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Mechanism Design for Eliciting Probabilistic Estimates
from Multiple Suppliers with Unknown Costs and

Limited Precision1

A. Papakonstantinou, A. Rogers, E. H. Gerding and N. R. Jennings

School of Electronics and Computer Science, University of Southampton
{ap06r,acr,eg,nrj}@ecs.soton.ac.uk

Abstract. This paper reports on the design of a novel two-stage mechanism,
based on strictly proper scoring rules, that allows a centre to acquire a costly
probabilistic estimate of some unknown parameter, by eliciting and fusing esti-
mates from multiple suppliers. Each of these suppliers is capable of producing a
probabilistic estimate of any precision, up to a privately known maximum, and by
fusing several low precision estimates together the centre is able to obtain a sin-
gle estimate with a specified minimum precision. Specifically, in the mechanism’s
first stage M from N agents are pre-selected by eliciting their privately known
costs. In the second stage, these M agents are sequentially approached in a ran-
dom order and their private maximum precision is elicited. A payment rule, based
on a strictly proper scoring rule, then incentivises them to make and truthfully re-
port an estimate of this maximum precision, which the centre fuses with others
until it achieves its specified precision. We formally prove that the mechanism
is incentive compatible regarding the costs, maximum precisions and estimates,
and that it is individually rational. We present empirical results showing that our
mechanism describes a family of possible ways to perform the pre-selection in
the first stage, and formally prove that there is one that dominates all others.

1 INTRODUCTION

The growth of the internet has facilitated large-scale open information systems in which
multiple users and providers can autonomously exchange information. Thus, it is impor-
tant to develop processes that will evaluate this information and will give some guar-
antees to its quality. This is particularly important in cases where the information in
question is a probabilistic estimate or forecast whose generation involves some cost.
Examples include online reputation systems where the information in question is the
predicted quality of service delivered by a service provider (and the costs are incurred
by storing and searching previous interaction histories), and forecasting services where
the information is a prediction of some meteorological phenomena (and costs represent
the computational expenses of running large scale prediction models). In such cases,
there may be incentives for information providers to misreport their estimates or pre-
dictions, or to allocate less costly resources to their generation, if they can increase
their own utility by doing so (e.g. by being rewarded for more precise estimates than

1 This research was undertaken as part of the EPSRC funded project on Market-Based Control
(GR/T10664/01). This is a collaborative project involving the Universities of Birmingham,
Liverpool and Southampton and BAE Systems, BT and HP.



they actually provide). Furthermore, information providers will typically have different
capabilities, and thus may only be able to provide estimates up to a certain maximum
precision (perhaps due to different computational resources or prediction methodolo-
gies). Thus, a potential user of this information is faced with three major challenges.
First, it has to elicit the providers’ private costs as well as its capabilities, in order to
select those which can collectively provide an estimate of the required precision at the
minimum cost. In doing so, it may have to fuse together several low precision esti-
mates in order to produce an estimate of sufficiently high precision. Second, it must
incentivise these providers to allocate sufficient costly resources into generating this
estimate. Finally, it must incentivise the providers to truthfully report their estimates.

Against this background, a number of researchers have proposed the use of strictly
proper scoring rules to address some of these challenges [1–3]. Mechanisms based on
these scoring rules reward precise estimates or forecasts by taking into consideration
the difference between an event’s predicted and actual outcome (observed at some later
stage) when issuing payments. In doing so, they incentivise agents to truthfully report
their estimates in order to maximise their expected payment. Miller et al. extend these
results and show that by appropriately scaling the scoring rule agents can be incentivised
to commit costly resources for generating an estimate of a specific precision [4]. More
recently, strictly proper scoring rules have been used to promote the honest exchange of
beliefs between agents [5], and within reputation systems to promote truthful reporting
of feedback regarding the quality of the experienced service [6].

However, in all the above approaches it is assumed that the costs of the agent pro-
viding the estimate or forecast is known by the centre. This is clearly not the case in
the examples described above where these costs represent private information known
only to each individual agent (since they are dependent on the specific computational
resources available to that agent). This issue is addressed by Papakonstantinou et al.,
who introduce a two-stage mechanism, in which the centre first uses a reverse second
price auction to identify a single agent that can provide the estimate with the lower cost,
while in the second stage a scaled strictly proper scoring rule incentivises that agent to
generate and truthfully report this estimate [7]. While this approach is effective in the
specific case it considers, it relies on the assumption that the generation of the estimate
is allocated to a single agent, and that this agent can provide an estimate of unlimited
precision. In reality, this is unlikely to be the case. Agents will likely have different
capabilities and this will be reflected in the maximum precision of the estimate that
they can produce. Thus the centre may have to procure estimates from multiple agents
and fuse them together to achieve its required precision. This fusion relies on the fact
that combining independent unbiased estimates will always result in a fused estimate of
greater precision than any of the individual ones (indeed, this relationship is additive in
the case of Gaussian estimates [8]).

