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Abstract

We propose a fully nonparametric estimation theory for the drift vector and the di¤usion
matrix of multivariate di¤usion processes. The estimators are sample analogues to in�ni-
tesimal conditional expectations constructed as Nadaraya-Watson kernel averages. Minimal
assumptions are imposed on the statistical properties of the multivariate system to obtain
limiting results. Harris recurrence is all that we require to show strong consistency and as-
ymptotic (mixed) normality of the functional estimates. Hence, the estimation method and
asymptotic theory apply to both stationary and nonstationary multivariate di¤usion processes
of the recurrent type.
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1 Introduction

The estimation of stochastic di¤erential equations, often conducted in conjunction with the study

of valuation models for derivative securities, has drawn substantial attention in recent years. Para-

metric, semiparametric, and nonparametric estimation methods for scalar di¤usion processes are

now well established under a variety of assumptions on the statistical properties of the underly-

ing continuous-time series (see, e.g., the review papers by Aït-Sahalia et al. (2008), Bandi and

Phillips (2008), Cai and Hong (2003), Fan (2005), Gallant and Tauchen (2008), and Johannes and

Polson (2008) for discussions).

Increasing the dimensionality of the system poses substantial complications to the economet-

rics of continuous-time models. While existing methods allow us to deal rather e¢ ciently with

involved parametric speci�cations for multivariate di¤usions (see, e.g., Aït-Sahalia, 2008, and

the references therein), less progress has been made in the nonparametric estimation of multidi-

mensional speci�cations for continuous-time models of the di¤usion type. Such a development

appears to be important in virtue of the robustness to potential misspeci�cations o¤ered by fully

functional estimation methods as well as their descriptive power and usefulness in building more

accurate parametric models.

As is well-known, the dynamic evolution of a multivariate di¤usion process depends on the

form of its drift vector and di¤usion matrix. Importantly, the drift and di¤usion have in�nites-

imal (�rst and second) conditional moment de�nitions which lend themselves to nonparametric

kernel estimation. Sample analogues to the in�nitesimal �rst and second moment can therefore

be constructed by employing, among other methods, classical Nadaraya-Watson kernel estimates.

Importantly, when dealing with multidimensional di¤usion processes, a complete theory of infer-

ence for these traditional estimates has yet to be established, to the best of our knowledge, even

in the stationary case.

To this extent, this paper derives the limiting properties of Nadaraya-Watson kernel estimates

of the drift vector and di¤usion matrix of a multivariate di¤usion process under Harris recurrence.

Harris recurrence is known to be a milder assumption than stationarity and mixing (see, e.g.,

Meyn and Tweedie (1993)). Intuitively, it solely requires the continuous trajectory of the process

to visit sets of non-zero Lebesgue measure in its admissible range an in�nite number of times over

time. Thus, it represents a su¢ cient condition for local identi�cation, as we show formally below.

Harris recurrent processes may be strictly stationary, stationary in the limit (ergodic or positive

recurrent), or nonstationary (null recurrent).

The asymptotic behavior of the drift and di¤usion estimators is examined as the observation

frequency increases (in�ll asymptotics) and as the time span lengthens (long span asymptotics).
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We prove strong consistency of the functional estimates and convergence to mixtures of normal

laws, where the mixing variates depend on a random object which drives the convergence rates

of the functional estimates and whose divergence properties depend on the speci�c process being

considered. Such a random object is, in general, not a chronological local time as in the scalar dif-

fusion case examined elsewhere (Bandi and Phillips (2003), BP henceforth, and Moloche (2004)).

Nevertheless, it can be interpreted as an estimate of the density of the occupation time measure

of the underlying process, where the latter represents the amount of time spent by the process in

a certain spatial set of non-zero Lebesgue measure. Unlike the concept of local time, the notion of

occupation density extends to the multivariate framework (see, e.g., Geman and Horowitz (1980)).

Of course, when the dimensionality of the problem collapses to one, the random object driving

the rates of convergence of the nonparametric estimates is indeed a chronological local time.

From a technical standpoint, the non-existence of a notion of local time for multivariate contin-

uous semimartingales represents a considerable theoretical di¢ culty to overcome when studying

nonparametric kernel estimation for multidimensional di¤usion processes under potential nonsta-

tionarities. This paper provides a solution to this problem while o¤ering additional insights about

the simpler scalar di¤usion case which, as discussed, may be viewed as a sub-case of our more

general theory of inference.

Relaxing stationarity for identi�cation is theoretically and empirically important. We show

that the dimensionality of the problem has a two-fold e¤ect on the rate of convergence of the

functional estimates when the system is nonstationary. The �rst e¤ect is coherent with the con-

ventional "curse of dimensionality" resulting from the estimation of conditional expectations in

multivariate discrete-time frameworks under stationarity. The second e¤ect operates through the

random quantity which drives the rates of convergence of the functional estimates and, as empha-

sized earlier, may be interpreted as an estimate of the density of the occupation measure of the

process. This quantity inherits the divergence rate of the occupation measure. The occupation

measure is known to diverge linearly with the time span when examining positive Harris recur-

rent (ergodic) Markov processes of any dimension. However, the dimensionality of the system

a¤ects negatively its divergence rate in the null recurrent (nonstationary) case, thereby deliver-

ing an additional curse of dimensionality which is a genuine by-product of the mildness of our

assumptions. We call this double e¤ect "double course of dimensionality." We emphasize that

the double curse of dimensionality is not speci�c to the use of functional methods for multivari-

ate, potentially nonstationary, di¤usion processes. We expect the same e¤ect to arise from the

functional estimation of multivariate, nonstationary processes in discrete time should the adopted

asymptotic theory allow for general recurrent dynamics. Research on the use of recurrence as an
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identifying assumption appears warranted in discrete time as well. It is, as in the continuous-time

case, still in its infancy. Fundamental progress in discrete time has been made by, e.g., Guerre

(2007), Karlsen and Tjøstheim (2001), Karlsen et al. (2007), and Moloche (2004b). We refer the

reader to Park and Phillips (1998), Wang and Phillips (2008, 2009), and the reference therein for

a promising alternative approach based on Skorohod embedding and nonlinear transformations

of the embedded process.

Previous, stimulating work on the functional estimation of multivariate di¤usion processes has

largely focused on the di¤usion matrix. Brugiére (1991) extends the nonparametric estimator of

the second in�nitesimal moment suggested by Florens-Zmirou (1993) in the scalar case to a sys-

tem of di¤usions and provides a proof of consistency in probability (see, also, Genon-Catalot and

Jacod, 2003). In follow-up work, Brugiére (1993) derives the limiting distribution of his estimator

and shows asymptotic normality. Importantly, the methodology in Brugiére (1991,1993) does not

rest on stationarity. However, his limiting results are derived using increasing frequencies over a

�xed span of data. Hence, the methods cannot be extended to drift estimation since identi�cation

of the drift necessitates an asymptotically enlarging data span. Boudoukh et al. (2003) extend the

univariate procedure in Stanton (1997) to propose nonparametric kernel analogues to drift and

di¤usion matrices for multidimensional di¤usions. The asymptotic properties of their proposed

Nadaraya-Watson-style estimators are not discussed, thereby rendering statistical inference di¢ -

cult to implement and interpret in their framework. Downing (2003) evaluates the �nite-sample

properties of Boudouck et al.�s approach through simulations.

The paper is organized as follows. Section 2 introduces the model and the nonparametric

estimates. Section 3 discusses Harris recurrence for multidimensional di¤usion processes. Section

4 presents important preliminaries about Harris recurrent processes. These results are used in

the development of our limit theory. In Section 5 we discuss our asymptotic �ndings. Section

6 concludes. Proofs and technical details are in the Appendix. In what follows, the symbols

), a:s:! and : d= stand for weak convergence, convergence with probability one, and distributional

equivalence, respectively. When applied to a generic matrix A the operator vec stacks the column

of A. The symbols 
 and 1B denote the Kronecker product and the indicator function of the set
B, respectively.

