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Abstract

This paper proposes a new inferential framework for structural econometric

models using a nonparametric Bayesian approach. Although estimation methods

based on moment conditions can employ a flexible estimation without distri-

butional assumptions, they have difficulty conducting a prediction analysis. I

propose a nonparametric Bayesian methodology for an estimation and prediction

analysis. My methodology is applied to an empirical analysis of the Japanese

private nursing home market. This market has a sticky economic circumstance,

and my prediction simulates an intervention that removes this circumstance. The

prediction result implies that the outdated circumstance in this market is harmful

for consumers today.

Keywords: Nonparametric Bayes; Nonlinear simultaneous equation model; Pre-

diction; Industrial organization; Nursing home; Long-term care in Japan
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1 Introduction

This paper proposes a new methodology for structural econometrics using a nonpara-

metric Bayesian approach. In structural econometrics, especially when applied to

the industrial organization, many studies adopt estimation techniques, such as the

generalized method of moments(GMM), that rely on identification conditions in the

form of moment conditions, not distributional assumptions. Alternatively, much em-

pirical research focuses on further inferences in addition to estimation. Especially

since the introduction of the important Lucas criterion(Lucas, 1976), the availability

of prediction analysis for counterfactual economic situations is an important advan-

tage of structural studies. For advanced inferences, such as a prediction, however, a

numerical technique based on random number generation is often needed, and hence,

distributional assumptions are necessary. Because of this requirement, we cannot

always conduct prediction analysis with only moment conditions.

To resolve this problem, I adopt a nonparametric Bayesian approach. This in-

ferential framework is based on a likelihood function that can represent an arbitrary

distribution. Unlike the other nonparametric methodologies, such as kernel or spline

functions, the nonparametric Bayes approach can yield a closed form of a predictive

distribution function, which is required for numerical techniques. This property al-

lows for simultaneous estimation without distributional assumptions and prediction

analysis.

As an empirical application of my methodology, this paper analyzes the market

of private nursing homes in Japan. This market has an economic circumstance in the

form of a price mechanism where nursing homes assume all longevity risks of their

residents. This uneven market structure was established when the private nursing

homes were luxury goods. This situation has changed as a result of the launch of

the radical national long-term care insurance program in Japan, and private homes

today appear to be ordinary goods. Nevertheless, many homes still adopt this price

mechanism. This price mechanism is apparently a relief for elders whose only income

is their pension. However, a rational home must recover the financial burden of
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risks from a different channel of payment. Therefore, there is a possibility that this

circumstance forces consumers to pay a larger amount of their lifetime payments

than if this price mechanism was nonexistent. My research question is whether this

mechanism is beneficial or not for consumers.

The structure of this market is understood with a nonlinear simultaneous equation

model that extends that of Berry et al. (1995), hereafter BLP. For this model, the

GMM estimation is a standard tool because it can easily manage the simultaneity

of many structural equations. I intend to extend the original BLP model, which

consists of demand and supply for a static good, to express the dynamic nature of the

nursing home market. The demand side in my model is the consumer optimization

of the present value of lifetime utility. For the supply side, following the conventional

approach of prior nursing home studies as summarized in Norton (2000), it is assumed

that homes maximize their profit at the equilibrium.

To evaluate the economic impact of the peculiar price mechanism, a prediction

analysis is conducted to simulate an exogenous intervention that removes the mech-

anism. A previous study by Nevo (2000) provided a prediction technique for the

BLP model. In an analysis of mergers in the US ready-to-eat cereal industry, he

assumes that the effects of a merger would be so marginal that everything in the

model,including unobserved terms, remains the same. Under this assumption, the

prediction analysis is a deterministic problem that does not require any distributional

assumption for the unobserved variables. Due to its tractability, this methodology

has been adopted by many researchers, such as in the study of Petrin (2002) on the

impact of a new product, the minivan, on the automobile market. Alternatively, in

the Japanese nursing home market, a change in the price mechanism would have a

fundamental, not marginal, influence on the economy. Then, a more flexible method,

such as my nonparametric Bayesian approach, could simulate the counterfactual in-

tervention in the nursing home market.

I employ an empirical analysis using real data taken from the list of nursing homes

in the book Shuukan Asahi Mook (2011). My estimation results produce reasonable

estimates for each model parameter. Furthermore, my prediction analysis shows that
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the intervention reduces the lifetime total payments for residents, except those who

have unrealistically long lifetimes. A possible reason for the current overpayment is

consumers’ inaccuracy in predicting their remaining lifetime. This result implies that

the outdated circumstance is harmful for consumers today.

This paper contributes to three fields: nonparametric Bayesian statistics, applied

econometrics for the industrial organization field, and empirical studies of elder care.

First, in the literature of statistics, this study provides a new application fields for

the nonparametric Bayesian method. Nonparametric Bayes methods have a long his-

tory from when Ferguson (1973) presented the Dirichlet process, which is the most

commonly used model in this literature today. Although the practical use of nonpara-

metric Bayes has expanded, only recently, along with the development of computer-

intensive Bayesian methodologies such as the Markov chain Monte Carlo(MCMC),

the method has been applied to various statistical fields, as surveyed by Hjort et al.

(2010). In econometrics, Hirano (2002) applied a nonparametric Bayesian model

called the Dirichlet process mixture to dynamic panel models. Alternatively, this pa-

per is the first to apply nonparametric Bayesian methodology to a prediction analysis

in structural econometrics.

Second, as an applied econometric study, I present a new, flexible prediction tech-

nique for the BLP model. This model and its variants, such as those proposed by

Berry et al. (2004) and Berry and Pakes (2007), have already been applied to var-

ious industrial markets, such as the automobile retail market by BLP themselves,

a service sector by Davis (2006) and a durable good market by Gowrisankaran and

Rysman (2012), among others. Considering such wide applications, our methodology

can be useful for empirical industrial organization research. Regarding the statistical

concerns of the BLP model, this paper follows prior Bayesian research such as that

by Yang et al. (2003), Musalem et al. (2009) and Jiang et al. (2009). These studies

adopt parametric assumptions to implement an efficient estimation algorithm via a

Gibbs sampler. My methodology provides an advantage in its flexibility due to the

nonparametric modeling and a disadvantage in terms of computational time because

of the demanding estimation technique via the Metropolis-Hastings algorithm.
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Third, this study contributes to empirical studies of long-term care for the elderly.

In developed countries, as the Baby Boom generation reaches older ages, elder care

has become an important policy issue. This situation has stimulated a wide variety

of empirical studies of long-term care using recent economic tools, such as an analysis

of long-term care insurance demands and information asymmetry by Finkelstein and

McGarry (2006) and within-family bargaining games for parental care by Engers and

Stern (2002) and Bryne et al. (2009). In the empirical industrial organization field,

a study closely related to this one by Mehta (2006) analyzed the US nursing home

market using the BLP model.

My study takes advantage of a unique dataset of the Japanese market. Japan is

experiencing some of the most drastic population aging in the world. To address this

situation, the country has adopted a national program of long-term care insurance

with universal coverage. Since the establishment of this program, the service sector

for long-term care has rapidly grown into a large industry. A purpose of this paper is

to share the implications of the Japanese experience that the rest of the world might

face in the future.

The rest of the paper is organized as follows. In Section 2, I provide a brief review

of the Japanese private nursing home market. Section 3 introduces my econometric

model, and Section 4 presents the corresponding econometric methodology. The

proposed method is applied to real data in Section 5. Section 6 concludes the paper.

2 The Japanese private nursing home market

This section presents a brief review of the private nursing home market in Japan. I

first describe the current long-term elder care situation, which is united under the

national insurance program. Then, I provide to industrial details of the nursing home

market, especially its peculiar price mechanism, which is a main target of my research.
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2.1 The current status of elder care in Japan

Elder care once was a family task in Japan. The country has experienced overwhelm-

ingly rapid population-aging; therefore, maintaining a voluntary care system has been

difficult. To remove the burden from families, the government first situated long-term

care in a welfare program till the 1970s and then in a medicine program. Because

those programs were not specially designed to meet the complicated demands of long-

term care, the programs’ capacities were quickly exceeded. To manage the growing

demand for elder care, the national long-term care insurance program(LTCI) was

launched in the year 20001.

The LTCI is an insurance system with universal coverage. It covers long-term

care costs for two categories of insured people: Category 1 consists of all elderly aged

65 years or more, and Category 2 consists of those aged 40 to 64 years with aging-

related diseases. An insured person can ask the municipality authority to assign

a care eligibility level for him or her. Care eligibility levels are based on several

items, including activities of daily living(ADL) and instrumental activities of daily

living(IADL). There are seven eligibility levels, Assistance Required 1 and 2 and Care

Required 1 to 5; the latter levels cover costs for more intensive care. An upper bound

of monetary coverage and a set of available care services are prescribed by assigned

level. Out-of-pocket expenses are 10% of costs within the bound, and the rest are

covered by the LTCI. Services beyond the upper bound are available, but the excess

costs are completely out-of-pocket.

An important property of the LTCI is that it does not allow direct cash transfers

to elders or care givers, unlike the programs in Germany. In other words, the LTCI

covers only the care cost via the market, which has led to political debates. A main

supporting force for this system was the feminist movement for the “socialization” of

care. This movement demanded a release of women from providing voluntary care,

which is traditionally assigned to female family members, especially to the wife of

1See Ikegami and Campbell (2000) for details about the beginning of the program, including the
historical background. Tsutsui and Muramatsu (2007) summarized the current program after the
2005 reform.
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the first son. The government consented to this coverage because without the cash

allowance, many elders might not apply eligibility level assessment.