It is this challenge we address in this paper. Such an extension is challenging since
procuring estimates from multiple agents results in an interdependent valuation setting
with so-called allocative externalities, for which it has been shown that no standard
mechanism exists which is both efficient and incentive compatible [9]. We address this
by developing a two stage mechanism whereby the first stage incentivises the agents to
truthfully reveal their costs to the centre, by pre-selecting M of the original N agents,
and the second stage incentivises a further subset of these M agents to truthfully report



their maximum precisions, and to generate estimates at those precisions. This mecha-
nism is incentive compatible, but not efficient. Thus, we empirically compare several
approaches to perform the pre-selection, and identify one that minimises this ineffi-
ciency. In more detail, in this paper we extend the state of the art in the following ways:

– We present a two stage mechanism in which a centre in the first stage asks the agents
to report their costs and uses these costs to pre-select M agents. In the second stage
the centre sequentially asks the pre-selected agents to report their maximum preci-
sions and then to generate an estimate of precision equal to their reported maximum
precision. These agents are paid for their estimates using an appropriately scaled
strictly proper scoring rule, and this second stage proceeds iteratively until the cen-
tre has achieved its required precision (or it has run out of agents, in which case the
centre will have to suffice with the closest precision to its required one).

– We prove that our mechanism is incentive compatible in costs, maximum preci-
sions and estimates revealed, and that it is individually rational. Furthermore, we
show that the agents maximise their expected utilities by generating estimates of
precision equal to their reported maximum precisions.

– We introduce a family of processes by which the centre may pre-select M from
N agents. Within this family, the centre divides the agents into groups of n ≤ N
agents, asks them to reveal their costs, and then selects the m cheapest agents. The
(m+1)th cost is then used within the subsequent scoring rule payment. In a setting
where costs are linear, we empirically evaluate this family for various values of
the parameters n and m, and we calculate the total expected payment made by the
centre, and the probability that it actually achieves its required precision, P (θ0).
We show both empirically and analytically that if the centre forms a single group
of agents such that n = N and m = M , it minimises its expected total payment.

The rest of this paper is organised as follows: In section 2 we describe our setting
in more detail, and in section 3 we present the necessary background on strictly proper
scoring rules. In section 4 we detail the mechanism and formally prove its properties,
before empirically evaluating the mechanism for various values of its parameters in
section 5. We conclude in section 6.

2 ELICITING INFORMATION FROM MULTIPLE SOURCES

We now describe our setting in more detail. We assume that a centre is interested in
acquiring a probabilistic estimate or forecast (such as the expected quality of a service
within a reputation system or a forecast of the temperature in a weather prediction set-
ting) with a minimum precision θ0, henceforth referred to as the required precision. We
note that the centre derives no additional benefit if the estimate is of precision greater
than θ0. Furthermore, we assume that there are N ≥ 2 rational and risk neutral agents
that can provide the centre with an unbiased but noisy estimate or forecast, with mean
x̂i and precision θ̂i. We model these agents’ private estimates as conditionally indepen-
dent Gaussian random variables such that xi ∼ N (x0, 1/θi), where x0 is the true state
of the parameter being estimated1. The true state, x0, is unknown to both the centre and

1 Note that there is no requirement that the agents should truthfully reveal their true estimates
and therefore, we will use a payment rule to incentivise them to do so.



the agents at the time that the estimate is requested, but becomes available to both at
some time in the future.

We model the agents’ cost of producing their estimate as a function of the precision
of the estimate, c(θ). While the centre has no information regarding the agents’ cost
functions, we assume that all cost functions are convex (i.e. c′′i (θ) ≥ 0), increasing and
that ci(0) = 0. We believe that these are realistic assumptions in all cases where there
are diminishing returns as the precision increases. We do not assume that all agents
use the same cost function, but we do demand that the costs of different agents do not
cross or overlap (i.e. the ordering of the costs and their derivatives is the same over all
precisions).