2 Description of the model and estimators

Consider the probability space (
;=; P ) ; the �ltration of sub-�-�elds =t, and the continuous
adapted process fXt;=t; 0 � t <1g with
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Xt = X0 +

Z t

0
� (Xs) ds+

Z t

0
� (Xs) dBs; (1)

where X0 is a given initial condition, B = fBt;=t; 0 � t <1g is an m-dimensional standard
Brownian motion, �(:) = f�i(:)g1�i�d is a d � 1 Borel measurable drift vector and �(:) =
f�ij(:)g 1�i�d

1�j�m
is a d � m Borel measurable matrix. Assume X0 is taken to be independent of

B and Xt takes values in I � Rd. Each coordinate Xi
t of the process can be written as

Xi
t = X

i
0 +

Z t

0
�i (Xs) ds+

mX
j=1

Z t

0
�ij (Xs) dB

j
s ; 0 � t <1; 1 � i � d: (2)

De�ne the d� d symmetric and non-negative (di¤usion) matrix a (x) = � (x)� (x)0 with generic
element aij(x) =

Pm
s=1 �is (x)�sj (x) 1 � i � d; 1 � j � d; 8x 2 I � Rd. Write the conditional

expectation on x, where x = (x1; x2; :::; xd) is a d-dimensional initial condition, as Ex [:]. Hence,

the drift vector �(:) and the di¤usion matrix a (:) have classical representations in terms of

in�nitesimal conditional moments, i.e.,

Ex
�
Xi
t � xi

�
= t�i (x) + o (t)

Ex
h�
Xi
t � xi

� �
Xj
t � xj

�i
= taij (x) + o (t) ,

as t # 0 (see, e.g., Karatzas and Shreve (1991)).
Now assume the process fXt : t � 0g is sampled at equispaced times ft = t1; t2; ::; tng in the

interval [0; T ], where T is a strictly positive number. It readily follows that fXt = X�n;T ;

X2�n;T ; X3�n;T ; :::; Xn�n;T g are n observations on the process Xt at ft1 = �n;T ; t2 = 2�n;T ; t3 =
3�n;T ; :::; tn = n�n;T g, where �n;T = T=n.

We estimate the drift vector �(x) and the di¤usion matrix a(x) 8x 2 I � Rd by employing

b�n;T (x) = 1

�n;T

Pn�1
k=1Khn;T

�
Xk�n;T � x

� �
X(k+1)�n;T �Xk�n;T

�
Pn
k=1Khn;T

�
Xk�n;T � x

� (3)

and

ban;T (x) = 1

�n;T

Pn�1
k=1Khn;T

�
Xk�n;T � x

� �
X(k+1)�n;T �Xk�n;T

��
X(k+1)�n;T �Xk�n;T

�0
Pn
k=1Khn;T

�
Xk�n;T � x

� ; (4)

where Kh(Xk�n;T � x) = 1
hd

Qd
i=1 k

�
Xi
k�n;T

�xi

h

�
is a product kernel function whose properties

are laid out in Assumption 2 below and hn;T is a bandwidth sequence. The estimators in Eq. (3)

and Eq. (4) belong to the general class of Nadaraya-Watson kernel estimators (see, e.g., Pagan

and Ullah (1999)). They are multidimensional counterparts of those discussed in BP (2003). In
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light of the absence of a notion of local time (and corresponding theory), our analysis of the

more compelling (from an empirical and theoretical standpoint) multivariate case poses technical

complications which, as said, were absent in the scalar case.

Our limiting results will yield strong consistency and asymptotic mixed normality of the esti-

mates in an asymptotic design which lets the time span increase without bound (T ! 1) with
a distance between observations going to zero (�n;T = T=n ! 0). The former assumption (long

span asymptotics) is necessary for drift estimation. The latter (in�ll asymptotics) is important to

approximate the continuous trajectory of the process with a sample of discretely-sampled obser-

vations while replicating the in�nitesimal properties of the relevant moments. More generally, the

assumption is crucial for nonparametric identi�cation in the absence of a time-invariant stationary

density.

We view our asymptotic design as a realistic approximation in �elds, such as �nance, where

data sets comprise observations sampled at relatively high frequencies over su¢ ciently long spans

of time. To this extent, several simulation studies (see, e.g., Jiang and Knight (1999)) have shown

that daily data, for instance, are valid approximations to frequent observations for nonparametric

estimators relying on frequent observations. Higher than daily frequencies are also now available

(in �nance, for instance), albeit over generally shorter time spans. The use of intradaily data,

however, poses (microstructure-related) issues which are beyond the scopes of the present paper.

3 Harris Recurrence

This section discusses our assumed conditions on the underlying continuous-time process. Under

Assumption 1 (a), the d-dimensional process fXt : t � 0g in (1) exists and is unique up to null
sets. Under Assumption 1 (b), the process is Harris recurrent. Assumption 1 (a) and (b) are

su¢ cient for the derivation of our limiting results.

Assumption 1 (c) implies positive recurrence (ergodicity) and simply strengthens Assumption

1 (b). While Assumption 1 (c) is not necessary, it will be interesting to specialize our results to

the more familiar case of positive recurrent or strictly stationary processes.

Assumption 1

(a) �(:) and �(:) are time-homogeneous, B-measurable functions on I � Rd where B is the

�-�eld generated by Borel sets on I. Both functions satisfy local Lipschitz and linear growth

conditions. Thus, for H > 0 there exists constants C1(H) and C2(H) such that

jj�(x)� �(y)jj+ jj�(x)� �(y)jj � C1(H)jjx� yjj;
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and

jj�(x)jj+ jj�(x)jj � C2(H)f1 + jjxjjg;

where jj�jj2 =
Pd
i=1

Pm
j=1 �

2
ij and jj�jj2 =

Pd
i=1 �

2
i :

(b) (Recurrence) Denote the closure of a generic set A by A. Assume that, for every open and

bounded set A � I,
min
x2A

aii(x) > 0

for some 1 � i � d. De�ne the second-order elliptic operator

L'(:) =

dX
i=1

�i(:)
@'(:)

@xi
+
1

2

dX
i=1

dX
k=1

aik (:)
@'(:)

@xi@xk
:

There is a function '(:) : Rdn f0g ! R of class C2 in the domain of the operator that

satis�es

L'(:) � 0 on Rdn f0g

and is such that 	(r) := minjjxjj=r '(:) is strictly increasing with limr!1 	(r) = 1 (c.f.

Karatzas and Shreve, 1991, Exercise 7.13, part (i), page 370).

(c) (Positive recurrence) There is a function '(:) : Rdn f0g ! R of class C2 in the domain of

the operator that satis�es

L'(:) � �1 on Rdn f0g ;

and is such that 	(r) := minjjxjj=r '(:) is strictly increasing with limr!1 	(r) = 1 (c.f.

Karatzas and Shreve, 1991, Exercise 7.13, part (ii), page 370).

Let A be a measurable set of I � Rd and de�ne �A = inf
�
t � 0 : Xt 2 A

	
; i.e., the �rst

hitting time of the closure A. The process Xt is null Harris recurrent if P x
�
�A <1

�
= 1 for

every x 2 InA. The process Xt is positive Harris recurrent if Ex
�
�A
�
<1 for every x 2 InA.

Assume X(x) is the unique strong solution of (1) with initial condition X(x)
0 = x 2 I � Rd,

then the measure � is invariant for (1) if and only if

�(A) =

Z
I
P
�
X
(x)
t 2 A

�
�(dx) 8A 2 B (I)

for every 0 � t < 1 (see, e.g., Karatzas and Shreve (1991), Exercise 6.18, page 362). Harris

recurrence is a su¢ cient condition for the existence of a �-�nite invariant measure. This measure
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is unique up to multiplication by a constant. If the invariant measure can be normalized to

a probability measure, then we say that the process is positive Harris recurrent as implied by

Assumption 1 (c) above. Otherwise, the process is null Harris recurrent (and nonstationary).