The LTCI has instantly created a large demand for long-term care services. This

sector rapidly shifted to a big industry. Both volume and range increased for this

sector. For volume, even during the long recession in the 2000s, the care service

sector showed a continuous growth, not only in sales additionally in the size of the

labor forces. The range of services has additionally increased in variety. In addition

to institutional care, which is commonly supplied through a market in developed

countries, other services include at-home care and short-term stay services.

2.2 The nursing home industry

This paper concentrates on nursing homes among the different forms of institutional

care. There are both public and private homes in this sector2; their differences can be

summarized in the following three features. First, public homes provide uniform care

at uniform prices, while private homes provide divergent care at a variety of prices.

An explicit distinction is in the eligibility of residents. Public homes accept only

elders who cannot leave a bed by themselves, while private homes accept a variety

of residents. Specifically, there are two general categories in private homes: homes in

one category provide care services as an option, while homes in the other category

provide care services as a default. In the former category, when a resident requires

permanent long-term care, he or she needs to exit the home. In the latter category, a

resident can stay in the home until his or her death. This paper focuses on the latter

category.

2I use the terms ‘public nursing home’ and ‘private nursing home’ as translations of Japanese
words ‘Tokubetsu-Yougo Roujin Houmu’ and ‘Yuuryou Roujin Houmu,’ respectively. Researchers
have not reached an agreement on the English term for private homes. For example, Ikegami and
Campbell (2000) called the private nursing home as ‘residential care with private-pay,’ and Nonaka
et al. (2011) called the private nursing home as ‘Quasi institutional care.’ In contrast to those authors,
I treat private homes as a form of nursing homes and juxtaposes them with public homes for two
reasons. First, they have a function that matches the standard definition of a nursing home, to
provide general long-term cares that does not specialize in medical care for those who permanently
live in an institution. Second, the Japanese term ‘Roujin Home,’ which means nursing home, is
commonly found in words ‘Tokubetsu-Yougo Roujin Houmu’ and ‘Yuuryou Roujin Houmu,’. This
must represent the fact that these institutions are perceived as similar service goods by Japanese
people.
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Second, public homes are operated by a municipal authority or a non-profit or-

ganization. For-profit organizations cannot enter the public home market, only the

private home market3. Even though non-profit organizations also can operate private

homes, our data indicate that more than 90% of private homes are for-profit.

Third, LTCI coverage is another difference between public and private homes. In

public homes, the LTCI covers everything except “hotel costs,” meaning rents and

foods4. In private homes, the LTCI covers only costs strictly categorized as care

costs. This type of cost is not included in an ordinary payment but is treated as a

person-specific additional cost.

The co-existence of public and private homes has its roots in history5. The first

Japanese nursing homes were established in the late nineteenth century by religious

and philanthropic organizations as voluntary institutions for the poor and solitary

elderly. The legal basis of these institutions was first provided in 1923 as a part of

a governmental welfare program, but the amounts of the subsidies were limited. To

manage their operating costs, homes accepted “free contract” dwellers whose financial

status was beyond the eligibility level of the welfare program but who wanted to

receive institutional care. However, the quality of homes occasioned considerable

complaints from the free contractors because homes could provide only limited services

in the range of the national welfare program.

Private nursing homes were formed during this time to meet the demand of the

free contractors. Although the exact origin is blurry, a record from as early as 1948

has been found about an active private nursing home. In 1963, the Act on the

Social Welfare Service for Elderly(Roujin Fukushi Hou) updated the legal system

of the long-term care sector. This act prohibited public homes from accepting any

free contract resident. The act additionally prescribed legal requirements for private

nursing homes for the first time. In other words, this act explicitly separated public

and private nursing homes.

3Mitchel et al. (2004) stated that for-profit firms are not allowed to enter the institutional care
market. This statement is true because the authors define the institutional care only as public homes.

4The hotel costs for public homes were once in the range of coverage of the LTCI but were
eliminated by the 2005 reform.

5This part is drawn primarily from Momose (1997) and Sudou (2006a,b).
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Until the 1990’s, the only residents in private homes were high income elders, and

the public homes functioned as a safety net. Several luxury private homes attracted

wide attention in the Japanese “bubble” economy in the late 1980s. Then the launch

of the LTCI has had a considerable influence on the nursing home market.

Table 1 is here

Table 1 describes the number of facilities and residential capacities for public and

private nursing homes from the years immediately before the launch of the LTCI until

recently6. The ratio of private to public home capacity was approximately 1 to 2.5

in 2009, although the ratio was 1 to 9 in 1999. Clearly, the market for private homes

has been expanding much more quickly than that of the public home market.

The slow growth of the public home market is a result of a regulatory policy, which

was caused by a rapid increase in the financial burden. In the first several years of

the LTCI, the number of eligible elders grew more quickly than prior governmental

estimates7. To slow the budget expansion, municipalities suppressed the establish-

ment of new homes. This policy induces a long waiting list of elders, estimated to be

421,0008. The elderly typically spend years in several rehabilitation facilities, which

are temporary care institutions between hospitals and public homes, until a vacancy

arises in a public home. Because of such exogenous restrictions on the supply of public

homes, I do not consider the crowding-out effects of public homes on private home

demand in this study.

Because the LTCI additionally covers costs for private homes, municipalities sought

to control their number as well. To provide a legal basis for this motivation, the na-

tional government announced the “Regulation of Volume”(Souryou Kisei) in 20059.

6The numbers are taken from the Survey on Institutions and Establishments for Long-Term Care
for public homes after 2000, and the Survey on Social Welfare Institutions for public homes in 1999
and private homes for the whole periods. The numbers can be traced through more recent years, but
the figures after 2009 have a problem with consistency. Because the research agents have changed
from the government to private firms, the response rate has drastically dropped.

7See Campbell et al. (2010).
8The figure is taken from the press release by the Japan Ministry of Health, Labor and Welfare,

December 2009. http://www.mhlw.go.jp/stf/houdou/2r98520000003byd.html.
9As reviewed in the paper by Mehta (2006), there is a similar regulation for a number of the

nursing homes in the United States that is called the control of need (CON), which restricts an
expansion of the Medicaid budget.
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This regulation stated that in 2014, the rate of elders who in care institutions must

be less than 37% of those with eligibility levels of Care-Required or higher. This regu-

lation forces many municipalities to prevent the entry of new private homes, because

the average rate already reached 41% in 2004. After active debates on this regulation,

the government abandoned it in 2012. As seen in Table 1, this regulation had an effect

on the market, as implied by the reduction in the growth after 2005. This reduction

implies that the amount of potential demand for the nursing homes must be larger

than their actual supply.

2.3 A peculiar price mechanism of private nursing homes

Next, I explain the peculiar price mechanism of the private nursing home market. To

live in a private home, typical contracts require a resident to make both of two forms

of the payments. The first payment is a monthly fee that covers the costs of daily

needs. The second payment is paid at the time of the resident’s entrance to the home

and is called an initial payment. The amount of the initial payment is determined as

rent during an expiration period of which the length is predetermined by the home.

If a resident exits the home before the expiration, the rents for the remaining periods

are paid back. On the other hand, if a resident lives longer than the expiration, he or

she does not need to pay additional rent10.

Under this contract, homes assume all longevity risks of their residents. It is legally

possible to offer a contract where the rent is collected not by the initial payment but

by the monthly fee to avoid the longevity risk. However, the percent of homes that

exercise a contract without an initial payment is less than 35% in our dataset. In

addition, most of the homes offer only one expiration period, which implies that homes

do not practice price discrimination to manage the longevity risk.

This mechanism is a residual of the past, when private homes were perceived as a

luxury good and consumers paid an expensive initial payment with a long expiration.

10Some portion of the initial payment is called an initial depreciation, which is not returned when
the resident exits before the expiration. In the empirical analysis, I assume that a home does not
collect the initial payment if initial depreciation is 100% of the initial payment. Otherwise, I do not
reflect the initial depreciation in the definition of the price variables for simplicity.
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With such limited demand, the price mechanism could have been a Nash equilibrium

in those days. However, as Table 1 indicates, the nursing home industry has been

experiencing an overwhelming transition in which the private homes are more familiar

goods for ordinary consumers as a substitute for the long waiting lists in the public

homes. Thus, whether this sticky circumstance is preferable from the perspective of

the social welfare today is uncertain.

A brief review of the nursing home market in the United States may be helpful.

As summarized in Norton (2000), the United States has a very different system from

Japan’s, called the Medicaid spend-down. In this system, the care costs are completely

paid by consumers. When consumers can no longer afford the costs, the government

assume them in the form of Medicaid, which is a public insurance system for low-

income individuals. This system is based on the perspective of the safety-net, which

differs from the Japanese universal care policy.

3 A structural econometric model for the nursing home

market

3.1 Defining a market environment

In this section, I construct a structural econometric model similar to the BLP model

for the Japanese private nursing home market. To explore the properties of the

nursing home market, I make several extensions to the conventional model. I begin

with describing the basic setup and notation in this subsection and proceed to details

of my extension in the following subsections.

There are M local markets that are geographically isolated. Each market m has

both demand and supply. The demand side consists of Im consumers, and the supply

side consists of Hm private nursing homes. The consumers decide among Hm private

homes and an outside option. The outside option represents anything other than a

private home, such as public homes, formal at-home care or informal family care.

The consumer population Im contains all the consumers who might enter a private
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home. An important finding of Berry et al. (1995) found that all the parameters can be

identified with only firms-side observations; consumer-side information is unnecessary.

