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Abstract

We propose a fully nonparametric estimation theory for the drift vector and the diffusion
matrix of multivariate diffusion processes. The estimators are sample analogues to infini-
tesimal conditional expectations constructed as Nadaraya-Watson kernel averages. Minimal
assumptions are imposed on the statistical properties of the multivariate system to obtain
limiting results. Harris recurrence is all that we require to show strong consistency and as-
ymptotic (mixed) normality of the functional estimates. Hence, the estimation method and
asymptotic theory apply to both stationary and nonstationary multivariate diffusion processes
of the recurrent type.
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1 Introduction

The estimation of stochastic differential equations, often conducted in conjunction with the study
of valuation models for derivative securities, has drawn substantial attention in recent years. Para-
metric, semiparametric, and nonparametric estimation methods for scalar diffusion processes are
now well established under a variety of assumptions on the statistical properties of the underly-
ing continuous-time series (see, e.g., the review papers by Ait-Sahalia et al. (2008), Bandi and
Phillips (2008), Cai and Hong (2003), Fan (2005), Gallant and Tauchen (2008), and Johannes and
Polson (2008) for discussions).

Increasing the dimensionality of the system poses substantial complications to the economet-
rics of continuous-time models. While existing methods allow us to deal rather efficiently with
involved parametric specifications for multivariate diffusions (see, e.g., Ait-Sahalia, 2008, and
the references therein), less progress has been made in the nonparametric estimation of multidi-
mensional specifications for continuous-time models of the diffusion type. Such a development
appears to be important in virtue of the robustness to potential misspecifications offered by fully
functional estimation methods as well as their descriptive power and usefulness in building more
accurate parametric models.

As is well-known, the dynamic evolution of a multivariate diffusion process depends on the
form of its drift vector and diffusion matrix. Importantly, the drift and diffusion have infinites-
imal (first and second) conditional moment definitions which lend themselves to nonparametric
kernel estimation. Sample analogues to the infinitesimal first and second moment can therefore
be constructed by employing, among other methods, classical Nadaraya-Watson kernel estimates.
Importantly, when dealing with multidimensional diffusion processes, a complete theory of infer-
ence for these traditional estimates has yet to be established, to the best of our knowledge, even
in the stationary case.

To this extent, this paper derives the limiting properties of Nadaraya-Watson kernel estimates
of the drift vector and diffusion matrix of a multivariate diffusion process under Harris recurrence.
Harris recurrence is known to be a milder assumption than stationarity and mixing (see, e.g.,
Meyn and Tweedie (1993)). Intuitively, it solely requires the continuous trajectory of the process
to visit sets of non-zero Lebesgue measure in its admissible range an infinite number of times over
time. Thus, it represents a sufficient condition for local identification, as we show formally below.
Harris recurrent processes may be strictly stationary, stationary in the limit (ergodic or positive
recurrent), or nonstationary (null recurrent).

The asymptotic behavior of the drift and diffusion estimators is examined as the observation

frequency increases (infill asymptotics) and as the time span lengthens (long span asymptotics).



We prove strong consistency of the functional estimates and convergence to mixtures of normal
laws, where the mixing variates depend on a random object which drives the convergence rates
of the functional estimates and whose divergence properties depend on the specific process being
considered. Such a random object is, in general, not a chronological local time as in the scalar dif-
fusion case examined elsewhere (Bandi and Phillips (2003), BP henceforth, and Moloche (2004)).
Nevertheless, it can be interpreted as an estimate of the density of the occupation time measure
of the underlying process, where the latter represents the amount of time spent by the process in
a certain spatial set of non-zero Lebesgue measure. Unlike the concept of local time, the notion of
occupation density extends to the multivariate framework (see, e.g., Geman and Horowitz (1980)).
Of course, when the dimensionality of the problem collapses to one, the random object driving
the rates of convergence of the nonparametric estimates is indeed a chronological local time.

From a technical standpoint, the non-existence of a notion of local time for multivariate contin-
uous semimartingales represents a considerable theoretical difficulty to overcome when studying
nonparametric kernel estimation for multidimensional diffusion processes under potential nonsta-
tionarities. This paper provides a solution to this problem while offering additional insights about
the simpler scalar diffusion case which, as discussed, may be viewed as a sub-case of our more
general theory of inference.

Relaxing stationarity for identification is theoretically and empirically important. We show
that the dimensionality of the problem has a two-fold effect on the rate of convergence of the
functional estimates when the system is nonstationary. The first effect is coherent with the con-
ventional "curse of dimensionality" resulting from the estimation of conditional expectations in
multivariate discrete-time frameworks under stationarity. The second effect operates through the
random quantity which drives the rates of convergence of the functional estimates and, as empha-
sized earlier, may be interpreted as an estimate of the density of the occupation measure of the
process. This quantity inherits the divergence rate of the occupation measure. The occupation
measure is known to diverge linearly with the time span when examining positive Harris recur-
rent (ergodic) Markov processes of any dimension. However, the dimensionality of the system
affects negatively its divergence rate in the null recurrent (nonstationary) case, thereby deliver-
ing an additional curse of dimensionality which is a genuine by-product of the mildness of our
assumptions. We call this double effect "double course of dimensionality." We emphasize that
the double curse of dimensionality is not specific to the use of functional methods for multivari-
ate, potentially nonstationary, diffusion processes. We expect the same effect to arise from the
functional estimation of multivariate, nonstationary processes in discrete time should the adopted

asymptotic theory allow for general recurrent dynamics. Research on the use of recurrence as an



identifying assumption appears warranted in discrete time as well. It is, as in the continuous-time
case, still in its infancy. Fundamental progress in discrete time has been made by, e.g., Guerre
(2007), Karlsen and Tjgstheim (2001), Karlsen et al. (2007), and Moloche (2004b). We refer the
reader to Park and Phillips (1998), Wang and Phillips (2008, 2009), and the reference therein for
a promising alternative approach based on Skorohod embedding and nonlinear transformations
of the embedded process.

Previous, stimulating work on the functional estimation of multivariate diffusion processes has
largely focused on the diffusion matrix. Brugiére (1991) extends the nonparametric estimator of
the second infinitesimal moment suggested by Florens-Zmirou (1993) in the scalar case to a sys-
tem of diffusions and provides a proof of consistency in probability (see, also, Genon-Catalot and
Jacod, 2003). In follow-up work, Brugiére (1993) derives the limiting distribution of his estimator
and shows asymptotic normality. Importantly, the methodology in Brugiére (1991,1993) does not
rest on stationarity. However, his limiting results are derived using increasing frequencies over a
fixed span of data. Hence, the methods cannot be extended to drift estimation since identification
of the drift necessitates an asymptotically enlarging data span. Boudoukh et al. (2003) extend the
univariate procedure in Stanton (1997) to propose nonparametric kernel analogues to drift and
diffusion matrices for multidimensional diffusions. The asymptotic properties of their proposed
Nadaraya-Watson-style estimators are not discussed, thereby rendering statistical inference diffi-
cult to implement and interpret in their framework. Downing (2003) evaluates the finite-sample
properties of Boudouck et al.’s approach through simulations.

The paper is organized as follows. Section 2 introduces the model and the nonparametric
estimates. Section 3 discusses Harris recurrence for multidimensional diffusion processes. Section
4 presents important preliminaries about Harris recurrent processes. These results are used in
the development of our limit theory. In Section 5 we discuss our asymptotic findings. Section
6 concludes. Proofs and technical details are in the Appendix. In what follows, the symbols
=, % and -2 stand for weak convergence, convergence with probability one, and distributional
equivalence, respectively. When applied to a generic matrix A the operator vec stacks the column
of A. The symbols ® and 1p denote the Kronecker product and the indicator function of the set
B, respectively.

2 Description of the model and estimators

Consider the probability space (2, P), the filtration of sub-o-fields S, and the continuous
adapted process { X, 3¢;0 < ¢t < oo} with



Xt:X0+/Otu(XS)ds+/0ta(Xs)st, (1)

where X is a given initial condition, B = {B;,34;0 <t < oo} is an m-dimensional standard
Brownian motion, p(.) = {;(.)};<;<4 is a d x 1 Borel measurable drift vector and o(.) =
{0ij(.)} 1<i<a is a d x m Borel measurable matrix. Assume Xy is taken to be independent of

1<j<m ,
B and X; takes values in I C R%. Each coordinate X} of the process can be written as

t m t
Xt":XéJr/ui(Xs)derZ/ 0 (Xs)dBI,  0<t<oo,1<i<d. (2)
0 . 0
7=1

Define the d x d symmetric and non-negative (diffusion) matrix a (z) = o () o (z)’ with generic
element a;j(z) = S0 045 (z) 055 (v) 1 <i < d,1 < j <d,VxelCRL Write the conditional
expectation on z, where z = (2!, 22,...,2%) is a d-dimensional initial condition, as E? [.]. Hence,
the drift vector p(.) and the diffusion matrix a(.) have classical representations in terms of

infinitesimal conditional moments, i.e.,

E” [X;—2'] = ty;(z)+o(t)
E”* [(XZ - xz) (Xg - :Ejﬂ = ta; (z) +o(t),

as t | 0 (see, e.g., Karatzas and Shreve (1991)).

Now assume the process {X; : ¢ > 0} is sampled at equispaced times {t = t1,to,..,t,} in the
interval [0,7], where T is a strictly positive number. It readily follows that {X; = XA, ,,
Xon, 7y X3A, 15 -+ XnA, o} are n observations on the process Xy at {t1 = A, 7,10 = 24, 7,13 =
3,7, .y ty = nAy, 7}, where Ay, 7 =T/n.

