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Abstract

The finitely repeated Prisoners’ Dilemma is a good illustration of the dis-
crepancy between the strategic behaviour suggested by a game-theoretic
analysis and the behaviour often observed among human players, where
cooperation is maintained through most of the game. A game-theoretic
reasoning based on backward induction eliminates strategies step by step
until defection from the first round is the only remaining choice, reflecting
the Nash equilibrium of the game. We investigate the Nash equilibrium
solution for two different sets of strategies in an evolutionary context,
using replicator-mutation dynamics. The first set consists of conditional
cooperators, up to a certain round, while the second set in addition to
these contains two strategy types that react differently on the first round
action: The ”Convincer” strategies insist with two rounds of initial co-
operation, trying to establish more cooperative play in the game, while
the ”Follower” strategies, although being first round defectors, have the
capability to respond to an invite in the first round. For both of these
strategy sets, iterated elimination of strategies shows that the only Nash
equilibria are given by defection from the first round. We show that the
evolutionary dynamics of the first set is always characterised by a stable
fixed point, corresponding to the Nash equilibrium, if the mutation rate
is sufficiently small (but still positive). The second strategy set is numer-
ically investigated, and we find that there are regions of parameter space
where fixed points become unstable and the dynamics exhibits cycles of
different strategy compositions. The results indicate that, even in the
limit of very small mutation rate, the replicator-mutation dynamics does
not necessarily bring the system with Convincers and Followers to the
fixed point corresponding to the Nash equilibrium of the game. We also
perform a detailed analysis of how the evolutionary behaviour depends on
payoffs, game length, and mutation rate.

∗Also appears as: Lindgren, K.; Verendel, V. Evolutionary Exploration of the Finitely
Repeated Prisoners Dilemma–The Effect of Out-of-Equilibrium Play. Games 2013, 4, 1-20.
†kristian.lindgren@chalmers.se
‡vive@chalmers.se
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1 Introduction

During the past two decades there has been a huge expansion in the development
and use of agent-based models for a variety of societal systems and economic
phenomena, ranging from markets of various types and societal activities such
as energy systems and land use, see e.g., [1, 2, 3, 4, 5] for a few illustrative exam-
ples. A key issue in the construction of such models is the design of the agents.
To what extent are the agents rational? And what does it mean that an agent
is rational? This has divided scholars into different camps. Herbert Simon [6]
introduced the concept of ”bounded rationality”, which can be implemented in
a variety of ways in agent-based models, assuming that there is some limitation
on the reasoning capability of the agent. Game theory provides useful methods
for the analysis of interaction between agents and their behaviour. But it is also
well known, from experiments of human behaviour in game-theoretic situations
[7], that human subjects do not always follow the behaviour predicted by game
theory – and for good reasons. People can in many cases establish coopera-
tion for mutual benefit where game theory would predict the opposite. This
discrepancy between ”rational” game-theoretic agents and human ones is often
attributed to either limited rationality of human reasoning or to social prefer-
ences. The latter can in some cases be referred to as rule-based rationality [8]
under which rules-of-thumb may have developed over time in cultural evolution
under positive selective feedback from the benefits of cooperation.

In the modeling and construction of agents it is therefore of high importance
that the assumptions made on rationality and the reasoning process are made
explicit. Binmore discusses this in his classic papers ”Modeling rational play-
ers” [9, 10]. He makes the distinction between eductive and evolutive processes
leading to an equilibrium in a game. The former refers to a process internal to
the agent representing a reasoning process, while the latter may work with much
simpler characterisation of the agents where evolutionary processes lead to an
equilibrium by mutation and selection on the population level. In evolutionary
game theory and agent-based modeling it is common to use a combination of
these, but one seldom designs agents who carefully reason about possible actions
and their consequences. And the fundamental question still remains: What does
it mean for an agent to be rational?

One of the major achievements in game theory is the establishment of the
Nash equilibrium concept and the existence proof that any finite game has at
least one such equilibrium [11]. The Nash equilibrium is a situation where no
player can gain by unilateral change of strategy, and in that sense this can be
seen as a rational equilibrium in providing the player a best response to other
players’ actions. The Nash equilibrium is thus often regarded as a result of
rational reasoning, reflecting the behaviour of rational players. Importantly, for
our discussion, this view of the Nash equilibrium has also been carried over from
single-shot to repeated games.

In several finitely repeated games, in which the number of rounds is known,
the solution of how players choose actions can be guided by the backward in-
duction procedure. This is often exemplified by the Prisoners’ Dilemma, for
which the single round game has a unique Nash equilibrium with both players
defecting, while the indefinitely repeated game has an uncountable infinity of
equilibria allowing for cooperation. However, when the exact number of rounds,
n, is known, a player can start with considering the last round, in which the
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score is maximized by defecting. So, with both players being rational in the
sense that they want to maximize their own score, the outcome of the last
round is clear—mutual defection. But then the next-to-last round turns into
the last unresolved round, and the same reasoning applies again resulting in mu-
tual defection also for round n− 1. The assumption needed is that each player
knows that the other one is rational. The procedure then repeats all the way to
the first round, showing that the Nash equilibrium is mutual defection from the
start of the game. Since the result of the backward induction procedure does
not seem to lead to an intuitively rational result it is often referred to as the
”backward induction paradox” [12]. Note that backward induction also applies
to certain one-shot games, and the discrepancy between theory and observation
has been discussed also for several such examples, e.g., the ”Beauty contest”
[13] and the ”Traveler’s dilemma” [14].