Due to this finding, the dataset for this study consists of the observed characteristics

of H =
∑

m Hm nursing homes.

The economy is assumed to be in equilibrium in two senses. First, the supply

and demand sides equate as a general equilibrium. Second, the supply side is an

oligopolistic game, which results in the Nash equilibrium strategy profiles. I assume

that there is a unique Nash equilibrium. This assumption is stronger than the con-

ventional assumption that the dataset is generated from a unique equilibrium among

possibly multiple equilibria. As mentioned in footnote 12 of Berry et al. (1995, p.853),

to conduct a policy prediction, the economy is required to play the same equilibrium

under the counterfactual situation. This requirement is not guaranteed if we assume

the uniqueness of only the realized data-generating process.

There are several observable variables for equilibrium prices: For each hm =

1, ...,Hm, phm is a monthly fee and Fhm is an initial payment, which corresponds to

rents for an expiration period, namely Thm months. I make a variable for a monthly

rent fhm as fhm = Fhm/Thm if Thm 6= 0 or fhm = 0 if Thm = 0. fhm is assumed to

be exogenously determined in the housing market. I introduce vector notations for

home specific variables such as pm = (p1m , ..., pHm)′ and p = (p′
1, ...,p

′
M )′ where each

component is indexed as ph for h = 1, 2, ...,H.

As a clear distinction between my model and the conventional, static framework

of the BLP model, I consider the dynamic nature of nursing homes. An important

factor for a dynamic model is consumers’ lifetimes, which I denote τim for the imth

consumer. Consumer lifetimes might be uncertain for both the homes and the con-

sumers themselves. This particular uncertainty is carefully modeled in the following

subsections.

3.2 Modeling the demand side

My model for the demand side represents consumer optimization. I assume that

consumers maximize the present value of their lifetime utility. For simplicity, I assume
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that there is no voluntary exit from a home, and hence, any exit is due to the resident’s

death, to avoid the complication of endogenous exit decisions. Then, the control

variable of consumers in the mth market is their one-shot entrance decision among

Hm private homes and an outside option.

In formulating the dynamic optimization, there is uncertainty regarding each con-

sumer’s lifetime, which is a time horizon of the present value calculation. It is difficult

to consider an expected utility with respect to the stochastic horizon. Instead, I as-

sume that consumers evaluates their remaining lifetime with a subjective prediction,

which might be misspecified. Although I do not construct a specific model, the mis-

specification can exist for various reasons, such as a simple fallacy or an arbitrary

over-evaluation for a risk management. This predicted value is consumer-specific and

denoted as τ I
im

for the imth consumer.

For the utility components, I add explicit functional assumptions in this paper.

Specifically, the utility function for a period takes the form of a linear function of

an observable Kd × 1 vector x̃hm , an unobservable home-specific effect ξhm and an

individual-home match specific effect η̃imhm . In the present values of the future utili-

ties, each consumer im has private information regarding his or her remaining lifetime

in month τim ≥ 1 and time-discount rate δim ∈ (0, 1). Consequently, the present value

of the lifetime utility of the consumer im from the choice of hmth home is

Uimhm =
τI
im∑

t=1

δt−1
im

[x̃′
hm

β̃d + ξhm + η̃imhm ] − P (phm , fhm , Thm , τ I
im , δim)α, (3.1)

where −α measures a disutility from a unit expenditure in terms of the present value

utility, and hence, α > 0 is required. P denotes the present value of the payment

stream defined as

P (phm , fhm , Thm , τ I
im , δim) =

τI
im∑

t=1

δt−1
im

phm + Fhm − I[Thm ≥ τ I
im ]δ

τI
im

im
(Thm − τ I

im)fhm .

(3.2)

The right-hand side of the above equation consists of three parts. The first term
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represents the present value of monthly fees during the lifetime. The second term is

an initial payment in a lump sum, which does not depend on δim because it is paid

in full upon the start of living in the home, i.e., t = 1. The third term corresponds to

the returns to the initial payment if the consumer would dies before the expiration,

i.e., Thm ≥ τ I
im

. A calculation yields

Uimhm =
1 − δ

τI
im

im

1 − δim

[(
x̃′

hm
β̃d − phmα + ξhm + η̃imhm

)
−Fhm

1 − δim

1 − δ
τI
im

im

α + fhm

1 − δim

1 − δ
τI
im

im

δ
τI
im

im
I[Thm ≥ τ I

im ](Thm − τ I
im)α

]
.(3.3)

In (3.3), I decompose the term of Fhm into a mean and an individual variation as

−Fhm

1 − δim

1 − δ
τI
im

im

α = FhmαF + ηF,im , (3.4)

where E[ηF,im ] = 0. I refine xhm = (x̃′
hm

, Fhm)′, βd = (β̃′
d,−αF )′ and

ηimhm = ηF,im + η̃imhm + fhm

1 − δim

1 − δ
τI
im

im

δ
τI
im

im
I[Thm ≥ τ I

im ](Thm − τ I
im). (3.5)

Further, I define

Vimhm = [(1 − δim)/(1 − δ
τI
im

im
)]Uimhm (3.6)

= x′
hm

βd − phmα + ξhm + ηimhm . (3.7)

Now a consumer chooses to enter the hmth home if Uimhm = maxkm∈{0,1,2,...,Hm}{Uimkm}

or Vimhm = maxkm∈{0,1,2,...,Hm}{Vimkm}, where the subscript 0 represents an outside

option for which I assume Vim0 = ηim0.

I do not observe individual consumers’ decisions, only market shares of homes. To

establish an econometric model without individual variations, I assume ηimhm follows
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the i.i.d. type I extreme value distribution and integrate it out from the demand side

model as

shm =
∫

Vimhm=maxj∈{0,1,2,...,Hm}{Vimj}
Vimhmπ(dηm) (3.8)

=


exp[x′

hm
βd−phmα+ξhm ]

1+
PHm

km=1 exp[x′
km

βd−pkmα+ξkm ]
for hm = 1, ...,Hm

1

1+
PHm

km=1 exp[x′
km

βd−pkmα+ξkm ]
for hm = 0

. (3.9)

To finish the demand side modeling, I let qhm be the logarithm of the share for

hm = 1, 2, ...,Hm, which is expressed as

qhm = x′
hm

βd − phmα + ξhm + ln
(
1 −

Hm∑
km=1

exp(qkm)
)
. (3.10)

3.3 Modeling the supply side

On the supply side, I construct a model for the profit maximization of private nurs-

ing homes. Following previous nursing home studies, which are surveyed in Norton

(2000), I assume that homes maximize their expected profit at a steady state for their

occupancy status. This assumption is required to avoid a complicated situation in

which there are residents whose durations of residence overlap. In the equilibrium,

the marginal profit function from the ith consumer for the hmth home takes the form

Πhm(τim) = phm + fhm − mchm − fhmI[Thm < τim ], (3.11)

where mchm is the marginal cost for the hmth resident.

Homes maximize their expected profit in which the per capita profit is defined by

equation (3.11). In the general equilibrium, the market clearing condition indicates

that the expectation is taken with respect the consumer’s subject value τ I
im

and not

to the true value. For this purpose, I assume that homes know the distribution of the

consumers’ subjective values τ I
im

. Under this assumption, Imshm is the equilibrium

number of residents.
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Homes play a Beltrand-type competition in which phm and Thm are control vari-

ables. Because these two control variables are complementary, I assume that homes

firstly decide Thm and choose phm given Thm . I further assume that a home’s expec-

tations for their customers’ lifetimes are determined only with Thm and fhm with-

out phm . In other words, homes choose Thm to control for whom they attract,

and phm determines how to manage expenditures given presumed customers. Let

Prs(Thm < τ |fhm , Thm) be a home’s subjective probability that a resident in the

home has a lifetime longer than Thm in the steady state. From the assumption on the

decision process for Thm and pm, this subjective probability does not depend on the

monthly fee. Consequently, I obtain the expected profit function as

Πhm = Imshm

[
phm + fhm − mchm − fhmPrs(Thm < τ |fhm , Thm)

]
. (3.12)

I assume the existence of an interior solution for the profit maximization problem.

The first order condition for phm yields

{
phm − mchm + fhm

[
1 − Prs(Thm < τ |fhm , Thm)

]}∂shm

∂phm

+ shm = 0. (3.13)

The above equation can be more explicit using the general equilibrium value of shm

derived from the demand side. Specifically, I substitute the closed form of ∂shm/∂phm

and obtain

phm +
1

α(shm − 1)
+ fhm [1 − Prs(Thm < τ |fhm , Thm)] = mchm . (3.14)

Following the conventional approach, I assume a log-linear form of the marginal

cost function. Specifically, the logarithm of the marginal cost is set to be a linear

function of an observable Ks×1 vector whm and an unobservable home specific effect

ωhm . Several manipulations yield
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phm = exp(whmβs + ωhm) − 1
α[exp(qhm) − 1]

− fhm

[
1 − Prs(Thm < τ |fhm , Thm)

]}
.

(3.15)

In the above first-order condition for phm , I assume that the subjective probability

function can be represented as

1 − Prs(Thm < τ |fhm , Thm) = Γ(Thm , fhm ; γ) (3.16)

def
=

exp(γ0 + γT1Thm + γT2T
2
hm

+ γf1fhm + γf2f
2
hm

+ γTF Thmfhm)
1 + exp(γ0 + γT1Thm + γT2T 2

hm
+ γf1fhm + γf2f

2
hm

+ γTF Thmfhm)
,

(3.17)

where γ = (γ0, γT1, γT2, γf1, γf2, γTf )′.

