
MPRA
Munich Personal RePEc Archive

CVA, Wrong Way Risk, Hedging and
Bermudan Swaption

Ali Boukhobza and Jerome Maetz

August 2012

Online at https://mpra.ub.uni-muenchen.de/42144/
MPRA Paper No. 42144, posted 23. October 2012 19:17 UTC

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Munich Personal RePEc Archive

https://core.ac.uk/display/213940209?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://mpra.ub.uni-muenchen.de/
https://mpra.ub.uni-muenchen.de/42144/


CVA Working Paper
Current Version: August 2012

CVA, Wrong Way Risk, Hedging and Bermudan Swaption

Ali Boukhobza
Grupo Santander
Email: aboukhobza@gruposantander.com

Jerome Maetz (contact author)
Grupo Santander
Email: jvmaetz@gruposantander.com

Abstract.1 “Roughly two-thirds of credit counterparty losses were due to credit valuation
adjustment losses and only one-third were due to actual defaults” according to the Basel Committee
on Banking Supervision, highlighting the importance of counterparty credit risk management to
the derivatives contracts. Today, managing counterparty credit risk has become an integrated part
of many derivative trading desks’ day-to-day activities and the need of accurate pricing, efficient
hedging strategies and practical proxies has become critical. As a result, banks have sharpened
their CVA pricing and modeling infrastructure and most have a dedicated trading desk dynamically
hedging their CVA.
However, if pricing techniques have become standard over the past few years, the expected positive
exposure (EPE) modeling is usually not taking into account the embedded correlation between the
counterparty and underlying market movements. This correlation known as wrong way risk can
substantially affect the price and the related hedging strategy and is the main focus of this article.

1. Introduction.

“Roughly two-thirds of credit counterparty losses were due to credit valuation adjustment losses and
only one-third were due to actual defaults” according to the Basel Committee on Banking Supervision,
highlighting the importance of counterparty credit risk management to the derivatives contracts. To-
day, managing counterparty credit risk has become an integrated part of many derivative trading desks’
day-to-day activities and the need of accurate pricing, efficient hedging strategies and practical proxies
has become critical. As a result, banks have sharpened their CVA pricing and modeling infrastructure
and most have a dedicated trading desk dynamically hedging their CVA.

However, if pricing techniques have become standard over the past few years, the expected positive
exposure (EPE) modeling is usually not taking into account the embedded correlation between the coun-
terparty and underlying market movements. This correlation known as wrong way risk can substantially
affect the price and the related hedging strategy and is the main focus of this article.

In the following we present a practical way of introducing the wrong way risk in standard credit
valuation adjustment. We also present an alternative hedging strategy using Bermudan Swaption and
infer counterparty characteristics in terms of spread and correlation levels for the over-hedge to be
financially attractive.

2. CVA and Wrong Way Risk.

In this section, we present the general CVA pricing formula and introduce the wrong way risk and the
adjustment function which allows to take into account wrong way risk without modifying the underlying
dynamics. The adjustment function appears to be particularly suitable for a copula approach.

1Disclaimer: The views expressed in this paper are the authors’ own and may not necessarily reflect those of Grupo
Santander. The authors would like to thank Norddine Bennani, Jon Gregory, Igor Smirnov and Rob Smith for valuable
comments and suggestions.
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2.1. General Pricing Formula.

The general pricing formula as stated in [1], [2] and [3] among others, assuming zero recovery is given
by:

CVA0 := N0 EQ
0

[
V +
τ

Nτ

]
(1)

where N is the cash account numeraire, Q the pricing measure associated to this numeraire and τ
the counterparty default time. Vt is the mark-to-market position of the bank at time t.

The exact definition of the numeraire relies on the collateral’s rate of return of the market hedges. For
the reader interested in the matter we refer to the following articles [4], [5] and [6]. In a simple example
where the market hedges are collateralized in cash with overnight rate of return r, the numeraire is
simply:

Nt := N0 e
∫ t
0
rsds

In the following we will refer to βt := e−
∫ t
0
rsds as the path discount factor andB(0, t) := N0EQ

0

[
1
Nt

]
=

EQ
0 [βt] as the discount factor.

