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Abstract

An approximate factor model of high dimension has two key features. First,
the idiosyncratic errors are correlated and heteroskedastic over both the cross-
section and time dimensions; the correlations and heteroskedasticities are of
unknown forms. Second, the number of variables is comparable or even greater
than the sample size. Thus a large number of parameters exist under a high
dimensional approximate factor model. Most widely used approaches to es-
timation are principal component based. This paper considers the maximum
likelihood-based estimation of the model. Consistency, rate of convergence,
and limiting distributions are obtained under various identification restrictions.
Comparison with the principal component method is made. The likelihood-
based estimators are more efficient than those of principal component based.
Monte Carlo simulations show the method is easy to implement and an appli-
cation to the U.S. yield curves is considered.
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1 Introduction
Factor analysis is an essential tool in psychology. It is also fundamental in modern
finance theory. The Arbitrage Pricing Theory (APT) of Ross (1976), for example,
is built upon a multiple factor model for asset returns. Due to its effectiveness in
estimating the co-movement and common shocks from a large number of variables,
factor analysis has been used increasingly by economists for policy analysis in a “data
rich environment.” (See, for example, Bernanke and Boivin, 2003, Bernanke et al.
2005, and Kose et al. 2003.) The purpose of this paper is to provide an inferential
theory for the estimated parameters of high dimensional approximate factor models.

The notion of approximate factor models is proposed by Chamberlain and Roth-
schild (1983). Let zt be an N × 1 random vector in period t (t = 1, 2, · · · , T ); so
N represents the number of variables and T the number of observations. Suppose
that the covariance of zt has a factor structure Σ = ΛΛ′ + Ω, where Λ is an N × r
matrix of factor loadings, r is the number of factors, and Ω is the covariance matrix
of the idiosyncratic errors. An approximate factor model does not require Ω to be
a diagonal matrix. In fact, there are no restrictions on the elements of Ω except
that its maximum eigenvalue is bounded for all N . Thus, the idiosyncratic errors are
allowed to be cross sectionally correlated with an unknown form.

Because none of the elements of Ω are fixed at certain known values, the number
of free parameters in Ω alone is as many as that of Σ. Under fixed N , the model is
not identifiable because the number of parameters (including those of Λ) exceeds the
number of elements of Σ. However, Chamberlain and Rothschild show that the space
spanned by the columns of Λ is identifiable from Σ as N goes to infinity under the
assumption of an approximate factor model (bounded eigenvalue for Ω). However,
Chamberlain and Rothschild do not study the sampling properties of the model
because they assume Σ is known, which is equivalent to the case of T =∞. In this
paper, we do not assume a known Σ, but T observations on zt (t = 1, 2, ..., T ). By
admitting the possibility that the number of variables (N) far exceeds the number of
observations (T ) such that T/N can converge to zero, our inferential theory cannot
rely on a known or even a consistently estimable covariance matrix Σ. Furthermore,
we allow the observations zt to be serially correlated and heteroscedastic over time.
This setting is more general than the original notion of approximate factor models.

Most theory and applications in the literature are developed around the principal
components method, e.g. Bai (2003), Breitung and Tenhofen (2011), Choi (2007),
Connor and Korajczyk (1988), Doz et al. (2011b), Fan et al. (2011), Goyal et al.
(2009), Inoue and Han (2011), Stock and Watson (2002ab), Wang (2010), among
others. The present paper considers the likelihood-based estimation of the model.
The likelihood method is more efficient than the principal components method. Our
paper is closely related to Doz et al. (2011a), which is also based on the likelihood
framework. The latter does not directly study the maximum likelihood estimators; it
focuses on estimating functions of the maximum likelihood estimators. More specifi-
cally, their paper studies the estimated factor as a function of the estimated loadings
and variances, deriving an average consistency of the estimated factors.

The present paper shows that the maximum likelihood estimators (MLE) for the
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factor loadings and idiosyncratic variances are consistent. We establish individual
parameters consistency in addition to average consistency. We further derive the rate
of convergence and the limiting distributions. Having obtained the MLE of factor
loadings and the idiosyncratic variances, in the second step, we consider estimating
the factors as functions of these estimated quantities, which is similar to the study of
Doz et al. (2011a). We also derive the limiting distribution of the estimated factors.
We further estimate the dynamics in the idiosyncratic errors.

Efficient estimation of approximate factor models is also considered by Breitung
and Tenhofen (2011) and Choi (2007). These papers propose two-step procedures
for efficient estimation and derive the limiting distributions of the estimators. They
also suggest an iterated procedure. The simulation results of Breitung and Tenhofen
(2011) show that iterated procedures can substantially improve upon the two-step
procedure. All these estimators are more efficient than the principal component esti-
mator. In view of the ML method’s predominant position in the statistics literature,
it is of theoretical and practical interest to analyze the MLE for the approximate
factor models. The analysis of the MLE in this paper is more challenging than the
two-step estimators. The difficulty lies in the simultaneous estimation of the load-
ings and idiosyncratic variances; the estimators are solutions to a large number of
nonlinear equations (first order conditions).

It should be noted that, unlike the usual linear or nonlinear regressions in which
heteroskedasticity is often an issue of efficiency rather than consistency, heteroskedas-
ticity in factor models is an issue of consistency, not only of efficiency. To be more
specific, under fixed N , if cross-sectional heteroskedasticity exists but is not allowed
in the estimation, then the estimated factor loadings are inconsistent. Thus allowing
heteroskedasticity is not innocuous as it may seem to be. Simultaneously analyzing
the factor loadings and the variances is a demanding task owing to the increased
nonlinearity of the estimation problem. Under large N , heteroskedasticity will not
affect consistency when ignored, but will still affect biases and efficiency.

Our analysis of the maximum likelihood estimator is invariably different from the
classical literature. In classical factor analysis, a key assumption is that

√
Nvech(Mzz−

Σzz) has a normal limiting distribution as the number of observations T going to in-
finity, where Mzz is the sample covariance matrix of the data and Σzz = E(Mzz).
This assumption does not hold when the dimension of data, N , also increases to
infinity. In our case, the dimension of the matrixMzz expands as N increases. When
N > T , Mzz is not of full rank. Our analysis requires a limiting theory as both N
and T go to infinity. While the analysis is more difficult, the final results (e.g., the
limiting distributions) are much simpler than classical factor analysis, demonstrating
the advantage of high dimensional framework.