We estimate the drift vector p(z) and the diffusion matrix a(z) Vo € I C R? by employing

1 Z’Z;:ll Khn,T (XkAn,T - "I)) (X(k""l)An,T - XkA’Vl,T>
n,T ZZ::[ Khn,T (XkAn,T - :C)

(@) = 5 3)

and

!

1R Koy (Xea, s = 2) (Xea,, = Xeanr ) (Xesna,r — Xea,r)
An,T ZZ:I Khn,T (XkAn.,T - .T) ,

~

a,r(r) =

(4)

i

€T
where Kp(Xka, . — ) = % Hle k m"f) is a product kernel function whose properties

n,T
are laid out in Assumption 2 below and h,, 7 is a bandwidth sequence. The estimators in Eq. (3)
and Eq. (4) belong to the general class of Nadaraya-Watson kernel estimators (see, e.g., Pagan

and Ullah (1999)). They are multidimensional counterparts of those discussed in BP (2003). In



light of the absence of a notion of local time (and corresponding theory), our analysis of the
more compelling (from an empirical and theoretical standpoint) multivariate case poses technical
complications which, as said, were absent in the scalar case.

Our limiting results will yield strong consistency and asymptotic mixed normality of the esti-
mates in an asymptotic design which lets the time span increase without bound (7" — oo) with
a distance between observations going to zero (A, 7 = T'/n — 0). The former assumption (long
span asymptotics) is necessary for drift estimation. The latter (infill asymptotics) is important to
approximate the continuous trajectory of the process with a sample of discretely-sampled obser-
vations while replicating the infinitesimal properties of the relevant moments. More generally, the
assumption is crucial for nonparametric identification in the absence of a time-invariant stationary
density.

We view our asymptotic design as a realistic approximation in fields, such as finance, where
data sets comprise observations sampled at relatively high frequencies over sufficiently long spans
of time. To this extent, several simulation studies (see, e.g., Jiang and Knight (1999)) have shown
that daily data, for instance, are valid approximations to frequent observations for nonparametric
estimators relying on frequent observations. Higher than daily frequencies are also now available
(in finance, for instance), albeit over generally shorter time spans. The use of intradaily data,

however, poses (microstructure-related) issues which are beyond the scopes of the present paper.

3 Harris Recurrence

This section discusses our assumed conditions on the underlying continuous-time process. Under
Assumption 1 (a), the d-dimensional process {X; :¢ > 0} in (1) exists and is unique up to null
sets. Under Assumption 1 (b), the process is Harris recurrent. Assumption 1 (a) and (b) are
sufficient for the derivation of our limiting results.

Assumption 1 (c) implies positive recurrence (ergodicity) and simply strengthens Assumption
1 (b). While Assumption 1 (c) is not necessary, it will be interesting to specialize our results to

the more familiar case of positive recurrent or strictly stationary processes.

Assumption 1

(a) u(.) and o(.) are time-homogeneous, B-measurable functions on I C R where B is the
o-field generated by Borel sets on I. Both functions satisfy local Lipschitz and linear growth
conditions. Thus, for H > 0 there exists constants C1(H) and Ca(H) such that

ln(z) = p)ll +llo(z) — o @)l < CL(H)[|lz - yll;



and

()] + [lo(2)]] < Co(H){L + [|]]},

d d
where [|o|[* =375 370k 0F and ||pl? =320 pi

(b) (Recurrence) Denote the closure of a generic set A by A. Assume that, for every open and
bounded set A C I,

min a;;(z) > 0
x€A

for some 1 < i <d. Define the second-order elliptic operator

d d d

1
Z 81’1 + 2 Z Z air ( 8:B18:L’k

i=1 1=1 k=1

There is a function o(.) : RN\ {0} — R of class C? in the domain of the operator that
satisfies

Lp() <0 onRN{0}

and is such that ¥(r) := min,—. p(.) is strictly increasing with lim, . ¥(r) = oo (c.f.
Karatzas and Shreve, 1991, Exercise 7.13, part (i), page 370).

c¢) (Positive recurrence) There is a function o(.) : RN\ {0} — R of class C? in the domain of
2

the operator that satisfies
Lo(.) < -1 on R4\ {0},

and is such that W(r) := minj =, ¢(.) is strictly increasing with lim, .o, ¥(r) = oo (c.f.

Karatzas and Shreve, 1991, Ezxercise 7.13, part (ii), page 370).

Let A be a measurable set of I C R? and define 77 = inf {t >0:X; € Z}, i.e., the first
hitting time of the closure A. The process X; is null Harris recurrent if P* [TZ < oo] =1 for
every x € I\ A. The process X; is positive Harris recurrent if E* [TZ] < oo for every x € I\ A.

Assume X (®) is the unique strong solution of (1) with initial condition X(()I) =z el CRY

then the measure ¢ is invariant for (1) if and only if

$(A) = /1 P (X,ff) € A) é(dr) VA€ B (I)

for every 0 < t < oo (see, e.g., Karatzas and Shreve (1991), Exercise 6.18, page 362). Harris

recurrence is a sufficient condition for the existence of a o-finite invariant measure. This measure



is unique up to multiplication by a constant. If the invariant measure can be normalized to
a probability measure, then we say that the process is positive Harris recurrent as implied by
Assumption 1 (c) above. Otherwise, the process is null Harris recurrent (and nonstationary).

For illustration, consider the scalar case (d = 1). The "speed measure," i.e.,

2
m(dr) = — de

W Vezel CR

where v(.) is the "scale function," i.e.,

/Cxexp{—g/j ;(g)da}dg vrercn

is the unique invariant measure for some ¢ € I. Under positive recurrence, the process admits

a time-invariant probability measure (to which it converges) and the normalized speed measure,

i.e., m(dx)/m(I) = p(dz), is the time-invariant probability measure of X, namely
Jim P7(X; < u) = mlbw) oy wercm, (5)
—00

c.f. Karatzas and Shreve (1991, Exercise 5.40, page 353). Scalar Brownian motion and Brown-
ian motion on the plane are classical examples of univariate and bivariate null Harris recurrent
diffusion processes. In higher dimensions Brownian motion is not recurrent. Hence, while Har-
ris recurrence might not apply to certain highly-dimensional nonstationary systems,! it does of
course apply to all strictly stationary or ergodic systems regardless of their linearity properties
and dimensionality.? As discussed, Harris recurrence is a weaker assumption than stationarity
and mixing (see, e.g., Meyne and Tweedie (1993)). In general, it is in fact the weakest assumption
that one could impose to show point-wise identification of nonparametric estimates.? Intuitively,
point-wise identification requires returns of the sample path of the process to local neighborhoods.

This is precisely what Harris recurrence yields.

! Chen and Hansen (2002) provide an example of multidimensional diffusion displaying various recurrence prop-
erties depending on the relation between dimensionality of the system and parameters of the invariant measure
and diffusion function. Assume ¢(dz) = c1(1 + ||z||?)"?de and a(z) = ca(1 + ||z||?)?14 , Then, the d-dimensional
diffusion is null Harris recurrent if % >9>60-1+ % > -1+ %‘ It is positive Harris recurrent if 9 > % and
V>60—1+4%.

?Thus, the well-known class of multivariate affine diffusions (linear drift vector pu and linear diffusion matrix a)
is, trivially, positive recurrent under standard assumptions.

3Diffusion estimation is an important exception. Since the diffusion matrix can be estimated over a fixed time
span (see, e.g., Brugiére (1991) and Remark 15 below), recurrence is not required and the process can be transient
for identification. Should the focus be on both the diffusion matrix and the drift vector (i.e., on the full system’s
dynamics), as in this paper, then recurrence represents a necessary and sufficient condition for the identification
of the full system. Similarly, the point-wise estimation of general conditional moments in discrete time requires
recurrence at the minimum.



4 Preliminaries about Harris recurrent processes

We now present two theorems which will be useful in our subsequent analysis. Both theorems
apply to Harris recurrent continuous-time Markov processes potentially more general than multi-

variate diffusion processes.

Theorem 1 (The Quotient Limit Theorem) Consider the continuous-time Markov process
X defined on the filtered probability space (2,3, (St)i>0, P). Assume X is Harris recurrent with
invariant measure ¢. Then, for any Borel measurable pair f(.) and g(.) that is integrable with

respect to @, the ratio of the functionals fOT f(Xs)ds and fOTg(XS)ds is so that

T
pe ( lim fo f(Xs)ds < o, f >> -1, (6)

T=oo [Tg(X,)ds < &9>
provided < ¢,g > = [ g(z)¢(dz) > 0.

Theorem 2 (The Darling-Kac Theorem) Consider the continuous-time Markov process X
defined on the filtered probability space (2,3, (St)i>0, P). Assume X is Harris recurrent with
stationary transition densities and invariant measure ¢. If, for a given non-negative function
f(), there exists a function v (s) such that

lim LEI [/000 e_Stf(Xt)dt} =Cx

s—0 U(S)

for a positive (process-specific) constant Cx, and

v(s) = 0<a<l1

so that U(1/s) is slowly-varying as s — 0,* then it follows that

Jim P (ot [ reais <) = Gao (7
where

RN o VA . , j—1
Ga(u) 7104/0 jEZl i sin (raj) D + 1)y " dy

and T'(.) is the Gamma function.

YA function f : [a,00) — (0,00), a > 0, is said to be slowly-varying at infinity in the sense of Karamata if
limy—oo f (Az) /f(x) — 1 for A > 0. The constant function and the logarithmic function are trivially slowly-varying.



Remark 1 Theorem 1 can be interpreted as an ergodic theorem for potentially nonstationary
continuous-time Markov processes. Integrals with respect to the invariant measure replace stan-
dard integrals with respect to the process’ time-invariant probability density. (The interested

reader is referred to Azéma et al. (1966) for additional details.)

