0.819 1.000 0.878 0.860 1.000 0.865 0.814 0.967 7 

Finland 0.935 0.902 1.000 0.956 0.931 1.000 0.930 0.904 1.000 6 

France 0.489 0.931 0.031 0.486 0.922 0.032 0.486 0.924 0.034 19 

Germany 0.491 0.944 0.024 0.493 0.954 0.024 0.491 0.947 0.025 18 

Greece 0.473 0.483 0.348 0.473 0.481 0.365 0.472 0.478 0.384 22 

Hungary 0.938 0.938 1.000 0.944 0.944 1.000 0.934 0.932 1.000 5 

Ireland 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1 

Italy 0.437 0.742 0.045 0.438 0.741 0.045 0.440 0.748 0.046 23 

Japan 0.505 1.000 0.011 0.506 1.000 0.011 0.506 0.999 0.012 15 

Netherlands 0.479 0.788 0.125 0.484 0.799 0.125 0.477 0.781 0.130 21 

New 

Zealand 
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1 

Norway 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1 

Poland 0.682 1.000 0.209 0.670 1.000 0.206 0.697 0.997 0.231 8 

Portugal 0.614 0.511 1.000 0.639 0.531 1.000 0.583 0.483 1.000 12 

Russia 0.551 0.911 0.115 0.549 0.920 0.114 0.571 0.965 0.122 13 

Spain 0.366 0.535 0.071 0.363 0.526 0.073 0.364 0.529 0.075 24 

Sweden 1.000 1.000 1.000 0.796 1.000 0.558 0.959 1.000 0.912 2 

Switzerland 0.964 0.925 1.000 0.968 0.933 1.000 0.958 0.913 1.000 3 

Turkey 0.583 0.786 0.270 0.587 0.910 0.138 0.593 0.871 0.175 11 

Ukraine 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1 

United 

Kingdom 
0.508 1.000 0.029 0.508 1.000 0.029 0.508 1.000 0.030 14 

United 

States 
0.502 1.000 0.004 0.502 1.000 0.004 0.502 1.000 0.004 17 
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Figure 1 presents graphically the geographical dispersion of efficiency scores. 

In Subfigure 1a
8
 we provide a visual representation of these results for the mean 

sustainability index scores. As it is shown Scandinavian countries along with all other 

countries which perform at least 90% appear with bright or dark green colour which 

means they have very high efficiency scores. On the contrary, Central and Southern 

European countries along with Australia appear with yellow colour which means they 

achieve below average results. All the other countries perform average results and 

they appear with bright or dark turquoise colour. 

Concerning the eco-efficiency stage which we gave pre-emptive priority, apart 

from the overall efficient countries, four other countries achieve unity and these are 

Finland, Hungary, Portugal and Switzerland. Very close to maximum mean efficiency 

are Denmark and Sweden with 0.967 and 0.912 respectively. On the opposite side, the 

United Kingdom achieves the worst mean eco-efficiency (0.030) and eight other 

countries appear to be under 10% efficient (Australia, Canada, France, Germany, 

Italy, Japan, Spain, the United States).  

In Subfigure 1b, we demonstrate these results graphically. It is clear from this 

figure that there are large inequalities in eco-efficiency among countries. Again, 

Scandinavian countries perform very high results along with seven other countries 

which appear with bright or dark green colour. Only two countries achieve average 

results (bright or dark turquoise colour) and all the other countries appear with orange 

or red colour which implies very low efficiency scores. 

 

                                                 
8
 The classes in Figure 1 were chosen based on the nature of the results. At first, fully efficient 

countries were made distinct with bright green colour. Furthermore, a lot of observations are 

concentrated at the first and at the last 10% of the efficiency score, so we created these two groups in 

order to highlight the best and worst performing countries. For the best performing countries we 

selected the dark green color while for the worst performing countries we selected the red colour. We 

chose a range of 0.15 for all the other classes and starting from the better performing countries we 

selected dark turquoise, bright turquoise, yellow and orange respectively. 
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Figure 1: Visual representation of  the geographical dispersion of efficiency scores. 