Throughout the paper, we use dg(A) to denote the diagonal matrix that retains
the diagonal elements of A, while diag(A) denotes the vector consisting of the diag-
onal elements of A. The norm of matrix A is defined as ‖A‖ = [tr(A′A)]1/2. The
proofs for theoretical results are provided in the supplementary document.
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2 Factor models
Let N denote the number of variables and T the sample size. For i = 1, . . . N and
t = 1, . . . T , the observation zit is said to have a factor structure if

zit = αi + λ′ift + eit, (1)

where ft = (ft1, ft2, ..., ftr)′ is the factor, and λi = (λi1, ..., λir)′ is the factor loading.
Let Λ = (λ1, λ2, ..., λN)′ be the N × r matrix of factor loadings and zt = (z1t, ...zNt)′
be the N × 1 vector of variables. Let et and α be similarly defined. In matrix form,

zt = α + Λft + et. (2)

Only zt is observable (t ≤ T ). Let Mzz = 1
T

∑T
t=1 żtż

′
t, the sample variance of the

observable data, where żt = zt − 1
T

∑T
t=1 zt. Note the division by T in Mzz instead of

T − 1 is for notational simplicity. Then

E(Mzz) = ΛMffΛ′ +
1
T

T∑
t=1

E[(et − ē)(et − ē)′]

whereMff = 1
T

∑T
t=1 ḟtḟ

′
t , which is the sample variance of ft (we treat ft as a sequence

of fixed constants, see Assumption A below). Let Ωt = E(ete′t), which allows for
heteroskedasticity over t. In classical factor analysis, Ωt is assumed to be diagonal.
Here Ωt is N × N without the diagonality restriction, except that its maximum
eigenvalue is bounded for all N . This is the essence of the approximate factor models.
Because Ωt contains as many free parameters as the number of elements in the sample
varianceMzz, the number of parameters exceeds the number of estimating equations.
So it is difficult to estimate all elements of Ωt. Let

Φ = dg( 1
T

T∑
t=1

Ωt)

where dg(A) is a diagonal matrix that sets the off-diagonal elements of A to zero. We
are interested in estimating the elements of Φ, a diagonal matrix. In the absence of
cross-sectional correlation and time series heteroscedasticity, then Φ = E(ete′t) and
this reduces to the setting of classical factor analysis, except that the dimension N
is allowed to increase without a bound. Define

Σzz = ΛMffΛ′ + Φ.

Because we restrict Φ to be a diagonal matrix, Σzz is not the covariance matrix of
zt. Furthermore, Mff is not the population variance of ft, but the sample variance.
Consider the objective function

lnL = − 1
2N ln |Σzz| −

1
2N tr(MzzΣ−1

zz ). (3)

Because Σzz is not the covariance matrix of zt due to correlations and heteroscedas-
ticities of unknown form in both dimensions, the above is not the likelihood function
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even under normality of eit. We may regard the objective function as a misspecified
likelihood function. This particular form of misspecification is desirable as it coin-
cides with the classical factor analysis under the exact factor structure. In general,
we should view (3) as a distance measure between Mzz and Σzz, as in Amemiya,
Fuller, and Pantula (1987), and Anderson and Amemiya (1988). One goal of this
paper is to show that this likelihood approach is robust to misspecifications under
large N and large T , similar to Doz et al. (2011a). Additionally, although ft are fixed
constants, we only estimate its sample variance instead of individual ft. This avoids
the incidental parameters problem caused by estimating ft. In fact, when jointly es-
timating λi and ft, the likelihood function diverges to infinity for a judicious choice
of parameter values (Anderson, 2003, p587). The above likelihood function does not
have this problem.

Also note that, when N > T , the sample covariance matrix Mzz is not invertible,
but Σzz is invertible. Thus the likelihood function is well defined even when the
number of variables is larger than the number of observations.

The parameters to be estimated are θ = (Λ,Φ,Mff ). If the variance of et =
(e1t, e2t, · · · , eNt)′ is diagonal and the et are iid over time, then we have an exact
factor model. Estimating an exact factor model is considered by Bai and Li (2012)
and they show that MLE is consistent. However in the present context, as indicated
in Assumption C, the true covariance matrix of et may be quite general. But the
objective function (3) still regards the error terms as having an exact factor structure.
Thus, as in Doz et al. (2011a), the ML method should be regarded as a quasi-ML
(QML), and the resulting estimator will be referred to as QMLE. We will use MLE
and QMLE interchangeably. We show that the QMLE is robust to departure of
exact factor specifications. We will establish consistency and derive the limiting
distributions.

2.1 Assumptions
The following assumptions are needed for our analysis.

Assumption A [Factors]: The factors ft are a sequence of fixed constants with
‖ft‖ ≤ C for all t, where C is a constant large enough. Let Mff = 1

T

∑T
t=1 ḟtḟ

′
t be the

sample variance of ft, where ḟt = ft − T−1∑T
t=1 ft. There exists an M ff > 0 such

that lim
T→∞

Mff = M ff .

Although Assumption A assumes ft being fixed constants, ft can be random
variables. In this case, we assume ft to be independent of the errors eis for all (i, s)
and also E‖ft‖4 ≤ C instead of ‖ft‖ ≤ C. Note that ft can be a dynamic process
with arbitrary dynamics. As in Breitung and Tenhofen (2011), there is no need to
model the dynamic process of ft, especially when the parameters governing ft are
not of direct interest. The assumption that ft are fixed constants is consistent with
the fixed effects assumption and is also consistent with the idea that they are often
the parameters of interest, although we do not directly estimate ft.

Assumption B [Factor loadings]: The factor loadings λi satisfy ‖λi‖ ≤ C for all
i. In addition, there exists an r×r positive matrixQ such that lim

N→∞
N−1Λ′Φ−1Λ = Q,
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where Φ is defined earlier.
Assumption B requires that the columns of Λ be linearly independent. If not, the

matrix Q will not be of full rank.
Assumption C [Cross-sectional and serial dependence and heteroskedasticity]:

For a constant C large enough, not depending on N and T ,

C.1 E(eit) = 0, E(e8it) ≤ C.

C.2 Let Φ = dg{ 1
T

∑T
t=1E(ete′t)} = dg{ 1

T

∑T
t=1 Ωt}. So Φ is an N × N diagonal

matrix with the ith element φ2
i = 1

T

∑T
t=1 τii,t where τii,t is the (i, i) element of

Ωt. We assume C−2 ≤ φ2
i ≤ C2 for all i.

C.3 E(eitejt) = τij,t with |τij,t| ≤ τij for some τij > 0 and for all t. In addition,∑N
i=1 τij ≤ C for any j.

C.4 E(eiteis) = ρi,ts with |ρi,ts| ≤ ρts for some ρts > 0 and for all i. In addition,
1
T

∑T
t=1

∑T
s=1 ρts ≤ C.

C.5 for all i, j = 1, 2, · · · , N , E
[∣∣∣∣ 1√

T

∑T
t=1[eitejt − E(eitejt)]

∣∣∣∣4] ≤ C

Assumption C allows for heteroskedasticities and weak correlations over the cross
section and the time dimension, and is more general than traditional factor analysis.
This assumption also introduces notations for correlations and moments to be used
in the proof. Assumption C.1 is a standard moment condition. We refer φ2

i in
Assumption C.2 as the time-average variance for individual i. C.2 requires that the
time-average variance of eit be bounded away from below and above. Assumption
C.3 aims to control the correlation over the cross section. Assumptions C.4 and C.5
control the magnitude of the correlation of eit over time.