The other formula usually encountered in the literature is:

CVA0 =

∫ T

0

B(0, t)EPEt dpt (2)

where EPE is the expected positive exposure and p the default probability. In order to properly
define the expected positive exposure and the default probability, we start from the definition.

CVA0 := N0EQ
0

[
V +
τ

Nτ

]
=

∫ T
0
EQ

0

[
βt V

+
t δ(τ − t)

]
dt

=
∫ T

0
B(0, t)EQ

0

[
βt

B(0,t)V
+
t δ(τ − t)

]
dt

=
∫ T

0
B(0, t)EQt

0

[
V +
t δ(τ − t)

]
dt

=
∫ T

0
B(0, t)EQt

0

[
V +
t
δ(τ−t)
∂tpt

]
dpt

=
∫ T

0
B(0, t)EQt

0

[
V +
t |τ = t

]
dpt

=
∫ T

0
B(0, t)EPEtdpt

(3)

where δ is the Dirac delta function, Qt the t-forward measure and pt the default probability, defined

implicitely by ∂tpt := EQt
0 [δ(τ − t)]. This definition is consistent with the pricing of the underlying

credit default swap protection leg. Indeed if the exposure at default is a constant K then:

CVA0 = K × ELT

where ELT is the protection leg present value of the CDS contract of nominal 1 and maturity T , in
particular market practice is to define ELT as :

ELT =

∫ T

0

B(0, t)dpt (4)

where pt is the market implied default probability, usually assumed to be pt := 1− e−
∫ t
0
λsds where

λ is the default intensity.

We finally define the expected positive exposure (EPE), in line with the EPEmod in [2]:

EPEt := EQt
0

[
V +
t |τ = t

]
(5)

Remark: the EPE defined previously is specific to CVA computation and can differ slightly from the
expected exposure defined in the Basel regulatory framework.
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2.2. Wrong Way Risk.

2.2.1. Definition.

The wrong way risk represents the correlation between the exposure at default V + and the counter-
party default time. As such it is more an intuitive concept than a true mathematical definition. It
occurs when the mtm of the underlying contract appreciates at the time of default producing an impor-
tant jump-to-default. The right way risk (RWR) describes the opposite behavior, it is in the right way
as the value of the underlying derivative tends to zero as the counterparty goes to default, reducing the
jump-to-default.

The literature tackling wrong way risk modeling essentially models the dependency through the
intensity process like in [7]. The approach followed here is derived from [2] and starts from the alternative
formulation which exhibits the dependency function, starting from (3):

CVA0 =
∫ T

0
B(0, t)EQt

0

[
V +
t
δ(τ−t)
∂tpt

]
dpt

=
∫ T

0
B(0, t)EQt

0

[
V +
t EQt

0

[
δ(τ−t)
∂tpt

|Vt
]]
dpt

=
∫ T

0
B(0, t)EQt

0

[
V +
t ψ

τ
t

]
dpt

(6)

where ψτ is defined as follows:

ψτt = ψτ (t, Vt) = EQt
0

[
δ(τ − t)
∂tpt

|Vt
]

(7)

As ψτt ≥ 0 and EQt
0 [ψτt ] = 1, this multiplicative adjustment can be seen as a density of measure,

enabling to pass from a space of probability where counterparty and underlying are independent to a
space where they are correlated.

Also note that the strong dependency between the underlying mtm and the default can be relaxed
slightly assuming shallow dependency between the default and the underlying market variable. In this
case, assuming Vt = v(t,Xt), we alternatively define:

ψτt = ψτ (t,Xt) = EQt
0

[
δ(τ − t)
∂tpt

|Xt

]

In practice, wrong way risk occurs when the adjustment function over-weights high mtms, right way
risk when the adjustment function over-weights low mtms. The uncorrelated case is represented by the
constant 1. The graph 1 illustrates the three typical situations.

2.2.2. Monte Carlo.

One of the main advantage of this formulation is its tractability in a Monte Carlo simulation frame-
work. Let us start with the uncorrelated case. The simulation process can be decomposed in four
steps:

1. Simulate path discount factors (βt(k))1≤k≤M and the mtms of each deal j composing the counter-

party’s portfolio
(
V jt (k)

)
1≤k≤M

under the risk neutral measure Q.