There are at least two important objections against the generality of the
reasoning based on backward induction. The first objection is empirical, since
studies on how human players behave in the game show a substantial level of
cooperation, but with a transition to lower levels of cooperation towards the end.
Explanations are several, and this implies that several mechanisms are in play.
For example, it has been observed in the laboratory that subjects cooperate
initially but attempt to cheat each other by deviation in the end [15, 7].

The second objection is conceptual and strongly connected to the notion of
rationality and what can be considered as a rational way of reasoning. The only
equilibrium that can exist in a given finite repetition is the Nash equilibrium,
but whether that is to be considered as rational is the question. A critical point
concerns what conclusion a player should draw if the opponent deviates from
what backward induction implies and instead cooperates in the first round. It is
then clear that the opponent is not playing according to the Nash equilibrium,
and there is a chance to get a higher score for some time if cooperation can be
established.

In this situation, the choice between (i) following backward induction and
defecting from start and (ii) deviating from backward induction by starting with
cooperation becomes a strategic decision. One can imagine ”rational” players in
both categories. In the first category, there are then two options, either one just
plays defect throughout the game whatever the opponent does, as backward in-
duction suggests, or one switches to cooperation if the opponent cooperates. In
the second category, both players are again faced with the question of, provided
the opponent is cooperating, when to switch to defection. Obviously, there can-
not exist a fixed procedure for deciding on when it is optimal to switch from
cooperation to defection, since such a strategy would be dominated by the one
that switches one round before. However, the interaction and survival of differ-
ent ways to handle first round cooperation can be studied using evolutionary
methods.

The purpose of this paper is to investigate in an evolutionary context the
performance of strategies representing the strategic choices discussed above in
the finitely repeated Prisoners’ Dilemma. In Binmore’s terms, we focus on an
evolutive process, in which each agent has a certain, relatively simple strategy
for the game, and the mix of strategies and their evolution is investigated on the
population level. Importantly, the chosen strategies can all be seen as compo-
nents in the reasoning processes discussed above: both (i) the steps involved in
the backward induction process, and (ii) the steps initiating and responding to
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cooperation in the first round which then reflects the possibility for strategies
to deviate from equilibrium play. It is well known that evolutionary drift or
mutations, at least if sufficiently strong, can drive the population away from a
fixed point corresponding to the Nash equilibrium. Under what circumstances
does the evolutionary dynamics lead to the same result as the backward induc-
tion process with a Nash equilibrium as its fixed point, and when can deviation
from Nash equilibrium play alter that process? The answer, which is elaborated
in this paper, depends on choices of a number of critical model characteristics
and parameters: selected strategy space, mutation rate, payoff matrix, and the
length of the game.

We prove that, for a simple set of strategies, i.e., conditional cooperators,
the replicator-mutation dynamics is always characterised by a stable fixed point
corresponding to the Nash equilibrium in the limit of zero (but positive) mu-
tation rate. Numerically we show that such a result does not hold in general,
even if the only Nash equilibrium is characterised by defection from the start of
the game. The strategy set that allows for different reactions on the first round
may lead to a path of actions different from what is considered in the back-
ward induction process. On the population level, this turns out to destabilise
the dynamics, and for a large part of parameter space, the evolution does not
bring the system to a stable fixed point, even in the limit of zero (but positive)
mutation rate. The dynamics is instead characterised by oscillatory behaviour.

Most of the work related to evolutionary dynamics, backward induction, and
the finitely repeated Prisoners’ Dilemma concerns the replicator dynamics [16]
with no mutation, as this class has been examined analytically more thoroughly
than the replicator-mutation dynamics [17]. Nachbar [18] studies convergence
in the dynamics and shows that for 2-stage games all cooperation goes extinct
when starting from a mixed population. This result is extended by Cressman
[19, 20] to the finitely repeated Prisoners’ Dilemma of arbitrary length.

Several authors have investigated various types of evolutionary dynamics
under the effect of perturbations or mutations ([21, 22, 23, 24, 25]). Here the
focus has primarily been on other games than the finitely repeated Prisoners’
Dilemma. Gintis et al. [26] consider the replicator dynamics subject to re-
current mutation when mutation rate goes to zero. For finite noncooperative
games, they show that the dynamics need not converge to the subgame perfect
equilibrium, and limiting equilibria can be far away from the this equilibrium.
They also show that in the n-player Centipede game, there exists a unique lim-
iting equilibrium as mutation rate goes to zero, which is far from the subgame
perfect equilibrium but equal in payoffs.

Ponti [27] studies replicator-mutation dynamics in the Centipede game [28].
Using simulations, he finds recurrent phases of cooperation in the evolutionary
dynamics, and for particular payoffs of the game, this is shown to depend both
on mutation rate as well as the length of the game. It is left as an open question
whether such behaviour would disappear in the long run, or persist for negligible
mutation rate. This result is most relevant to the present paper in the context
of the finitely repeated Prisoners’ Dilemma.