The above demand and supply sides modeling induces a simultaneous equation sys-

tem that consists of 2Hm structural equations (3.10) and (3.15) for hm = 1, ...,Hm. In

this model, the dependent variables are (qm, pm), unobserved variables are (ξm, ωm),

and the coefficient parameters are θ̃ = (β′
d, β

′
s, α, γ ′)′.

4 An econometric framework via nonparametric Bayes

This section details an econometric analysis for the model presented in the last sec-

tion. I begin with a general form of the BLP model to explain the difficulty of using

the GMM to conduct predictions. Then, I provide an alternative method via a non-

parametric Bayesian approach for the general model. Next, I narrow my attention

to my variant of the BLP model for the private nursing home market to present

corresponding estimation procedures and a prediction. Last, I discuss identification

conditions for this model and required assumptions.

4.1 Difficulty of the GMM for prediction analysis

I first explain a difficulty of estimation methodologies based only on moment condi-

tions to conduct a prediction analysis. This statement holds for structural econometric
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models in general, but I concentrate on the BLP model in this paper.

Take any market m. For hm = 1, ...,Hm, the BLP model can be written in a

general form as

qhm = fq(pm, q(−hm),whm , ωhm ; θ), (4.1)

phm = fp(p(−hm), qm, xhm , ξhm ; θ), (4.2)

where q(−hm) = (q1, ..., qhm−1, qhm+1, ..., qHm) and p(−hm) is similarly defined. fq and

fp denote nonlinear functions known up to the parameter θ. Particularly in my model,

they represent the right-hand sides of (3.10) and (3.15). Equilibrium conditions yield

that these 2Hm equations comprise a simultaneous equation system. Conventional

estimation methods are employed based on moment conditions in the form of E[zξ] =

E[zω] = 0, where z is some instrument. For this nonlinear simultaneous model, the

moment conditions induce more simpler estimation methods than a method via a

likelihood function, which is a complicated joint distribution accompanied by 2Hm

nonlinear structural equations. This is the reason why GMM estimation is a standard

econometric tool for the BLP model.

As an illustrative example of a prediction analysis, let us consider a prediction

problem for p given counterfactual xm = x̃. For simplicity, I assume that the reduced

form is analytically obtained for phm as

phm = gp(xm, wm, ξm, ωm;θ). (4.3)

There are three unknown factors, namely ξm, ωm and θ, on the right-hand side

of the above equations. For θ, GMM estimates can be used. However, there the

problem of the unobservables (ξm, ωm) still exists.

Nevo (2000) proposed a method to manage these unobserved variables. His study

investigates the effects of a merger in the US cereal industry. In the prediction for

a counterfactual merger, he assumed that everything other than the merger status
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is kept unchanged. Under this assumption, counterfactual values of the explanatory

variables are predicted using the same values of (ξm, ωm). Specifically, Nevo (2000)

substituted the values of the estimated residuals into the reduced form equation (4.3).

Due to its tractability, many studies adopt this methodology.

In my case, the counterfactual situation, a different payment mechanism imposes a

more drastic change for the market structure than the counterfactual in those studies.

To reflect this large change, I rather want to allow different values of (ξm,ωm) under

the counterfactual situation. Therefore, I set these unobservables as stochastic terms

in the prediction analysis and integrate them from the reduced form (4.3).

Under the conventional moment condition, however, such integration is feasible

only when the reduced form gp takes specific forms. One example is the reduced form

that is additive and separable with respect to (ξm, ωm) such that

phm = gp(xm, wm, ξm, ωm;θ) = g̃p(xm, wm; θ) + a′ξm + b′ωm, (4.4)

where a and b are constant vectors. By multiplying both sides by zm, we can integrate

out the terms for (ξm, ωm) using the moment conditions. However, it is difficult to

guarantee such an assumption because gp is a reduced form. In general, we need to

conduct a numerical integration for (ξm, ωm) using a Monte Carlo algorithm that

requires distributional assumptions. In addition, because the model has as many as

2Hm simultaneous equations, another numerical step is often needed to obtain the

reduced form.

4.2 Introducing a nonparametric Bayesian approach

In this subsection, I introduce a nonparametric Bayesian approach for both estima-

tion and prediction without distributional assumptions. The nonparametric Bayesian

analysis can be summarized as a statistical methodology via a likelihood function

which can represent an arbitrary distribution. Unlike the other nonparametric mod-

els, such as kernel or spline methods, the nonparametric Bayes models are associated

with well-defined closed forms for the likelihood function and predictive distributions.
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This feature enables us to conduct a numerical integration in a prediction analysis.

I incorporate nonparametric modeling for ξhm and ωhm . Specifically, I assume xhm

and whm include constant terms, and ξhm and ωhm represent home-specific stochastic

terms with constraints on their moments. Because it is difficult to adopt a mean

restriction in nonparametric Bayes models, I incorporate medians conditions, such

that Med(ξhm) = Med(ωhm) = 0 in this paper.

In the nonparametric Bayesian literature, there are two popular approaches for

managing such median constraints. One is the Dirichlet process mixture with restric-

tions, such as implemented in the studies by Doss (1985) and Kottas and Gelfand

(2001). Another approach is the Polya tree mixture, which I use in this paper. The

Polya tree mixture was established by Hanson and Johnson (2002) as an extension

of the Polya tree proposed by Ferguson (1974). This original Polya tree is a general,

nonparametric Bayes model that includes the Dirichlet process as a special case. In

the 1990s, several papers were published on the theoretical aspects of the Polya tree,

such as those by Lavine (1992, 1994) and Mauldin et al. (1992). More recent papers

have presented computational procedures with applications, such as those by Hanson

(2006), Jara et al. (2009) and Hanson et al. (2011).

An intuitive way to define a nonparametric likelihood function is through predic-

tive densities. Let us consider a problem of estimating a joint conditional distribution

for (ω1, ω2..., ωH) given θ̃, where a scalar random variable ωh has a common support

Ω for all i. Suppose we have nonparametric predictive densities π(ωh|ω1, ..., ωh−1, θ̃)

for all h = 1, ...,H. Then, the joint conditional density function can be derived as

π(ω1, ..., ωH |θ̃) = π(ω1|θ)π(ω2|ω1, θ̃)π(ω3|ω1, ω2, θ̃)...π(ωH |ω1, ..., ωH−1, θ̃). (4.5)

The main concern for this setting is a choice of a nonparametric prediction dis-

tribution. An intuitive candidate is a histogram, given previous ωs. The Polya tree

mixture is a method that constructs nonparametric predictive distributions similar

to the histogram. I describe the detailed definition in Appendix A.

The Polya tree mixture has three primitives that econometricians need to specify.
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The first is the base measure, which is used to define the bins of the histogram. I

employ N(0, 1/τ) as my base measure for the analysis of Japanese nursing homes. τ

is a scale parameter that is to be estimated. The second is the hyperparameters of

the Polya tree prior, αj,kj
for j = 1, ..., J and kj = 1, 2, ..., 2j . I adopt a conventional

choice introduced by Hanson and Johnson (2002), which is aj,kj
= cj2 for all kj with

a constant c. The third is the truncation level J . Choices for c and J are case-specific

subjects, and I discuss them further in the empirical analysis section.

4.3 A Bayesian estimation procedure

4.3.1 The likelihood function

From this subsection, I describe the inferential framework that is specific to the econo-

metric model for the Japanese nursing home market, which consists of structural

equations (3.10) and (3.15). Because of the mutual dependencies of the dependent

variables, these structural equations cannot be directly used to define the likelihood

function. Instead, I obtain the likelihood function using a change of variables from

unobservables to dependent variables, as suggested by Chintagunta and Dubé (2005).

For distributions of unobservable terms, I assume that they follow independent Polya

tree mixtures whose scale parameters are τξ and τω. Then, the resulting likelihood

function is

π(p, q|θ, Data) =
[ M∏
m=1

|det(Jm)|
]
πω,ξ[ω11(p1, q1; f11 , T11 , θ̃), ξ11(p1, q1; f11 , T11 , θ̃),

ω21(p1, q1; f21 , T21 , θ̃), ξ21(p1, q1; f21 , T21 , θ̃),

..., ωH1(p1, q1; fH1 , TH1 , θ̃), ξH1(p1, q1; fH1 , TH1 , θ̃),

..., ωHM
(pM , qM ; fHM

, THM
, θ̃), ξHM

(pM , qM ; fHM
, THM

, θ̃)], (4.6)

where Jm is the Jacobian matrix of the transformation, which is explicitly derived in

Appendix B. θ = (θ̃′, τξ, τω)′ denotes a vector of all the parameters and
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ξhm(pm, qm; fhm , Thm , θ̃) = qhm − ln
[
1 −

Hm∑
km=1

exp(qkm)
]
− x̃′

hm
β̃d + ThmfhmαF + phmα,

(4.7)

ωhm(pm, qm; fhm , Thm , θ̃) = ln

[
phm +

1
α[exp(qhm) − 1]

+ fhmΓ(Thm , fhm ; γ)

]
− w′

hm
βs.

(4.8)

In the above likelihood function, I require additional restrictions for the supports

of the dependent variables to have well-defined logarithmic terms. Specifically,

0 < 1 −
Hm∑

km=1

exp(qkm), (4.9)

0 < phm +
1

α[exp(qhm) − 1]
+ fhmΓ(Thm , fhm ; γ). (4.10)

Condition (4.9) is automatically satisfied in the estimation step due to the con-

struction of qhm in Section 3, but it must be verified in the prediction step described

below. Another condition, (4.10), is required in the estimation and prediction steps.