2. Apply netting agreements, collateral, threshold to obtain the exposure (Vt(k)+)1≤k≤M

3. Compute the expected positive exposure:

EPEt =
1

M

M∑
k=1

βt(k)

B(0, t)
V +
t (k)

3
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Figure 1: The adjustment function ψτ as a function of the normalized underlying variable.

4. Compute the CVA using formula (2).

CVA0 =

∫ T

0

B(0, t)EPEtdpt

Adding wrong way risk through the adjustment function can be easily performed by adding one extra
step between the steps 2. and 3. :

2.b Replace the exposure by:

V +
t (k)← V +

t (k)ψτ (t, Vt(k)) = V +
t (k)ψτ (t, V +

t (k))

The main advantages of this method are:

a. The underlying market variables can be simulated independently of the counterparty. This is
particularly interesting for standard products which only need to be simulated once for all coun-
terparties.

b. The adjustment function is applied at the very end of the computation chain. In particular once
the risk-neutral simulation cube is saved, multiple scenarios of wrong way risk can be applied with
little computation efforts.

2.2.3. Copula Approach.

In the previous section, we have seen that the wrong way risk can be modeled using the adjustment
function ψτ . Most of the time this function is unknown and need to be parameterized. One of the inter-
esting property of the adjustment function is the following : for any arbitrary choice of copula function
C we can define:

ψτ (t, v) = ∂2
abC (a, b)

∣∣
a=pt,b=FV (t,v)

= c(pt, F
V (t, v)) (8)

4
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where FV (t, v) = Qt(Vt ≤ v) is the cumulative distribution function of V and if not known analyti-
cally can be computed using the alternative formulation:

FV (t, v) = EQ
0

[
βt

B(0, t)
1Vt≤v

]
In a Monte Carlo framework we use the empirical cumulative distribution estimator:

F̂V (t, v) =
1

M

M∑
k=1

βt(k)

B(0, t)
1Vt(k)≤v

The proof of (8) relies on the following. Let us consider a reference probability measure P and
two continuous random variable A and B with marginal cumulative distribution functions FA and FB

respectively. Let us also consider the copula function C such that:

C(FA(a), FB(b)) := P (A ≤ a,B ≤ b)

Then we have:

E
[
δ(A−a)

E[δ(A−a)] |B = b
]

= E[δ(A−a)δ(B−b)]
E[δ(A−a)]E[δ(B−b)]

= ∂2
uvC(FA(a), FB(b))

Remark 1: the copula function can be made time dependent. However, the copula structure remains
a static representation of the dependency of the underlying variables given a time horizon. In particular
we do not make any particular assumption on the joint dynamic of (τ, V ) other than their joint density
function.

Remark 2: Coupling asset pricing and credit risk models with copula functions was initially proposed
in [8].

2.2.4. A Simple Adjustment Function.

Let us assume a gaussian copula structure:

C(u, v) = Φ2

(
Φ−1(u),Φ−1(v), r

)
where Φ2 is the bivariate cumulative normal, Φ the cumulative normal and r the correlation. We

therefore have:

c(u, v) = φ2(u, v, r) =
(
1− r2

)− 1
2 exp

(
−
(
rΦ−1(u)

)2 − 2rΦ−1(u)Φ−1(v) +
(
rΦ−1(v)

)2
2(1− r2)

)
Figure 2 shows the Gaussian copula density for a correlation of 80%.

We define the adjustment function as:

ψτρ (t, v) = φ2

(
pt, F

V (t, v), ρt
)

(9)

with ρt = −ρ if pt ≤ 0.5 and +ρ otherwise. This choice of ρt ensures positive values of ρ generate
wrong way risk and negative values of ρ generate right way risk.

2.3. A Few Words on Hedging.

In case the underlying mtm does not depend on the default time then the hedging strategy is directly
given by the pricing formula. First assume no wrong way risk.

On one hand:

CVA0 =
∫ T

0
N0EQ

0

[
V +
t

Nt

]
dpt

=
∑
k ∆kp× πtk

5
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Figure 2: Gaussian copula density for a correlation of 80% as a function of two normalized variables

where πt = N0EQ
0

[
V +
t

Nt

]
is the price of an option.