Finally, we assume that the maximum precision that each agent can provide is lim-
ited and is given by θc

i . Thus, agents can produce estimates of any precision up to and
including this maximum value (i.e. 0 ≤ θi ≤ θc

i ). Given this limit, the centre may not be
able to rely on a single agent to achieve its required precision, and may have to combine
estimates of multiple agents.

To this end, in order to fuse k conditionally independent and unbiased probabilistic
estimates, {x̂1, . . . , x̂k} of possibly different precisions {θ̂1, . . . , θ̂k}, into one estimate
with mean x̄ and precision θ̄, the centre uses the standard result (see [8]):

x̄θ̄ =
k∑

i=1

x̂iθ̂i and θ̄ =
k∑

i=1

θ̂i (1)

Note that for this fusion to be appropriate, agents must be incentivised to truthfully
report both the means and precisions of their estimates. Now, given this model, the
challenge is to design a mechanism in which the centre will be able to identify those
agents that can provide their estimates at the lowest cost, and to provide a payment to
these agents which will motivate them to truthfully report their maximum precisions
and generate and truthfully report their estimates with precisions equal to their reported
maximum precisions.

3 STRICTLY PROPER SCORING RULES

As previously discussed, strictly proper scoring rules have been used in computer sci-
ence to elicit incentive compatible payments and to motivate agents to allocate costly
resources into generating a probabilistic estimate or a forecast. However, the existing
mechanisms are restricted to cases where either the cost functions are known or the cen-
tre is only interested in a single agent’s estimate. Before we proceed to the analysis of
our mechanism, which relaxes both these assumptions, we provide the essential back-
ground regarding strictly proper scoring rules. In brief, such rules are functions that are
maximised when agents’ predictions of a future event are close to the actual outcomes.
Much of the literature concerns three specific rules:

1. Quadratic: S(x0|r(x)) = 2r(x0)−
∫∞
−∞ r2(x)dx

2. Spherical: S(x0|r(x)) = r(x0)/(
∫∞
−∞ r2(x)dx)1/2

3. Logarithmic: S(x0|r(x)) = log r(x0)



where, S(x0|r(x)) is the payment given to an agent after it has reported its estimate,
represented as probability density function r(x), and x0 is the actual outcome observed.

Payments based upon strictly proper scoring rules not only reward accurate esti-
mates, but also incentivise honest reporting of these estimates. That is, an agent will
maximise its expected score, and hence the payment it receives, by reporting its true
probabilistic estimate to the centre. Using that result, we can analytically calculate the
score an agent expects to receive after generating an estimate of precision θ and truth-
fully reporting it. The first step is to replace the general density function r(x), with the
Gaussian distributions, N (x0;x, 1/θ), and derive the following expressions:

1. Quadratic: S(x0;x, θ) = 2N (x0;x, 1/θ)− 1
2

√
θ
π

2. Spherical: S(x0;x, θ) =
(

4π
θ

) 1
4 N (x0;x, 1/θ)

3. Logarithmic: S(x0;x, θ) = log(N (x0;x, 1/θ))

After integrating over the expected outcome, x0, we derive an agent’s expected score,
S(θ), if it makes, and truthfully reports an estimate of precision θ:

1. Quadratic: S(θ) = 1
2

√
θ
π

2. Spherical: S(θ) =
(

θ
4π

) 1
4

3. Logarithmic: S(θ) = 1
2 log

(
θ
2π

)
− 1

2

Note that the properties of the strictly proper scoring rules (i.e. the expected score be-
ing maximised when agents truthfully report their estimates) are maintained under an
affine transformation. Indeed, Miller et al. make use of this observation and use a scaled
scoring rule as a payment in order to elicit effort from an agent and to ensure individual
rationality [4]. Thus, the agents’ expected payment, P (θ), is P (θ) = αS(θ)+β, where
α and β are the scaling parameters.

In more detail, if a centre is interested in acquiring an estimate of precision θ0, it
can choose the value of α such that the agent’s expected utility is maximised when it
produces and truthfully reports an estimate of the required precision, θ0, such that:

α =
c′t(θ0)

S
′
(θ0)

(2)

Furthermore, the centre can use the constant β to ensure that it makes the minimum
payment to the agent, while still ensuring that the mechanism is individually rational.
This is done by ensuring that U(θ0) = 0, thus giving:

β = ct(θ0)−
c′t(θ0)

S
′
(θ0)

S(θ) (3)

However, Miller et al. assumed that the agents’ costs ct are known to the centre.
Now, Papakonstantinou et al. relaxed this assumption. They showed that by asking
agents to declare their costs in the first stage of a two stage mechanism, selecting the
cheapest agent but calculating the scaling parameters using the second lowest revealed
cost led to an incentive compatible and individually rational mechanism, in which the



selected agent produces an estimate of precision θ∗, denoted by θ∗ = argmaxθU(θ),
which is greater or equal to θ0 (with θ∗ = θ0 when ct = cs).