Assumption D: The diagonal elements of Φ are estimated in the compact set
[C−2, C2]. Furthermore, Mff is also restricted in a compact set with all the elements
bounded in the interval [C−1, C], where C is a constant large enough.

Assumption D requires that part of the variance estimators be estimated in a
compact set. Restricting parameters in a compact set is usually made for nonlinear
models, e.g., Newey and McFadden (1994), Jenirich (1969), and Wu (1981). The
objective function for factor models is highly nonlinear. Nevertheless, no restrictions
for Λ are needed. Throughout, we also assume that the number of factors r is known.
When unknown, it can be consistently estimated (e.g., Bai and Ng, 2002).

2.2 First order conditions and identification restrictions
The first-order conditions of the MLE are (see e.g. Lawley and Maxwell (1971)):

Λ̂′Σ̂−1
zz (Mzz − Σ̂zz) = 0 (4)

diag(Σ̂−1
zz ) = diag(Σ̂−1

zz MzzΣ̂−1
zz ) (5)
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Λ̂′Σ̂−1
zz Λ̂ = Λ̂′Σ̂−1

zz MzzΣ̂−1
zz Λ̂ (6)

where Λ̂, M̂ff , and Φ̂ denote the MLE and Σ̂zz = Λ̂M̂ff Λ̂′ + Φ̂.
Condition (4) is derived from the partial derivatives with respect to Λ, (5) is with

respect to the diagonal elements of Φ, and (6) is with respect to Mff . Equation
(6) can be obtained from (4) by post-multiplying Σ̂−1

zz Λ̂. So (6) is redundant. This
redundancy arises from rotational indeterminacy, a well known fact for factor models.
There are r2 redundant parameters, so we need at least r2 restrictions in order to
uniquely fix the parameters. Rotational indeterminacy can be seen from, for any
full rank matrix R, Σzz = ΛMffΛ′ + Φ = ΛR′(R′−1MffR

−1)RΛ′ + Φ. To fix the
indeterminacy, we consider five sets of commonly used restrictions:

IC1: Λ = (Ir,Λ′2)′.

IC2: 1
N

Λ′Σ−1
ee Λ = Ir and Mff = D, where D is a diagonal matrix, whose diagonal

element are distinct and arranged in descending order.

IC3: 1
N

Λ′Σ−1
ee Λ = D and Mff = Ir, where D is a diagonal matrix, whose diagonal

element are distinct and arranged in descending order.

IC4: Λ1 is a lower triangular matrix with all diagonal elements being 1 andMff = D,
where Λ1 is the upper r × r submatrix of Λ and D is a diagonal matrix.

IC5: Λ1 is a lower triangular matrix with none of its diagonal element being 0 and
Mff = Ir, where Λ1 is the upper r × r submatrix of Λ.

Under any one of these restrictions, the parameters can be either fully identified or
identified up to a column sign change of Λ. More specifically, IC1 and IC4 allow full
identification of the model, while IC2, IC3 and IC5 identify Λ up to a column sign
change. In practice, IC1, IC4, and IC5 require careful choice of the first r variables
(in order to give meaningful interpretations to the loadings and the factors). For
more details on the identification conditions, we refer readers to Anderson and Rubin
(1956), Lawley and Maxwell (1971), and Bai and Li (2012).

3 Asymptotic properties of the estimators
In this section, we establish consistency, rates of convergence, and the limiting dis-
tributions of the MLE.

3.1 Consistency and convergence rate
The challenge of the analysis lies in the infinite number of parameters in the limit,
which makes the usual consistency concept not well defined. We tackle the problem
by obtaining an average consistency first, and from the average consistency we derive
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individual parameter consistency. Let θ̂ = (λ̂1, · · · , λ̂N , φ̂2
1, · · · , φ̂2

N , M̂ff ) be the
MLE. Proposition A.1 in the supplement gives the average consistency:

1
N

N∑
i=1

1
φ̂2
i

‖λ̂i − λi‖2
p−→ 0, 1

N

N∑
i=1

(φ̂2
i − φ2

i )2 p−→ 0, M̂ff −Mff
p−→ 0

where φ2
i = 1

T

∑T
t=1E(e2it) = 1

T

∑T
t=1 τii,t. The first result shows that the estimated

factor loadings are consistent on average. The second result is interesting. In view
of Assumption C, the error term eit is allowed to have very general cross-section and
serial correlations, but the estimator φ̂2

i has no relation with these correlations, and is
estimating the average variance over time for each individual i. In a sense, the cross-
section and serial correlations do not contaminate the estimator (these correlations
do affect the limiting variance, as is shown in later sections.)

The average consistency of φ̂2
i is obtained by analyzing the properties of the likeli-

hood function. The proof of the first and third results requires the use of identification
conditions. The key idea of the proof is to find out the corresponding matrix which
plays the same role as the rotation matrix R, and then use the identification condi-
tions to prove that it converges in probability to an identity matrix. This matrix, as
shown in Appendix A, is Λ′Φ̂−1Λ̂(Λ̂′Φ̂−1Λ̂)−1. The proof of Λ′Φ̂−1Λ̂(Λ̂′Φ̂−1Λ̂)−1 p−→ Ir
is quite different under different sets of the identification conditions. Under IC2, IC3
and IC5, we need to assume that the estimator Λ̂ has the same column signs as those
of Λ in order to have consistency. This restriction will be regarded as part of the
identification conditions under IC2, IC3 and IC5.

We now state the rate of convergence.

Theorem 1 (Convergence rates) Under Assumptions A-D, when N, T → ∞,
with any one of the identification conditions, we have

1
N

∑N
i=1

1
φ̂2
i

‖λ̂i − λi‖2 = Op(T−1) +Op(N−2),

1
N

∑N
i=1 (φ̂2

i − φ2
i )2 = Op(T−1) +Op(N−2),

‖M̂ff −Mff‖2 = Op(T−1) +Op(N−2).

For exact factor models, the Op(N−2) term does not exist. Bai and Li (2012) show
that 1

N

∑N
i=1

1
φ̂2
i

‖λ̂i − λi‖2 = Op(T−1). The same is true for φ̂2
i and M̂ff . Whether

N is fixed or large, the MLE is consistent under exact factor models. Theorem 1
shows that there is a cost associated with the generality of the approximate factor
models. That is, under fixed N , the estimated factor loadings will not be consistent
for approximate factor models; this should not be surprising. Under large N , the
MLE becomes consistent, illustrating the advantage of high dimension data.