On the other hand, performing an integration by part:

CVA0 =
∫ T

0
EPEt × (B(0, t)dpt)

=
∫ T

0
EPEtdELt

= EPETELT −
∫ T

0
ELtdEPEt

= EPEtN × ELtN −
∑
k ∆kEPE× ELtk

where ELt is the protection leg value of a credit default swap of nominal 1 and maturity t.

The hedging strategy therefore consists in a basket of traded options and CDSs, the hedge notionals
are given in the following table:

Tenor Option CDS
tk ∆kp −∆kEPE
tN ∆Np EPEtN

In presence of wrong way risk, the hedging strategy remains the same for the CDS hedge notionals.
Most of the time, the option is unfortunately not a standard product and needs to be managed as an
hybrid with correlation risk limits and reserves.

Remark: in the simple case of a swap, as described in [9], the hedge portfolio consists in a basket of
co-terminal swaptions weighted by the counterpart’s default probability.

2.4. Case Study : Vanilla Swap. Let us consider for simplicity a 10Y EUR 6M payer swap. Nominal
is set to 1 and swap is supposed to be at par. We use a gaussian copula to model the wrong way risk
as described previously. The following table shows the CVA upfront in percentage as a function of the
correlation and the counterparty spread.

6
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Figure 3: CVA upfront as a function of the correlation for different spread levels.

Spread\Correlation −99% −70% −40% −10% 0 10% 40% 70% 99%
200 0.00 0.12 0.34 0.61 0.70 0.80 1.12 1.50 1.91
500 0.07 0.55 0.98 1.39 1.53 1.66 2.07 2.52 3.08
1000 0.64 1.37 1.90 2.32 2.44 2.56 2.87 3.17 3.56
5000 0.19 1.22 2.09 2.88 3.13 3.38 4.08 4.79 5.68
10000 0.01 0.79 1.46 2.12 2.34 2.56 3.20 3.80 4.41

We can make a few remarks from these results. First, depending on the correlation value, the
spectrum of CVA values varies from 0 to a number closed to twice the uncorrelated number. At a fixed
spread, the CVA upfront is essentially linear as a function of the correlation:

CVA0(s, ρ) ' (1 + ρ)CVA0(s, 0)

Remark: The study of the CVA upper bound is one of the objective of the next section. In the swap
example the upper bound is 7.05%.

We also observe that fixing the correlation, the CVA has a bell shape. This is coming from two
opposite effects, on one hand as the default probability is increasing, the counterparty is more likely to
default, hence the CVA increases, but on the other hand, as the swap is at par, as the counterparty is
very likely to default in a short period of time, the mtm of the swap does not have the time to take
extreme values. To model mtm default jumps we could alternatively use extreme-value copulas.

3. Bermudan Swaption.

In the following we assume the underlying asset is a swap but most of the techniques can be extended to
more exotic payoffs. We proceed as follows : after having introduced the general pricing formula and its
dynamic programming dual, we prove that the Bermudan Swaption is a suitable over-hedge for a risky

7
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swap. In order to estimate which market conditions make this over-hedge a practical hedge, we assume
the optimal exercise time is a counterparty default time and provide a description of this stopping time
as a spread level and wrong way risk adjustment function.

3.1. Pricing Formula.

A Bermudan Swaption is an option to enter into a swap at some given dates in the future, it is the
discrete time equivalent of the American Swaption which initial value is given by:

θ0 = N0 ess supτ∈τ[0,T ]
EQ

0

[
Vτ
Nτ

]
where τ[0,T ] is the set of stopping times with values in [0, T ].

The classical way of solving this problem is to solve the dual dynamic programming formulation.{
ZtN = 0

Ztk = max
(
Vtk ; NtkE

Q
tk

[
Ztk+1

Ntk+1

])
Remark: previous formulas are unaffected by the change of V to V +, in particular:

θ0 = N0ess supτ∈τ[0,T ]
EQ

0

[
V +
τ

Nτ

]
3.2. CVA Price Triangle and Over-Hedge.

Using previous results one can infer the following inequalities holding for the CVA upfront value:

0 ≤ CVA0 ≤ θ0

This is a direct consequence of the definition of the Bermudan Swaption pricing formula as an optimal
exercise time. In particular these inequalities hold independently of the spread level or the adjustment
function. Moreover the Bermudan Swaption can be exercised suboptimally at the default time, meaning
the Bermudan Swaption is not only a price upper bound but an over-hedge.