Against this backround, we extend the above mechanism so it can deal with the
centre’s need to combine multiple sources of information in order to get a more accurate
estimate. In doing so, we relax the unrealistic assumption of this earlier work, that
agents are capable of producing estimates with unlimited precision. In the following
section, therefore, we introduce and analyse an iterative two-stage mechanism, which
can be applied in the more realistic setting in which agents can only produce estimates
up to a privately known maximum precision.

4 THE MECHANISM

In this section, we develop our mechanism so that the precision of the resulting fused
estimate is greater than or equal to the centre’s required precision. To this end, in the
first stage, the centre pre-selects M of the N available agents based on their reported
costs. In the second stage, it sequentially asks them to reveal their private maximum
precision, in an random order that is independent of their reported costs, until it achieves
its required precision, θ0. It then incentivises these pre-selected agents to produce and
truthfully report their estimates by using an appropriately scaled strictly scoring rule as
the basis of each payment.

In more detail, our two-stage iterative mechanism proceeds as follows:

– First Stage
1. The centre selects n ≥ 2 agents from the available N and asks them to report

their cost functions ĉi(θ) with i ∈ {1, . . . , n}.
2. The centre selects the m, (1 ≤ m < n), agents with the lowest costs, associates

the (m + 1)th cost with these agents and discards the remaining n−m agents.
3. The centre repeats the above two steps until it has asked all N agents to report

their cost functions. Note that when N is not exactly divisible by n and we
have a single remainder, it is discarded. Otherwise in the final round the centre
modifies n and m such that n = Nmod n and m = min(m,n− 1).

4. We denote the total number of the agents pre-selected in this stage as M and
note that its value depends on N , n and m.

– Second Stage
1. The centre sets its required precision θr equal to θ0.
2. The centre randomly selects one of the pre-selected agents and asks it to re-

port its maximum precision θ̂c
j , with j ∈ {1, ...,M}. It then asks the agent

to produce an estimate of this precision and presents this agent with a scaled
strictly proper scoring rule. The scaling parameters α and β are determined us-
ing equations 2 and 3. However, within these expressions θ̂c

j is used instead of
θ0, and cs (the cost associated with this agent in the preceding stage – (m+1)th

cost in the group from which it was selected) is used instead of ct. Hence, the
scaling parameters are given by:

αj =
c′s(θ̂

c
j)

S
′
(θ̂c

j)
and βj = cs(θ̂c

j)−
c′s(θ̂

c
j)

S
′
(θ̂c

j)
S(θ̂c

j) (4)



3. The centre sets θr = θr − min(θr, θ̂
c
j) and if θr > 0 it repeats step two of the

second stage.
4. The pre-selected agents produce estimates xj with precision θj and report x̂j

and θ̂j to the centre2, which after observing the actual outcome, x0, issues the
following payments to each one of them:

Pj(x0; x̂j , θ̂j) = αjSj(x0; x̂j , θ̂j) + βj (5)

with α and β being already determined in step two of the second stage.

In the next section we will prove that this mechanism leads the agents to truthfully
reveal their costs in the first stage (so that those which can produce the estimate at the
lowest cost can be identified), and that the M pre-selected agents are incentivised to
truthfully report their maximum precisions to the centre and subsequently make and
truthfully report estimates of these precisions in the second stage. These properties are
not obvious, and depend rather subtly on the details of the mechanism. For example, we
note that if after asking all M agents for their maximum precisions, the centre does not
achieve its required precision, the mechanism must proceed to the payment phase (step
4 in second stage). That is, the centre must commit to paying all pre-selected agents
for their estimates at their reported maximum precisions, even if it does not acquire its
required precision. Failure to observe this policy would lead agents to over-report their
maximum precision, in order that some payment was received, and thus, the mechanism
would thus would no longer be incentive compatible in terms of maximum precisions.