For illustration, consider the scalar case (d = 1). The "speed measure," i.e.,

m(dx) =
2dx

� 0(x)�2(x)
8x 2 I � R

where �(:) is the "scale function," i.e.,

Z x

c
exp

�
�2
Z �

c

�(")

�2(")
d"

�
d� 8x 2 I � R

is the unique invariant measure for some c 2 I. Under positive recurrence, the process admits
a time-invariant probability measure (to which it converges) and the normalized speed measure,

i.e., m(dx)=m(I) = p(dx); is the time-invariant probability measure of X, namely

lim
t!1

P x(Xt < u) =
m((l; u))

m(I)
8x; u 2 I � R; (5)

c.f. Karatzas and Shreve (1991, Exercise 5.40, page 353). Scalar Brownian motion and Brown-

ian motion on the plane are classical examples of univariate and bivariate null Harris recurrent

di¤usion processes. In higher dimensions Brownian motion is not recurrent. Hence, while Har-

ris recurrence might not apply to certain highly-dimensional nonstationary systems,1 it does of

course apply to all strictly stationary or ergodic systems regardless of their linearity properties

and dimensionality.2 As discussed, Harris recurrence is a weaker assumption than stationarity

and mixing (see, e.g., Meyne and Tweedie (1993)). In general, it is in fact the weakest assumption

that one could impose to show point-wise identi�cation of nonparametric estimates.3 Intuitively,

point-wise identi�cation requires returns of the sample path of the process to local neighborhoods.

This is precisely what Harris recurrence yields.

1Chen and Hansen (2002) provide an example of multidimensional di¤usion displaying various recurrence prop-
erties depending on the relation between dimensionality of the system and parameters of the invariant measure
and di¤usion function. Assume �(dx) = c1(1 + jjxjj2)�#dx and a(x) = c2(1 + jjxjj2)�Id , Then, the d-dimensional
di¤usion is null Harris recurrent if d

2
� # � � � 1 + d

2
� �1 + d

2
: It is positive Harris recurrent if # > d

2
and

# � � � 1 + d
2
.

2Thus, the well-known class of multivariate a¢ ne di¤usions (linear drift vector � and linear di¤usion matrix a)
is, trivially, positive recurrent under standard assumptions.

3Di¤usion estimation is an important exception. Since the di¤usion matrix can be estimated over a �xed time
span (see, e.g., Brugiére (1991) and Remark 15 below), recurrence is not required and the process can be transient
for identi�cation. Should the focus be on both the di¤usion matrix and the drift vector (i.e., on the full system�s
dynamics), as in this paper, then recurrence represents a necessary and su¢ cient condition for the identi�cation
of the full system. Similarly, the point-wise estimation of general conditional moments in discrete time requires
recurrence at the minimum.
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4 Preliminaries about Harris recurrent processes

We now present two theorems which will be useful in our subsequent analysis. Both theorems

apply to Harris recurrent continuous-time Markov processes potentially more general than multi-

variate di¤usion processes.

Theorem 1 (The Quotient Limit Theorem) Consider the continuous-time Markov process

Xt de�ned on the �ltered probability space (
;=; (=t)t�0; P ). Assume Xt is Harris recurrent with
invariant measure �. Then, for any Borel measurable pair f(:) and g(:) that is integrable with

respect to �, the ratio of the functionals
R T
0 f(Xs)ds and

R T
0 g(Xs)ds is so that

P x

 
lim
T!1

R T
0 f(Xs)dsR T
0 g(Xs)ds

=
< �; f >

< �; g >

!
= 1; (6)

provided < �; g > =
R
g(x)�(dx) > 0.

Theorem 2 (The Darling-Kac Theorem) Consider the continuous-time Markov process Xt

de�ned on the �ltered probability space (
;=; (=t)t�0; P ). Assume Xt is Harris recurrent with
stationary transition densities and invariant measure �. If, for a given non-negative function

f(:), there exists a function v (s) such that

lim
s!0

1

v(s)
Ex
�Z 1

0
e�stf(Xt)dt

�
= CX

for a positive (process-speci�c) constant CX , and

v(s) =
U(1=s)

s�
0 � � � 1

so that U(1=s) is slowly-varying as s! 0,4 then it follows that

lim
T!1

P x
�

1

CXv (1=T )

Z T

0
f(Xs)ds < u

�
= G�(u); (7)

where

G�(u) =
1

��

Z u

0

1X
j=1

(�1)j�1
j!

sin (��j) �(�j + 1)yj�1dy

and �(:) is the Gamma function.

4A function f : [a;1) ! (0;1), a > 0, is said to be slowly-varying at in�nity in the sense of Karamata if
limx!1 f (�x) =f(x)! 1 for � > 0: The constant function and the logarithmic function are trivially slowly-varying.
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Remark 1 Theorem 1 can be interpreted as an ergodic theorem for potentially nonstationary

continuous-time Markov processes. Integrals with respect to the invariant measure replace stan-

dard integrals with respect to the process� time-invariant probability density. (The interested

reader is referred to Azéma et al. (1966) for additional details.)

Remark 2 Theorem 2 assumes the existence of a regularly-varying function v (:) satisfying

certain properties. For di¤usion processes the existence of this function is guaranteed (see, e.g.,

Kasahara (1975)).

Remark 3 Theorem 2 provides a weak convergence result for additive functionals of potentially-

nonstationary continuous-time Markov processes. The function G�(u) is the cumulative distribu-

tion of the Mittag-Le er density, g�(u). For � = 0 the Mittag-Le er density becomes the expo-

nential density with parameter 1 and G0(u) = 1� e�u with u � 0. For � = 1
2 , the Mittag-Le er

density corresponds to the truncated standard normal density and G 1
2
(u) = 2p

2�

R u
0 e

�y2=2dy with

u � 0.

Remark 4 If f(:) is the characteristic function of the generic set A, then the additive functionalR T
0 f(Xs)ds de�nes the occupation time of the set A, i.e.,

LX(T;A) =
Z T

0
1fXs2Agds:

The Darling-Kac theorem provides the asymptotic distribution of the normalized occupation

times of (possibly multivariate) Harris recurrent Markov processes over measurable sets. Under

Harris (positive or null) recurrence, LX(T;A) ! 1 with probability one 8A � I. The rate of

divergence of the occupation time LX(T; :) is given by the features of the underlying process

through the function v(:). This rate, and the corresponding limiting distribution, are known in

closed-form only for a few processes. In the scalar Brownian motion case, � = 1
2 and U(:) = 1

(i.e., v(1=T ) =
p
T ) yielding

lim
T!1

P x
�

1

CX
p
T

Z T

0
1fXs2Agds < u

�
= G 1

2
(u) =

2p
2�

Z u

0
e�y

2=2dy u � 0:5 (8)

In the planar Brownian motion case, � = 0 and U(:) = log(:) (i.e., v(1=T ) = log T ) yielding,

lim
T!1

P x
�

1

CX log T

Z T

0
1fXs2Agds < u

�
= G0(u) = 1� e�u u � 0: (9)

5The well-known limiting distribution of the local time of a scalar Brownian motion is readily implied by this
result, i.e., 1p

T
LX(T; x) =

1p
T
lim"!0

1
2"

R T
0
1fjXs�xj<"gds )

T!1
jB(1)j = jN(1; 0)j (see, e.g., Revuz and Yor (1998)).
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The weak convergence results in Eq. (8) and Eq. (9) are versions of the Kallianpur-Robbins

Theorem (Kallianpur and Robbins (1953)).