Remark 2 Theorem 2 assumes the existence of a regularly-varying function v (.) satisfying
certain properties. For diffusion processes the existence of this function is guaranteed (see, e.g.,

Kasahara (1975)).

Remark 3 Theorem 2 provides a weak convergence result for additive functionals of potentially-
nonstationary continuous-time Markov processes. The function G,(u) is the cumulative distribu-
tion of the Mittag-Leffler density, g,(u). For a = 0 the Mittag-Leffler density becomes the expo-
nential density with parameter 1 and Go(u) =1 — e " with u > 0. For a = %, the Mittag-Leffler
density corresponds to the truncated standard normal density and G 1 (u) = \/% fo e=v?/ 2dy with
u > 0.

Remark 4 If f(.) is the characteristic function of the generic set A, then the additive functional

fOT f(Xs)ds defines the occupation time of the set A, i.e.,

T
Lx(T,A)Z/ 1ix,eayds.
0

The Darling-Kac theorem provides the asymptotic distribution of the normalized occupation
times of (possibly multivariate) Harris recurrent Markov processes over measurable sets. Under
Harris (positive or null) recurrence, Lx (T, A) — oo with probability one VA C I. The rate of
divergence of the occupation time Lyx(7),.) is given by the features of the underlying process
through the function v(.). This rate, and the corresponding limiting distribution, are known in
closed-form only for a few processes. In the scalar Brownian motion case, o = % and U(.) =1

(ie., v(1/T) = V/T) yielding

1 T 2 (v
lim P” 1 ds<u)|=G1i(u :/ eV /2q u>0.5 8
Tooo <CX\/T/OV {Xs€A} ) %( ) m 0 Y = ( )

In the planar Brownian motion case, « = 0 and U(.) = log(.) (i.e., v(1/T) =logT') yielding,

1 T

>The well-known limiting distribution of the local time of a scalar Brownian motion is readily implied by this
. . T
result, i.e., ﬁLx(T7 x) = % lim. o 3= [, 1{x,—al<c}ds o |B(1)| = |[N(1,0)| (see, e.g., Revuz and Yor (1998)).

10



The weak convergence results in Eq. (8) and Eq. (9) are versions of the Kallianpur-Robbins

Theorem (Kallianpur and Robbins (1953)).

Remark 5 If the process X; is positive Harris recurrent or strictly stationary, then we obtain

the degenerate case « = 1 and U(.) =1 (i.e., v(1/T) = T) yielding

T o0

7| regas ox = [ faptn) (10)
which is a weak ergodic theorem. This result can be strengthened to almost sure convergence
using the Quotient limit theorem. Eq. (10) shows that additive functionals of positive Harris
recurrent (and, of course, strictly stationary) processes increase like T' (see, e.g., Revuz and
Yor (1998), page 409). While positive recurrent processes have occupation times that increase
linearly with T regardless of their dimension, the dimensionality of the system affects, in general,
the divergence rates of the occupation times of null recurrent process as shown in the previous
remark. This observation will be important to understand the convergence properties of our

functional estimates.

5 Asymptotics

Before discussing our limiting results, we present the assumption on the kernel function K(.)

appearing in the definitions of the estimators in Eq. (3) and Eq. (4).

Assumption 2 The function K(z) is a product kernel function 1L k(z*). k(.) is a nonnegative,
bounded, continuous, and symmetric function on R with [k(s)ds = 1, [k*(s)ds < oo, and

[ s?k(s)ds < oo. Additionally, there exists a nonnegative function D(v,e) such that
[K(2) — K(v)| < D(v, )|z — o] (11)

Y z,v € R? so that ||z —v|| < e. Furthermore,

;i_ri% D(v,e)dv < o0, (12)
and
/D(v,€)¢(dv) < 00 Ve < o0. (13)

We start with the convergence properties of the averaged kernel function. In what follows, the
symbol %(x) signifies %, where ¢ is, as earlier, the invariant measure of the process. We also

write 5(3: + hu) to signify 5 (:L‘l +hut, .. 2%+ hud), where u,z € I C RY.

11



Theorem 3 Define

n
Lo (T, x) = Anr > Ki, 2 (Xia, , — ) (14)
k=1

and suppose that hy T is such that

EnyT(T, x) 2% 50

and

(A 71og(1/An ) Ly (T, ) /0 1“5 0 (15)

when n, T — oo so that A, 7 — 0.

(i) Assume T is fived. Let n — oo and fix hy, . Then, EmT(T,az) converges with probability

one to the random process (T, z, hy, ) defined as

T
(T, z,hn1) := / Ky, (Xs—2)ds VzelC R
0

(it) ®(T,x, hy1) is such that
T T, h T
o (1/T” CX(/K x+hu)du>ga Vo e I CR?
as hnr — h > 0 when n,T — oo, for some function v(1/T) which is reqularly-varying at
infinity with parameter a so that 0 < o < 1, where g, is the Mittag-Leffler density with the
same parameter o. Cx is a process-specific constant.
(iii)
(T, z, hy1)
v(1/T)

if n,T — oo and hp, 1 — 0 with A, 7 — 0.

éCxa(m)ga Ve e I CR?

(iv) )
Ln,T (T, (E)
v(1/T)

as hypr — 0 with n,T — oo so that A, 7 — 0.

= Cx¢ (%) ga Vo el R (16)

12



Remark 6 (d = 1) In the univariate case, Theorem 3 gives the (almost sure) convergence of
the averaged kernel estimator to the local time of the process (from result (i) with hy, 7 — 0
together with a straightforward application of the occupation time formula, see, e.g., Revuz and
Yor (1998, page 222)) as well as a weak convergence result for the local time estimator. The later
result is particularly important since the growth rate of EnyT(T, x) has been shown to affect the
rate of convergence of the drift and diffusion function estimators in the case of scalar recurrent
diffusions (BP (2003)). For further discussions using regular variation the reader is referred to
Moloche (2004). A couple of examples are in order. If X is Brownian motion (i.e., in the %—null

(c.f. Remark 4 above) and

recurrent situation), then o = %

~

Lo (T, x) = VTO,(1). (17)

If X is positive recurrent (or stationary) as in Remark 5, then o = 1 and

Lyn7(T,z) “5 Tp(x). (18)

Similar findings were previously discussed by BP (2003) and Moloche (2004). In both papers they
were obtained following different routes. Moloche (2004) and Park (2006) provide an interesting

discussion of the asymptotic properties of the expected local time and its estimates.

Remark 7 (d > 1) Inthe more general multivariate case, local time is not defined but ZnyT(T, x)
is shown to converge to a random process (c.f. result (7)) whose rate of divergence to infinity is
driven by a deterministic function of time which is regularly varying at infinity (c.f. result (iv)). In
particular, the averaged kernel function EMT(T, x) has divergence properties which mimic those of
the additive functionals of the underlying process (from Theorem 2 above). This result will prove
particularly important when discussing the convergence properties of the functional estimates of
the drift vector and diffusion matrix since their rates of convergence will depend on the rate of

divergence of En’T(T, x).

Remark 8 (The ergodic and strictly stationary case) Theorem 3 implies that if the

process is positive Harris recurrent, then

1

~ 1<
Flnr(Tw) == K, (Xia, =) 5 pl@) (19)
k=1

provided (A, 7 log(l/AmT))l/2 T/hZ’T — 0 as h,r — 0 with n,T — oo so that A, 7 — 0. As
expected, if the underlying process is endowed with a time-invariant probability measure, then

the standardized averaged kernel function represents a well-defined density estimator for every

13



dimension. Formula (19) readily derives from (16). Consistently with Remark 5 above, this result
can be sharpened in the sense that strong consistency can be proved under the same assumptions.
Thus, we obtain a classical result in the nonparametric estimation of multivariate density functions
(see, e.g., the review in Pagan and Ullah (1999)) as a sub-case of the more general theory discussed

in this paper.

5.1 Estimating the drift vector

Theorem 4 and 5 below discuss the consistency and limiting distribution of the drift vector esti-

mator in Eq. (3).

Theorem 4 (Consistency of the drift vector estimator) If
(Anzlog(1/ D) Lr (T, @) /Hi p ©5 0
and EH,T(T,x)hgT % 50 as hnr — 0 with n,T — oo and A, 7 — 0, then

(o) ™3 ple) Vo€ 1CRL

Theorem 5 (The asymptotic distribution of the drift vector estimator) If
(An710g(1/Anp))"? Loy (T, @) 1) p 3 0,

EMT(T, m)hflMT % 00,

and hpr = Ogs. (Ean(T,az)fﬁ) as hpr — 0 with n,T — oo and A, — 0, then

Lo (T, @)k 1 (A(z) — p(x) — TH())

= (a(z)’N (o, (/ k2 (u) du>d1> , VYrelcCR (20)

where

I¥(z) = (bias1, biass, ..., biasq)(z),

5(@“) d 92
Opg ( 1 < 0%y ()
. _ 72 o (%) "0 Z g7 =
biasg(x) = hy, 1 (/ > E BZL‘l —— + 5 15 1 9201 Vg=1,...,d,

¢(x)

14



and ¢(dz) = ¢(z)dx is the o-finite invariant measure of the process. If hiﬁaﬁlfan(T,x) 20 as

hn,T — 0 with n, T — oo and ATL,T N 0}
(AmT IOg(l/AmT))l/Z EmT(T, x)/hZ,T as. 07

and

E,LT(T, x)hzyT % 00,

then

Lot (T,2)hd 1 (i) — ()

= (a(z)*N (o, (/ k2 (u) du>d1> Vo e I C R (21)

Remark 9 The quantity EnyT(T,m) plays the same role here played by the number of data
points in the more standard estimation of conditional expectations in the stationary, discrete-
time, context. What matters in our framework is not the speed at which 7" diverges to infinity
but rather the speed at which the occupation time of a set diverges to infinity. For consistency,
we require En,T(T, x) 3 0o but this result is guaranteed by the Harris recurrence of the process,

as shown in Theorem 3 above.