Furthermore, because (4.10) states that the support of the likelihood function de-

pends on parameters α and γ, (4.10) violates a regularity condition for maximum

likelihood estimators to have preferable asymptotic properties. This fact is another

motivation to adopt a Bayesian estimation procedure.

4.3.2 Prior and proposal distributions

I implement the Bayesian estimation using the Markov chain Monte Carlo(MCMC)

algorithm. Due to the construction of the Polya tree mixture using histogram-like

stochastic structures, the likelihood is not a smooth function of parameters. I then

adopt the Metropolis-Hastings(MH) algorithm via random walk proposal distribu-

tions. The prior and proposal distributions are specified as follows.

For prior distributions, I assume that the coefficient parameters follow indepen-
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dent normal distributions and that the scale parameters of the Polya tree mixtures,

each of which is an inverse of the variance, follow independent Gamma distributions.

Specifically,

βd ∼ N(µβd0, Σβd0), βs ∼ N(µβs0, Σβs0), (4.11)

γ ∼ N(µγ0, Σγ0), α ∼ N(µα0, σ
2
α0), (4.12)

τω ∼ Gamma(aτω10, aτω20), τξ ∼ Gamma(aτξ10, aτξ20), (4.13)

where Gamma denotes the Gamma distribution.

For proposal distributions, I choose distributions that can impose support con-

ditions described so far. First, for unconstrained parameters βd and βw, I use the

normal proposal distributions. Second, for τξ and τω, the proposal distributions are

set as log-normal distributions to guarantee their positivity. Third, a truncated nor-

mal proposal is incorporated for γ to satisfy the support conditions (4.9) and (4.10).

Finally, for α, which must be positive and satisfy the support condition, I use the

truncated log-normal proposal distribution.

4.4 Numerical techniques for a counterfactual prediction

The main purpose of this study is to simulate an exogenous intervention that elimi-

nates the initial payment mechanism. Although we want to compare consumer welfare

before and after the intervention, it is difficult to derive utility functions because a

consumer lifetime and the time-discount factor are not observed. Instead, I conduct

a comparison of the total amount of lifetime payments. My prediction analysis con-

sists of two parts: the prediction for monthly fees phm after the intervention and the

calculation of the total payments both before and after the intervention.

To predict the monthly fee, I assume that ηimhm has the same distribution after

the intervention. Considering the fact that ηimhm depends on Thm and fhm , this is a

strong assumption but is technically required to conduct a prediction analysis. Given

this assumption, the intervention yields the same economic model as (3.10) and (3.15)
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in which fnew
hm

= 0 and Tnew
hm

= 0.

4.4.1 Algorithms to predict monthly fees

To predict phm , I consider the predictive mean:

E[pnew
hm

|fnew
hm

= 0, Tnew
hm

= 0, Data] (4.14)

=
∫ ∫

phmπ(phm |Tnew
hm

= 0, fnew
hm

= 0, Data, θ)π(θ|Data)dphm dθ.

I conduct a dual-loop Monte Carlo integral to calculate the double integral nu-

merically. Further, phm must be integrated on the marginal distribution, which corre-

sponds to the reduced form. Because of the mutual dependency of phm and the other

dependent variables, it is difficult to obtain a closed form of the reduced form ana-

lytically. Thus, a numerical solution for the simultaneous equation is required. The

numerical procedure is summarized as follows. Let L and R be appropriately large

integers as the numbers of the iterations for outer and inner loops of the Monte Carlo

integration, respectively. The inner loop is accompanied by the numerical solution.

The outer loop approximates the integral with respect to θ. I generate random

numbers θl, l = 1, 2, ..., L from the posterior distribution of θ|Data. I can adopt the

posterior samples of the MCMC estimation as the random numbers in this step.

The inner loop implements the integral for phm . Given θl, I generate prl
hm

, r =

1, 2, ..., R from the distribution of plr
hm

|fnew
hm

= 0, Tnew
hm

= 0, θl, Data. To conduct the

numerical solution, I implement the MCMC sampling for the inner loop. As sum-

marized in Appendix C, I have closed forms for conditional predictive distributions

for qnew
hm

|pnew
m , qnew

(−hm), f
new
hm

= 0, Tnew
hm

= 0, θ, Data and pnew
hm

|qnew
m , pnew

(−hm), f
new
hm

=

0, Tnew
hm

= 0, θ, Data for hm = 1, 2, ...,Hm. Then, I iteratively draw the random

samples from these conditional distributions, given the previous draws. After an

appropriate length of the burn-in periods R′, I have random draws from marginal

predictive distributions, which can serve as prl
new.

Finally, I approximate the double integral by (1/L)
∑L

l=1(1/R)
∑R

r=1 prl
hm

. In the

above steps, the inner loop is computationally burdensome, but it can be conducted
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separately for each market. Due to this separability, I focus on a specific market in

the empirical analysis.

4.4.2 Policy evaluation through predicting lifetime payments

Hereafter, I assume that the predicted values for a monthly fee after the intervention

pnew
hm

is already derived using the dual-loop Monte Carlo integral. To calculate the

lifetime payments before and after the intervention, I begin with considering a match

of a resident im and hm. The total payment after the intervention is the accumulated

monthly fees throughout the resident’s lifetime τim , because there is no other form

of a payment than the monthly fee. Then, the predicted total payment is pnew
hm

τim .

Because I do not consider an interest rate but use a simple summation, this amount

is a lower bound of the present value of the consumer’s total payment.

There is a difficulty in that the amount of the lifetime payment before the inter-

vention depends on values of τim and Thm . To illustrate the problem, I separately

consider three cases where the first two cases are not troublesome but the last case

is problematic. The first case is Thm = 0, where the home does not collect an initial

payment, even in the current situation. I abbreviate this case for my prediction anal-

ysis because we do not have a particular interest in this case. For the remaining two

cases, we assume Thm > 0.

The second case is τim ≤ Thm . This case is denoted as “short-lived” because the

imth consumer has a shorter lifetime than the expiration date. For this case, the

lifetime payment before the intervention is (phm + fhm)τim . Because the payments

before and after the intervention are both multiplied by τim , I can cancel this term out

when comparing the lifetime payments. Thus, the intervention effect can be detected

through a comparison between phm + fhm and pnew
hm

, regardless of τim .

The third case is τim > Thm , which is denoted as “long-lived”. In this case, the

consumer before the intervention does not need to pay rents after the expiration date.

As a result, the lifetime payment before the intervention is phmτim + fhmThm . Unlike

the previous case, I cannot ignore the unobservable lifetime τim when comparing the

lifetime payments. In practice, I consider several representative consumers whose
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lifetimes are τim = 240 and 360. Because the lifetime is measured in months, these

values correspond to 20 and 30 years of remaining life.

4.5 Identification

This subsection illustrates the identification conditions for my econometric framework.

Identification of my model depends on three factors: distributional assumptions, func-

tional form assumptions and exclusion restrictions, discussed below.

For the distributional and functional forms, I have made several assumptions so

far. The assumptions as a whole do not allow to specify individual heterogeneity, as

a price to implement a nonparametric Bayesian method. Specifically, there are two

elements which are commonly included in the previous studies but eliminated in my

study.

The first is random coefficient modeling. For example, in equation (3.4), the

traditional approach includes individual variations in coefficients, whereas I locate

them in the error term and integrate out. This is because the existence of such a

random coefficient term makes it difficult to obtain closed form expressions of error

terms as in (4.7) and (4.8), which are required for the construction of the likelihood

and the predictive density functions.

Second, there may be a consumer heterogeneity which affects the distribution of

the individual-specific term η. In this paper, I used a logit model for the distribution

of this term. Third, we eliminate any endogeneity among unobservables. In the

previous studies, such an endogeneity is assumed to exist and is controlled using the

instrument. This paper ignores this endogeneity because of a technical difficulty of

multivariate histograms. For the above two shortcuts, the flexibility of nonparametric

Bayesian model can reflect these effects.

To specify the requirements of the exclusion restrictions, given (3.10) and (3.15),

we can obtain conditional distributions for qhm |phm , q(−hm), ξhm and phm |qhm , ωhm .

Therefore, for the demand side, a standard exclusion restriction that is not correlated

to phm and q(−hm) but is correlated to qhm is required. For the supply side, I have

conditional independency, such that phm is independent from p(−hm) and q(−hm) given
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qhm . Thus, having exclusion restrictions that are not home-specific but market-specific

variables is sufficient.

5 An empirical study of the Japanese nursing home mar-

ket

5.1 Data

This section applies my methodology to real data on the Japanese private nursing

home market. In principle, the required information for this study is found in the

public domain in the sense that private nursing homes are legally obligated to disclose

the information when asked. Because it is burdensome to obtain a disclosure for all

the homes, I refer to a list in a consumers’ guidebook, Shuukan Asahi Mook (2011),

which is a special volume of a leading weekly news magazine in Japan.

The local markets m = 1, 2, ...,M are defined as prefectures, which are the largest

subnational jurisdictions in Japan. An important assumption for the BLP model is

that markets are geographically isolated. To guarantee this assumption, I need to

incorporate a relatively large area as a market. The prefecture is an ideal unit for

this purpose.