Remark 5 If the process Xt is positive Harris recurrent or strictly stationary, then we obtain

the degenerate case � = 1 and U(:) = 1 (i.e., v(1=T ) = T ) yielding

1

T

Z T

0
f(Xs)ds

p! CX =

Z 1

�1
f(x)p(dx); (10)

which is a weak ergodic theorem. This result can be strengthened to almost sure convergence

using the Quotient limit theorem. Eq. (10) shows that additive functionals of positive Harris

recurrent (and, of course, strictly stationary) processes increase like T (see, e.g., Revuz and

Yor (1998), page 409). While positive recurrent processes have occupation times that increase

linearly with T regardless of their dimension, the dimensionality of the system a¤ects, in general,

the divergence rates of the occupation times of null recurrent process as shown in the previous

remark. This observation will be important to understand the convergence properties of our

functional estimates.

5 Asymptotics

Before discussing our limiting results, we present the assumption on the kernel function K(:)

appearing in the de�nitions of the estimators in Eq. (3) and Eq. (4).

Assumption 2 The function K(x) is a product kernel function �di=1k(x
i). k(:) is a nonnegative,

bounded, continuous, and symmetric function on R with
R
k(s)ds = 1;

R
k2(s)ds < 1; andR

s2k(s)ds <1. Additionally, there exists a nonnegative function D(v; ") such that

jK(x)�K(v)j � D(v; ")jjx� vjj (11)

8 x; v 2 Rd so that jjx� vjj < ". Furthermore,

lim
"!0

Z
D(v; ")dv <1; (12)

and

Z
D(v; ")�(dv) <1 8" <1: (13)

We start with the convergence properties of the averaged kernel function. In what follows, the

symbol e�(x) signi�es �(dx)dx , where � is, as earlier, the invariant measure of the process. We also

write e� (x+ hu) to signify e� �x1 + hu1; :::; xd + hud�, where u; x 2 I � Rd.
11



Theorem 3 De�ne

bLn;T (T; x) = �n;T nX
k=1

Khn;T (Xk�n;T � x) (14)

and suppose that hn;T is such that

bLn;T (T; x) a:s:! 1

and

(�n;T log(1=�n;T ))
1=2 bLn;T (T; x)=hdn;T a:s:! 0 (15)

when n; T !1 so that �n;T ! 0.

(i) Assume T is �xed. Let n ! 1 and �x hn;T . Then, bLn;T (T; x) converges with probability
one to the random process �(T; x; hn;T ) de�ned as

�(T; x; hn;T ) :=

Z T

0
Khn;T (Xs � x)ds 8x 2 I � Rd:

(ii) �(T; x; hn;T ) is such that

�(T; x; hn;T )

v(1=T )
) CX

�Z
K (u) e� (x+ hu) du� g� 8x 2 I � Rd

as hn;T ! h > 0 when n; T ! 1; for some function v(1=T ) which is regularly-varying at
in�nity with parameter � so that 0 � � � 1, where g� is the Mittag-Le er density with the
same parameter �. CX is a process-speci�c constant.

(iii)
�(T; x; hn;T )

v(1=T )
) CXe� (x) g� 8x 2 I � Rd

if n; T !1 and hn;T ! 0 with �n;T ! 0.

(iv) bLn;T (T; x)
v(1=T )

) CXe� (x) g� 8x 2 I � Rd (16)

as hn;T ! 0 with n; T !1 so that �n;T ! 0:

12



Remark 6 (d = 1) In the univariate case, Theorem 3 gives the (almost sure) convergence of

the averaged kernel estimator to the local time of the process (from result (i) with hn;T ! 0

together with a straightforward application of the occupation time formula, see, e.g., Revuz and

Yor (1998, page 222)) as well as a weak convergence result for the local time estimator. The later

result is particularly important since the growth rate of bLn;T (T; x) has been shown to a¤ect the
rate of convergence of the drift and di¤usion function estimators in the case of scalar recurrent

di¤usions (BP (2003)). For further discussions using regular variation the reader is referred to

Moloche (2004). A couple of examples are in order. If X is Brownian motion (i.e., in the 1
2 -null

recurrent situation), then � = 1
2 (c.f. Remark 4 above) and

bLn;T (T; x) = pTOp(1): (17)

If X is positive recurrent (or stationary) as in Remark 5, then � = 1 and

bLn;T (T; x) a:s:! Tp(x): (18)

Similar �ndings were previously discussed by BP (2003) and Moloche (2004). In both papers they

were obtained following di¤erent routes. Moloche (2004) and Park (2006) provide an interesting

discussion of the asymptotic properties of the expected local time and its estimates.

Remark 7 (d > 1) In the more general multivariate case, local time is not de�ned but bLn;T (T; x)
is shown to converge to a random process (c.f. result (i)) whose rate of divergence to in�nity is

driven by a deterministic function of time which is regularly varying at in�nity (c.f. result (iv)). In

particular, the averaged kernel function bLn;T (T; x) has divergence properties which mimic those of
the additive functionals of the underlying process (from Theorem 2 above). This result will prove

particularly important when discussing the convergence properties of the functional estimates of

the drift vector and di¤usion matrix since their rates of convergence will depend on the rate of

divergence of bLn;T (T; x).
Remark 8 (The ergodic and strictly stationary case) Theorem 3 implies that if the

process is positive Harris recurrent, then

1

T
bLn;T (T; x) = 1

n

nX
k=1

Khn;T

�
Xk�n;T � x

� p! p(x) (19)

provided (�n;T log(1=�n;T ))
1=2 T=hdn;T ! 0 as hn;T ! 0 with n; T ! 1 so that �n;T ! 0. As

expected, if the underlying process is endowed with a time-invariant probability measure, then

the standardized averaged kernel function represents a well-de�ned density estimator for every

13



dimension. Formula (19) readily derives from (16). Consistently with Remark 5 above, this result

can be sharpened in the sense that strong consistency can be proved under the same assumptions.

Thus, we obtain a classical result in the nonparametric estimation of multivariate density functions

(see, e.g., the review in Pagan and Ullah (1999)) as a sub-case of the more general theory discussed

in this paper.

5.1 Estimating the drift vector

Theorem 4 and 5 below discuss the consistency and limiting distribution of the drift vector esti-

mator in Eq. (3).

Theorem 4 (Consistency of the drift vector estimator) If

(�n;T log(1=�n;T ))
1=2 bLn;T (T; x)=hdn;T a:s:! 0

and bLn;T (T; x)hdn;T a:s:! 1 as hn;T ! 0 with n; T !1 and �n;T ! 0, then

b�n;T (x) a:s:! �(x) 8x 2 I � Rd:

Theorem 5 (The asymptotic distribution of the drift vector estimator) If

(�n;T log(1=�n;T ))
1=2 bLn;T (T; x)=hdn;T a:s:! 0;

bLn;T (T; x)hdn;T a:s:! 1;

and hn;T = Oa:s:
�bLn;T (T; x)� 1

d+4

�
as hn;T ! 0 with n; T !1 and �n;T ! 0, then

qbLn;T (T; x)hdn;T (b�(x)� �(x)� ��(x))
) (a(x))1=2N

 
0;

�Z
k2 (u) du

�d
I

!
; 8x 2 I � Rd (20)

where

��(x) = (bias1; bias2; :::; biasd)(x);

biasg(x) = h
2
n;T

�Z
s2k(s)ds

�0@ dX
i=1

@�g (x)

@xi

@e�(x)
@xie�(x) + 12

dX
i=1

@2�g (x)

@xi@xi

1A 8g = 1; :::; d;

14



and �(dx) = e�(x)dx is the �-�nite invariant measure of the process. If hd+4n;T
bLn;T (T; x) a:s:! 0 as

hn;T ! 0 with n; T !1 and �n;T ! 0,

(�n;T log(1=�n;T ))
1=2 bLn;T (T; x)=hdn;T a:s:! 0;

and

bLn;T (T; x)hdn;T a:s:! 1;

then

qbLn;T (T; x)hdn;T (b�(x)� �(x))
) (a(x))1=2N

 
0;

�Z
k2 (u) du

�d
I

!
8x 2 I � Rd: (21)

Remark 9 The quantity bLn;T (T; x) plays the same role here played by the number of data
points in the more standard estimation of conditional expectations in the stationary, discrete-

time, context. What matters in our framework is not the speed at which T diverges to in�nity

but rather the speed at which the occupation time of a set diverges to in�nity. For consistency,

we require bLn;T (T; x) a:s:! 1 but this result is guaranteed by the Harris recurrence of the process,

as shown in Theorem 3 above.