1a  

1b  

1c  

 

Regarding the economic efficiency stage, besides the four overall efficient 

countries, Sweden, the United Kingdom and the United States appear to be efficient. 

Ten other countries achieve very high mean economic efficiency over 90% (Canada, 

Czech Republic, Finland, France, Germany, Hungary, Japan, Poland, Russia and 
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Switzerland). On the contrary, Greece is the least economic efficient country (0.478) 

with Portugal at close range (0.483). As it is shown in Subfigure 1c, the results of 

economic efficiency stage are more balanced than the results of eco-efficiency stage. 

The majority of countries perform very high efficiency scores and only two countries 

(Greece and Portugal) fail to achieve results above average. Furthermore, Southern 

European countries and Australia do not perform so well relative to the other 

countries. In general, eighteen countries perform better at economic stage than at eco-

efficiency stage.  

Another interesting aspect to investigate is how the mean efficiencies change 

over time. This is shown in Figure 2. Specifically, in Subfigure 2a we present how the 

overall efficiency changes over time. The curve has an inverted U-shape and 

specifically it rises until 2008 and declines from then on. In Subfigure 2b we present 

the boxplot of the overall efficiencies and we can deduce that the fluctuations over 

time are rather insignificant. Changes in eco-efficiency over time appear in Subfigure 

2c. A negative trend is present and becomes more rapid after 2009. A more careful 

examination based on the boxplot in Subfigure 2d shows that not only the decline is 

not rapid but also it barely exists. Subfigure 2e is about the changes of mean 

economic efficiency over time. Although the curve rises and declines consecutively, a 

positive trend appears to exist in general. Boxplot in Subfigure 2f illustrates that 

although there is no change at median values, lower scores (which are found at the 

first quartile) appear to be slightly improved. Moreover, if we examine the boxplots in 

Subfigures 2d and 2f together we confirm that the economic efficiency scores are 

highly concentrated as we already see at Subfigure 1c while there are large 

inequalities in eco-efficiency scores as we already see at Subfigure 1b. From boxplot 
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in Subfigure 2b we can see that overall efficiency scores are also concentrated in fair 

degree and 75% of them are found at the efficiency range 0.500-1.000. 

 

 

Figure 2: Efficiency results over time 
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Boxplot of Sustainability index
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 2d

Boxplot of Eco-efficiency
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 2f

Boxplot of Economic efficiency
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5. Summary and concluding remarks 

In this paper we construct a sustainability efficiency index using a two-stage 

DEA model. To our knowledge, this is the first time a two-stage DEA model is 

employed for the assessment of countries’ sustainability levels. We apply the additive 

efficiency two-stage DEA model (Chen et al., 2009) and we constructed a two stage 

structure where in the first stage we measure the economic efficiency and in the 

second stage we measure the eco-efficiency. The overall efficiency of the model is the 

proposed sustainability efficiency index. The advantage of this index is that it serves 
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as a decoupling indicator as defined by Wursthorn et al. (2011) because it measures 

the ability of an economy to expand without damaging the environment and as such it 

fulfils the concept of sustainability.  

In addition, our model provides more information than a typical DEA model 

as it can evaluate both the sustainability efficiency (overall efficiency) and the 

individual efficiencies of each of the two stages. Furthermore, it defines the concepts 

of economic and eco-efficiency in a more distinct way and explores the connection 

among them. 

The model is applied in a panel of 27 Annex I countries for the time period 

2006-2010. The results indicate that eco-efficiency stage is characterized by large 

inequalities among countries with significant lower efficiency scores compared to the 

overall sustainability and economic efficiency levels. Finally, it appears that a 

country’s high economic efficiency level does not ensure a high eco-efficiency level.  
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