The principal components estimator has a slower convergence rate. Bai (2003)
shows that 1

N

∑N
i=1 ‖λ̂i−Rλi||2 = Op(1/T )+Op(1/N), where R is an r× r invertible

matrix. The principal components method does not take into account heteroskedas-
ticity, there is a bias arising from ignoring the heteroskedasticity.
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Remark 1. Part of the ML analysis includes showing that R = Ir, that is, the
MLE directly estimates λi instead of its rotation. This is obtained by assuming that
the underlying parameters satisfy the identification restrictions, as in classical factor
analysis. If this assumption is not true, then we will be estimating rotations of the
factor loadings. The absence of rotation (R = Ir) is more difficult to establish than
allowing a rotation. The principal component analysis of Bai (2003) and the two-step
estimators of Breitung and Tenhofen (2011) and Choi (2007) do not investigate this
rotational properties.

3.2 Asymptotic representation and limiting distribution
Additional assumptions are needed for the asymptotic representations and the lim-
iting distributions of the QMLE.

Assumption E [moment conditions]: There exists a constant C large enough
such that

E.1 E(eitejs) = γij,ts with 1
NT

∑N
i=1

∑N
j=1

∑T
t=1

∑T
s=1 |γij,ts| ≤ C.

E.2 for each j = 1, 2, · · · , N , E
[∥∥∥ 1√

NT

∑N
i=1

∑T
t=1

1
φ2
i
λi[eitejt − E(eitejt)]

∥∥∥2
]
≤ C.

E.3 the r × r matrix satisfies E
[∥∥∥ 1√

NT

∑N
i=1

∑T
t=1

1
φ4
i
λiλ

′
i(e2it − φ2

i )
∥∥∥2
]
≤ C.

Assumption F [Central Limit Theorem]:

F.1 For each i, as T →∞, 1√
T

∑T
t=1 fteit

d−→ N(0, lim
T→∞

1
T

∑T
t=1

∑T
s=1 ftf

′
sρi,ts).

F.2 For each i, as T →∞, 1√
T

∑T
t=1(e2it − φ2

i )
d−→ N(0, σ2

i ), where σ2
i = lim

T→∞
1
T

∑T
t=1∑T

s=1E
[
(e2it − φ2

i )(e2is − φ2
i )
]
.

Assumption E.1 controls the magnitude of correlation of eit over the cross section
and the time dimensions. Assumptions E.2 and F.1 are standard. Similar assump-
tions are also made in Bai (2003). Assumption E.3 and F.2 are extra due to the
estimation of heteroskedasticity, and is used for the limiting distribution φ̂2

i .
Throughout the paper, let ξt = (e1t, ..., ert)′, a vector consisting of the idiosyn-

cratic errors in the first r equations. This vector will appear in the asymptotic
representations of the estimators under IC1, IC4, and IC5. In addition, under IC4
and IC5, the asymptotic representations involve two r× r matrices Pt and Qt. Their
(g, h)-th elements are defined, respectively, as (g, h = 1, 2, ..., r)

Pgh,t =

 −m
−1
g ftgξ

′
tΛ′
−1
1 vh if g ≥ h

−m−1
g mhPhg,t if g < h

, Qgh,t =


−ftgξ′tΛ′

−1
1 vh if g > h

0 if g = h

−Qhg,t if g < h

where mg is the gth diagonal element ofMff ; ftg is the gth component of ft; Λ1 is the
first r× r block of Λ; and vh is the hth column of the identity matrix Ir. Matrix Qt
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is skew-symmetric. Now we state the asymptotic representations for the estimated
factor loadings.

Theorem 2 (Asymptotic representations for factor loadings) Under Assump-
tions A-E, and N, T →∞ with

√
T/N → 0, for each j = 1, 2, · · · , N under IC2 and

IC3, and for j > r under IC1, IC4, and IC5, we have:

Under IC1,
√
T (λ̂j − λj) = M−1

ff

1√
T

T∑
t=1

(ftejt − ftξ′tλj) + op(1);

Under IC2 or IC3,
√
T (λ̂j − λj) = M−1

ff

1√
T

T∑
t=1

ftejt + op(1);

Under IC4,
√
T (λ̂j − λj) = 1√

T

T∑
t=1

(Ptλj +M−1
ff ftejt) + op(1);

Under IC5,
√
T (λ̂j − λj) = 1√

T

T∑
t=1

(Qtλj + ftejt) + op(1);

where ξt, Pt and Qt are all defined earlier.

Theorem 2 shows that λ̂j is
√
T -consistent for λj. Theorem 2 also indicates that

different sets of identification conditions lead to different asymptotic representations.
Under IC2 and IC3 the asymptotic representations are simpler. The restrictions of
IC1, IC4 and IC5 impose restrictions on the first r factor loadings, which in turn
put more weights on the first r observations. This explains why the error terms of
the first r observations enter into the asymptotic representations (via ξt, Pt and Qt),
leading to more complex representations.

If the factors ft can be observable, the estimator of λj by applying OLS is λ̂olsj =(
1
T

∑T
t=1(ft− f̄)(ft− f̄)′

)−1( 1
T

∑T
t=1(ft− f̄)(ztj− z̄j)

)
(a time series regression), which

will yield the same asymptotic representation as that of IC2 and IC3 (note we assume
f̄ = 0). So the MLE under high dimension amounts to make the unobservable factors
observable. It is interesting that we never attempt to estimate the individual ft, but
we achieve the same effects as if the individual ft were known, an interesting result
for high dimensional data.

The limiting distributions of λ̂i follow from the asymptotic representations.

Corollary 1 (Limiting distributions for factor loadings) Under the same as-
sumptions as Theorem 2, together with Assumption F, we have:

Under IC1,
√
T (λ̂j − λj) d−→ N(0, (M ff )−1Γλj (M ff )−1);

Under IC2 or IC3,
√
T (λ̂j − λj) d−→ N(0, (M ff )−1Υλ

j (M ff )−1);

Under IC4,
√
T (λ̂j − λj) d−→ N(0,Πλ

j );

Under IC5,
√
T (λ̂j − λj) d−→ N(0,Ψλ

j );

where Γλj ,Υλ
j ,Πλ

j ,Ψλ
j are defined in Table 3, and M ff is defined in Assumption A.

10



From the asymptotic representations of Theorem 2, under each set of the iden-
tification conditions, the summation over t only involves ft and ejt. So Assumption
F.1 is sufficient for the limiting results. The superscript λ in the limiting variances
signifies the association with the factor loadings. We will use similar matrices with
a superscript f when estimating factors ft in a later section.

Now we state the limiting results for the estimated Mff .