My sample consists of 1,265 homes. The details of the sampling methodology is

summarized as follows: the editors of Shuukan Asahi Mook (2011) sent a question-

naires to all private homes except those that had a past legal fault. The population

consists of “approximately 5,000” homes, in their words. They edited the book us-

ing 2,343 responses. Of the listed homes in the book, I eliminated 745 homes where

long-term care is optional. From the remaining 1,598 homes, 324 homes are removed

from the sample because of missing information. I further excluded 9 homes in prefec-

tures that have only one home because the monopoly market would yield a different

market structure to my oligopoly model. Approximately half of homes do not have

a response. The low response rate might be caused by the enforcement of an early

deadline by editors, specifically three months.
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The share of a home shm is defined as the ratio of the number of the residents

in the hmth home over the number of the potential consumers in the market m. As

seen in equation (3.9), there must be a positive share for the outside option. Then, I

included those who did not choose to live in any private nursing home in the potential

consumers. I adopted the Category 1 elders with an eligibility level of Care Required

1 or higher, which is the minimum level typically required to receive institutional care

under coverage of the LTCI, in the potential consumers. Table 2 shows numbers of

the homes and Category 1 (age 65 years or more) elders in prefectures.

Table 2 is here

I have several observed variables related to prices: a monthly fee phm , an initial

payment Fhm and an expiration period Thm . The monthly rent fhm is created using

Fhm and Thm , as mentioned earlier. Several homes report two price variables for

their minimum and maximum. Specifically, the expiration period is unique for 1,226

homes, but the monthly fee and the initial payment are unique only for approximately

half of the homes. Because there are only a few homes that offer multiple options for

expiration periods, the variation in initial payments must be caused by a variation

in monthly rents. Variations in monthly fees and monthly rents may be caused by

quality differences in services and rooms. However, the lack of variation in expiration

periods implies that separating equilibria as a tool to manage the longevity risk do

not seem to occur.

I have two categories of explanatory variables: components of x shift the consumer

utility for decision making, and components of w are characteristics of the marginal

cost per resident. In addition to the common elements for these two categories, as

mentioned in Section 4.5, I need exclusion restrictions that are home-specific variables

only in x and market-specific variables only in w.

For common observable elements on the demand and supply sides, I adopt three

variables from Shuukan Asahi Mook (2011). The first variable is the number of

residents per worker(Worker). This variable clearly affects the utility because it

determines the amount of time a worker can spends on each resident. This variable
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additionally determine a labor cost, which is an important element of the marginal

cost. For private homes that provide long-term care as a default option, this number

is legally required to be 3 or fewer.

The second common variable is a dummy variable that takes a value of unity when

the home is operated by a chain(Chain). The demand side effect of this variable can

be both positive or negative, because a chain operation might imply either efficient

operation or a stereotypical care. Its cost effect is also ambiguous because chains might

operate more efficiently in service provisions but spend more on advertisements. In

the private nursing home market, there is no dominant chain that has more than 20%

of the share. Then I create the dummy variable as a bundle of six chains, namely

Benesse Style Care, Message, Watami no Kaigo, Nichii Group, Life Commune and

Tsukui, which account for more than 20 homes in our dataset11.

The third common variable is years since opening(Years). On the demand side,

that a home has survived for a long time might imply both high quality from the

accumulation of experiences and disutility from old facilities. In addition, the supply

side effect is indeterminate due to the coexistence of the accumulation of knowledge

and high repair costs.

Next, I propose my exclusion restrictions. On the demand side, I adopt a home-

specific variable of the occupancy rate(Occupancy). This variable affects the con-

sumer utility because an extremely small occupancy rate might be a signal that the

home has some problems. On the other hand, this variable does not affect the per-

resident cost.

For the supply side exclusion restrictions, I use two market-specific variables of

cost shifters: local averages of rents(Rent) and wages(Wage). These variables affect

the marginal cost but not the utility, given the other price variables. Rent is defined

as an annual average of monthly rents per 3.3 m2 in the capital city of a prefecture,

11From a similar motive to the chain dummy, I tried to adopt another dummy variable that takes
unity when the home is operated by a non-profit organization. However, I eliminate this variable
from my empirical study because the convergence of its coefficient is quite slow, and there is no
serious difference for coefficient estimates of the other variables, with or without this variable. The
slow convergence might be caused by an insufficient sample size because this dummy variable takes
unity for less than 10% of my sample.
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which is taken from the 2010 Annual Report on the Retail Price Survey. For the

average wage, there are no reliable data specific to care workers. Therefore, I adapt

information of the medical and welfare sectors, which include care workers. Wage is

defined as the quotient of annual wages plus bonuses over 12. These components are

from the 2010 Basic Survey on Wage Structure.

Table 3 is here

Table 3 presents descriptive statistics for the explanatory variables. I adjust sev-

eral volatile variables to stabilize our estimation in the following exercises of my in-

ference. First, I standardize Years, Rent and Wage to have means of zero and unit

variances. Second, I divide several variables generated from T and f by constants.

Specifically, F is divided by 1000 and T, T 2, f and f2, which appear in Γ(T, f ; γ), are

divided by 10, 1000, 10 and 100, respectively.

5.2 Estimation results

Before proceeding to the results, I determine case-specific components in my econo-

metric frameworks. First, the hyperparameters are set as follows:

βd ∼ N(0, 1000I), βs ∼ N(0, 1000I), (5.1)

γ ∼ N(0, 10I), α ∼ N(1, 10), (5.2)

τω ∼ Gamma(3, 10), τξ ∼ Gamma(3, 10). (5.3)

I use normal proposal distributions, as mentioned above. I adjust their variances

to have modest rates of acceptance in the MH algorithm. Specifically, the acceptance

rates for parameters are located within the range between 0.29 and 0.6.

For the Polya tree mixture, I choose primitives as c = 10 and J = 5. I additionally

adopt several alternative values to check the robustness of this choice. For c, 1, 100

and 1, 000 are incorporated. Among them, c = 100 and 1, 000 yield posterior samples

similar to my primary result. c = 1, which is used in the studies by Hanson and
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Johnson (2002) and Hanson (2006), yields similar posterior means for parameters but

shows a slow convergence. Additionally, I check J = 8. This value is recommended

by Hanson and Johnson (2002) as their rule of thumbs, namely J ' log2H. However,

this value induces a slow convergence, although it yields similar posterior means to

J = 5. Both c = 1 and J = 8 impose finer definitions of bins than c = 10 and J = 5.

The slow convergence with these primitives is caused by the complexity of my model

relative to the previous statistical papers.

In our implementation of the MCMC samplers, I generated 1,000,000 posterior

samples after discarding 100,000 initial samples as the burn-in period. The computa-

tion took approximately 20 days using three cores of the Intel Xeon X5470 processor

(3.33GHz).

Table 4 is here

Table 4 reports the estimation results. The first and second columns show poste-

rior means and standard deviations, the third column represents 95% credible inter-

vals, and the last column reports the inefficiency factors(IF). The maximum of the

inefficiency factors is 12, 880, which implies that we would obtain the same variance

of the posterior sample means from more than 75 uncorrelated draws, even in the

worst case. For the sake of the convergence diagnosis, I additionally present figures of

posterior sample paths and the posterior densities of the MCMC samples in Appendix

D.

Overall, the estimated posterior means for coefficient parameters take reasonable

values. On the demand side, Worker affects consumer utility negatively, because

consumers prefer homes with a sufficient capacity of care workers. The positive coef-

ficient for Chain indicates efficient service provision of chains. The effect of Years

is not clear, indicating a complicated role of the history. In addition, the exclusion

restriction Occupancy has a strongly positive effect on consumer utility, which im-

plies that the popularity of a home is a good proxy for its quality. Furthermore, the

mean effect of an initial payment on the utility, αF , takes a strongly positive value.

It is difficult to interpret this result alone, but at least it indicates a complicated role
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of the initial payment. I provide the further consideration in the prediction analysis

later.

On the supply side, because the logarithm of the marginal cost is defined as

log(mchm) = w′
hm

βs + ωhm , a positive coefficient means that the corresponding ex-

planatory variable increases the marginal cost and hence decreases the profit of homes.

The negative effect of Worker means that a reduction in the labor forces decreases

the marginal cost, as expected. The positive coefficient for Chain implies that ad-

vertisement costs are higher than the revenue from the efficient operation of chains.

Years has a negative effect, which can be interpreted as the accumulation of knowl-

edge decreases the running costs. For the exclusion restrictions, Rent has a strongly

positive coefficient as an increasing factor of the marginal cost. However, the sign of

Wage is ambiguous. This ambiguity might imply that the local average wage of the

medical and welfare sectors does not precisely capture the wages of institutional care

workers in private nursing homes.

It is interesting to find a bimodal posterior density of the scale parameter of

the Polya tree mixture τω. This density is not caused by a problem of incomplete

convergence but by the true posterior shape, as seen in the sample path in which

the chain repeatedly visits both peeks. The peculiar shape of the posterior density

function indicates that the distribution of ωm is different from common probability

distributions, such as the normal distribution. This result supports our usage of

nonparametric modeling.

5.3 Prediction results

Next, I conduct a prediction analysis based on the above estimation result. In the

dual-loop Monte Carlo integral, the number of the iterations for the outer loop is set

to be L = 50. θls are taken from the posterior samples obtained in the estimation

step at intervals of 13,000 periods. Because the maximum of the inefficiency factors

is 12,880, I can treat these θls as independent samples from posterior distributions.

The inner loop is set to have R = 5, 000 posterior sample generations of qnew
h and

pnew
h for h = 1, ..., 32 after discarding R′ = 5, 000 initial samples as the burn-in period.
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For each of θl, l = 1, ..., 50, posterior sample paths of the predicted values exhibit a

sufficient convergence of the inner loops.