Remark 10 The smoothing sequence h, v has to accommodate the divergence properties of
the quantity EmT(T, x) so that hZ’TZn,TCTa z) “% 0o. By virtue of Theorem 3, in the case d = 1,
such a condition collapses to the standard assumption hn’TfX(T, x) % 00 Vo € I C R, where

Lx(T,x) is the chronological local time of the process X.

Remark 11 (Bandwidth choice) The asymptotic mean-squared error (AMSE) of the drift

. . 4 1 . .
vector estimator is of order Op(hn,T) + O, L@, ) In consequence, the optimal drift

-~ 1
bandwidth in the mean-squared error sense should be proportional to L, 7 (T, z)” @4 where d
is the number of equations in the system and EmT(T, x) is defined as in (14). Typically, the

smoothing sequence may be set equal to

. . 1 ~ 1
hdmft ) = Cdmft S I T71» T dt+4 22
n,T ( ) log LmT(T, .%') n’T( ) ( )

15



This choice allows us to eliminate the influence of the bias term from the limiting distribution
of the drift estimates and obtain centering at zero, while achieving a close-to-optimal speed of
convergence.

It is noted that computation of En,T(T , ) requires choice of an additional smoothing parame-

drift should be evaluated using automated methods. The design

ter. Furthermore, the constant ¢
of data-driven procedures for selecting the proportionality factor playing a role in (22) and the
optimal bandwidth for estimating EmT(T, x) is of apparent importance but goes beyond the scope
of the present paper and is left for future research.

The form of (22) clarifies the potential relevance of local adaptation when estimating the
drift vector. In particular, we expect the optimal drift bandwidth to depend inversely on the
number of observations in the local neighborhood of a point. In stationary kernel regression, bias
reduction is a conventional justification for employing smoothing sequences that are inversely
related to the availability of observations as summarized by the estimated density function of
the underlying data (c.f. Pagan and Ullah (1999)). Differently from more standard problems
in the nonparametric estimation of conditional expectations in discrete time, in our framework

the potentially important role played by local adaptation emerges directly from the asymptotic
conditions which the drift bandwidth ought to satisfy.

Remark 12 (The ergodic and strictly stationary case) In the positive Harris recurrent
case EH,T(T, z) % Tp(z) and

e BRI _

o) o@)/o(l) p@)

since the invariant measure is integrable, i.e. ¢(I) < oo (see comments in Section 3). In conse-

quence, if

(A7 log(1/An )2 T/h 1 — 0,

Thz’T — 00 and hy, 17 = Og.s. (Tfﬁ) as hy 7 — 0 with n,T — oo and A, 7 — 0, then

Thd7T Hg(w (z) — biasg(z))
d 'm_ 0'2- X
- N<0,< k2 (u u> W) Ve e I CRY Vg =1,....4,

and

8“ (z) d 82
. 32 g Oz
biasg(w) = hy, (/ > (Z 3% p(x) Z 8%(9:131 )
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1
An analogous corollary can, of course, be obtained for h, 7 = 0q4.. (T *m), In this case, the

asymptotic expression would be identical with the sole exception of the absence of the bias term.

Remark 13 (The two curses of dimensionality) Consistently with more conventional mod-
els in discrete time, an increase in the dimensionality of the system leads to a decrease in the
rate of convergence of the nonparametric estimates. Contrary to standard problems, though, this
effect operates through two channels, i.e., a deterministic effect which depends exponentially on
d, and a stochastic effect which depends on the speed of divergence to infinity of the quantity
EMT(T,@"). The first effect is standard. As d increases, the optimal h,r should converge to
zero at a slower rate. In the positive Harris recurrent case, the rate at which the bandwidth has
to be adjusted as the dimension increases for a given sample size n and time span T' depends
exponentially on d. We recall that the AMSE-optimal bandwidth is h, 7 = Og.. (T_ﬁ) In
other words, when increasing the dimensionality of the problem, the kernel window width must
be made wider to offset the sparser density of the data points. The second effect is novel. Null
Harris recurrent processes induce divergence rates for the quantity ZmT(T, x) which are inversely
related to the dimensionality of the problem. Importantly, while these rates cannot be quantified
in general, practical implementation of our procedures does not require their evaluation a-priori,
as we discuss in Remark 14. The scalar and planar Brownian motion cases are notable exceptions
for which the rates can be computed in closed form (c.f. Remark 4).

To summarize, under stationarity (or positive Harris recurrence), the curse of dimensional-
ity operates through only one channel, i.e. the dimension d, since En’T(T, x) diverges at the
constant rate 7' independently of the number of equations in the system (c.f. Remark 5). In
the general (possibly nonstationary) case, the optimal bandwidth should account for the conven-
tional curse of dimensionality given by d as well as for a second curse of dimensionality caused
by the (expected) smaller values of En,T(T, x). The optimal (in an AMSE sense) bandwidth
hn 1 = Oq.s. (EmT(T, m)fd%‘l) accounts for both effects.

We expect the "double course of dimensionality" to carry over to functional estimation proce-
dures for multivariate (possibly nonstationary) discrete time processes. In other words, such an
effect is truly a by-product of our minimal assumptions and is of course not specific to the study

of continuous time processes.

Remark 14 The asymptotic distribution in (21) depends on quantities which can be estimated
from the data, i.e. EmT(T, x) and a(.) (c.f. Theorem 3 and Theorem 6 below). Statistical inference
on the drift vector does not require any conjectures about the dynamic features of the underlying

process, such as stationarity, aside from recurrence. While traditional asymptotic theory is derived

17



based on explicit assumptions of either stationarity or nonstationarity (often of the unit-root or
%—null recurrent type), which are imposed before inference begins, our weak convergence results
reflect the mildness of recurrence as an identifying assumption. Inference hinges on random
norming in the context of asymptotic normal distributions and can be implemented in the simple
framework of mixed normal models with easily estimable random variances.

Of course, from a theoretical standpoint, the rates of convergence are affected by both the
stationarity features of the underlying process and the dimensionality of the system through the
constant a which drives the rate of divergence of Ean(T ,x) (c.f. Theorem 3). Importantly,

however, such a constant does not have to be identified empirically for statistical inference to be

conducted.

Similar arguments to those in Remark 9 through 14 apply to the estimation of the diffusion
matrix to which we now turn. Below we will place emphasis on those aspects that are specific to

diffusion matrix evaluation.

5.2 Estimating the diffusion matrix

Theorem 6 and 7 below discuss the consistency and limiting distribution of the diffusion matrix

estimator in Eq. (4).

Theorem 6 (Consistency of the diffusion matrix estimator) If

E(n,T) (Tv HZ) = o0

and

(An,T IOg(l/An,T))I/Q E(n,T) (T7 1‘) @5
hio.r

with hy, 1 — 0 when n,T — oo so that A, 7 — 0, then

a.s

a(mT) (:E) — a(:n) Ve el C R,

Theorem 7 (The limiting distribution of the diffusion matrix estimator) Assume
Loy (T, z) “5 00
and

(An11og(1/ D) Liny(T, ) o
hd

»

0

1

18



with n,T — oo so that A, 7 — 0. If

hg?i(n,T) (T,:E) a.s.
AT =0

as hpr — 0 with n,T — oo so that A, 7 — 0, then

h Tz(n (T, ) -
\/ ALy (vechfn (@) - vecha(z))

= (E)Y?°N (o, (/ kQ(s)ds>dI> , VoelCR (23)

where
2(z) =Pp (2a(z) @ a(z)) Pp,

Pp=(D'D)"'D’,

and D is the standard duplication matriz, i.e., the unique d* x (d(d + 1))/2 matriz such that

(a1 ]
a1
vecha(z) = Ppveca(z) = a2
as,1
L Gd,d |
If
d+47
Rt L) (T, @) o)
ATL’T a.s. 5
then
hfriL E(n T) (T, CL) R 2
\/ 2 ATLT <’U€Ch,a(n7T) (.’lf) - 'UeCha(gj) —T° (.’13))
d
= (B(x)'?N (O, </ k2(8)ds> I) , VxelcCR 20
where
re’ (x) = (biasi,1,biasa, ..., biasq q)(z),
with

655(@
bias; ;(z) = h, / Z Gai (@) ) = = Z Paiy () fori,j=(1,1),...,(d,d).
2] n, T a.’Bk 8$ka$k» ; s L)y ey (U
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Remark 15 (The fixed T case) Contrary to drift estimation, the features of Theorem 6
clarify that the diffusion matrix can be consistently estimated over a fixed span of data T = T

(c.f. Florens-Zmirou (1993) and Brugiére (1991, 1993)). In fact, provided

s

"0

with h, 7 — 0 and n — oo, then

~

a(,7) (z) “3 a(x) Vo e I C R

This finding complements the consistency results in the multivariate context studied by Brugiére

(1991) where convergence is in probability.

Remark 16 (The bivariate case) It is worth being explicit about the form of the limiting

variance in (23). We consider the simple bivariate case, i.e. d = 2. Write

(¢) = Pp(2a(z) ®a(x)) Pp

[1]

(20%1)2 (X ol) Conioa) (X ot) ( folmm) (Y o1i09:)?