Theorem 3 (Asymptotic representations for M̂ff) Under the assumptions of
Theorem 2 and

√
T/N → 0, we have:

Under IC1,
√
T [vech(M̂ff −Mff )] = D+

r

( 1√
T

T∑
t=1

(ξt ⊗ ft + ft ⊗ ξt)
)

+ op(1);

Under IC2, diag{M̂ff −Mff} = Op(N−1/2T−1/2) +Op(N−1) +Op(T−1);

Under IC4,
√
T
(
diag{M̂ff −Mff}

)
= 2 diag

{ 1√
T

T∑
t=1

ftξ
′
tΛ−1′

1

}
+ op(1);

where D+
r is the Moore-Penrose inverse of the duplication matrix Dr.

Note that under IC3 and IC5, Mff = Ir is known, not estimated.

Corollary 2 (Limiting distribution for M̂ff) Under the assumptions of Theo-
rem 3 together with Assumption F, we have:

Under IC1,
√
T
(
vech(M̂ff −Mff )

)
d−→ N

(
0, 4D+

r ΓMD+′
r

)
;

Under IC4,
√
T
(
diag{M̂ff −Mff}

)
d−→ N

(
0, 4JrΠMJ ′r

)
;

where ΓM and ΠM are defined in Table 3; Jr is an r× r2 matrix, which satisfies, for
any r × r matrix M , diag{M} = Jrvec(M).

Theorem 3 only gives the asymptotic representations for M̂ff under IC1 and IC4.
Under IC2, it states that M̂ff−Mff is of Op(N−1/2T−1/2)+Op(N−1)+Op(T−1). The
terms Op(T−1) and Op(N−1) include some bias terms in the magnitude of O(T−1) and
O(N−1). If some higher order moments assumptions are made, we can extract the
biases from Op(N−1) +Op(T−1) and the remaining term will have a limiting normal
distribution with a

√
NT convergence rate. We do not pursue this here, partly

because this exercise requires additional assumptions and the derivation is lengthy,
and partly because knowing the order of M̂ff −Mff is sufficient. For example, for
the limiting distribution of f̂t− ft, we only need to know the order of M̂ff −Mff . In
addition, under IC2, the convergence rate is already faster than under IC1 and IC4.

Theorem 3 also shows that, under IC1 and IC4, the asymptotic representation
of M̂ff −Mff only involves the error terms ξt = (e1t, e2t, · · · , ert)′. The underlying
reason is that the restrictions IC1 and IC4 only involve the first r equations and IC2
involves the entire cross sections. This is also the underlying reason for the faster
convergence rate of M̂ff under IC2.
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Theorem 4 Under the assumptions of Theorem 2 and
√
T/N → 0, irrespective of

which set of identification conditions, we have
√
T (φ̂2

i − φ2
i ) = 1√

T

∑T
t=1(e2it − φ2

i ) + op(1)

Corollary 3 Under the assumptions of Theorem 4 and Assumption F, we have
√
T (φ̂2

i − φ2
i )

d−→ N(0, σ2
i ),

where σ2
i is defined in Assumption F.2.

Theorem 4 shows that φ̂2
i is
√
T -consistent for φ2

i = 1
T

∑T
t=1E(e2it). If the error eit

is stationary over t, the estimator φ2
i gives a consistent estimator for the variance of

the process. With heteroskedasticity, the estimator φ̂2
i provides an estimate for the

average variance.
It is interesting to note that, to estimate φ2

i , there is no need to estimate the
residuals eit. Estimating the residuals would require to estimate both λi and ft, as
in two-step procedures. If N is fixed, then ft cannot be consistently estimated (even
for exact factor models). This would imply that the idiosyncratic variances cannot
be consistently estimated using the residuals. The ML procedure does not estimate
ft (t = 1, 2, ..., T ) but only the sample covariance of ft, thus it is able to provide
a consistent estimation of the idiosyncratic variances under fixed N with an exact
factor structure. Under large N and T , an exact factor structure is not required.

4 Asymptotic properties for the estimated factors
The factors ft can be estimated by two different methods. One is the projection
formula and the other is the generalized least squares (GLS). They are

(Projection formula) f̃t = (M̂−1
ff + Λ̂′Φ̂−1Λ̂)−1Λ̂′Φ̂−1(zt − z̄) (7)

(GLS) f̂t = (Λ̂′Φ̂−1Λ̂)−1Λ̂′Φ̂−1(zt − z̄) (8)

see, e.g., Anderson (2003). It is easy to show that f̃t = f̂t + Op(N−1). So the two
estimators are asymptotically equivalent. In what follows, we only focus on f̂t. To
analyze the asymptotic properties of f̂t, we strengthen Assumption C.4 to C.4′ below.

Assumption C [continued]: There exists a constant C large enough such that:

C.4′ ∑T
t=1 ρts ≤ C, where ρts ≥ 0 is defined in Assumption C.4.

Assumption E [moment conditions (continued)]: There exists a constant C
large enough such that

E.4 for all t, t = 1, 2, · · · , T , E
(∥∥∥ 1√

NT

∑N
i=1

∑T
s=1

1
φ2
i
fs[eiteis − E(eiteis)]

∥∥∥2
)
≤ C.

E.5 for all t, t = 1, 2, · · · , T , E
(

1
N

∑N
i=1

∥∥∥ 1√
T

∑T
s=1 fs[eiteis − E(eiteis)]

∥∥∥2
)
≤ C.
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E.6 for all t, t = 1, 2, · · · , T , E
(∥∥∥ 1√

NT

∑N
i=1

∑T
s=1

1
φ4
i
λi(e2is − φ2

i )eit
∥∥∥2
)
≤ C.

Assumption F [Central Limit Theorem (continued)]

F.3 for each t, asN →∞, 1√
N

∑N
i=1

1
φ2
i
λieit

d−→ N
(
0, lim

N→∞
1
N

∑N
i=1

∑N
j=1

1
φ2
iφ

2
j
λiλ

′
jτij,t

)
.

Most of the preceding assumptions are intuitive and reasonable. They are the
counterparts of the assumptions made earlier. For example, Assumption C.4′ cor-
responds to Assumption C.3; Assumption E.4 corresponds to Assumption E.2; As-
sumption E.5 corresponds to Assumption C.5, which aims to control the correla-
tion of the cross-product term eiteis over time. Assumption E.6 is used to bound
1
N

∑N
i=1

1
φ4
i
(φ̂2

i − φ2
i )λieit, and insures that it has a fast convergence rate; Assumption

F.3 corresponds to Assumption F.1.
The following theorem states the asymptotic representations for f̂t:

Theorem 5 (Asymptotic representations for the factors) Under Assumptions
A-E and N, T →∞ with

√
N/T → 0, and for ∆ ∈ [0,∞), we have:

Under IC1 and N/T → ∆,
√
N(f̂t − ft) = −

√
∆( 1√

T

∑T
s=1 ξsf

′
s)M−1

ff ft +Q−1 1√
N

∑N
i=1

1
φ2
i
λieit + op(1).