Our work is also related to the literature on the ”backward induction para-
dox” [12], which has focused on deviation from equilibrium play in the first
round of extensive games. For the backward induction reasoning to be rational,
it has been assumed that each player has full knowledge about the rationality of
the other player, and that both players know this, et cetera, known as ”common

4



knowledge of rationality”. It has been proved by Aumann [29] that such com-
mon knowledge implies backward induction in games with a unique subgame
perfect equilibrium. However, backward induction provides no firm basis to act
when a player deviates from equilibrium play [30, 31, 32]. Our study can be
viewed as an evolutionary study of a population in a setting where reacting to
out-of-equilibrium play in the first round is possible.

2 Evolutionary Dynamics

The evolution of strategies in the finitely repeated Prisoners’ Dilemma is studied
using replicator dynamics with a uniform mutation rate. This is a model of an
infinite population where all interact with all, and in which each strategy i
occupies a certain fraction xi of the population. The selection process gradually
changes the population structure, based on a comparison of the average score
si of strategy i with the average score s in the population,

si =
n∑
j=1

u(i, j)xj (1)

s =

n∑
i=1

sixi (2)

where u(i, j) is the score for strategy i meeting strategy j in the N -round Prison-
ers’ Dilemma. Assuming a uniform mutation rate of ε, the replicator-mutation
dynamics can be written,

dxi
dt

= xi (si − s− ε) + ε/n (3)

where n is the number of different strategies. The dynamics conserve the nor-
malisation of x.

The score u(i, j) between two strategies, i and j, is calculated from N rounds
of the Prisoners’ Dilemma with a payoff matrix for the row player given by

C D
C 1 0
D T P

This means that the reward R for mutual cooperation (C, C) has been set
to 1, and the ”suckers payoff” S for cooperation against defection (C, D) is
0. The temptation to defect against a cooperator (D, C) is associated with
a score T , and for mutual defection (D, D) the score is P . With the usual
constraints of T > R > P > S and 2R > T + S it remains to study the
parameter region given by T ∈ [1, 2] and P ∈ [0, 1]. There are in principle three
independent parameters in the game, but in combination with the replicator-
mutation dynamics, the third one is incorporated in the mutation rate ε (which
can be derived by subtraction and division by S and R−S, respectively, in the
replicator-mutation dynamics equation, Equation (3)).
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C

Si∈{1..N}

D

S0

D ∨ (t ≥ i)

C ∧ (t < i)

Figure 1: Finite state machine illustrating the first strategy set, Γ1, of the Si
strategies. The action to perform is in the node, and transitions are taken on the
basis of the opponent’s action in the previous round (or based on the previous
round number t). All strategies start in the left node (C), except S0 that starts
with defection in the right node (D). Si cooperates conditionally for i rounds
after which it starts to defect.

2.1 Selecting the Strategy Set

We investigate the evolutionary behaviour considering two sets of strategies.
The first one is a strategy set Γ1 that represents various levels of depth in ap-
plying the backward induction procedure to conditional cooperation. A strategy
in this set is denoted Sk (with k ∈ {0, 1, ..., N}), which means that the strategy
is playing conditional cooperation up to a round k and then defects throughout
the game, see Figure 1. Conditional cooperation means that if the opponent
defects, one switches to unconditional defection for the rest of the game. For
example, SN is prepared to cooperate through all rounds (or as long the oppo-
nent does), while S0 defects from the first round. It is then clear that strategy
Sk dominates Sk+1 (for k ∈ {0, 1, ..., N − 1}), and backward induction leads us
to the single Nash Equilibrium in which both players choose strategy S0.

Note that the entire strategy set Ω for the N -round Prisoners’ Dilemma is
very large, as a strategy requires a specification how to react on each possible
history (involving the opponent’s actions) for every round of the game. This

results in 22
N−1 possible strategies, e.g. for N = 10 rounds this is in the

order of 10308. The selection of strategies to consider is critical. One can
certainly introduce strategies so that other Nash equilibria are introduced along
with those characterized by always defection. For example, selecting only three
strategies, e.g., {S0, S5, S10} will lead to a game with three equilibria, one for
each strategy. But this is an artefact of the specific selection made. Here, we
do not want to create new Nash equilibria but we want to investigate how and
if the evolutionary dynamics brings the population to a fixed point dominated
by defect actions corresponding to the original Nash equilibrium. One way
to achieve this is to make sure that iterated elimination of weakly dominated
strategies can be applied to the constructed strategy set, in a way so that only
strategies that defect throughout the game remain, keeping the non-cooperative
characteristic of the Nash equilibrium.

The second set of strategies Γ2 (in Figure 2) that we consider is given by
extending Γ1 to include also strategies corresponding to steps of reasoning in
which one (i) tries to establish cooperation even if the opponent defects in the
first round and (ii) responds to such attempts by switching to cooperation for
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C

Si∈{1..N}

CCCi∈{2..N}

DDCi∈{2..N}

D

S0

C
D

D ∨ (t ≥ i)

C ∧ (t < i)

Figure 2: Finite state machine illustrating the extended strategy set Γ2 con-
sisting of the strategies Si, CCi, and DCi. Si are the conditional cooperators
as described in Figure 1. The Convincers are denoted CCi and the Followers
DCi. Strategies start in the state at which the name is placed. The strategies
CCi start with at least two rounds of cooperation, which may trigger DCi to
switch from defection to cooperation. After that the latter two strategies act as
the conditional cooperators Si.

a certain number of rounds. We refer to such strategies as ”Convincers” and
”Followers”, respectively.