Remark 10 The smoothing sequence hn;T has to accommodate the divergence properties of

the quantity bLn;T (T; x) so that hdn;T bLn;T (T; x) a:s:! 1. By virtue of Theorem 3, in the case d = 1,

such a condition collapses to the standard assumption hn;TLX(T; x)
a:s:! 1 8x 2 I � R, where

LX(T; x) is the chronological local time of the process X.

Remark 11 (Bandwidth choice) The asymptotic mean-squared error (AMSE) of the drift

vector estimator is of order Op(h4n;T ) + Op

�
1bLn;T (T;x)hdn;T

�
. In consequence, the optimal drift

bandwidth in the mean-squared error sense should be proportional to bLn;T (T; x)� 1
d+4 where d

is the number of equations in the system and bLn;T (T; x) is de�ned as in (14). Typically, the
smoothing sequence may be set equal to

hdriftn;T (x) = cdrift

 
1

log bLn;T (T; x)
! bLn;T (T; x)� 1

d+4 : (22)
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This choice allows us to eliminate the in�uence of the bias term from the limiting distribution

of the drift estimates and obtain centering at zero, while achieving a close-to-optimal speed of

convergence.

It is noted that computation of bLn;T (T; x) requires choice of an additional smoothing parame-
ter. Furthermore, the constant cdrift should be evaluated using automated methods. The design

of data-driven procedures for selecting the proportionality factor playing a role in (22) and the

optimal bandwidth for estimating bLn;T (T; x) is of apparent importance but goes beyond the scope
of the present paper and is left for future research.

The form of (22) clari�es the potential relevance of local adaptation when estimating the

drift vector. In particular, we expect the optimal drift bandwidth to depend inversely on the

number of observations in the local neighborhood of a point. In stationary kernel regression, bias

reduction is a conventional justi�cation for employing smoothing sequences that are inversely

related to the availability of observations as summarized by the estimated density function of

the underlying data (c.f. Pagan and Ullah (1999)). Di¤erently from more standard problems

in the nonparametric estimation of conditional expectations in discrete time, in our framework

the potentially important role played by local adaptation emerges directly from the asymptotic

conditions which the drift bandwidth ought to satisfy.

Remark 12 (The ergodic and strictly stationary case) In the positive Harris recurrent

case bLn;T (T; x) a:s:! Tp(x) and

@e�(x)
@xie�(x) =

@e�(x)
@xi

=e�(I)e�(x)=e�(I) =
@p(x)
@xi

p(x)

since the invariant measure is integrable, i.e. �(I) < 1 (see comments in Section 3). In conse-

quence, if

(�n;T log(1=�n;T ))
1=2 T=hdn;T ! 0;

Thdn;T !1 and hn;T = Oa:s:
�
T�

1
d+4

�
as hn;T ! 0 with n; T !1 and �n;T ! 0, then

q
Thdn;T

�b�g(x)� �g(x)� biasg(x)�
) N

 
0;

�Z
k2 (u) du

�d Pm
j=1 �

2
gj (x)

p(x)

!
; 8x 2 I � Rd;8g = 1; :::; d;

and

biasg(x) = h
2
n;T

�Z
s2k(s)ds

� dX
i=1

@�g (x)

@xi

@p(x)
@xi

p(x)
+
1

2

dX
i=1

@2�g (x)

@xi@xi

!
:
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An analogous corollary can, of course, be obtained for hn;T = oa:s:

�
T�

1
d+4

�
. In this case, the

asymptotic expression would be identical with the sole exception of the absence of the bias term.

Remark 13 (The two curses of dimensionality) Consistently with more conventional mod-

els in discrete time, an increase in the dimensionality of the system leads to a decrease in the

rate of convergence of the nonparametric estimates. Contrary to standard problems, though, this

e¤ect operates through two channels, i.e., a deterministic e¤ect which depends exponentially on

d, and a stochastic e¤ect which depends on the speed of divergence to in�nity of the quantitybLn;T (T; x). The �rst e¤ect is standard. As d increases, the optimal hn;T should converge to
zero at a slower rate. In the positive Harris recurrent case, the rate at which the bandwidth has

to be adjusted as the dimension increases for a given sample size n and time span T depends

exponentially on d. We recall that the AMSE-optimal bandwidth is hn;T = Oa:s:

�
T�

1
d+4

�
. In

other words, when increasing the dimensionality of the problem, the kernel window width must

be made wider to o¤set the sparser density of the data points. The second e¤ect is novel. Null

Harris recurrent processes induce divergence rates for the quantity bLn;T (T; x) which are inversely
related to the dimensionality of the problem. Importantly, while these rates cannot be quanti�ed

in general, practical implementation of our procedures does not require their evaluation a-priori,

as we discuss in Remark 14. The scalar and planar Brownian motion cases are notable exceptions

for which the rates can be computed in closed form (c.f. Remark 4).

To summarize, under stationarity (or positive Harris recurrence), the curse of dimensional-

ity operates through only one channel, i.e. the dimension d, since bLn;T (T; x) diverges at the
constant rate T independently of the number of equations in the system (c.f. Remark 5). In

the general (possibly nonstationary) case, the optimal bandwidth should account for the conven-

tional curse of dimensionality given by d as well as for a second curse of dimensionality caused

by the (expected) smaller values of bLn;T (T; x). The optimal (in an AMSE sense) bandwidth

hn;T = Oa:s:

�bLn;T (T; x)� 1
d+4

�
accounts for both e¤ects.

We expect the "double course of dimensionality" to carry over to functional estimation proce-

dures for multivariate (possibly nonstationary) discrete time processes. In other words, such an

e¤ect is truly a by-product of our minimal assumptions and is of course not speci�c to the study

of continuous time processes.

Remark 14 The asymptotic distribution in (21) depends on quantities which can be estimated

from the data, i.e. bLn;T (T; x) and a(:) (c.f. Theorem 3 and Theorem 6 below). Statistical inference
on the drift vector does not require any conjectures about the dynamic features of the underlying

process, such as stationarity, aside from recurrence. While traditional asymptotic theory is derived
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based on explicit assumptions of either stationarity or nonstationarity (often of the unit-root or
1
2 -null recurrent type), which are imposed before inference begins, our weak convergence results

re�ect the mildness of recurrence as an identifying assumption. Inference hinges on random

norming in the context of asymptotic normal distributions and can be implemented in the simple

framework of mixed normal models with easily estimable random variances.

Of course, from a theoretical standpoint, the rates of convergence are a¤ected by both the

stationarity features of the underlying process and the dimensionality of the system through the

constant � which drives the rate of divergence of bLn;T (T; x) (c.f. Theorem 3). Importantly,

however, such a constant does not have to be identi�ed empirically for statistical inference to be

conducted.

Similar arguments to those in Remark 9 through 14 apply to the estimation of the di¤usion

matrix to which we now turn. Below we will place emphasis on those aspects that are speci�c to

di¤usion matrix evaluation.

5.2 Estimating the di¤usion matrix

Theorem 6 and 7 below discuss the consistency and limiting distribution of the di¤usion matrix

estimator in Eq. (4).