% (Zai) (> 01i02i) (Zglz) (2‘721) (2011021) (2‘721) (>_01i02i)
(X 0%) (Conioa) (X o1i02i)° (X oti) (X o3:) (202@) (> 01i02;)
| (X ovioa)? (X od) Conon) (Xod) (Couoa) (o)
1 0 0
0 12 0

“lo 1l o
0 0 1

2(3 %) 2(30};) (X ovio2) 2 (3 01i0%)°
= 2(2%) ZUUU%) (Y ouo)’ + (X od) (X o) 2(2031)2(2011021‘) a
2 (3 01i02)° 2 (Yo%) (O orio) 2 (> 0%)

where > = Z:’il We now compute the asymptotic variance of

vecay, 1y(z) — veca(r).

Notice that
Dvecha(z) = veca(x).
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Then, the limiting variance of veca(x) can be written as

!

DE(z)D

— DPp(2a(z) @ a(z)) PpD

= 2D(D'D)"'D (a(z) ® a(z)) D' (D'D)"'D

— 2P (a(z) @ a(x)) Pp

= 2Pp(a(z)®a(z)) Pp

— 2Pp (a(z) ®a())
since Pp (a(z) ® a(z)) D = (a(z) ® a(z)) D where Pp is the d? x d? matrix that projects %"
orthogonally onto R(D), i.e. the range space of D. In particular,

— 1
PD = §(Id2+G’d2)

where Iz is a d? x d? identity matrix and G is such that

Gp =) > Uil
(2]
where the d x d matrix Uj; has 1 in the (7, 7) position and 0 elsewhere. In the d = 2 case, for

example, we obtain

1000

00 1 0
Ge=101 0 0

0 0 0 1

and

1

AR
— 0o L Ll 9

0o 0 0 3

which implies

2P (a(x) @ a(a))
( U% )2 2(2‘7%1'

= ( %1) 20120'21 (ZO’%Z)
2(3X0%) (X o1ic2) (X o%)

2(X 01i02i)° 2(¥ 03,

(X o1io2:) 2(X0%,) (X o1io2i) 2 01502:)?

Y o03) (T ow02)? (X o1) (K03 H X orio2:)®  2(X03,) (X onion:)

Y o3) (T ow02)? (X ot) (X o3) HE orio2:)®  2(X03,) (X ovion:)
) ($03)°

7

|
~— ~ —~ =

(O o1i02:) 2(303,) (X o1i02i) 2
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Remark 17 (Bandwidth choice) A "nearly" optimal selection rule for the bandwidth in the

diffusion case is given by:

. . 1 - ~
) m T — (Bra@a/ona) = @)
log (Ln,T(T7 x)/Aan>

Coherently with our previous discussion in the drift case (c.f. Remark 11), this choice allows us
to eliminate the influence of the bias term from the limiting distribution of the diffusion estimates
and obtain centering about zero, while achieving a close-to-optimal speed of convergence.

Being the diffusion function estimable over a fixed span of observations (c.f. Remark 14),
there is relatively less scope for local adaptation of the bandwidth sequence than in the drift case
examined earlier. An approximate (optimal) rule to select the bandwidth for a slowly diverging
T would, in fact, be

WL o S (1) n
n.T logn

which is standard in nonparametric statistics and does not depend on the spatial level .

Remark 18 (Non-vanishing bandwidths)

(1) For scalar and planar Brownian motion (which have constant drift, diffusion and invariant
measure) all the results in this work go through unmodified with constant or explosive
bandwidths (i.e. hy, 7 — o00) provided the bandwidths satisfy the admissibility conditions in
the statements of the corresponding theorems. Phillips and Park (1998) find a similar result
when estimating nonparametrically the (constant) conditional first moment of a standard

random walk embeddable in Brownian motion.

(2) If either one of the two functions of interest is constant irrespective of the shape of the other
function, then the consistency result for that function is valid in the presence of a constant
bandwidth. The weak convergence result is also valid with the caveat that the asymptotic
variance has a form which depends on the constant smoothing sequence being used. Such a

variance can be easily deduced from the proofs of Theorems 5 and 7.

(3) If either one of the two functions of interest is constant irrespective of the shape of the other
function, then the consistency result for that function is valid in the presence of explosive

bandwidths provided the relevant bandwidth conditions are satisfied.
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6 Conclusion

This paper studies kernel methods for multivariate diffusion processes. We provide an estimation
theory which is easily interpretable based on traditional results in nonparametric analysis for
multidimensional discrete-time series but has the additional advantage of robustness to deviations
from strong distributional assumptions, such as stationarity. Harris recurrence is the identifying
assumption used in the present work to show strong consistency and asymptotic (mixed) normality
of the functional estimates of drift vector and diffusion matrix. On the one hand, this assumption
is known to be milder than stationarity and mixing and might prove useful to study multivariate
(discrete- or continuous-) time processes whose stationarity can neither be guaranteed nor ruled
out a priori. On the other hand, even in the stationary case, functional methods which do not rely
on the information contained in the process’ stationary density may be useful when the stationary
density can hardly be identified reliably, as is the case for persistent time series. In both cases,
our asymptotic theory appears to provide an intuitive assessment of statistical uncertainty by
(inversely) relating the size of the confidence intervals to the occupation time of the underlying
empirical process. Similarly, the "double curse of dimensionality" may be viewed as a theoretical
representation of the risks of empirical work conducted in the context of multidimensional, as well
as highly persistent, processes.

We introduce the methods in the context of classical Nadaraya-Watson kernel estimators.
While these estimators are arguably the most widely used in applied work, they can be improved
upon. Coherently with the more classical analysis of stationary discrete-time series, the methods
may be extended to a variety of multidimensional nonparametric procedures like local linear and
polynomial fitting, among others (see, e.g., Fan (1992) and Masry (1996a,b) and, for interesting
work in the scalar diffusion case, Fan and Zhang (2003) and Moloche (2004)).

Even though the focus of this paper is on nonparametric estimation, the procedures we discuss
might be used to evaluate parametric models. For instance, parametric specifications for multi-
variate diffusions may be tested by utilizing criteria which compare functional estimates of drift
and diffusion matrix to their parametric counterparts. The integrated squared error employed by
Bickel and Rosenblatt (1975) and Fan (1994), among others, is a possible criterion. Interestingly,
such a comparison might be conducted separately for drift and diffusion since these moments may,
as shown, be identified separately.

We leave the study of alternative kernel methods for multivariate diffusions and the design of

testing procedures for multivariate parametric specifications for future work.
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7 Appendix

Proof of Theorem 1 See Revuz and Yor (1998, Theorem 3.12, page 408) and Azéma et al. (Remark
1, page 170, 1966).

Proof of Theorem 2 See Darling and Kac (1956).

Proof of Theorem 3 In what follows, for convenience, we use the notation + K (£) = 1 =K (9., %),
¢ (z +hu) = ¢ (21 + huy, ..., zq + hug), where a,u,z € I C R% and h =h?. We begin Wlth part (i). We

wish to show that
Ap 7 — Xia, r =2\ as. 1 (T /X, ,—
Ve ZK< N ) 1.5, / K( w>ds
h, 7 = h,, n—oo hn,T 0 hn,T

0ingr = sup [ Xe — X
[t—s|<An 7 t,s€[iln,7,(i+1)An, 7]

for a fixed h, 7. Let

Using the modulus of continuity of multivariate Brownian semimartingales (see, e.g., McKean (1969)),
write

P |lim sup Oitin = max 27 (Xy)| =1

Anrl0 v/ AprIn (1/An ) t€lidn . (i+D)A 1) ' ’
where () is the largest eigenvalue of the diffusion matrix a (z) = o () o (z)’. Since this matrix is positive
definite, all its eigenvalues are positive. Moreover, since trace [a(X;)] < oo Vt € [iA, 1, (i + 1) A, 7], then

all its eigenvalues are bounded in compact subsets. Hence,

. Kn, T
lim sup : < 00 a.s., (26)
An,rl0 \/An,T In (1/An,T)

where

Kn, 7 = Max 0iA, ;-
1<i<n

Now, write

nT lAnT_:E )(s_aj
(5 ) [ ()
n=l (i) Anr — _
Z/ [K( )K )]
i=0 Y iAnT h T
+

B An,T K XOA - nAn r— %
hn,T hn,T
n=1 L(i+1)An,1 _ X. —
< %/ [ (W >—K(S )
= Jirnr h, 1
n An,TK XOA - XoAps — T
hn,T hn,T
T
Fn. T 1 Xs— 2 EKnr A,
< ; D d Og.s. :
- hn,T /() hn,T ( hn,T hn T> 5|+ C. < hn,T >

by the triangle inequality and the regularity conditions of the kernel function from Assumption 2 above.
But,
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T T
1 X, —2x mnT> 1 / <Xs—m)
D T ) s = Ops. [ — [ K ds |,
/0 hn,T < hn7T hn,T (hmT 0 hn,T

by the Quotient limit theorem. Then,

&J53K<&Lm—w)_l»/TK(&fx>%
hn,T i=1 hn,T hn,T 0 hn,T

using the assumptions of the theorem. This proves the result in (i). Results (ii) and (iii) are easily proved
using arguments contained in the proof of (iv). For brevity, we only focus on (iv). We wish to show that

An,T = XiAn,T -
g (U(I/T)hn’T ;K ( hn,T >>

for any bounded and continuous function £. We will require the window width to be chosen from a totally
bounded, complete, and non-empty set and vanish slowly enough as to guarantee uniform convergence over
bandwidth sequences. This requirement is formalized as follows. The bandwidth sequence h,, r on R is
Fr-adapted, bounded, and such that h,, r € Hy ,(¢) where

o

lim |E
n,T— oo

=0,

~E[¢(Cxd @) ga)]

Hrn(e) = {h : max (E(n,T) (T, x) \/AH,T log (1/A,, 1), l/f(n,T) (T, ax)) Je < hd < e’:‘} .