A Convincer strategy CCk starts with cooperation twice in a row, regardless
of the opponent’s first round action, and in this way it can be seen as an attempt
to establish cooperation even with first round defectors. From round 3, the
strategy plays as Sk, i.e., conditional cooperation up to a certain round k ∈
{2, 3, ..., N}.

A Follower strategy DCk starts with defection, but can be triggered to co-
operation by a Convincer (or Sk where k > 0). So the Follower switches to
cooperation in the second round, after which it, like the Convincer, plays as Sk,
i.e., conditional cooperation up to round k ∈ {2, 3, ..., N}. (A Follower strategy
is also triggered to cooperation by an Sk strategy, but Sk does not forgive the
first round defect action and cooperation cannot be established.)

For the extended strategy set, Γ2, it is straightforward to see that iter-
ated elimination of weakly dominated strategies, starting with those cooperating
throughout the game, leads to a Nash equilibrium with only defectors.

For the first strategy set, Γ1, the Nash equilibrium of (S0, S0) is strict since
any player deviating would score less. For the second strategy set, Γ2, this Nash
equilibrium is no longer strict as one of the players could switch to a Follower
strategy, still defecting and scoring the same. For the first strategy set, the NE
is unique, but for the second one that is not necessarily the case. Since backward
induction still applies in the second set, we know that any NE is characterized
by defection only, which can be represented by a pair (S0, DCk). This is a NE
only if the S0 player cannot gain by switching to CCk−1 (or to CC2 if k = 2).
This translates into kP > S + (k − 2)R + T (for k > 2) or T < kP − (k − 2)
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for our parameter space, while for k = 2, we have 2P > S + R or P > 1/2.
Furthermore, if (S0, DCk) is a NE, then also (DCj , DCk), with j ≤ k, is a NE.

This means that in a part of the payoff parameter region, for P < 1/2, there
is only one NE, while for larger P values there are several NEs, with increasing
number the closer to 1 the parameter P is. Note, though, that any additional
NE here is characterized by defection from the first round, corresponding to
the unique subgame perfect Nash equilibrium (S0, S0). This illustrates the fact
that in the NE one can switch from a pure defector to a Follower without re-
ducing the payoff. If this happens under genetic drift in evolutionary dynamics,
the situation may change so that Convincers may benefit and cooperation can
emerge.

3 Dynamic Behaviour and Stability Analysis

The dynamic behaviour and the stability properties of the fixed points are in-
vestigated both analytically and numerically, for the two strategy sets presented
in Section 2.1. In each case, we investigate the dependence of the payoff pa-
rameters, T and P , as well as the mutation rate and game length, ε and N ,
respectively. We are mainly interested in which influence the presence of Con-
vincers and Followers has on the stability of fixed points and its impact on the
dynamics. This will be illustrated in three different ways as follows. First,
we present and examine a few specific examples of the evolutionary dynamics
and discuss the qualitative difference between the strategy sets. For the simple
strategy set, we show analytically that the fixed point associated with the Nash
equilibrium remains stable for a sufficiently small mutation rate. A numerical
investigation is then performed for the extended strategy set, characterising the
fixed point stability. Finally, for different lengths of the game, we study realisa-
tions of the evolutionary dynamics from an initial condition of full cooperation
(xN = 1 and xi = 0 for i 6= N , with xk denoting the fraction of strategy Sk in
the population) to examine to which degree cooperation survives and whether
the dynamics is attracted to a fixed point or characterized by oscillations. By
studying variation of the dynamics over the different regions in the parameter
space and changing the payoff parameters T and P (by adhering to the in-
equalities between T, P,R, S as described in Section 2), it is studied how the
population evolves in various games over time.

3.1 Dynamics with the Simple and the Extended Strategy
Set

Realisations of the evolutionary dynamics, Equation (3), for both the simple
and the extended strategy sets are shown in Figure 3. For particular payoff
values and a 10-round game, the mutation rate ε is varied to illustrate how it
affects the dynamics.
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Figure 3: Illustration of the dynamics for a particular game (P=0.2, T=1.33)
for 10-round Repeated Prisoners’ Dilemma (N = 10). Each main plot displays
how the frequency of different strategies changes in the population as a function
of time. Smaller subplots show how the population average payoff changes with
time, with NR and NP denoting full cooperation and defection, respectively.
Top: simple strategy set (S0, ..., S10). Below: the extended strategy set, which
includes also Convincers (CC2, ..., CC10) and Followers (DC2, ..., DC10). When
lowering ε, the extended strategy set exhibits meta-stability with recurring co-
operation, while for the simple strategy set cooperation disappears.
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First, we consider the case with the simple strategies (S0, ..., S10) in Figure 3.
From an initial state of full cooperation, with a population consisting only of
fully cooperative S10 players, the dynamics will, for both levels of mutation rate,
lead to a gradual unraveling of cooperation to a point where S0, full defection,
dominates the population. The first step of this unraveling occurs because S9