Furthermore, note that in step 2 of the first stage, the centre chooses the m agents
with the lowest reported costs, and discards the remaining n−m agents. If these agents
were not discarded, but were placed back into the pool of available agents, then the
mechanism would no longer be incentive compatible in terms of costs; agents would
have an incentive to over-report their costs, such that when they are eventually pre-
selected, their payment rule will be calculated using a higher cost. Finally, in step 2 of
the second stage, the centre must randomly ask the pre-selected agents to report their
maximum precisions using an ordering which is independent of their reported costs.
Failing to do so will undermine incentive compatibility in terms of costs of the first
stage of the mechanism, thereby illustrating how the two stages interact.

5 PROOF OF THE MECHANISMS’s PROPERTIES

Having detailed the mechanism, we now identify and prove its economic properties.
Specifically, we show that:

1. The mechanism is incentive compatible with respect to the pre-selected agents’
reported maximum precisions and reported estimates.

2. The mechanism is incentive compatible with respect to the agents’ reported costs.
3. The mechanism is individually rational.

2 Note that we could restrict agents to report their estimates with precision bθc
j . However, as we

shall show in section 5, under this mechanism the agents are automatically incentivise to reportbθj = bθc
j anyway.



Theorem 1 The mechanism is incentive compatible with respect to the pre-selected
agents’ reported maximum precisions and reported estimates.

Proof. Given the mechanism described above, when the agent reports its estimate, it
must do so with the precision that it claimed was its maximum. Thus, θ̂ = θ̂c. Now,
given the scaling of the scoring rules described in step 2 in the second stage of the
mechanism, the expected utility of the agent, if it reports its maximum precision as θ̂c,
and subsequently produces an estimate of precision θ, which it reports with precision
θ̂c, is denoted by U(θ, θ̂c), and given by:

U(θ, θ̂c) =
c′s(θ̂

c)

S
′
(θ̂c)

(
S(θ, θ̂c)− S(θ̂c)

)
+ cs(θ̂c)− ct(θ) (6)

where S(θ, θ̂c) is the agent’s expected score for producing an estimate of precision θ

and reporting its precision as θ̂c. Furthermore, S(θ̂c) is the agent’s expected score for
producing and truthfully reporting an estimate of precision θ̂c, ct(.) is the true cost
function of the agent, and cs(.) is the cost function used to produce the scoring rule (i.e.
the (m+1)th lowest revealed cost in the group from which the agent was pre-selected).
Taking the first derivative of this expression with respect to θ̂c gives:

dU(θ, θ̂c)

dθ̂c
=

d

dθ̂c

(
c′s(θ̂

c)

S
′
(θ̂c)

)(
S(θ, θ̂c)− S(θ̂c)

)
+

c′s(θ̂
c)

S
′
(θ̂c)

S
′
(θ, θ̂c) (7)

Now, since S is a strictly proper scoring rule, then S(θ, θ̂c) = S(θ̂c) and S
′
(θ, θ̂c) = 0

when θ = θ̂c. Hence:

dU(θ, θ̂c)

dθ̂c

∣∣∣∣ bθc=θ

= 0 (8)

and thus, the utility of the agent is maximised when it reveals as its maximum precision,
the precision of the estimate that it subsequently produces3.

We now show that it will actually produce an estimate of precision equal to its
maximum precision. To this end, we note that when θ̂c = θ, the expected utility of the
agent is given by:

U(θ) = cs(θ)− ct(θ) (10)

3 For completeness, we confirm that the second derivative is negative at θ = bθc. To this end, the
second derivative is given by:

d2U(θ, bθc)

d(bθc)2
(bθc = θ) =

c′
s(bθc)

S
′
(bθc)

S
′′
(θ, bθc)− c′′

s (bθc) +
c′

s(bθc)

S
′
(bθc)

S
′′
(bθc) (9)

Now, the first term of equation 9 is negative because S is strictly proper, and this implies
that S

′′
(θ, bθc) is negative at θ = bθc. Furthermore, c′′

s (bθc) is positive, assuming convexity of
the cost function, and S

′′
(bθc) is negative assuming concavity of the scoring rule. Hence, the

second derivative is negative at bθc = θ.



Since cs(.) and ct(.) do not cross or overlap, and c′s(θ) > c′t(θ), then U(θ) is a
strictly increasing function. Thus the agent will maximise its expected utility by pro-
ducing an estimate at its maximum precision, and thus, θ = θc, and hence, θ̂c = θ̂ = θc,
as required. ut

Theorem 2 The mechanism is incentive compatible with respect to the agents’ reported
costs.