Then, given (i), we simply need to prove that

: <<1/T1>h [ () d3>

aT

lim |E

n,T'— oo

~E [¢(Cx6(@) 00 )| | =0. (27)

This is true if, for any & > 0, there exists € > 0 and T, 7 > 0 so that, for T > T, n > 7 and h € Hz - (€),

ar < 0. Equivalently, one could verify whether for any § > 0, there exists ¢ > 0 and T, 7 such that, for
T>T,n>nandh € Hz (), we obtain

L E ¢ (v(l/lT)h /OTK (th) ds> ~E {5 <CX K (u)$(uh + x)duga>] < g (28)
and
e [B[e (0 [rtoon s )| -Ble(exdn)] <5 e

Expression (29) is immediate based on the continuity of the invariant measure. Expression (28) requires
additional care. We will show that pointwise convergence over a dense set, along with an asymptotic
equicontinuity condition, leads to the desired conclusion.

Since H7 5 (¢) is totally bounded and complete, it has a cover {S7 7 (e, hi, v/2),i =1, ..., q}. Let H%ﬁ(ﬁ)
be a den~se subset of M7 5 (¢). Choose {hi,...,hg} such that |h; — hi| < 7/2, i =1,...,q, hi € H%(E).
{87 (e, hiyy),i = 1,...,q} is also a cover for Hj ~(g). For all h € Hj (), there is some i such that
h e S; (e, hi, 7). Hence, there exists some 4 so that
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E

(ot [ < (5) )

(o frcogtan s s

< m e g(m [x (% >ds> SACIES uhfmduga)H
<L <E g(v(l;m /OTK(Xshjx)ds> “ne(en / Ko uh/mdugu)})

(o e (£ (57 ) o e (e o))

+|B f(@/OTK(Xﬁ‘x>ds> - [ <OX/K B(ubs + )duga)H.

P f(ml/fK(XSh”)ds) -5 (ex [ xwwion .|
e e P e 4]

<_E (o fraon uh/:mdugaﬂ o e (ex it ) )
5(0(1/;)}:/0 K(Xﬁ_x) > E[ﬁ(CX/K H(uh; +x)duga>}|.

The first maximum can be bounded by an arbitrarily small 5 (such that n < §/3) provided + is chosen
accordingly. This results from a stochastic equicontinuity property. Stochastic equicontinuity derives here
from the modulus of continuity of £ and the properties of the moments of the Mittag-Leffler distribution.
See the proof of Theorems 4 and 5 for similar arguments worked out at length. The second maximum can
be bounded by an arbitrarily small n (< §/6) for T' > T and n > 7 by virtue of the Darling-Kac theorem
and the pointwise weak convergence that this theorem implies. Finally, we show that for some n > n and
T > T there exists an arbitrarily small € such that

1 Aan - XiA,,L,T — T
F [5 <v(1/T) Bor ;K( hor >>

E

-+ max
1<i<q

~EB ¢ (Cxd(@)g.)] <.

Write,
e (o S () o)
2T e Xin, r — <
< aole [ (e S (K)o (s £ () o o
T — T
e ol (s [ < () o) el (e )}\ o

But (30) and (31) can be bounded by an arbitrarily small number, say § (= ¢), provided n and T are

chosen accurately, for n > 7 and T > T, using result (i) in the theorem and (27), respectively. This
concludes the proof.
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Proof of Theorem 4 Write

ﬁ’n,T(m)
n— Xin, 7=\ r(i+1)A,,
LS K () A () ds
AT N (32)
n, s 1K( ot )
n— 1 iN, 7T (i+1)A
1 Z K ( nj;" ) fZA,L T Xs) ng
+A A (33)
nT S 1K( oz )

We start with (32). Using the Quotient limit theorem and the method of proof of Theorem 3, we obtain

b1 0 ( T ) (Xs)ds + Oas. (\/An,Tlog(l/An,T)L(n,T) (T, $)/hn,T)
i fy K (352) ds + O, (VAL T08(1/B0 ) L 1) (T, 3) /i )

for a fixed h,, 7. We now wish to prove that

(32) = (34)

B, =2 ) p(Xs) ds
T nOT fo( (T ?T ) ds By 1O T 00 p(z),

jointly over h,, 7 and T'. Define

Orn(z) = ”T,h(x) — Hp(2)
_ foTK (%578 p(Xs) ds fK hu+x) o(hu + z)du
fOTK(X*_”:)ds fK o(hu + z)du

fT K (X°h_””) Zs nds

0
foTK (%) ds

)

where

JK(uw)p (hu —|— z) ¢(hu + z)du
fK ¢(hu + z)du '

The value of x is constant throughout and will be omitted in what follows. In other words, we will write
7 h, r, #, and so on, for brevity. We wish to show that

ZS,h(x) =p(Xs) -

8

S

Prn,, — k0 (35)

h,, r—0,T,n—o0

We need to guarantee that the bandwidth sequence is chosen from a totally bounded and non-empty set.
As in the proof of Theorem 3, we consider the set

Hrn(e) = {h : max (E(n’T) (T, x) \/AH)T log (1/A, 1), I/Z(R’T) (T, x)) Je < hi < 5} .

The expression (35) holds if, for any § > 0, there exists e, T and 7 so that Hfﬁ(s) is non-empty and, for
T>T,n>nandhe Hy (), we obtain

]
sup |y — < 5 (36)
hGHT’ﬁ(S)
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and

%)
sup  |rn| < =

(37)
heHp 5 (c) 2

The conditions (36) and (37) imply that
’HT,hn,T - H’ < swp (|ppn — Ba| + lpe —p]) <6
hEwa,ﬁ(E)

Expression (36) is immediate given the continuity of the drift function and invariant measure. We now
show (37). We proceed as in the proof of Theorem 3. Since Hy ;(¢) is totally bounded and dense, it has

a cover {Sy =(g,h;,7/2),i=1,....q}. Let H%ﬁ(s) be a dense subset of Hyz ~(¢). Choose {h1,...,hy} such
that |h; — hi| <~/2,i=1,..,q and h; € H% (). {ST)%(E,BZ',”)/)J =1,...,q} is also a cover for Hy ;(e).
For all h € Hy ;(e), there is some i such that h € Sz (e, hi,7). Thus, there exists some i so that

Mrnl < sup  [Irw]
hlesf,ﬁ(thiﬁ)
< sup 7w — HT7,~”| + |HT7E1-| a.s.
h'eSgz 5 (e, hi,y)
Hence,
sup  |[IIpn| < max sup M n — Uy |+ max [ | as. (38)
heHz 5 (c) 1SS0 ey - (ehi) 1<izq

for all T > T and n > @. The first term on the right hand side converges to zero if an asymptotic
equicontinuity condition is satisfied while the second term vanishes if pointwise convergence holds. The
latter follows from the Quotient limit theorem for any fixed bandwidth. In fact, for a fixed = and a fixed
h (and given the integrability properties that are sufficient for the Quotient limit theorem to hold), we
obtain

% K (557) p(Xs)ds as. 5 K (5" N(g) ¢ (u)du
B fo (5 ) 5 J K (45") o(u)du
JK(s x—l—hs) ¢(m+hs)d

fK o(z + hs)ds

As for the former, first we have to verify that for all T,n and some ¢ > 0 so that H; ~(¢) is non-empty
and compact, the quantity ’
sup  |Urn|
h€H+ 5 (e)

is indeed measurable with respect to Fr. For a fixed h, the numerator and the denominator of
are additive functionals and it is a standard result that such functionals are Fp-adapted. To extend this
property to the supremum over h € Hﬁﬁ(g)’ we need to verify that Hy,(¢) is compact and non-empty
for all T" and n, almost surely. This is true by construction. Then, since Ilr is continuous in h, the
main result of Stinchcombe and White (1992) assures that IIpy is at least "nearly" Fp-measurable, and
we can proceed as if the supremum of |IIy | is a well-defined stochastic process and compute the limit
supremum. We now turn to asymptotic equicontinuity. Fix a positive and finite h and take any h’ such
that |h —h'| < v. Write
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Jo

K(

My — M|

Xs—x
h/

Xs—x

)zs,h/ds Jo K (¥

) Zs nds

Ji (x

Jy & (

Xs—x
h/

foT K (%) ds

)ds
) - K (

(Xsh—x

X;—x
h

Jo X (

(u) (u(hu + 2)d(hu + x) — h%u(h/u + x)%(h/u + m)) du

— P+ By

— |-

[ K(u)p(hu + z)du

Ou.s(v),

Jo.
Jo

K (%52) ds

o K (¥72) ds

lim
T—o0

JK(u) (5(h,u +x)— ﬁg(hu + x)) du

JK(uw)p(h'u+ z)du

Oa.s.(v)v

Xs—x
h/

K (

Jy & (
Jo
% JK@)p(h'u+ 2)o(h'v + z)du

J K(u)¢(hu + z)du

)u

XS}:I) ds

(Xy)ds
lim
T—o0
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and

|tn — | = Oas. (V).
Then, for all % > n > 0, there exists v > 0, T, 7 and £ > 0 such that for 7 > T and 7 > n we obtain

sup sup Oy — | <7 a.s. (39)
hE€M 7 5 (e) b/ €{b:lh—b|<~} ’

In consequence, we only need to show that for some n > n and T > T there exists an arbitrarily small
such that

(32) — pl
p- f e (Xs)ds
< sup|(32) — B 70 ( o ) (40)
T’n n T ”f() ( n T ) dS
+ sup hy o [,I,‘ (41)
hEHf’ ( '
< & (42)

But (40) and (41) can be bounded by § = ¢ using (34) and (38) above, thereby giving (42). We now turn
o (33). Each component of the vector (33) converges to zero almost surely (as n,T — oo) by the law of
large numbers for martingale difference arrays (c.f. the proof of Theorem 5) along with the requirement
that En,T(T, x)hy, %3 00. This proves the stated result.