defecting in the final round will have higher payoff than S10. At this stage
S0 is much worse off, but the population goes through a series of transitions
which reminds of a backward induction process. This can also be seen in terms
of average payoff, as illustrated in Figure 3. When the population is in this
non-cooperative mode a positive mutation-rate ε may offset the situation. For
the higher mutation rate, cooperative strategies re-emerge after a period of
influx from other strategies. The mutations gradually introduce cooperative
behaviour to a critical point where some degree of cooperation has a selective
advantage over full defection, and we see a shift in the level of cooperation.
After a while, cooperative behaviour is again overtaken by full defection and
a cyclic behaviour becomes apparent. Comparing with the next realisation
of the simple strategies we see that this can happen only when the mutation
rate is high enough. As mutation rate becomes smaller, here illustrated with
ε = 2−12, there is no re-appearance of cooperation. When the mutation rate
gets too low, strategies other than defection are kept on a level that is too low
to promote further cooperation. This demonstrates that the mutation rate can
affect whether cooperation re-appears or not.

Second, we consider the case with extended strategies (the 3N −1 strategies
S0, ...S10, CC2, ..., CC10, DC2, ..., DC10) shown at the bottom of Figure 3. We
observe that adding Convincer and Follower strategies changes the dynamics,
but with a similar unraveling of cooperation. For both mutation rates, the
trajectories have periods with defection dominating in the population, indicated
by average payoff, but the population does not seem to stabilize. Lowering
the mutation rate increases the time between the outbreaks of cooperation.
Contrary to the simple strategy set, the system does not seem to settle close to
full defection. The explanation is due to the Follower strategies being able to
gradually enter the population by getting the same payoff as the strategy of full
defection. At a critical point, there are sufficiently many Followers, which make
mutations to Convincers successful and cooperation re-enters the population for
a period.

In the next section, we will investigate the dynamics and the stability char-
acteristics of both the simple and the extended strategy sets in detail, varying
the payoff parameters over the full ranges, and investigating the behaviour in
the limit of diminishing mutation rate.

3.2 Existence of Stable Fixed Points

We now turn to examine the existence of stable fixed points in the dynamics for
low mutation rates. For the simple strategy set the following proposition holds.

Proposition 1: For the simple set of strategies, Γ1, the fixed point asso-
ciated with the Nash equilibrium, dominated by strategy S0, is stable under
the replicator-mutation dynamics, if the mutation rate is sufficiently small (but
positive).
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Proof 1: See Appendix A.

Our results for the extended strategy set, Γ2, are based on numerical in-
vestigations: by using an eigenvalue analysis of the Jacobian of the replicator-
mutation dynamics, Equation (3), we determine for which parameters T, P and
ε the dynamics is characterised by stable fixed points. We are especially in-
terested in the case of lowering ε towards 0 to examine whether fixed points
become stable when mutation rate is sufficiently small, like in the case of the
simple strategy set.

This stability analysis over the parameter space and the results are presented
for different lengths of the game in Figure 4. Stable fixed points exist to the right
of the line corresponding to a specific ε, while to the left of the line no stable
fixed points were found. When decreasing the mutation rate ε towards 0, we see
that an increasing fraction of parameter space is characterised by a stable fixed
point. Unlike the case for the simple strategy set, the numerical investigation
shows a convergence of the delimiting line between stable and unstable fixed
points, indicating that there is a remaining region in parameter space (with low
P and low T ) for which fixed points are unstable in the limit of zero mutation
rate.

Note from the discussion in Section 1 that while these results show the
existence of stable fixed points, it is left to consider whether the population
dynamics would actually converge to such states. Next, we turn to consider
population dynamics over the parameter space and its outcome.

3.3 Recurring Phases of Cooperation

Motivated by the findings above in Section 3.1, we now turn to study recurrent
cooperative behaviour in the evolutionary dynamics. We investigate if and for
which games a population, starting from initial cooperation as before, settles
into a mode of oscillations that at some point in the cycle brings the system
back to a higher level of cooperation 1.

The interesting case is when mutation rates are small: higher mutation rates
introduce a background of all different strategies, which can be seen as artifi-
cially keeping up cooperative behaviour in the population. To avoid this effect,
we investigate the dynamics with 0 < ε << 1, and, in particular, numerical
analyses were made with a series of decreasing mutation rates. The population
is initialized as before, described in Section 3.1.