Under IC2 or IC3,
√
N(f̂t − ft) = Q−1 1√

N

∑N
i=1

1
φ2
i
λieit + op(1)

Under IC4 and N/T → ∆,
√
N(f̂t − ft) = −

√
∆( 1√

T

∑T
s=1P ′s)ft +Q−1 1√

N

∑N
i=1

1
φ2
i
λieit + op(1).

Under IC5 and N/T → ∆,
√
N(f̂t − ft) = −

√
∆( 1√

T

∑T
s=1Q′s)ft +Q−1 1√

N

∑N
i=1

1
φ2
i
λieit + op(1).

The variables ξt, Ps and Qs are defined earlier.

The asymptotic representations depend on the identification conditions. Once
again, the identification conditions of IC2 and IC3 imply a simpler asymptotic ex-
pression. For IC1, IC4 and IC5, there are two terms in the representation. The first
term involves partial sums over the time dimension, whereas the second term involves
partial sums over the cross-section dimension. If ∆ is large (N is large relative to
T ), then the first term is more important in the determination of the asymptotic
variance. This means that the error terms in the time dimension for the first r indi-
viduals are the primary source of the variability of f̂t − ft [noting ξt = (e1t, ..., ert)′].
If ∆ is small, the error terms over the entire cross section for period t are the primary
source of the variability. That is, the second term of the presentation will be more
important. If ∆ → 0, the first term drops out. Theorem 5 shows that the relative
ratio between N and T plays a role in efficiency.
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From Theorem 5, the limiting distributions can be obtained easily. Under IC1,
IC4, and IC5, we assume that the two terms in the representations are asymptotically
independent. This is a reasonable assumption since the first term involves the sum
of eis over the time dimension for the first r individuals only (i = 1, 2, ..., r), whereas
the second term involves the sum over the entire cross section for a given period. It
is also easy to derive the limiting distribution without the asymptotic independence
assumption, and in this case, the covariances of the two terms also enter into the
limiting variance.

Corollary 4 (Limiting distributions for the estimated factors) Under the as-
sumptions of Theorem 5 and Assumption F, we have

under IC1 and N/T → ∆,
√
N(f̂t − ft) d−→ N(0,Γft );

under IC2 or IC3,
√
N(f̂t − ft) d−→ N(0,Υf

t );

under IC4 and N/T → ∆,
√
N(f̂t − ft) d−→ N(0,Πf

t );

under IC5 and N/T → ∆,
√
N(f̂t − ft) d−→ N(0,Ψf

t );

where Γft ,Υf
t ,Πf

t ,Ψf
t are given in Table 3.

Note that IC2 and IC3 do not need N/T → ∆ but only
√
N/T → 0.

Consider a special case in which eit are uncorrelated over i and homoscedastic over
t (still allow cross-section heteroskedasticity and serial correlation), then the limiting
distributions under IC2 and IC3 reduce to

√
N(f̂t − ft) d−→ N(0, Q−1) because Υf

reduces to Q−1. This is the same limiting distribution as the infeasible GLS in the
cross-section regression zit = f ′tλi + eit as if all λi and φ2

i were observable.
Remark 2. Suppose that ft is a vector autoregressive process such that Ψ(L)ft =

ut, where Ψ(L) is a finite order polynomial of the lag operator L. We point out that
modeling the dynamics of ft will not improve the estimation efficiency. In Appendix
F of the supplementary document, we show that f̂t has the same asymptotic repre-
sentation as the Kalman-smoother-based estimators f̂kst that takes into account the
dynamics of ft. That is, we establish that

√
N(f̂kst − f̂t) = op(1). The estimator f̂kst

is similar to that of Doz et al. (2011b), although the first step here is based on the
QMLE instead of the PC estimates. The asymptotic equivalence implies the limiting
distribution for f̂kst and also for the estimator of Doz et al. (2011b), who do not study
the limiting distribution.

5 Modeling the dynamics in the errors eit
So far we have assumed that the serial correlation in eit is of an unknown form. If we
are willing to assume eit is an autoregressive process, then this should be modeled
and the factor loadings can be more efficiently estimated. The dynamic coefficients
in eit can also be consistently estimated. In this section, we first consider a two-
step procedure that ignores the dynamics in ft. We then consider the full maximum
likelihood method that jointly estimates the dynamics of ft and that of eit.
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5.1 Ignoring the dynamics in factors
Consider the following model

zit = λ′ift + eit,

eit = ρi,1eit−1 + · · ·+ ρi,pieit−pi + εit
(9)

so eit follows an AR(pi) process with the lag orders pi depending on i. Let ρi(L) =
1−ρi,1L−· · ·−ρi,piLpi . The eit process can be rewritten as ρi(L)eit = εit. We assume
that εt = (ε1t, . . . , εNt)′ is an i.i.d process over t. In what follows, we assume εit and
εjt are independent for i 6= j, for simplicity; Eεit = 0 and var(εit) = σ2

εi.
Breitung and Tenhofen (2011) consider a two-step method to estimate model (9).

In the first step, they use PC method to obtain the estimates of the factors and factor
loadings, and based on the residuals, they calculate the estimates of the variance of eit
and the coefficients (ρi,1, ρi,2, . . . , ρi,pi). In the second step, by taking into account the
heteroscedasticity and autocorrelation of eit, they use GLS to improve the estimates
of the factors and factor loadings. They call the procedure PC-GLS. Iterating this
procedure several times leads to, what they call, iterated PC-GLS. Their simulation
shows that the iterated PC-GLS has better finite sample properties.

However, when the sample size is small or moderate, especially when heteroscedas-
ticity of the cross section is strong, the PC method gives poor estimates for the vari-
ance of eit and the coefficients ρi = (ρi,1, ρi,2, . . . , ρi,pi), which lead to unsatisfactory
performance of the PC-GLS and the iterated PC-GLS. Motivated by this concern,
we propose two estimators, ML-GLS and iterated ML-GLS estimators. The ML-
GLS estimators, which include Λ̃, F̃ , ρ̂1, . . . , ρ̂N , Φ̂, are calculated by the following
two steps.

1. Apply the QML method to the first equation of (9) to obtain the QMLE Λ̂ and
Φ̂. Then calculate F̂ = Z ′Φ̂−1Λ̂(Λ̂′Φ̂−1Λ̂)−1 and the residuals êit = zit − λ̂′if̂t.
For each i, obtain the estimators ρ̂i by running the following regression

êit = ρi,1êi,t−1 + · · ·+ ρi,pi êi,t−pi + error, t = pi + 1, . . . , T

2. Given (ρ̂i,1, ρ̂i,2, . . . , ρ̂i,pi) and F̂ , update the estimator of Λ, denoted by Λ̃, by
running the regression

zit−ρ̂i,1zi,t−1−· · ·−ρ̂i,pizi,t−pi = (f̂t−ρ̂i,1f̂t−1−· · ·−ρ̂i,pi f̂t−pi)′λi+error, t = pi+1, . . . , T

Given Φ̂ = diag(φ̂2
1, . . . , φ̂

2
N) and Λ̃, update the estimator of F , denoted by F̃ ,

by running the regression
1
φ̂i
zit =

( 1
φ̂i
λ̃i

)′
ft + error, i = 1, 2, . . . , N

The iterated ML-GLS can be obtained by iterating the above two steps several times
and, for each iteration, Λ̂, F̂ are replaced with the estimators of the previous iteration.