When Hm is extremely large, as in Tokyo, which has 281 homes, it is computation-

ally burdensome to achieve the convergence for the prediction procedure in Section

4.4. Instead, I concentrate on Shizuoka prefecture, which has 32 homes. In the predic-

tion analysis below, I do not compare the lifetime payments for homes that currently

do not collect the initial payment, although their information is used for prediction.

Then, my target is the remaining 19 homes.

Figure 1 is here

Figure 1 presents a prediction result for the short-Lived consumers, τi ≤ Th.

The X axis indexes homes, while the Y axis measures a payment in 10,000 yen.

Each home has two bars of monthly payments for before and after the intervention.

Figure 1 shows that lifetime payments after the intervention are smaller than before

the intervention. In other words, short-lived consumers can reduce their lifetime

payment without the initial payment mechanism. Under this circumstance, longevity

risks are pooled and distributed uniformly to all the residents. Therefore, short-lived

consumers cannot recollect the risk premium and forced overpayment.

Figures 2 and 3 are here

Next, I consider long-lived consumers, Th < τi. Figures 2 and 3 gives comparisons

of phτ + fhTh and pnew
h τ for τ = 240 and 360, which correspond to 20 and 30 years

of remaining lifetime, respectively. The two bars show the lifetime payments before

and after the intervention.

The lifetime payments after the intervention exceed the payments before the inter-

vention only in the case where a consumer with 30 years of remaining lifetime chooses

a specific home. In other words, to recollect the risk premium, consumers need to

stay at a home at least for 30 years. However, in practice, 30 additional years of

life are not realistic for entrants into the private nursing homes with long-term care.
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In addition, the expenses without the initial payment can be further reduced if we

consider an interest rate.

Combining the above results, I conclude that the initial payment mechanism gen-

erally forces consumers to pay more. This overpayment might be a result of a con-

sumer’s rational risk management. However, there must be a loss of the consumer

welfare in the aggregate level, because the overpayment is common for most con-

sumers. Consumers may be better off with a combined policy of abandonment of the

initial payment mechanism and a government-driven management of the longevity

risk, similar to the safety net mechanism in the United States.

6 Conclusion

This paper has proposed a nonparametric Bayesian approach for structural econo-

metrics. This approach enables a flexible prediction analysis without a distributional

assumption. Although I have adopted the model of Berry et al. (1995) in this paper,

my framework can work for general structural models. The validity of my method

is shown in an empirical study of the Japanese private nursing home market. My

prediction result implies that an outdated circumstance forces higher payments for

most consumers today.

For empirical researchers, the elder care industry in Japan is an attractive field

because the radical long-term care insurance program has rich implications for other

aging countries. Although this paper concentrates on a specific market of private

nursing homes, the long-term care industry has various sectors due to the market-

oriented insurance program. As a future task, more studies from different perspectives

in this economy are required.

A Polya tree mixture

This appendix complements Section 4.2 by introducing the Polya tree mixture in a

manner similar to the intuitive definition of Christensen et al. (2008). To begin with,

I define a Polya tree, which is an original form of the Polya tree mixture. First,
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I define a prior distribution for the Polya tree. Econometricians need to specify a

base measure G on the support Ω, which has a well-defined density g and the known

median µ.

The prior distribution of the Polya tree is constructed using a J step iterative

process. In the first level, the support Ω is separated into two parts: R11 and R12,

which are below and above µ, respectively. With respect to the base measure G, both

of these regions originally have probabilities of 1/2 because µ is the median of the

base measure. We change these probabilities to λ11 and λ12 such that λ11 + λ12 = 1.

In this manipulation, the shape of G is kept unchanged, but the integration constants

in these regions are changed. Using the analogy of the histogram, the regions on Rs

are called bins.

The second level creates a binary separation for each of R11 and R12 at the 25 and

75 percentiles, respectively. Then, the probabilities are changed in the same manner

as in the first level. For example, on R11, the new bins R21 and R22 have probabilities

λ21 and λ22 such that λ21 + λ22 = λ11. Such binary separations are repeated until

the terminal level J .

As a result, one has a histogram-like prior distribution. The parameters of this

prior distribution are the probabilities of bins λj,κj for j = 1, ..., J and κj = 1, 2, ..., 2j .

The probabilistic structure of these variables can be represented simply using an addi-

tional latent variable as follows. From the above construction via binary separations,

each level creates new probabilities by splitting them from the previous level. Let the

latent variable ζj,κj−1 ∈ [0, 1] be a proportion of the probability of the previous level,

λj−1,κj , which is distributed to a new bin Rj,2κj−1−1. Then, we have a representation

for the new probability as

λj,2κj−1−1 = ζj,κj−1λj−1,κj−1 , (A.1)

λj,2κj−1 = (1 − ζj,κj−1)λj−1,κj−1 . (A.2)

Due to conjugacy, it is convenient to impose an independent and identical Beta
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prior distribution for ζj,κj−1 . The prior and posterior distributions are written as

follows:

ζj,κj−1 ∼ Beta(αj,2κj−1−1, αj,2κj−1), (A.3)

ζj,κj−1 |ω1, ..., ωi−1 ∼ Beta(αj,2κj−1−1 + nj,2κj−1−1, αj,2κj−1 + nj,2κj−1), (A.4)

where α·,·s are hyperparameters, and nj,k =
∑i−1

h=1 I[ωh ∈ Rj,k] denotes the sample

frequency.

Our purpose is the construction of the nonparametric predictive density of ωi|ω1, ..., ωi−1, θ̃.

For this purpose, I integrate out the nuisance parameters λ = λ11, λ12, ..., λJ,2J and

obtain

f(ωi|ω1, ..., ωi−1, θ̃) =
J∏

j=1

αj,kj
+ nj,kj

αj,2κj−1−1 + αj,2κj−1 + nj−1,κj−1

I[wi ∈ Rj,kj
]g(ωi), (A.5)

where kj is 2κj−1 − 1 or 2κj−1.

The original Polya tree that is defined above has a similar weakness as a histogram,

namely discontinuity at the borders of bins. This problem is caused by the fact that

borders are defined as percentiles of the unique and fixed base measure. To overcome

this discontinuity problem, the Polya tree mixture employs smoothing of the borders

by introducing a variable base measure, denoted by Gτ , where τ is a scale parameter.

This scale parameter is also estimated and integrated out in the definition of the

nonparametric predictive density such that

π(ωi|ω1, ..., ωi−1, θ̃) =
∫

π(ωi|ω1, ..., ωi−1, θ̃, τ)π(τ |θ̃)dτ. (A.6)

To achieve the median constraint, I assume that µ does not depend on τ . Because

τ determines the percentile of Gτ other than µ, this integration smooths the bins
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except for those that are defined in the first level. On the other hand, discontinuity

at µ enforces a median restriction such that the marginal distribution for ωi satisfies

Pr(ωi ≤ µ) = 1/2.

B An explicit representation for the Jacobian matrix in

the likelihood function

This appendix provides a supplement for the estimation methodology described in

Section 4.3. Specifically, I present a closed form expression for the Jacobian matrix

in the likelihood function (4.6). A straightforward calculation yields the following

Jm =



∂ω1m/∂p1m ... ∂ω1m/∂pHm ∂ω1m/∂q1m ... ∂ω1m/∂qHm

...
. . .

...
...

. . .
...

∂ωHm/∂p1m ... ∂ωHm/∂pHm ∂ωHm/∂q1m ... ∂ωHm/∂qHm

∂ξ1m/∂p1m ... ∂ξ1m/∂pHm ∂ξ1m/∂q1m ... ∂ξ1m/∂qHm

...
. . .

...
...

. . .
...

∂ξHm/∂p1m ... ∂ξHm/∂pHm ∂ξHm/∂q1m ... ∂ξHm/∂qHm


,

(B.1)

in which
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∂ωhm

∂plm

=


1

phm+[α(exp(qhm )−1)]−1+fhmΓ(Thm ,fhm ;γ)
(≡ Zhm) for lm = hm

0 for lm 6= hm

,

(B.2)

∂ωhm

∂qlm

=


(
− exp(qhm )

α[exp(qhm )−1]2

)
Zhm for lm = hm

0 for lm 6= hm

, (B.3)

∂ξhm

∂plm

=

 α for lm = hm

0 for lm 6= hm

, (B.4)

∂ξhm

∂qlm

=


1 + exp[qhm ]

1−
PHm

km=1 exp[qkm ]
for lm = hm

exp[qlm ]

1−
PHm

km=1 exp[qkm ]
for lm 6= hm

. (B.5)

Using the formula for the determinant by parts and the fact Zhm > 0, which is

guaranteed under the support condition (4.10), we have

|det(Jm)| = |det(Dm)|
( Hm∏

km=1

Zkm

)
, (B.6)

where Dm is a matrix whose (i, j) element is defined as

dm
ij =


1 + exp(qim )

1−
PHm

km=1 exp(qkm )
+ exp(qim )

[1−exp(qim )]2
for i = j

exp(qim )

1−
PHm

km=1 exp(qkm )
for i 6= j

. (B.7)

Consequently, Dm does not depend on parameters θ but on a dependent variable

qm. Thus, |det(Dm)| can be negligible for estimation, whereas it must be considered

for a prediction analysis.