Theorem 6 (Consistency of the di¤usion matrix estimator) If

bL(n;T )(T; x) a:s:! 1

and

(�n;T log(1=�n;T ))
1=2 bL(n;T )(T; x)

hdn;T

a:s:! 0

with hn;T ! 0 when n; T !1 so that �n;T ! 0, then

ba(n;T )(x) a:s:! a(x) 8x 2 I � Rd:

Theorem 7 (The limiting distribution of the di¤usion matrix estimator) Assume

bL(n;T )(T; x) a:s:! 1

and
(�n;T log(1=�n;T ))

1=2 bL(n;T )(T; x)
hdn;T

a:s:! 0
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with n; T !1 so that �n;T ! 0: Ifs
hd+4n;T

bL(n;T )(T; x)
�n;T

a:s:! 0

as hn;T ! 0 with n; T !1 so that �n;T ! 0, then

s
hdn;T

bL(n;T )(T; x)
�n;T

�
vechba(n;T )(x)� vecha(x)�

) (�(x))1=2N

 
0;

�Z
k2(s)ds

�d
I

!
; 8x 2 I � Rd; (23)

where

�(x) =PD (2a(x)
 a(x))P
0
D;

PD = (D
0
D)�1D

0
;

and D is the standard duplication matrix, i.e., the unique d2 � (d(d+ 1))=2 matrix such that

vecha(x) = PDveca(x) =

26666664

a1;1
a2;1
a2;2
a3;1
:::
ad;d

37777775 :

If s
hd+4n;T

bL(n;T )(T; x)
�n;T

= Oa:s:(1);

then s
hdn;T

bL(n;T )(T; a)
�n;T

�
vechba(n;T )(x)� vecha(x)� ��2(x)�

) (�(x))1=2N

 
0;

�Z
k2(s)ds

�d
I

!
; 8x 2 I � Rd (24)

where

��
2
(x) = (bias1;1; bias2;1; :::; biasd;d)(x);

with

biasi;j(x) = h
2
n;T

�Z
s2k(s)ds

�0@ dX
k=1

@ai;j (x)

@xk

@e�(x)
@xke�(x) + 12

dX
k=1

@2ai;j (x)

@xk@xk

1A for i; j = (1; 1); :::; (d; d):
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Remark 15 (The �xed T case) Contrary to drift estimation, the features of Theorem 6

clarify that the di¤usion matrix can be consistently estimated over a �xed span of data T = T

(c.f. Florens-Zmirou (1993) and Brugiére (1991, 1993)). In fact, provided�
�n;T log(1=�n;T )

�1=2 bL(n;T )(T ; x)
hdn;T

a:s:! 0

with hn;T ! 0 and n!1, then

ba(n;T)(x) a:s:! a(x) 8x 2 I � Rd:

This �nding complements the consistency results in the multivariate context studied by Brugiére

(1991) where convergence is in probability.

Remark 16 (The bivariate case) It is worth being explicit about the form of the limiting

variance in (23). We consider the simple bivariate case, i.e. d = 2. Write

�(x) = PD (2a(x)
 a(x))P
0
D

= 2

24 1 0 0 0
0 1

2
1
2 0

0 0 0 1

35�

�

26664
�P

�21i
�2 �P

�21i
�
(
P
�1i�2i)

�P
�21i
�
(
P
�1i�2i) (

P
�1i�2i)

2�P
�21i
�
(
P
�1i�2i)

�P
�21i
� �P

�22i
�

(
P
�1i�2i)

2 �P
�22i
�
(
P
�1i�2i)�P

�21i
�
(
P
�1i�2i) (

P
�1i�2i)

2 �P
�21i
� �P

�22i
� �P

�22i
�
(
P
�1i�2i)

(
P
�1i�2i)

2 �P
�22i
�
(
P
�1i�2i)

�P
�22i
�
(
P
�1i�2i)

�P
�22i
�2

37775�

�

2664
1 0 0
0 1

2 0
0 1

2 0
0 0 1

3775
=

264 2
�P

�21i
�2

2
�P

�21i
�
(
P
�1i�2i) 2 (

P
�1i�2i)

2

2
�P

�21i
�
(
P
�1i�2i) (

P
�1i�2i)

2 +
�P

�22i
� �P

�21i
�

2
�P

�22i
�
(
P
�1i�2i)

2 (
P
�1i�2i)

2 2
�P

�22i
�
(
P
�1i�2i) 2

�P
�22i
�2

375 ;
where

P
=
Pm
i=1. We now compute the asymptotic variance of

vecba(n;T )(x)� veca(x):
Notice that

Dvecha(x) = veca(x):
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Then, the limiting variance of veca(x) can be written as

D�(x)D
0

= DPD (2a(x)
 a(x))P
0
DD

= 2D(D
0
D)�1D

0
(a(x)
 a(x))D0

(D
0
D)�1D

= 2PD (a(x)
 a(x))P
0

D

= 2PD (a(x)
 a(x))PD

= 2PD (a(x)
 a(x))

since PD (a(x)
 a(x))D = (a(x)
 a(x))D where PD is the d2 � d2 matrix that projects Rd2

orthogonally onto R(D), i.e. the range space of D. In particular,

PD =
1

2
(Id2 +Gd2)

where Id2 is a d
2 � d2 identity matrix and Gd2 is such that

Gd2 =
X
i

X
j

Uji 
 Uij

where the d � d matrix Uji has 1 in the (i; j) position and 0 elsewhere. In the d = 2 case, for

example, we obtain

Gd2 =

2664
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

3775
and

PD =

2664
1
2 0 0 0
0 1

2
1
2 0

0 1
2

1
2 0

0 0 0 1
2

3775 ;
which implies

2PD (a(x)
 a(x))

=

266664
2(
P
�21i)

2 2(
P
�21i)(

P
�1i�2i) 2(

P
�21i)(

P
�1i�2i) 2(

P
�1i�2i)

2

2(
P
�21i)(

P
�1i�2i) (

P
�21i)(

P
�22i)+(

P
�1i�2i)

2 (
P
�21i)(

P
�22i)+(

P
�1i�2i)

2 2(
P
�22i)(

P
�1i�2i)

2(
P
�21i)(

P
�1i�2i) (

P
�21i)(

P
�22i)+(

P
�1i�2i)

2 (
P
�21i)(

P
�22i)+(

P
�1i�2i)

2 2(
P
�22i)(

P
�1i�2i)

2(
P
�1i�2i)

2 2(
P
�22i)(

P
�1i�2i) 2(

P
�22i)(

P
�1i�2i) 2(

P
�22i)

2

377775 :
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Remark 17 (Bandwidth choice) A "nearly" optimal selection rule for the bandwidth in the

di¤usion case is given by:

hdiffn;T (x) � c
diff

0@ 1

log
�bLn;T (T; x)=�n;T�

1A�bLn;T (T; x)=�n;T�� 1
d+4

: (25)

Coherently with our previous discussion in the drift case (c.f. Remark 11), this choice allows us

to eliminate the in�uence of the bias term from the limiting distribution of the di¤usion estimates

and obtain centering about zero, while achieving a close-to-optimal speed of convergence.

Being the di¤usion function estimable over a �xed span of observations (c.f. Remark 14),

there is relatively less scope for local adaptation of the bandwidth sequence than in the drift case

examined earlier. An approximate (optimal) rule to select the bandwidth for a slowly diverging

T would, in fact, be

hdiffn;T � cdiff
�

1

log n

�
n�

1
d+4

which is standard in nonparametric statistics and does not depend on the spatial level x.

Remark 18 (Non-vanishing bandwidths)

(1) For scalar and planar Brownian motion (which have constant drift, di¤usion and invariant

measure) all the results in this work go through unmodi�ed with constant or explosive

bandwidths (i.e. hn;T !1) provided the bandwidths satisfy the admissibility conditions in
the statements of the corresponding theorems. Phillips and Park (1998) �nd a similar result

when estimating nonparametrically the (constant) conditional �rst moment of a standard

random walk embeddable in Brownian motion.