Proof of Theorem 5 Write the estimation error decomposition as

First, we concentrate on (33). Write

1 T Xia, p—@
sup T S K (TR) o(X)dB, A h K

n An,T n Xin, p—*
hy, 7 Zi:l K ( hy, 7 hy 7 fO hy, 7 ds

| T () 70, 7 () ot

n - iy, T
per K (T =) s K (3

Ve K (2520) o(X,)dB,

Xin —x
n,T n 1D T
Dy JE

(ijTw) o (X.)dB,

IN

)ds

= Ou (VB 081/ B B (T0) ) (83

+sup

n

which follows from the continuity of the kernel function (from Assumption 2) and Theorem 3 (i) for a fixed
h,, 7. We now derive the limiting distribution of

\/7 fo ( h,r ) o (Xs)dB;

s K () s
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We wish to show that

L [TK(%=2)o(xX,)dB
h,,, s s
T o P U ()

n,T'— oo
’ 1 T Xs—x
\/hn,T fo K ( h, 1 ) ds

= 0

—-E

A (N (O,a(x) ( / K (u) du) d))]

for any bounded and continuous function A. As earlier, we need to prove that for any ¢ > 0, there exists
€>0,n>0and T > 0 such that, for "> T, n > n and h€Hz (), we obtain

w [ [A <f K () a<Xs>st)]
()

e VLK (5 d

R (N <O Jora K2 (u) a(u{l + 2)p(uh + x)du) >] |
, J K (u) p(uh + z)du
< 5 (49
“ f%d K? (u) a(uh + m)%(uh +z)du B A o d
heri(s) B (N <0, fK(u)g(uh—l-x)du >> B (N(()’ (=) </ER K () d ) >‘|'
< 5 (15)
where
HT,n(E) = {h s max (E(n,T)(Ta x)\/An,T IOg (1/An,T)v 1/E(n,T) (Tv .’E)) /5 < hd <g,
hd+4 < €/E(n,T) (Ta 1‘)},
Hrn(e) = {h:max (E(m (T, x)\/AmT log (1/Ap.7), 1/ Lo y/(T, x)) Je < hd <e,

hitt < J/Z(n,T)(T,w) for some J}.

Expression (45) is immediate given the continuity of the diffusion matrix and invariant measure. As for
(44), as earlier we need to show that for all % > n > 0, there exists v > 0, T'> 0, n > 0 and € > 0 so that,
for T'> T and n > n, we obtain

L [TK (X52) o(X,)dB
7 JO h’ s s
sup sup E|A Vi ( )

heH 7 () k' €{b:lh—b|<~} 1 T Xs—x
7 \/h, Jy K (%) ds

. {/\ (%[QTK (X472) o-(XS)st)
Vi I (552 ds

< (46)
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sup sup E

heH s (e) h'€{b:lh—b|<~}

\ <N (0’ JK? (u (uh + z)p(uh + x)du) )]
[ K (u) ¢(uh + z)du

—E [ <N (0’ JK? (u) a(uh;—i- z)p(uh’ + x)du))
[ K (u) ¢(uh’ + z)du
o (47)
and
f o(X;)dBg
o 1| 2 < )
o ()
—-E )M N fK2 (Uh +$)¢(uh + x)du
fK é(uh; + z)du
< n. (48)

We start with (48). We simply need to prove that

(49)

ﬁ foT K (%57) 0(X,)dB, N ( K2 (u (uh + 2)d(uh + x)du)
VE I K () s RS+

pointwise, i.e. for every h €Hz _(¢), as we proceed to illustrate. Consider the generic element g of the

d—vector .
1 X
sl (
vh Jo

T —
%/ K( m)Zagj )dBI 1< g<d.
0

Define the sequence of martingales

I —x
Mg — 7/ ( > E o dBj
" vh Jo o {

x) o(X,)dBs,.

ie.

Its quadratic variation is

1 X, — 1) —
[MT)9), = E/0 K2 (h ) > op;(Xo)ds
j=1

Clearly, [M(™9), = 0o VT. Call 7(7) the time-change associated with [M(T9] and 79 the Dambis,
Dubins-Schwarz Brownian motion of M(™)9 (see, e.g., Revuz and Yor (1998), Theorem 1.6, page 173),
then

M9 = By, £ N(0, [MT9],).

In consequence,

(T) (T)
TM 4N <o, - T[M Xlx )
\/% In K(—Xshﬂ”)ds s Jo K(T) ds



But, by the Quotient limit theorem, we obtain

[M(T)g]l
W foT K (%47%) ds
Lo K2 (550 Syt o2 (X)) ds
i foT K (%47%) ds
a.s. J K (u) (27:1 o2 (x+ Uh)) é(x + uh)du

J K (u) ¢(x + uh)du

This proves the result for a generic element g. We now turn to the multivariate case. Write
M 1
1T Xo— B 1T X.—
VER K52y K (S52) ds

where the generic MT(T)g was defined earlier. Using the same procedure as above, we can prove that

ro

(M A2, 2,

IS M),y K @SS 073 G ub) o o 4 ) o b ubde
1.8 _ ,s=1,...,d.

\/% Jo K (X572) ds J K (u) ¢(z + uh)du

h
We now orthogonalize the martingales in MgT) by writing
C/(z:) (MT(T)17MT§T)27 “.7M7€T)d) _ (MiT)1>M£T)2, m’MiT)d)

where C(z) is a d X d matrix such that

(@) (f K? (u) a(uh + x)¢(uh + x)du) Clx) =A(2)

J K (u) ¢(uh + z)du

b(z)

with A(x) diagonal. C(x) and A(z) are the matrices containing the eigenvectors and eigenvalues of b(z),
respectively. We can now apply a variation of the multivariate limiting Knight Theorem (see, e.g., Revuz
and Yor (1998), Corollary 2.4, page 497) since

{M(T)f M(T)S}

)
n

» {M(T)f : M(T)S}

b foT K (%52 ds g foT K (%452) ds

= 0.

Then,

I ()2 (T)d
@Q,M&,li):BM@L

1
Vi TR (552 ds

where B is a d—dimensional Brownian motion, which implies

o () (a e )

VI K (S5 ds

in (f K? (u) a(uh + )¢(uh + x)du)
J K (u) ¢(uh + z)du ’
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but this proves (49). The proof of (47) is straightforward by the continuity of the diffusion function and
invariant measure. To prove (46) we notice that A is continuous and bounded with modulus of continuity

o

() e\ [ K () o (xaBs
VERTK () o VoK () i
<l (FELEK (Xz:ﬂ”)a(XS)dBS’7
Ve RS e
| R ) e aB, ) K (K57 o(X)dB,
V&ﬁK@ﬂNS ¢ﬁgK&ﬂms
< opyp || T K o (XB, J) K (N57%) o(X.)aB,
\/ fo (%4 )ds \/Wfo K (%5%) ds
< o |E i Jo X (ﬁ?””)a(Xs)st L TR (%472) o(X.)dB,

Vi K

1
NI

tha:) ds

But we know that

ViTK

K (%72) o(X,)dB,

Vi K (X2 ds

for all 0 < h < oo, giving the desired result. Now write

thzrz) ds

1 T Xin, p—% o (X, .
E [\ JTTIT/"K( Bn, 7 ) (X,)dB _E A(N (07 (/kz(u)du)da(x)»] (50)
BRI K (Tt
< up E |\ FfT/n ( Li:";ﬂ)a(XS)st —E |\ \/EITK(%> o(X;)dB; 511
:;Ez 1K( lAZ: l) \/th hT_L)dS
su %fO K (¥57%) o(X,)dB, - ( ( u) du ax>>
+he”fi(8) S \/%foTK Xe=r) g EANLO, (/KQ( )d ) (2) .(52)

Formulae (51) and (52) are bounded by an arbitrarily small number, § (< 6) say, for n > n and T > T
provided 7 and T are chosen accurately, using (44), (45) and (43). This implies that (50) can be bounded
by € giving the weak convergence result in the statement of the theorem.

We now turn to the bias term. Write

v b IS KRS (1, (@) — 1y (1)) Ola)da
n [ K (457) é(a)da |

by the Quotient limit Theorem. But,



h fmd ( ) (/‘g (a) ~”g (:c)) g(a)da
h fmd ( h ) ¢(a)da
Joa K(w) ( (z + Uh) — gy (z ) 5(3: + uh)du

f%d x—i—uh)d
eI >{hzz 18“2” w302y S s + o] [3(@) + BT, %0 + o] du
Joa Ty Rls) [B(2) + h 0L 2650 + o] du

] Op,(x x F} x
Jo TI o) [ S0 22 280002 4 2L 520 a0 50102
fiﬁd H?:l k(ul) [¢($ + hzi:1 dgif) u; + 0} du
) d(b(l) d 82

= </9R ) Zaﬂagxz % *Z &raxz (5

by the symmetry of the kernel function. Thus,

bias,(x) = h? < /m ) Z 8% NM Xd:a;xlaxl . (54)

3?

This proves the stated result.