Proof. We prove this by contradiction and consider two cases depending on whether
or not an agent is pre-selected in the first stage of the mechanism as a result of its
misreporting. Let ct(.) and ĉ(.) denote an agents’ true and reported cost functions re-
spectively. Furthermore, let cs(.) denote the cost function used to scale the scoring rule
if that agent is among the m agents with the lowest reported costs in its group of n
agents in the first stage of the mechanism (i.e. cs(.) is the (m+1)th cost of that group).

First, suppose that the agent’s misreporting does not affect whether it is pre-selected
or not. In this case, had the agent been pre-selected, its payment would have been based
on the (m + 1)th cost of its group and therefore independent of its own report. Con-
versely, had the agent not been pre-selected, it would have received zero utility, since
the remaining n − m agents, of a group of initially n agents, that are not pre-selected
are discared. Hence, there is no incentive to misreport.

Second, suppose that the agent’s misreporting affects whether that agent is pre-
selected or not. There are now two cases: (1) the agent is pre-selected by misreporting
but would have not been if it was truthful, (i.e. ct(θ̂c) > cs(θ̂c) and ĉ(θ̂c) < cs(θ̂c)),
and (2) the agent is not pre-selected by misreporting but would have been if truthful
(i.e. ct(θ̂c) < cs(θ̂c) and ĉ(θ̂c) > cs(θ̂c)).

Case (1). Since the true cost ct(θ̂c) > cs(θ̂c), it follows directly from theorem 1
that the expected utility U(θ) = cs(θ) − ct(θ) is strictly negative, irrespective of θ.
Therefore, the agent could do strictly better by reporting truthfully in which case the
expected utility is zero.

Case (2). In this case the agent would have been pre-selected if it was truthful, but
now receives a utility of zero since it hasn’t been pre-selected due to its misreporting. To
show that this type of misreporting is suboptimal, we need to show that, when ct(θ̂c) <

cs(θ̂c), an agent benefits from being pre-selected, since it may then be asked to generate
an estimate at its reported maximum precision, θ̂c. It follows directly from theorem 1
that U(θ̂c) = cs(θ̂c) − ct(θ̂c) > 0 when ct(θ̂c) < cs(θ̂c), and therefore there is no
incentive for an agent that would have been pre-selected to misreport its cost function.

ut

Theorem 3 The mechanism is interim individually rational.

Proof. Due to theorem 2, we can assume that all agents, and consequently those pre-
selected, will report their true cost functions, and therefore ct(θ) ≤ cs(θ). In theorem
1 we show that the expected utility U(θ) = cs(θ)− ct(θ) is strictly non-negative, irre-
spective of θ. Therefore, the expected utility of a pre-selected agent that generates an es-
timate of precision equal to its reported maximum precision θ̂c, is strictly non-negative
(i.e. U(θ̂c) ≥ 0), and hence the mechanism is interim individually rational. Note that



the mechanism is interim individually rational, since the utility is non-negative in ex-
pectation but there may be instances, in which the payment could be negative if the
prediction turns out to be far from the actual outcome. Setting β in the second stage,
such that the payments are always positive, would make the mechanism ex-post indi-
vidually rational. However, this would then violate the incentive-compatibility property
since the agents could receive positive payoffs by misreporting their cost functions in
the first stage. ut

6 EMPIRICAL EVALUATION

Having proved the economic properties of the mechanism, we present empirical re-
sults for a specific scenario in order to explore the effect that the parameters n and m
have on the centre’s total payments, and whether or not it obtains its required precision.
In more detail, in this scenario the cost functions are represented by linear functions,
given by ci(θ) = ciθ, where ci are independently drawn from a uniform distribution
ci ∼ U(1, 2). The maximum precisions of the selected agents, θc

i , are independently
drawn from another uniform distribution θc

i ∼ U(0, 1) and finally the centre’s required
precision, θ0, is equal to 1.7 in order to generate representative results whereby the
probability of achieving the required precision, P (θ0), covers a broad range of values
in [0, 1]. Finally, we restrict our analysis to the use of spherical scoring rule, as Pa-
pakonstantinou et al. have shown that among the quadratic, spherical and logarithmic
rules, this scoring rule is the most appropriate choice for a centre that is attempting to
minimise its payment [7].