The asymptotic properties of ML-GLS now can be formally analyzed given the
asymptotic properties of the QMLE in the previous two sections. We state the results
in the following theorem.
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Theorem 6 Under the Assumptions in Appendix E, when N, T →∞, we have

ρ̂i
p−→ ρi, λ̃i

p−→ λi, for i = 1, 2, . . . , N

f̃t
p−→ ft, for t = 1, 2, . . . , T

Furthermore, with the condition
√
T/N → 0, for each i,

√
T (ρ̂i − ρi) =

( 1
T

T∑
t=pi+1

ψitψ
′
it

)−1( 1√
T

T∑
t=pi+1

ψitεit

)
+ op(1)

√
T (λ̃i − λi) =

( 1
T

T∑
t=pi+1

gitg
′
it

)−1( 1√
T

T∑
t=pi+1

gitεit

)
+ op(1)

and with the condition
√
N/T → 0, for each t,

√
N(f̃t − ft) =

( 1
N

N∑
i=1

1
φ2
i

λiλ
′
i

)−1( 1√
N

N∑
i=1

1
φ2
i

λieit

)
+ op(1)

where ψit = (eit−1, eit−2, . . . , eit−pi)′ and git = ft − ρi,1ft−1 − · · · − ρi,pift−pi.

Here are some intuitions for Theorem 6. Consider the estimation of λi. If both
ft and ρi,1, . . . , ρi,pi are observable, directly applying GLS to the equation

zit − ρi,1zi,t−1 − · · · − ρi,pizi,t−pi = (ft − ρift−1 − · · · − ρi,pift−pi)′λi + εit

will give the same limiting distributions as stated in Theorem 6. Thus the ML-
GLS estimation amounts to make the unobservable ft and ρi,1, . . . , ρi,pi observable
asymptotically. Similar results hold for the estimated ft and ρi. From Theorem 6
we can easily obtain the following limiting distributions:
Corollary 5 Under the assumptions of Theorem 6, if

√
T/N → 0, for each i,

√
T (ρ̂i − ρi) d−→ N

(
0, σ2

εi

[
plimT→∞

1
T

T∑
t=pi+1

ψitψ
′
it

]−1)
,

√
T (λ̃i − λi) d−→ N

(
0, σ2

εi

[
plimT→∞

1
T

T∑
t=pi+1

gitg
′
it

]−1)
.

If
√
N/T → 0 and with Q given in Assumption B, for each t,

√
N(f̃t − ft) d−→ N(0, Q−1).

A consistent estimator for σ2
εi is σ̂2

εi = 1
T−pi

∑T
t=pi+1 ε̂

2
it, where

ε̂it = zit − ρ̂i,1zi,t−1 − · · · − ρ̂i,pizi,t−pi − (f̃t − ρ̂i,1f̃t−1 − · · · − ρ̂i,pi f̃t−pi)′λ̃i
The asymptotic variance of

√
T (λ̃i − λi) can be constructed for finite samples by

σ̂2
εi( 1

T

∑T
t=pi+1 g̃itg̃

′
it)−1 with g̃it = f̃t − ρ̂i,1f̃t−1 − · · · − ρ̂i,pi f̃t−pi and the asymptotic

variance of
√
T (ρ̂i − ρi) can be constructed by σ̂2

εi( 1
T

∑T
t=pi+1 ṽitṽ

′
it)−1 with ṽit =

(ẽit−1, ẽit−2, . . . , ẽit−pi)′ and ẽit = zit − λ̃′if̃t. Matrix Q can be consistently estimated
by 1

N

∑N
i=1

1
φ̂2
i

λ̃iλ̃
′
i.
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5.2 Joint estimation of the dynamics in factors and in errors
Assume that ft follows a vector autoregressive process of order K:

ft = Ψ1ft−1 + Ψ2ft−2 + · · ·+ ΨKft−K + ut.

We can still use the foregoing two-step method to obtain the estimators Λ̃, F̃ , Φ̂
and all ρ̂i (i = 1, 2, ..., N). These estimators have the same limiting distributions
as in Section 5.1. To obtain an estimate for Ψk (k ≤ K), an extra step is taken
by regressing f̃t on its lags. Let Ψ̂k denote the resulting estimator. The limiting
distribution of Ψ̂k is the same as the case of known ft.

The dynamics in the factors and in the idiosyncratic errors can also be jointly
estimated by the full maximum likelihood method, which can be implemented by
the EM algorithm of Dempster et al. (1977). Based on the work of Watson and
Engle (1983) and Wu (1983), Quah and Sargent (1989) explain the feasibility of the
EM algorithm for high dimensional data. Jungbacker and Koopman (2008) propose
a transformation that aims to reduce the dimensionality of the computation. Note
that the model here is a special case of the generalized dynamic factor model of Forni
et el. (2000); the latter model is estimated by the frequency domain approach. With
more structure, the present model allows a full maximum likelihood estimation.

Here we elaborate the ECM (expectation and constrained maximization) algo-
rithm of Meng and Rubin (1993). ECM is a sequential maximization procedure that
maximizes the expected complete-data likelihood with respect to a subcomponent of
the parameters, and with the remaining components constrained at the previously
obtained optimal values. A useful property of the ECM is that it has closed-form
solutions when the parameters are appropriately divided into subgroups.