In the following, for practical implementation details we assume the numerical method is a Monte
Carlo (MC).

3.3. Implied Default Time.

The dynamic programming problem provides a description of the optimal exercise time τ∗. In par-
ticular, in MC, τ∗ can be inferred using an algorithm like the one proposed in [11].

In the following, we consider this optimal exercise time as a counterparty default time. By doing so
we ensure:

CVA0 = N0EQ
0

[
V +
τ∗

Nτ∗

]
= θ0

The study of this stopping time therefore provides a good indicator of actual spread levels and
correlations required for the upper bound to be reached. Unless stated otherwise, the case study is the
swap of the previous section.

3.3.1. Adjustment Function.

Recall the adjustment function as defined in (1):

ψτ (t, v) = EQt
0

[
δ(τ − t)
∂tpt

|Vt = v

]

8
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Equivalently we have:

ψτ (t, v) =
EQt

0 [δ(τ − t)δ(Vt − v)]

EQt
0 [δ(τ − t)]EQt

0 [δ(Vt − v)]
(10)

In order to determine the marginal and the joint densities we use a smoothing kernelKh, see Appendix
for more details. This leads to the following estimator under the pricing measure:

ψ̂τ (t, v) =

1
M

∑M
k=1

βt(k)
B(0,t)Khτ∗ (τ∗(k)− t)KhVt

(Vt(k)− v)(
1
M

∑M
k=1

βt(k)
B(0,t)Khτ∗ (τ∗(k)− t)

)(
1
M

∑M
k=1

βt(k)
B(0,t)KhVt

(Vt(k)− v)
)

For simplicity we use a gaussian kernel:

Kh(x− y) =
1

h
ϕ

(
x− y
h

)
And we define the bandwidth using the Silverman’s rule of thumb as described in [12]:

hVt = 1.06 σ̂VtM
− 1

5

where M is the number of paths and σ̂Vt the estimated standard deviation of the sample under the
Qt measure estimated as follows:

m̂Vt :=
1

M

M∑
k=1

βt(k)

B(0, t)
Vt(k)

σ̂Vt =
1

M − 1

M∑
k=1

βt(k)

B(0, t)
(Vt(k)− m̂Vt)

2

Remark: note that because of the change of measure, the estimator is biased. For the purpose of
defining an approximate bandwidth the bias is ignored.

In the following graph we observe, as expected, a strong dependency between the implied default
density and the underlying mtm. As time goes, the center of the distribution displaces itself to lower
values. This is essentially due to possible values taken by the swap for large times. As in most extreme
cases, the option is exercised earlier, in order to maximize the exposure at default, the adjustment
function over-weights high values of the mtm for the short term and low values of the mtm for the long
term.

3.3.2. Implied Gaussian Correlation.

Assuming a gaussian copula structure, we wish to infer the termstructure of correlation implied by
the optimal stopping time. We therefore define:

ρt = argminρ∈[0,1]E
Qt
0

[(
ψτ

∗

ρ (t, Vt)− ψτ
∗

t

)2
]

where ψτ
∗

t is the implied adjustment function and ψτρ (t, Vt) the gaussian adjustment function as
defined in (9). To find the optimal correlation, we use a stochastic approximation method like the one
proposed by Kiefer and Wolfowitz, see Appendix and [13] for more details: ρ0

t = 0

ρk+1
t = ρkt − 1

(k+1)
2
3

(
∆t

(
k + 1, ρkt + 1

(k+1)
1
3

)
−∆t

(
k + 1, ρkt − 1

(k+1)
1
3

))
where the implied adjustment function is estimated using (10), hence:

∆t(k, ρ) =
βt(k)

B(0, t)

(
ψτ

∗

ρ (t, Vt(k))− ψ̂τ
∗
(t, Vt(k))

)2

9
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Figure 4: Implied adjustment function for some observable dates as a function of u = FV (t, v)

Finally notice that the gaussian adjustment requires the cumulative distribution of Vt under Qt which
we estimate with the empirical cumulative distribution function as described in the previous section.

Numerical results indicate that the gaussian copula structure fails to capture the high level of implied
correlation in the short term of the curve while producing a stable level of 70% in the mid term. Large
times are not represented graphically as very few scenarios are actually relevant in this region.