To this end, for N = 7 we explore all possible combinations of n and m given
the constraints that 2 ≤ n < N and 1 ≤ m < n. For each combination, we simulate
the mechanisms 107 times and for each iteration we record whether the centre was
successful in acquiring an estimate at its required precision, and the sum of all the
payments it issued to those agents who were asked to produce an estimate. In figure
1 we plot, for each possible combination of n and m, the probability of acquiring the
required precision and the total payment made by the centre. We note that given the
number of iterations that we perform, the standard error in the mean values plotted are
much smaller than the symbol size shown in the plot, and thus, we omit them.

We show the results of these experiments in figure 1, in which each possible com-
bination of n and m is indicated with an identical marker. However, we differentiate
the case where n = N and the reason for this shall become clear shortly. Furthermore,
we also indicate the case where the centre has full information of the agents’ costs
and maximum precisions, and may thus optimally select the agents it needs in order to
ensure that θ0 is achieved at the minimum cost. This case represents an upper bound
for the mechanism, since the centre can now maximise its probability of achieving its
required precision by selecting all the available N agents.

Now, regarding figure 1, we first note that many possible combinations of n and
m give rise to the same value of P (θ0), and thus the family of possible pre-selection
methods fall into 6 distinct columns. This is because this probability depends only on
the number of agents that are pre-selected (denoted by M ) and many of these combina-
tions result in the same number of agents being pre-selected (i.e. if N = 7, both n = 4,
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Fig. 1. Centre’s probability of achieving the required precision and the mean total payment it has
to issue.

m = 2 and n = 5, m = 3 result in M = 4). In the following theorem, we show that
this probability increases, as the number of the pre-selected agents increases:

Theorem 4 The probability the centre has of achieving its required precision increases
as M increases.

Proof. We consider the sum Θ of M independent and uniformly distributed random
variables θc

i ∼ U(0, 1) which denote the agents’ maximum precisions. If Θ is a random
distribution such that Θ = θc

1+...+θc
M , its cumulative distribution allows us to calculate

P (Θ ≥ θ0) as follows:

P (Θ ≥ θ0) =

1− 1
M !

bθ0c∑
i=0

(−1)i

(
M

i

)
(θ0 − i)M 0 ≤ θ0 ≤ M

0 θ0 > M

(11)

and it is easy to verify that this is an increasing function in M . ut

Second, note that for each possible value of M , the case where n = N and m = M
dominates all other combinations of n and m (i.e. it results in the lowest mean total
payment). This case corresponds to a single selection stage in which M agents are
pre-selected directly from the original N in a single step. This result is demonstrated
empirically in figure 1, and we present an analytical proof for the specific case that we
consider here:



Theorem 5 In a setting with linear cost functions, where agents’ costs and maximum
precisions are independently drawn from uniform distributions, for a given probability
of achieving θ0, the centre minimises its expected total payment when n = N and
m = M .

Proof. Given the mechanism and setting described above, we first note that when the
costs of the agents are represented by linear functions, then ci(θ) = ciθ, and hence,
c′i(θ) = ci. Using this result within the scaling parameters of the payment rule described
in step two of the second stage of the mechanism, gives the result:

αj =
cs

S
′
(θ̂c

j)
and βj = csθ̂

c
j −

cs

S
′
(θ̂c

j)
S(θ̂c

j) (12)

Thus, both α and β are proportional to cs, and hence the payment to any agent is also
proportional to the cost used in the calculation of the scaling parameters. Secondly, we
note that due to the random selection of agents within the second stage of the mecha-
nism, the precision of the estimate generated by any agent is independent of the cost
used to generate its payment rule. Hence, the expected total payment to the agents is
proportional to the mean cost used to generate their payment rules.

Now, the costs used to generate the payment rule of any agent is the (m + 1)th

lowest reported cost when m agents are pre-selected from n. Thus, in order to show
that setting n = N and m = M minimises the expected total payment of the centre, we
must simply show that the expected value of the (M + 1)th cost when pre-selecting M
agents from N , is lower than any other combination. To do so, we note that if the costs
of the agents are i.i.d. from the standard uniform distribution4, and the agents report
truthfully (as they are incentivised to do), then the density function that describes the
(m + 1)th cost, denoted by Cm+1:n, is given by:

cm+1:n(u) =
n!

m!(n−m− 1)!
um(1− u)n−m−1, 0 ≤ u ≤ 1 (13)

and Arnold et al. show that the mean of this distribution is simply m+1
n+1 [10]. Thus, we

now prove that the (M + 1)th cost when pre-selecting all M agents directly from N
is less than the expected cost that results from first pre-selecting m agents from n and
then pre-selecting the remaining M −m agents from N −n. Thus, we must must prove
the inequality: (

M + 1
N + 1

)
≤ m

M

(
m + 1
n + 1

)
+

M −m

M

(
M −m + 1
N − n + 1

)
(14)

subject to the constraints that M < N , m < n and N − n > M −m, and we note that
if it holds in this case, then it holds for all possible combinations of n and m.