(2) If either one of the two functions of interest is constant irrespective of the shape of the other

function, then the consistency result for that function is valid in the presence of a constant

bandwidth. The weak convergence result is also valid with the caveat that the asymptotic

variance has a form which depends on the constant smoothing sequence being used. Such a

variance can be easily deduced from the proofs of Theorems 5 and 7.

(3) If either one of the two functions of interest is constant irrespective of the shape of the other

function, then the consistency result for that function is valid in the presence of explosive

bandwidths provided the relevant bandwidth conditions are satis�ed.
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6 Conclusion

This paper studies kernel methods for multivariate di¤usion processes. We provide an estimation

theory which is easily interpretable based on traditional results in nonparametric analysis for

multidimensional discrete-time series but has the additional advantage of robustness to deviations

from strong distributional assumptions, such as stationarity. Harris recurrence is the identifying

assumption used in the present work to show strong consistency and asymptotic (mixed) normality

of the functional estimates of drift vector and di¤usion matrix. On the one hand, this assumption

is known to be milder than stationarity and mixing and might prove useful to study multivariate

(discrete- or continuous-) time processes whose stationarity can neither be guaranteed nor ruled

out a priori. On the other hand, even in the stationary case, functional methods which do not rely

on the information contained in the process�stationary density may be useful when the stationary

density can hardly be identi�ed reliably, as is the case for persistent time series. In both cases,

our asymptotic theory appears to provide an intuitive assessment of statistical uncertainty by

(inversely) relating the size of the con�dence intervals to the occupation time of the underlying

empirical process. Similarly, the "double curse of dimensionality" may be viewed as a theoretical

representation of the risks of empirical work conducted in the context of multidimensional, as well

as highly persistent, processes.

We introduce the methods in the context of classical Nadaraya-Watson kernel estimators.

While these estimators are arguably the most widely used in applied work, they can be improved

upon. Coherently with the more classical analysis of stationary discrete-time series, the methods

may be extended to a variety of multidimensional nonparametric procedures like local linear and

polynomial �tting, among others (see, e.g., Fan (1992) and Masry (1996a,b) and, for interesting

work in the scalar di¤usion case, Fan and Zhang (2003) and Moloche (2004)).

Even though the focus of this paper is on nonparametric estimation, the procedures we discuss

might be used to evaluate parametric models. For instance, parametric speci�cations for multi-

variate di¤usions may be tested by utilizing criteria which compare functional estimates of drift

and di¤usion matrix to their parametric counterparts. The integrated squared error employed by

Bickel and Rosenblatt (1975) and Fan (1994), among others, is a possible criterion. Interestingly,

such a comparison might be conducted separately for drift and di¤usion since these moments may,

as shown, be identi�ed separately.

We leave the study of alternative kernel methods for multivariate di¤usions and the design of

testing procedures for multivariate parametric speci�cations for future work.
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7 Appendix

Proof of Theorem 1 See Revuz and Yor (1998, Theorem 3.12, page 408) and Azéma et al. (Remark
1, page 170, 1966).

Proof of Theorem 2 See Darling and Kac (1956).

Proof of Theorem 3 In what follows, for convenience, we use the notation 1
hK

�
a
h

�
= 1

hd
K
�
a1
h ; :::;

ad
h

�
,e� (x+ hu) = e� (x1 + hu1; :::; xd + hud), where a; u; x 2 I � Rd and h =hd. We begin with part (i). We

wish to show that

�n;T
hn;T

nX
i=1

K

�
Xi�n;T

� x
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�
a:s:!
n!1

1
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Z T
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�
Xs � x
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�
ds

for a �xed hn;T . Let
�i�n;T

= sup
jt�sj��n;T t;s2[i�n;T ;(i+1)�n;T ]

jjXt �Xsjj.

Using the modulus of continuity of multivariate Brownian semimartingales (see, e.g., McKean (1969)),
write

P

"
lim sup
�n;T #0

�i�n;Tp
�n;T ln (1=�n;T )

= max
t2[i�n;T ;(i+1)�n;T ]

p
2 (Xt)

#
= 1,

where  (x) is the largest eigenvalue of the di¤usion matrix a (x) = � (x)� (x)0. Since this matrix is positive
de�nite, all its eigenvalues are positive. Moreover, since trace [a (Xt)] <1 8t 2 [i�n;T ; (i+ 1)�n;T ], then
all its eigenvalues are bounded in compact subsets. Hence,

lim sup
�n;T #0

�n;Tp
�n;T ln (1=�n;T )

<1 a:s:; (26)

where
�n;T = max

1�i�n
�i�n;T

:
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by the triangle inequality and the regularity conditions of the kernel function from Assumption 2 above.
But,
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by the Quotient limit theorem. Then,������n;Thn;T
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using the assumptions of the theorem. This proves the result in (i). Results (ii) and (iii) are easily proved
using arguments contained in the proof of (iv). For brevity, we only focus on (iv). We wish to show that
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����� = 0;
for any bounded and continuous function �. We will require the window width to be chosen from a totally
bounded, complete, and non-empty set and vanish slowly enough as to guarantee uniform convergence over
bandwidth sequences. This requirement is formalized as follows. The bandwidth sequence hn;T on R is
FT -adapted, bounded, and such that hn;T 2 HT;n(") where

HT;n(") =

�
h : max

�bL(n;T )(T; x)q�n;T log (1=�n;T ); 1=bL(n;T )(T; x)� =" < hd < "� :
Then, given (i), we simply need to prove that
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= 0: (27)

This is true if, for any � > 0, there exists " > 0 and eT ; en > 0 so that, for T > eT ; n > en and h 2 HeT ;en("),
�T < �: Equivalently, one could verify whether for any � > 0, there exists " > 0 and eT ; en such that, for
T > eT ; n > en and h 2 HeT ;en("), we obtain
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Expression (29) is immediate based on the continuity of the invariant measure. Expression (28) requires
additional care. We will show that pointwise convergence over a dense set, along with an asymptotic
equicontinuity condition, leads to the desired conclusion.

SinceH ~T ;en(") is totally bounded and complete, it has a cover fS ~T ;en("; hi; =2); i = 1; :::; qg. LetH0
~T ;en(")

be a dense subset of H ~T ;en("). Choose f~h1; :::; ~hqg such that jhi � ~hij < =2, i = 1; :::; q, ~hi 2 H0
~T
(").

fS ~T ;en("; ~hi; ); i = 1; :::; qg is also a cover for H ~T ;en("). For all h 2 H ~T ;en("), there is some i such that
h 2 S ~T ;en("; ~hi; ). Hence, there exists some i so that
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Thus,
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The �rst maximum can be bounded by an arbitrarily small � (such that � < �=3) provided  is chosen
accordingly. This results from a stochastic equicontinuity property. Stochastic equicontinuity derives here
from the modulus of continuity of � and the properties of the moments of the Mittag-Le er distribution.
See the proof of Theorems 4 and 5 for similar arguments worked out at length. The second maximum can
be bounded by an arbitrarily small � (< �=6) for T > eT and n > en by virtue of the Darling-Kac theorem
and the pointwise weak convergence that this theorem implies. Finally, we show that for some n > en and
T > eT there exists an arbitrarily small " such that
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But (30) and (31) can be bounded by an arbitrarily small number, say "
2 (= �), provided en and eT are

chosen accurately, for n > en and T > eT , using result (i) in the theorem and (27), respectively. This
concludes the proof.
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Proof of Theorem 4 Write
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We start with (32). Using the Quotient limit theorem and the method of proof of Theorem 3, we obtain
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The value of x is constant throughout and will be omitted in what follows. In other words, we will write
�T;hn;T ; �h and so on, for brevity. We wish to show that

�T;hn;T � �
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We need to guarantee that the bandwidth sequence is chosen from a totally bounded and non-empty set.
As in the proof of Theorem 3, we consider the set