First, we characterise the simple and the extended strategy set for different
game lengths, varying mutation rates, and varying the parameters of T and P .
Figure 5 displays the results for games of 5 and 10 rounds in the top and the
middle row. For a given T a line denotes the border for which games to the left
have recurring phases of cooperation, while games to the right are characterised
by a fixed point dominated by defection. For the simple strategy set, we observe
that by decreasing mutation rate, the fraction of games where cooperation recurs
becomes smaller and disappear. This suggests that as we make the mutation
rate sufficiently small, cooperation will die out in the case of simple strategies,
as is expected from Proposition 1 stating that the fixed point dominated by the

1An instance of the dynamics was counted as oscillating when the average payoff A repeat-
edly returns to at least 5% above full defection, i.e. A > 1.05NP . Frequently, it was the case
that the oscillations had phases of cooperation well above the 5% threshold.
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Figure 4: Numerical analysis showing which games have stable fixed points. Stable
fixed points have been found to the right of a given line, at which they disappear if P
is decreased further. Lowering the mutation rate ε turns more evolutionary dynamics
into having stable fixed points. Runs for N = 5, 6, 7 indicate a convergence, as the
mutation rate is decreased, towards a fraction of games being without stable fixed
points, as seen in the lower left of the parameter space for the different game lengths.
To the bottom right the boundary is shown for a particular T = 1.1.
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S0 strategy becomes stable. On the other hand, for the extended strategy set,
a considerable fraction of games seem to offer recurring phases of cooperation
despite lowering the mutation. For the 10-round game, the line describing the
critical parameters is seen to converge as the mutation rate decreases, i.e., there
is a large part of the parameter region for which the dynamics is not attracted
to a fixed point. For the 5-round game, this occurs at least in part of the
parameter space. The bottom graphs in Figure 5 show that the longer the
game, the larger is the parameter region for T and P in which the fixed point is
avoided and recurring periods of cooperation are sustained. It should be noted,
though, that as the mutation rate decreases, the part of the cycle in which there
is a significant level of cooperation decreases towards zero. This is due to the
slow genetic drift that brings DCk strategies back into the population, which
eventually make it possible for the CCk strategies to re-establish a significant
level of cooperation.

3.4 Co-existence between Fixed Point Existence and Re-
curring Cooperation

The discussion in Section 3.2 left the question of whether stable fixed points
are reached by population dynamics, and we found that it is not necessarily
so in Section 3.3. This was illustrated for the extended strategy set for low ε.
Combining the different findings by considering their boundaries in the param-
eter space, this suggests an additional property of the evolutionary dynamics.
By considering the joint results of our findings (in Figures 4 and 5), one can
note that there is a part of parameter space for which there is co-existence be-
tween a stable fixed point of defect strategies and a stable cycle with recurring
cooperation.
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Figure 5: Parameter diagram showing which games have recurrent cooperation
in the evolutionary dynamics from a starting point of initial cooperation. Top
row: simple strategy set. Middle row: extended strategy set with Convincers
and Followers. In the graphs, recurrent cooperation exists to the left of the
line and a fixed point with defectors characterizes the behaviour to the right.
For simple strategies, lowering ε steadily reduces the part of parameter space
dominated by recurrent cooperation. In the bottom row, the delimiting line is
shown for a variety of game lengths and for two levels of mutation (left and
right), illustrating the fact that the longer the game the larger the parameter
region supporting cooperative phases in the evolutionary dynamics.
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4 Discussion and Conclusion

A key point in game theory is that a player’s strategic choice must consider the
strategic choice the opponent is making. For finitely repeated games, backward
induction as a solution concept has become established by assuming player be-
liefs being based on common knowledge of rationality. However, this assumption
says nothing about how players would react to a deviation from full defection—
a deviation from the Nash equilibrium—since it a priori rules out actions and
reactions that exemplify other ways of reasoning.

Motivated by the general importance of backward induction and what has
been called its ”paradox”, we have introduced an evolutionary analysis of the in-
teraction in a population of strategies that react differently to out-of-equilibrium
play in the first round of the game. We have shown how extending a strategy
set for this possibility, in the special case of the repeated Prisoners’ Dilemma,
allows for stable limit cycles in which cooperative players return after a period
of defection. The introduction of Convincers and Followers, representing both
strategies that try to establish cooperation and strategies that are capable of
responding to that, are made in a way to preserve the structure of the selected
strategy set so that elimination of weakly dominated strategies leads to full
defection.

For the simple strategy set, as the mutation rate becomes sufficiently small,
the cyclic behaviour disappears and the system is attracted to a stable fixed
point. The stability of this fixed point was shown analytically for a sufficiently
small mutation rate ε.

For the extended strategy set, for low levels of mutation, the numerical
investigation of fixed point stability and oscillatory modes indicates that, for
a certain part of payoff parameter space, the evolutionary dynamics does not
reach a stable fixed point but stays in an oscillatory mode, unlike the case
of simple strategy set. We characterise our results by a detailed quantitative
analysis of where this occurs: showing how the length of the repeated game and
the mutation rate affects the boundaries of this region.

One of the main results of the study is an affirmative answer to the question
whether different responses to out-of-equilibrium play in the first round can
make the dynamics avoid fixed points, and the corresponding Nash equilibrium.
Additionally, the fixed point analysis showed the co-existence of a stable fixed
point and stable oscillations with recurring phases of cooperation. This means
that a system with different responses to out-of-equilibrium play may be found
far from its possible stable fixed point. Taken together, this illustrates that the
Nash equilibrium play can be unstable at the population level when mutations
make explorations off the equilibrium path possible.