C Expression for conditional predictive densities

This appendix details the prediction technique described in Section 4.4. Specifically, I

derive the conditional predictive distributions for qnew
hm

|pnew
m , qnew

(−hm), f
new
hm

= 0, Tnew
hm

=

0, θ, Data and pnew
hm

|qnew
m , pnew

(−hm), f
new
hm

= 0, Tnew
hm

= 0, θ, Data for hm = 1, 2, ...,Hm.
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First, in the similar manner to derivation of the likelihood function, I obtain the joint

predictive density for the dependent variables using a change of variable as

π(pnew
m , qnew

m |fnew
hm

= 0, Tnew
hm

= 0, θ, Data)

= πω,ξ[ωhm(pnew
m , qnew

m ; fnew
hm

= 0, Tnew
hm

= 0, θ̃), ξhm(pnew
m , qnew

m ; fnew
hm

= 0, Tnew
hm

= 0, θ̃)|Data]

|det(Jm)| (C.1)

∝ |Dm|
Hm∏

hm=1

[
Zhm(pnew

hm
, qnew

hm
; θ)gτω [ωnew

hm
(pnew

hm
, qhnew

m
; θ)]gτξ

[ξnew
hm

(pnew
hm

, qnew
m ;θ)]

J∏
j=1

cj2 + nε[j,τω ,ωnew
hm

(pnew
hm

,qnew
hm

;θ)](ω)

2cj2 + nε[j−1,τω ,ωnew
hm

(pnew
hm

,qnew
hm

;θ)](ω)

J∏
j=1

cj2 + nε[j,τξ,ξnew
hm

(pnew
hm

,qnew
hm

;θ)](ξ)

2cj2 + nε[j−1,τξ,ξnew
hm

(pnew
hm

,qnew
hm

;θ)](ξ)

]
,

(C.2)

where

ωnew
hm

(pnew
hm

, qnew
hm

; θ) = ln
(
pnew

hm
+

1
α[exp(qnew

hm
) − 1]

)
− whmβs, (C.3)

ξnew
hm

(pnew
hm

, qnew
m ; θ) = qnew

hm
− x̃′

hm
β̃d − ln

[
1 −

Hm∑
km

exp(qnew
km

)
]

+ pnew
hm

α, (C.4)

Zhm(pnew
hm

, qnew
hm

; θ) =
1

pnew
hm

+ {α[exp(qnew
hm

) − 1]}−1
, (C.5)

and the support conditions yield

0 < 1 −
Hm∑

km=1

exp(qnew
km

), 0 < pnew
hm

+
1

α[exp(qnew
hm

) − 1]
. (C.6)

Given the above joint predictive densities, I can obtain the conditional predictive

densities to implement an MCMC prediction sampler. The conditional distribution
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for pnew
hm

is:

π(pnew
hm

|qnew
m , pnew

(−hm), f
new
hm

= 0, Tnew
hm=0, θ, Data)

∝ Zhm(pnew
hm

, qnew
hm

; θ)gτω [ωnew
hm

(phm , qhm ; θ)]gτξ
[ξnew

hm
(phm , qm; θ)]

J∏
j=1

cj2 + nε[j,τω ,ωnew
hm

(pnew
hm

,qnew
hm

;θ)](ω)

2cj2 + nε[j−1,τω ,ωnew
hm

(pnew
hm

,qnew
hm

;θ)](ω)

J∏
j=1

cj2 + nε[j,τξ,ξnew
hm

(pnew
hm

,qnew
hm

;θ)](ξ)

2cj2 + nε[j−1,τξ,ξnew
hm

(pnew
hm

,qnew
hm

;θ)](ξ)
,

(C.7)

where

pnew
hm

>
1

α[1 − exp(qnew
hm

)]
. (C.8)

On the other hand, the conditional predictive density for qnew
hm

is

π(qnew
hm

|pnew
m , qnew

(−hm), f
new
hm

= 0, Tnew
hm=0, θ, Data)

∝
M∏

m=1

|Dm|Zhm(pnew
hm

, qnew
hm

; θ)gτω [ωnew
hm

(phm , qhm ; θ)]

J∏
j=1

cj2 + nε[j,τω ,ωnew
hm

(pnew
hm

,qnew
hm

;θ)](ω)

2cj2 + nε[j−1,τω ,ωnew
hm

(pnew
hm

,qnew
hm

;θ)](ω)

Hm∏
hm=1

[
gτξ

[ξnew
hm

(phm , qm; θ)]
J∏

j=1

cj2 + nε[j,τξ,ξnew
hm

(pnew
hm

,qnew
hm

;θ)](ξ)

2cj2 + nε[j−1,τξ,ξnew
hm

(pnew
hm

,qnew
hm

;θ)](ξ)

]
,

, (C.9)

where

qnew
hm

< log[1 −
∑

km 6=hm

exp(qnew
km

)], qnew
hm

< log
[
1 − 1

αpnew
hm

]
. (C.10)

D Estimated posterior densities and sample paths

Figures 4, 5, 6 and 7 are here
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E Tables and Figures

1999 2000(LTCI) 2001 2002 2003
Private # Homes 298 350 400 508 694

Capacities 32,302 37,467 41,445 46,561 56,837
Public # Homes 4,214 4,463 4,651 4,870 5,084

Capacities 283,822 298,912 314,192 330,916 346,069
2004 2005 2006 2007 2008

Private # Homes 1,045 1,406 1,968 2,671 3,400
Capacities 76,128 964,12 123,155 147,981 176,935

Public # Homes 5,291 5,535 5,716 5,892 6,015
Capacities 363,747 383,326 399,352 412,807 422,703

Table 1: Numbers of the institutions and the residential capacities of public and
private nursing homes

Figure 1: Prediction result for short-lived consumers (τi ≤ Th):
X axis indexes homes and Y axis measures monthly fees in 10,000 yen
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Prefecture # Homes # Category 1 elders Prefecture # Homes # Category 1 elders
Hokkaido 38 234,434 Aichi 70 214,087
Iwate 2 62,053 Mie 3 78,731
Miyagi 15 84,786 Shiga 4 45,764
Akita 2 61,281 Kyoto 7 108,892
Yamagata 3 55,587 Osaka 120 358,001
Fukushima 7 84,428 Hyogo 61 223,140
Ibaraki 16 90,099 Nara 9 53,548
Tochigi 6 64,671 Shimane 3 40,650
Gumma 12 75,409 Okayama 28 93,412
Saitama 76 189,482 Hiroshima 17 128,505
Chiba 74 174,744 Yamaguchi 5 71,385
Tokyo 281 423,639 Kagawa 6 46,256
Kanagawa 232 264,673 Ehime 12 74,667
Niigata 15 109,182 Fukuoka 52 203,339
Ishikawa 4 48,238 Saga 7 37,445
Yamanashi 3 31,571 Nagasaki 4 78,863
Nagano 13 92,933 Kumamoto 3 86,886
Gifu 7 75,766 Oita 9 60,433
Shizuoka 32 128,088 Kagoshima 7 87,718

Table 2: Numbers of homes and elders in prefectures, excluding prefuctures with zero
or one home

Variable Notation in paper Mean S.D.
Monthly fee (10,000yen) p 19.90 6.28
Initial payment per month (10,000yen) f 10.90 13.96
Expiration period(month) T 46.34 42.17
Share s 0.00032 0.00045
Log(Share) q -8.418 0.798

# Residents per worker Worker 2.523 0.476
Years from opening Years 7.378 5.986
Occupancy rate Occupancy 0.914 0.146
Chain dummy Chain 0.315 0.465
Local average rent Rent 6051 1813
Local average wage (1,000 yen) Wage 1025 120
Sample size H 1265

Table 3: Descriptive statistics
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Variable Mean S.D. 95% Interval IF
βd Constant -4.298*** 0.227 [-4.728,-3.837] 607

# Residents per worker 0.678*** 0.054 [-0.787,-0.579] 250
Years from opening 0.017 0.029 [-0.042,0.071] 35
Occupancy rate 0.440** 0.161 [0.114,0.752] 411
Chain dummy 0.378*** 0.052 [0.278,0.484] 40

αF 0.051*** 0.020 [0.012,0.089] 92
βs Constant 2.928*** 0.058 [2.823,3.052] 12924

# Residents per worker -0.415*** 0.022 [-0.462,-0.369] 12288
Years from opening -0.095*** 0.016 [-0.124,-0.068] 3159
Chain dummy 0.217*** 0.022 [0.163,0.255] 3603
Local average rent 0.189*** 0.014 [0.165,0.223] 811
Local average wage 0.009 0.014 [-0.044,0.012] 706

α 0.139*** 0.001 [0.137,0.140] 477
γ γ0 0.283 2.982 [-5.884,5.741] 16

γT1 -2.472 2.235 [-7.392,1.309] 22
γT2 -2.191 2.328 [-7.286,1.568] 13
γf1 -0.757 2.964 [-6.682,4.853] 24
γf2 -2.488 1.993 [-7.159,0.171] 10
γfT -0.509 3.130 [-6.672,5.597] 6

τ τω 2.899*** 0.360 [2.258,3.404] 3043
τξ 0.919*** 0.080 [0.769,1.081] 45
Sample size 1265

Table 4: Estimation result for real data

∗∗∗, ∗∗ and ∗ indicate that 99%, 95% and 90% credible intervals do not include zero,
respectively.
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Figure 2: Prediction results for long-lived consumers: 20 year lifetime (τi > Th):
τi = 240

X axis indexes homes and Y axis measures lifetime payments in 10,000 yen

Figure 3: Prediction results for long-lived consumers: 30 year lifetime (τi > Th):
τi = 360

X axis indexes homes and Y axis measures lifetime payments in 10,000 yen
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Figure 4: Posterior densities for the MCMC sampler, 1
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Figure 5: Posterior densities for the MCMC sampler, 2
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Figure 6: Sample paths for the MCMC sampler, 1
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Figure 7: Sample paths for the MCMC sampler, 2
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