3.3.3. Spread Level.

In order to determine the implied spread level, we proceed as follows:

1. Compute the expected loss.

2. Infer the default probability.

3. Infer the spread.

As the default probability is not an observable quantity, we start with the expected loss which,
according to (4) is given by:

ELt =

∫ t

0

B(0, s)dps = EQ
0 [βτ∗1τ∗≤t]

The expectation can be computed using the following MC estimator:

ÊLtj =
1

M

M∑
k=1

βτ∗(k)(k)1τ∗(k)≤tj

Then infer the default probability using a time grid. As:

ELtk+1
− ELtk =

(
B(0, tk) +B(0, tk+1)

2

)
(ptk+1

− ptk)

10



A. Boukhobza, J. Maetz

0%

20%

40%

60%

80%

100%

120%

0.0% 10.0% 20.0% 30.0% 40.0% 50.0% 60.0%

Figure 5: Implied gaussian correlation as a function of the default probability

The default probability is given by:{
pt0 = 0

ptk+1
= 2

(
ELtk+1

−ELtk
B(0,tk)+B(0,tk+1)

)
To finally infer the spread level, we use the approximation:

pt ' 1− e−stt

Hence:

st = −1

t
ln(1− pt)

The implied spreads, as shown in the following graph, are driven by two factors. On the short end
of the curve, the initial spread relies on the present value of the swap. On the long end, as the default
probability tends to one - the option is necessarily exercised at maturity, the spread increases until
reaching its maximum value. In most cases, the spread curve is increasing from almost zero to a few
thousands. When mtm is high enough the spread curve shape is inverted and the implied short term
spread is close to a few hundreds of thousands. These spread levels are obviously unrealistic for most
counterparties.

4. Conclusion.

In this document we have provided a tractable formulation of the wrong way risk through an adjustment
function. This adjustment function can be either inferred from a specific copula structure or implied.
In the case of the copula structure, wrong way risk can be introduced with little extra complexity and
can be applied independently of the simulation phase.

11
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Figure 6: Implied spread for various initial swap mtm

In a second part of the document we have considered a Bermudan Swaption as an over-hedge and
inferred the equivalent spread and adjustment function behavior implied by the optimal stopping time
strategy. This allowed us to define a set of scenarios under which the price difference between the perfect
hedge and the over-hedge can justify the deal. In practice, in the simple case of a swap, extreme spread
behaviors implied by the Bermudan are incompatible with observable counterparty default spreads, for
more reasonable spread levels, the hedge might be justified as long as it can be repacked as a contigent
credit default swap (C-CDS) hence reducing the capital requirements imposed by the Basel rules.
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5. Appendix.

5.1. Smoothing Kernel.

In statistic, a kernel density estimation, or smoothing Kernel, aims at estimating the density func-
tion of a random variable. It approximates the density function by a sum of weighted kernel functions.
Assuming (Xk)k is an iid sample drawn from an unknown density f , its kernel density estimator is:

f̂(x) =
1

N

N∑
k=1

1

h
K

(
x−Xk

h

)
where K is the kernel and h the smoothing parameter called bandwidth.

The gaussian kernel Kg is defined by:

Kg(x) = ϕ(x)

where ϕ is the gaussian density. The determine the bandwidth, we use the Silverman’s rule of thumb
as described in [9]:

h = 1.06 σ̂ N−
1
5

where σ̂ is the standard deviation of the samples.

5.2. Kiefer-Wolfowitz.

The Kiefer-Wolfowitz algorithm, see [13], provides a method which stochastically estimates the maximum
of a function. Assume we are interested in the the following optimization problem:

max
θ∈Θ

f(θ) = E [F (θ, ξ)]

The algorithm follows a gradient-like method:

θk+1 = θk + ak

(
F (θk + ck, ξk)− F (θk − ck, ξk)

ck

)
The sequence of (θk)k converges to the optimal point θ∗ provided that:

• f has a unique maximum and is strong concave.

• The sequences (ak)k and (ck)k satisfy:

a. ck → 0, ak → 0 as k → +∞

b.
∑+∞
k=1 ak =∞,

∑+∞
k=1

(
ak
ck

)2

<∞

A natural choice is ak = k−1 and ck = k−
1
3 .
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