Proof of Theorem 6 Using Itd’s lemma, write

’

(Xsnans — Xianr) (Xs0)anr — Xin, 1)

(L-'rl)Ay1 T
= / Dx(Xs — Xin, ) ® pu(X;)ds
iAn,T

(Z+1)AW‘T
+/ DX (Xs - XiAn.T) ® U(XS)st
iAn)T

(i+1)An, T
+/ a(X;)ds,
iAn,T

where Dx(u) is a d X d array of 1 x d vectors. The i-th element of the mn-th vector is given by

((z—y)(z—y)
% We use the duplication matrix, i.e., the unique d? x (d(d + 1))/2 matrix D so that

DvechA = vecA

for a generic symmetric matrix A, to knock A down to non-redundant elements by stacking its upper
triangular components. Now write
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vecha, r(x)

] Zn 1 K ( iAn, T :c) (+1)An, D (X — XiAn,T) X H(Xs)ds

= wvech A — PN
i n,T
n,T Ez IK( h, r )
(1 T (FR) O Dx(X. — Xia, 0) 8 0(X.)4B,
+vec A mnT x
5 Z’L lK
L SR (M) S e
1Ay,
+vech A N Ta:
n i n,T
T Zz 1K( h, r )

= wechW¥ + vech¥y + vechWs.

. . hy 7Ly, (T,
The term vechW, averages martingale difference sequences and converges to zero at speed ”’T+TT(I)

(c.f. the proof of Theorem 7). The term vechW; is clearly so that

A,
vech®Wq = 04.5.(vechWa) = 04 . S N
hn,TLn,T(Ta 1‘)

As for vechW3, the same steps as in the proof of Theorem 3 allow us to show that

vech®3 3 vecha(x)

provided (A, log(l/An,T))l/2 E,L,T(T7 z)/h, 7 “3 0, but this proves the stated result.

Proof of Theorem 7 We can write the estimation error decomposition as

vecha, r(x) — vecha(x)
= wvech¥3 — vecha(z) + vech¥; + vech¥,. (55)

We use the same procedure as in Theorem 5, i.e., we orthogonalize the vector of martingales vechW, and
apply the asymptotic multivariate Knight theorem to show that

hy, 7 L1 (T,
%(z)vech\llg = N (0,K,Pp (2a(z) ® a(z)) Pp), (56)
n,T

where
(o)

Pp = (Db)_1 D

and

is the Moore-Penrose generalized inverse of D (see, e.g., Magnus and Neudecker (1988)). Also, we note
that

A'n/
vech¥| = 04 6. S S (57)
hn,TLn,T(Ta IIJ)

and, using the derivations leading to (54) above, that
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vechW3 — vecha(z) = vechs(x)

where s(z) is the d x d matrix with elements

3~(m)

sij(x) = h2 1 (/ ) (Z 3%@;]6 z) 3 Z Zé:aj:axk) ij=(1,1), 0 (dd). (58

We obtain the stated result by combining the estimation error decomposition in (55) with (56), (57), and
(58).

37



References

[1]

[2]

Att-Sahalia, Y., 2008. Closed-form likelihood expansions for multivariate diffusions. Annals
of Statistics 36, 906-937.

Ait-Sahalia, Y., L.P. Hansen, and J. Scheinkman, 2008. Operator methods for continuous-
time Markov processes. In Handbook of Financial Econometrics (Y. Ait-Sahalia and L. P.
Hansen, eds.) Elsevier, forthcoming.

Azéma, J., M. Kaplan-Duflo, and D. Revuz, 1966. Mesure invariante sur les classes récurrentes
des processus de Markov. Zeitschrift fiir Wahrscheinlichkeitstheorie und Verwandte Gebiete
8, 157-181.

Bandi, F.M. and P.C.B. Phillips, 2003. Fully nonparametric estimation of scalar diffusion
models. Econometrica 71, 241-283.

Bandi, F.M. and P.C.B. Phillips, 2008. Nonstationary continuous-time models. In Handbook
of Financial Econometrics (Y. Ait-Sahalia and L. P. Hansen, eds.) Elsevier, forthcoming.

Bickel, P.J. and M. Rosenblatt, 1973. On some global measures of the deviations of density
function estimates. Annals of Statistics 1, 1071-1095.

Bosq, D., 1998. Nonparametric Statistics for Stochastic Processes. Springer-Verlag.

Boudoukh, J., M. Richardson, R. Stanton, and R.F. Whitelaw, 2003. The stochastic behavior
of interest rates: implications from a nonlinear, continuous-time, multifactor model. Working

paper.

Brugiere, P.; 1991. Estimation de la variance d’un processus de diffusion dans le cas multidi-
mensionnel. C. R. Acad. Sci. Paris Série I 312, 999-1004.

Brugiére, P., 1993. Théoréme de limite centrale pour un estimateur nonparamétrique de
la variance d’un processus de diffusion multidimensionnelle. Ann. Inst. Henri Poincaré 29,
357-389.

Cai, Z. and Y. Hong, 2003. Nonparametric methods in continuous-time finance: A selective
review. In Recent Advances and Trends in Nonparametric Statistics (M. G. Akritas and D.
N. Politis, eds.) Elsevier, 283-302.

Chen, X. and L.P. Hansen, 2002. Dependence properties of multivariate reversible diffusions.
Working paper.

Darling, D.A. and M. Kac, 1957. On occupation times for Markoff processes. Transactions
of the American Mathematical Society 84, 444-458.

Fan, J., 1992. Design-adaptive nonparametric regression. Journal of the American Statistical
Association 87, 998-1004.

Fan, J., 2005. A selective overview of nonparametric methods in financial econometrics.
Statistical Science 20, 317-337.

38



[16]

[17]

[18]

[19]

[27]

[28]

[29]

Fan, J. and C. Zhang, 2003. A re-examination of diffusion estimators with applications to
financial model validation. Journal of the American Statistical Association 98, 118-134.

Fan, Y., 1994. Testing the goodness of fit of a parametric density function by kernel method.
Econometric Theory 10, 316-356.

Florens-Zmirou, D., 1993. On estimating the diffusion coefficient from discrete observations.
Journal of Applied Probability 30, 790-804.

Gallant, R. and G. Tauchen, 2008. Simulated methods and indirect inference for continuous-
time models. In Handbook of Financial Econometrics (Y. Ait-Sahalia and L.P. Hansen, eds.)
Elsevier, forthcoming.

Geman, D. and J. Horowitz, 1980. Occupation densities. Annals of Probability 8, 1-67.

Genon-Catalot, V. and J. Jacod, 1993. On the estimation of the diffusion coefficient for
multi-dimensional diffusion processes. Ann. Inst. H. Poincaré Probab. Statist. 29, 119-151.

Guerre, E., 2007. Design-adaptive point-wise nonparametric regression estimation for recur-
rent Markov time series. Working paper.

Jiang, G.J. and J. Knight, 1999. Finite sample comparison of alternative estimators of It
diffusion processes: a Monte-Carlo study. Journal of Computational Finance 2, 5-38.

Johannes, M. and N. Polson, 2008. MCMC methods for financial econometrics. In Handbook
of Financial Econometrics (Y. Ait-Sahalia and L.P. Hansen, eds.) Elsevier, forthcoming.

Kallianpur, G. and H. Robbins, 1953. Ergodic properties of the Brownian motion Process.
Proc. Nat. Acad. 39, 525-533.

Karatzas, I. and S. E. Shreve, 1988. Brownian Motion and Stochastic Calculus. Springer-
Verlag.

Karlsen, H.A. and D. Tjgstheim, 2001. Nonparametric estimation in null recurrent time
series. Annals of Statistics 29, 372-416.

Karlsen, H.A., T. Myklebust, and D. Tjgstheim, 2007. Nonparametric estimation in a non-
linear cointegrating type model. Annals of Statistics 35, 252-299.

Kasahara, Y., 1975. Spectral theory of generalized second order differential operators and its
applications to Markov processes. Japan J. Math. 1, 67-84.

Kaspi, H. and A. Mandelbaum, 1994. On Harris recurrence in continuous time. Mathematics
of Operation Research 19, 211-222.

Kliemann, W., 1983. Transience, recurrence and invariant measures for diffusions. In Non-
linear Stochastic Problems (R.S. Bucy and M.F. Moura, eds.) Reidel Publishing Company,
437-454.

Magnus, J. R. and H. Neudecker, 1988. Matriz Differential Calculus with Applications in
Statistics and Econometrics. Wiley.

39



Masry, E., 1996a. Multivariate local polynomial regression for time series: uniform strong
consistency and rates. Journal of Time Series Analysis 17, 571-599.

Masry, E., 1996b. Multivariate regression estimation: local polynomial fitting for time series.
Journal of Stochastic Processes and their Applications 65, 81-101.

McKean, H. P.; 1969. Stochastic Integrals. Springer-Verlag.

Meyn, S. P. and R. L. Tweedie, 1993. Stability of Markovian processes II. Continuous-time
processes and sampled chains. Advances in Applied Probability 25, 487-517.

Moloche, G., 2004. Local nonparametric estimation of scalar diffusions. Working paper.

Moloche, G., 2004b. Kernel regression for non-stationary Harris recurrent processes. Working
paper.

Pagan, A. and A. Ullah, 1999. Nonparametric Econometrics. Cambridge University Press.
Park, J., 2006. Spatial analysis of time series. Working paper.

Phillips, P.C.B. and J. Park, 1998. Nonstationary density estimation and kernel autoregres-
sion. Working paper.

Revuz, D. and M. Yor, 1998. Continuous Martingales and Brownian Motion, Springer-Verlag.

Stanton, R., 1997. A nonparametric model of term structure dynamics and the market price
of interest rate risk. Journal of Finance 52, 1973-2002.

Wang, Q., and P.C.B. Phillips, 2008. Structural nonparametric cointegrating regression.
Working paper.

Wang, Q., and P.C.B. Phillips, 2009. Asymptotic theory for local time density estimation
and nonparametric cointegrating regression. Econometric Theory, forthcoming.

40