This paper contributes to the backward induction discussion in game theory,
but more broadly to the study of repeated social and economic interaction.
Many models, typically much larger and less transparent ones, of social and
economic systems involve agents. If solving these systems means finding the
Nash equilibria, then one may doubt whether that is a good representation of
rational behaviour except under certain conditions as we have discussed in the
paper. We have shown that strategies corresponding to the Nash equilibrium
cannot be taken for granted when they interact and compete with strategies
that act and respond differently to out-of-equilibrium play.
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Appendix A. Stability of fixed point in the simple
strategy set for small mutation rates

In order to show that the Nash equilibrium fixed point at zero mutation rate, ε =
0, continuously translates into a stable fixed point as the mutation rate becomes
positive, ε > 0, we investigate the fixed point more thoroughly. First, we note
that the stability of the fixed point without mutations (ε = 0), characterised by
x1 = 1 (strategy S0 dominating), can be determined by the largest eigenvalue
of the Jacobian matrix (∂ẋi/∂xj) derived from the dynamics, Equation (3),
where we use the notation ẋi = dxi/dt. One finds that the largest eigenvalue
is given by λmax = −P < 0, which shows that the fixed point is stable. This is
also known from the stability analysis of the finitely iterated game by Cressman
[19].

We will now proceed with reformulating the fixed point condition, for pos-
itive mutation rate ε > 0, which is a set of n polynomial equations given by
ẋi = 0 (with i = 1, ..., n), into an equation of only one variable x1. Based on
this we show that the Nash equilibrium fixed point for zero mutation rate ε = 0,
characterised by x1 = 1, continuously moves into the interval x1 ∈ [0, 1[, with
retained stability.

We let index i denote strategy Si−1 in the simple strategy set (i = 1, ..., n),
where the number of strategies is n = N+1. Due to the structure of the repeated
game for the simple strategy set, determining u(i, j), we can establish pair-wise
relations between xk and xk+1 for k = 1, 2, ..., n− 1, at any fixed point. We use
the slightly more compact notation si,j = u(i, j), for the score for a strategy i
against j.

For x1 and x2 (strategies S0 and S1), using Equation (3), we have

dx1
dt

= x1 (s1,1x1 + s1,2(1− x1)− s̄− ε) +
ε

n
= 0 (4)

dx2
dt

= x2 (s2,1x1 + s2,2x2 + s2,3(1− x1 − x2)− s̄− ε) +
ε

n
= 0 (5)

where we have used the fact that s1,2 = s1,j (for j > 2), and s2,3 = s2,j (for
j > 3). At a fixed point, for ε > 0, all strategies are present, xi > 0, and we can
divide these equations by x1 and x2, respectively. Then, taking the difference
between the equations gives us an equation for the relation between x1 and x2,

ε

n

(
1

x1
− 1

x2

)
+ x1 + (T − P )x2 − (1− P ) = 0 (6)

where we have used that s2,3 − s1,2 = 1 − P , s1,1 − s2,1 − s1,2 + s2,3 = 1, and
s2,3 − s2,2 = T − P . Solving this quadratic equation gives x2 as a function of
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x1,

x2 = fA(x1) (7)

with the function fA(x) defined by

fA(x) =
1

2(T − P )

(
x− (1− P ) +

ε′

x

)(
−1 +

√
1 +

4(T − P )ε′(
x− (1− P ) + ε′

x

)2
)
(8)

Here we have introduced ε′ = ε/n. In the same way, for xk−1 and xk (for
k = 3, ..., N − 1), the fixed point implies that

dxk−1
dt

= xk−1

k−2∑
j=1

sk−1,jxj + sk−1,k−1xk−1 + sk−1,k

1−
k−1∑
j=1

xj

− s̄− ε
+

ε

n
= 0

(9)

dxk
dt

= xk

k−2∑
j=1

sk,jxj + sk,k−1xk−1 + sk,kxk + sk,k+1

1−
k∑
j=1

xj

− s̄− ε
+

ε

n
= 0

(10)

where we have used the fact that sk,j = sk,k+1 for j > k. Again, the difference
between these equations results in a relation between xk and all xj with j < k
(for k = 3, ..., N − 1). Since sk−1,j = sk,j for j < k − 1, the difference can be
written

ε

n

(
1

xk−1
− 1

xk

)
+ Pxk−1 + (T − P )xk − (1− P )

1−
k−1∑
j=1

xj

 = 0 (11)

where the score differences, sk−1,k−1−sk,k−1 = P−S = P , sk,k+1−sk,k = T−P
and, sk−1,k − sk,k+1 = P − R = P − 1, have been used. This results in an
expression for xk in terms of all xj (with j < k),

xk = fB

xk−1, 1− k−1∑
j=1

xj

 (12)

with the function fB(x,w) defined by

fB(x,w) =
1

2(T − P )

(
Px− (1− P )w +

ε′

x

)(
−1 +

√
1 +

4(T − P )ε′(
Px− (1− P )w + ε′

x

)2
)

(13)

Finally, using the same approach for the last two variables, xn−1 and xn, the
equation for the relation between these can be written

ε

n

(
1

xn−1
− 1

xn

)
+ Pxn−1 + (T − 1)xn = 0 (14)
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The last variable can then be expressed as

xn = fC(xn−1) (15)

with the function fC(x) defined by

fC(x) =
1

2(T − 1)

(
Px+

ε′

x

)(
−1 +

√
1 +

4(T − 1)ε′(
Px+ ε′

x

)2
)

(16)

This means that we can recursively express the fixed point abundancies xk of
strategies k = 2, ..., n in terms of x1, using Eqs. (8), (13), and (16). Together
with the normalisation constraint, this results in an equation with only one
variable, x1, that determines the fixed points. In other words: Summation over
all xk and subtraction of 1 gives us a function of x1, F (x1), with zeroes at the
fixed points,

F (x1) =

n∑
k=1

xk − 1 (17)

Note that we can extend the function F also to the case ε = 0, since all functions
fA, fB and fC are identical to zero in that case and we simply get F (x1) = x1−1,
capturing the Nash equilibrium fixed point x1 = 1. (Note, though, that in this
extension none of the other fixed points at ε = 0 are captured; any xk = 1
defines a fixed point for zero mutation rate, but all except the first one are of
no interest for us.)