HT;n(") =

�
h : max

�bL(n;T )(T; x)q�n;T log (1=�n;T ); 1=bL(n;T )(T; x)� =" < hd < "� .
The expression (35) holds if, for any � > 0, there exists "; ~T and en so that H ~T ;en(") is non-empty and, for
T > ~T , n > en and h 2 H ~T ;en("), we obtain
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and

sup
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2
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The conditions (36) and (37) imply that����T;hn;T � ���� � sup
h2H eT;en(")

����T;h � �h��+ j�h � �j� < �:
Expression (36) is immediate given the continuity of the drift function and invariant measure. We now
show (37). We proceed as in the proof of Theorem 3. Since H ~T ;en(") is totally bounded and dense, it has
a cover fS ~T ;en("; hi; =2); i = 1; :::; qg. Let H0

~T ;en(") be a dense subset of H ~T ;en("). Choose f~h1; :::; ~hqg such
that jhi � ~hij < =2, i = 1; :::; q and ~hi 2 H0

~T ;en("). fS ~T ;en("; ~hi; ); i = 1; :::; qg is also a cover for H ~T ;en(").
For all h 2 H ~T ;en("), there is some i such that h 2 S ~T ;en("; ~hi; ). Thus, there exists some i so that
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for all T > ~T and n > en. The �rst term on the right hand side converges to zero if an asymptotic
equicontinuity condition is satis�ed while the second term vanishes if pointwise convergence holds. The
latter follows from the Quotient limit theorem for any �xed bandwidth. In fact, for a �xed x and a �xed
h (and given the integrability properties that are su¢ cient for the Quotient limit theorem to hold), we
obtain
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� e�(u)du
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K (s)� (x+ hs) e�(x+ hs)dsR

K (s) e�(x+ hs)ds :

As for the former, �rst we have to verify that for all T; n and some " > 0 so that H ~T ;en(") is non-empty
and compact, the quantity

sup
h2H ~T;en(")

j�T;hj

is indeed measurable with respect to FT . For a �xed h, the numerator and the denominator of �T;h
are additive functionals and it is a standard result that such functionals are FT -adapted. To extend this
property to the supremum over h 2 HeT ;en("), we need to verify that HT;n(") is compact and non-empty
for all T and n, almost surely. This is true by construction. Then, since �T;h is continuous in h, the
main result of Stinchcombe and White (1992) assures that �T;h is at least "nearly" FT -measurable, and
we can proceed as if the supremum of j�T;hj is a well-de�ned stochastic process and compute the limit
supremum. We now turn to asymptotic equicontinuity. Fix a positive and �nite h and take any h0 such
that jh� h0j < �. Write
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Applying the Quotient limit theorem repeatedly we �nd that
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and

j�h � �h0 j = Oa:s:(�):

Then, for all �4 > � > 0, there exists  > 0;
eT ; en and " > 0 such that for T > eT and en > n we obtain
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In consequence, we only need to show that for some n � en and T > eT there exists an arbitrarily small "
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But (40) and (41) can be bounded by "
2 = � using (34) and (38) above, thereby giving (42). We now turn

to (33). Each component of the vector (33) converges to zero almost surely (as n; T ! 1) by the law of
large numbers for martingale di¤erence arrays (c.f. the proof of Theorem 5) along with the requirement
that bLn;T (T; x)hn;T a:s:! 1. This proves the stated result.

Proof of Theorem 5 Write the estimation error decomposition as
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which follows from the continuity of the kernel function (from Assumption 2) and Theorem 3 (i) for a �xed
hn;T . We now derive the limiting distribution of
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We wish to show that
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for any bounded and continuous function �. As earlier, we need to prove that for any � > 0, there exists
" > 0; en > 0 and eT > 0 such that, for T > eT ; n > en and h2HeT ;en("), we obtain
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where

HT;n(") = fh : max
�bL(n;T )(T; x)q�n;T log (1=�n;T ); 1=bL(n;T )(T; x)� =" < hd < ";

hd+4 < "=bL(n;T )(T; x)g;
or

HT;n(") = fh : max
�bL(n;T )(T; x)q�n;T log (1=�n;T ); 1=bL(n;T )(T; x)� =" < hd < ";

hd+4 < J=bL(n;T )(T; x) for some Jg:

Expression (45) is immediate given the continuity of the di¤usion matrix and invariant measure. As for
(44), as earlier we need to show that for all �6 > � > 0, there exists  > 0;

eT > 0; en > 0 and " > 0 so that,
for T > eT and n > en, we obtain
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We start with (48). We simply need to prove that
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pointwise, i.e. for every h 2HeT ;en("), as we proceed to illustrate. Consider the generic element g of the
d�vector
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Its quadratic variation is
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Clearly, [M (T )g]1 = 1 8T: Call � (T ) the time-change associated with [M (T )g] and �(T )g the Dambis,
Dubins-Schwarz Brownian motion of M (T )g (see, e.g., Revuz and Yor (1998), Theorem 1.6, page 173),
then
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But, by the Quotient limit theorem, we obtain
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This proves the result for a generic element g: We now turn to the multivariate case. Write
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where the generic M (T )g
r was de�ned earlier. Using the same procedure as above, we can prove that
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We now orthogonalize the martingales in M(T )
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with �(x) diagonal. C(x) and �(x) are the matrices containing the eigenvectors and eigenvalues of b(x);
respectively. We can now apply a variation of the multivariate limiting Knight Theorem (see, e.g., Revuz
and Yor (1998), Corollary 2.4, page 497) sinceh
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where B is a d�dimensional Brownian motion, which implies
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but this proves (49). The proof of (47) is straightforward by the continuity of the di¤usion function and
invariant measure. To prove (46) we notice that � is continuous and bounded with modulus of continuity
!�
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But we know that
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for all 0 < h <1, giving the desired result. Now write
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Formulae (51) and (52) are bounded by an arbitrarily small number, "2 (< �) say, for n � en and T > eT
provided en and eT are chosen accurately, using (44), (45) and (43). This implies that (50) can be bounded
by " giving the weak convergence result in the statement of the theorem.

We now turn to the bias term. Write
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by the Quotient limit Theorem. But,
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by the symmetry of the kernel function. Thus,
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This proves the stated result.

Proof of Theorem 6 Using Itô�s lemma, write
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where DX(u) is a d � d array of 1 � d vectors. The i-th element of the mn-th vector is given by
@
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(x�y)(x�y)
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mn

@xi
. We use the duplication matrix, i.e., the unique d2 � (d(d+ 1))=2 matrix D so that
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for a generic symmetric matrix A, to knock A down to non-redundant elements by stacking its upper
triangular components. Now write
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The term vech	2 averages martingale di¤erence sequences and converges to zero at speed
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(c.f. the proof of Theorem 7). The term vech	1 is clearly so that
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As for vech	3, the same steps as in the proof of Theorem 3 allow us to show that
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provided (�n;T log(1=�n;T ))
1=2 bLn;T (T; x)=hn;T a:s:! 0, but this proves the stated result.

Proof of Theorem 7 We can write the estimation error decomposition as

vechban;T (x)� vecha(x)
= vech	3 � vecha(x) + vech	1 + vech	2: (55)

We use the same procedure as in Theorem 5, i.e., we orthogonalize the vector of martingales vech	2 and
apply the asymptotic multivariate Knight theorem to show thats
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where
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is the Moore-Penrose generalized inverse of D (see, e.g., Magnus and Neudecker (1988)). Also, we note
that
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and, using the derivations leading to (54) above, that
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vech	3 � vecha(x) = vechs(x)

where s(x) is the d� d matrix with elements

sij(x) = h
2
n;T

�Z
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�0@ dX
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@e�(x)
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1A i; j = (1; 1); :::; (d; d): (58)

We obtain the stated result by combining the estimation error decomposition in (55) with (56), (57), and
(58).
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