A first step towards the proof of equation 14, is performing the following substitu-
tions:

a = m, b = M −m, c = n, d = N − n

4 For notational simplicity we shall assume that the costs are drawn from U(0, 1), but we note
that the proof is valid for a uniform distribution of any support.



and now equation 14 takes the following form:

(a + b)(a + b + 1)
c + d + 1

≤ a(a + 1)
c + 1

+
b(b + 1)
d + 1

(15)

with a, b, c, d ≥ 0, a < c, and b < d.
Now, by multiplying all fractions in equation 15 to obtain a common denominator,(c+

1)(d+1)(c+d+1), and noting that this denominator is positive, translates equation 15
into the following condition:

(a + b)(a + b + 1)(c + 1)(d + 1)
− a(a + 1)(c + d + 1)(d + 1)

− b(b + 1)(c + d + 1)(c + 1) ≤ 0 (16)

We can rearrange this expression into the form:

F1(a, b, c, d) + F2(a, b, c, d) + F3(a, b, c, d) ≤ 0 (17)

where:

F1(a, b, c, d) = −(d · a− b · c)2 (18)

F2(a, b, c, d) = −b(c− a)2 − b2(c− a)− a(d− b)2 − a2(d− b) (19)
F3(a, b, c, d) = a(b− d) + b(a− c) (20)

Now, it is easy to verify that F1, F2, and F3 are all negative given the initial constraints
that a, b, c, d ≥ 0,a < c and b < d. Hence, it follows that equation 17 is negative. ut

Finally, we note that the full information case (shown in figure 1 as a square) results
in the highest probability of achieving the required precision. This is expected as in this
case the centre has the option selecting all N agents to generate estimates, whereas the
requirement to pre-select agents to incentivise them to truthfully report their costs limits
our mechanism to using at most N − 1 agents. We also note that the full information
case results in significantly lower total payments to the agents since in this case the
centre is able to select those agents with the lowest costs to generate the estimates, and
it need only pay them sufficient to ensure that their expected utility is infinitesimally
greater than zero. Given that it is always preferable to set n = N , the choice of the
value of m is determined by the trade-off between the total payment made by the centre
and the probability of it acquiring an estimate of its required precision. If the distribu-
tions of cost and maximum precisions are known, this can be evaluated prior to running
the mechanism through simulation. However, if these distributions are unknown, set-
ting m = N − 1 ensures that the probability of acquiring the required precision is
maximised.

7 CONCLUSIONS

In this paper we introduced a two-stage mechanism based on strictly proper scoring
rules. In this mechanism a centre pre-selects M from the N available agents by eliciting



their cost functions in the first stage. Then, in the second stage, it approaches these M
agents and asks them to report their maximum precision and make a costly probabilistic
estimate or forecast of that precision. We applied this mechanism in a setting where an
agent might not be able to generate estimates of a sufficient precision to individually
meet the centre’s needs, hence leaving the centre no option but to combine multiple
such estimates and fuse them into a more accurate one. Furthermore, in the setting
we considered, the agents, and initially the centre, have no information about the cost
functions or the maximum precisions. For this setting, we proved that this mechanism is
incentive compatible and individually rational. Furthermore, we empirically evaluated
the mechanism for various values of the parameters m and n and showed that for a
given probability, P (θ0), the centre minimises its mean total payment if it pre-selects
M agents directly from a single group of N agents.

In our future work we intend to relax the assumption that the centre can observe
the actual outcome after receiving the estimates of the selected agents. In doing so, we
will be able to address a larger set of problems where observing the actual outcome is
impossible or in settings in which the payment must be made before the actual outcome
can be observed. In this case, we postulate that we can score each agent against the fused
estimates of all the other agents, and thus the dominant truthful reporting strategies of
the agents within the mechanism that we presented here are likely to be replaced by a
Nash equilibrium in which reporting the truth is optimal if others are also reporting the
truth. In this case, we expect the total payment made to the agents to increase, and this
loss by the centre reflects the uncertainty in the true outcome, against which the agents
must being scored.
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