All functions fA, fB and fC are continuous and bounded, since g(y) = y(1−√
1 + 1/y2) is. We also see that g(y) → 0 as |y| → ∞. Thus, F (x) being

composed of these functions is continuous in the interval [0, 1].
As an example, Figure 6 illustrates F (x) for n = N + 1 = 6, T = 1.05, P =

0.15 with four different choices of the mutation rate ε. The graph shows that
as the mutation rate increases the fixed point at x1 = 1 moves to the left and
also that new fixed points may emerge. Most importantly, though, the graph
indicates a discontinuous change of the function for x below about 0.95, when
going from ε = 0 to ε > 0. In order to show that the fixed point always moves
continuously from x1 = 1, we need to be sure that any such a discontinuity is
bounded away from x1 = 1.

We already know that for ε = 0 there is a zero in x = (1, 0, ..., 0). We want to
show that as ε increases, this fixed point, characterised by F (x1) = 0 for x1 = 1,
continuously moves into the unit interval, 0 < x1 < 1. We accomplish this by
performing a series expansion of F (x) around x = 1 and ε = 0, by showing
that F ′(x1) = 1 for x1 = 1, that F is increasing with ε in the neighbourhood of
x1 = 1, and that the coordinates xk (k > 1) of the fixed point move continuously
with x1 when sufficiently close to 1.

The first part is straightforward: At zero mutation rate, ε = 0, we have
already noted that F (x1) = x1 − 1, and thus the derivative F ′(x1) = 1.

Next, we need to show that, at least sufficiently close to the fixed point and
for sufficiently small ε, F increases with ε. We do this term by term in the
sum of F . First assume that the point x1 is close to fixed point value 1 at zero
mutation rate, i.e., x1 = 1− δ, and that ε is small, so that ε << P and δ << P .
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Figure 6: The function F (x) for the 5-round PD game with T = 1.05, P = 0.15, and
four different mutation rates ε.

The first term in F is x1 and does not depend on ε. The second term, x1, is
given by fA,

x2 = fA(1− δ) =
1

2(T − P )

(
P − δ +

ε′

1− δ

)−1 +

√√√√1 +
4(T − P )ε′(
P − δ + ε′

1−δ

)2
 =

=
ε′

P

(
1 +

δ

P
+O(ε′)

)
+O(ε′)2 +O(δ)2 (18)

This term thus increases with ε′. For the next term x3, using Equation (13), we
find that to first order in ε′ and δ,

x3 = fB(x2, 1− x1 − x2) = fB

(
ε′

P
, δ − ε′

P

(
1 +

δ

P

))
=

=
ε′

P

(
1 +

2− P
P

δ +O(δ)2
)

+O(ε′)2 +O(δ)2 (19)

More generally, for 2 < k < n, repeatedly using Equation (13), we find

xk =
ε′

P

(
1 +

k − P (k − 1)

P
δ +O(δ)2

)
+O(ε′)2 +O(δ)2 (20)

and finally, using Equation (16), that

xn =
ε′

P

(
1 +

(N − 1)− P (N − 2)

P
δ +O(δ)2

)
+O(ε′)2 +O(δ)2 (21)

From the linearisation we can conclude that when x1 is sufficiently close to
1, i.e., δ << P , the change in F (x1) from an increase of ε′ is given by the
n − 1 terms x2, ..., xn, or dF (x1)/dε′ ∼ (n − 1)/P > 0. Adding the fixed point
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constraint, F (x1) = 0, to the linearisation determines x1 and thus δ in terms of
ε′. To first order in ε the fixed point is given by

x1 ∼ 1− (n− 1)
ε′

P
+O(ε)2 = 1− (n− 1)

ε

nP
+O(ε)2 , and (22)

xk ∼
ε

nP
+O(ε)2 for k = 2, ..., n (23)

where we have switched back to the original ε. This analysis shows that as ε
increases from 0, the fixed point gradually moves into the unit interval.

Since the fixed point is changed continuously as the mutation rate increases
from ε = 0, the eigenvalues of the Jacobian also change continuously. The fixed
point at ε = 0 is stable, with the largest eigenvalue being λmax = −P < 0, and
we can conclude that for sufficiently small ε > 0, the real part of the largest
eigenvalue remains negative. From this we can conclude that the fixed point
associated with the Nash equilibrium in the finitely repeated Prisoner’s Dilemma
remains stable in the simple strategy set if the mutation rate is sufficiently small.
This concludes the proof of Proposition 1.
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