For ease of exposition, we assume that the idiosyncratic errors and the factors
are AR(1) processes, namely, eit = ρieit−1 + εit and ft = Ψft−1 + ut, εit ∼ N(0, σ2

εi)
and ut ∼ N(0, Ir); both errors are iid over t. The procedures can be easily stated for
more heterogeneous dynamics. The model can be written as

zt − ρzt−1 = [Λ,−ρΛ]
[

ft
ft−1

]
+ εt[

ft
ft−1

]
=
[

Ψ 0
Ir 0

] [
ft−1
ft−2

]
+
[
ut
0

] (10)

where ρ = diag(ρ1, . . . , ρN). Let θ = (Λ, ρ1, . . . , ρN , σ
2
ε1, . . . , σ

2
εN ,Ψ) denote the pa-

rameters. The complete-data likelihood function is

lnL(θ) = C − 1
2N

N∑
i=1

ln σ2
εi −

1
2NT

N∑
i=1

1
σ2
εi

T∑
t=2

(
zit − ρizit−1 − λ′ift + ρiλ

′
ift−1

)2

Here the marginal likelihood for ft (to estimate Ψ) is omitted for simplicity. The
expected complete-data likelihood, conditional on the data and θ∗, is

Q(θ|θ∗) = C − 1
2N

N∑
i=1

ln σ2
εi −

1
2NT

N∑
i=1

1
σ2
εi

T∑
t=2

{
(zit − ρizit−1)2
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−2(zit − ρizit−1)λ′iE(ft|θ∗) + 2(zit − ρizit−1)ρiλ′iE(ft−1|θ∗) (11)

+λ′iE(ftf ′t |θ∗)λi + ρ2
iλ
′
iE(ft−1f

′
t−1|θ∗)λi − 2ρiλ′iE(ft−1f

′
t |θ∗)λi

}

where we omit the data matrix Z from the conditional expectations so that E(ft|θ∗)
denotes E(ft|Z, θ∗), etc. Define V00,t = E(ftf ′t |θ∗,Z), V01,t = E(ftf ′t−1|θ∗,Z), V11,t =
E(ft−1f

′
t−1|θ∗,Z). In the E-step, we compute these conditional expectations at

θ∗ = θ(k), where θ(k) denotes the kth iteration of θ in the ECM algorithm. These con-
ditional expectations are computed via the Kalman smoothers in view that system
(10) is a standard state space model with the first equation being the measurement
equation and the second being the transition equation. In the constrained M-step,
we take derivatives with respect to θ in (11). By dividing θ into four subgroups, the
ECM of Meng and Rubin (1993) leads to the following updating formulae:

λ
(k+1)
i =

[ T∑
t=2

(
V00,t−ρ(k)

i V01,t − ρ(k)
i V ′01,t + (ρ(k)

i )2V11,t

)]−1

×
[ T∑
t=2

(
E(ft|θ(k))− ρiE(ft−1|θ(k))

)
(zit − ρ(k)

i zit−1)
]
,

ρ
(k+1)
i =

[ T∑
t=2

(
z2
it−1 − 2zit−1λ

(k+1)′
i E(ft−1|θ(k)) + λ

(k+1)′
i V11,tλ

(k+1)
i

)]−1

×
[ T∑
t=2

(
zitzit−1 − zitλ(k+1)′

i E(ft−1|θ(k))− zit−1λ
(k+1)′
i E(ft|θ(k)) + λ

(k+1)′
i V01,tλ

(k+1)
i

)]
,

(σ(k+1)
εi )2 = 1

T − 1

T∑
t=2

(
(zit − ρ(k+1)

i zit−1)2 − 2(zit − ρ(k+1)
i zit−1)λ(k+1)′

i E(ft|θ(k))

+ 2ρ(k+1)
i (zit − ρ(k+1)

i zit−1)λ(k+1)′
i E(ft−1|θ(k)) + λ

(k+1)′
i V00,tλ

(k+1)
i

− 2ρ(k+1)
i λ

(k+1)′
i V10,tλ

(k+1)
i + (ρ(k+1)

i )2λ
(k+1)′
i V00,tλ

(k+1)
i

)
,

Ψ(k+1) =
( T∑
t=2

V01,t

)( T∑
t=2

V11,t

)−1
.

The last expression Ψ(k+1) is obtained from the (omitted) marginal likelihood for ft.
Putting together, we obtain θ(k+1). The iteration continues until convergence. The
estimator will be referred to as ML-EM in the next subsection.

While the computation is straightforward, the statistical analysis of the full max-
imum likelihood estimators require extensive argument, and is more challenging than
the QMLE considered here, largely owing to additional and more complex first order
conditions. This issue is being examined by the authors.

6 Finite sample properties
This section uses Monte Carlo simulations to evaluate the finite sample properties
of QMLE, ML-GLS, iterated ML-GLS (denoted by ML-ITE below) and ML-EM
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estimators (all discussed in Section 5). The data are generated according to

zit = λ′ift + eit

where A(L)ft = ut with ut being i.i.d. N(0, Ir) and D(L)et = εt with εt being i.i.d.
N(0, T ); A(L) and D(L) are defined as A(L) = Ir − ψIrL,D(L) = IN − ρL, where
ρ = diag(ρ1, . . . , ρN) and ψ is a scalar. Matrix T is N ×N with its (i, j)th element
τ |i−j|[φ2

iφ
2
j(1− ρ2

i )(1− ρ2
j)]1/2. The variance of eit, φ2

i , is generated according to

φ2
i = βi

1− βi
1

1− ψ2λ
′
iλi (12)

where βi are iid U [u, 1 − u] with u ∈ [0, 0.5]. All the elements of Λ are iid N(0, 1).
The number of factors is r = 2 (assumed known). The data generating process is
similar to those of Breitung and Tenhofen (2011) and Doz et al. (2011a).

In this DGP, βi is the ratio between the variance of eit and the variance of zit.
Since βi is from U [u, 1−u], the parameter u has a close relation with the heteroscedas-
ticity over the cross section. A small u tends to give more heteroscedasticities. The
value τ is the correlation between two adjacent units of the cross section. It thus
controls the cross section correlations. This correlation decreases exponentially as
the distance of two units increases. So the limited cross-sectional correlation required
in Assumption C is satisfied. The parameters ρ and ψ are used to control the au-
tocorrelations of the idiosyncratic errors and the factors. To evaluate the effect of
autocorrelation of eit on the estimation, we generate ρi from U [0, 0.9]1.

As a measure of goodness-of-fit, we use the Trace-Ratio (TR) to evaluate how
close the estimated values Λ and F to their true values. Taking F as an example,
the TR is defined as TR(F ) = tr[(F ′F̂ )(F̂ ′F̂ )−1(F̂ ′F )]/tr[F ′F ]. The measure is a
generalized squared correlation coefficient in multivariate analysis.

For comparison, we also compute the PC estimators, PC-GLS estimators and
iterative PC-GLS estimators (denoted by PC-ITE below)2. These estimators are
discussed in Section 5.1. Of these seven estimators, PC, PC-GLS and PC-ITE belong
to the PC class, while QMLE, ML-GLS, ML-ITE and ML-EM belong to the ML class.
Reported results are based on 1000 repetitions.

Table 1 reports the trace ratios for the seven estimators under the setting u =
0.1, ψ = 0, τ = 0 and ρi ∼ U [0, 0.9]. The estimators in the ML class outperform
the counterpart in the PC class. Consider the estimation of Λ. In the PC class, the
best estimator is that of PC-ITE. However, when N is small such as N = 10 or 20,
its performance, which is expected to be superior to QMLE because it takes into
account of serial correlation of eit, is still dominated by QMLE. The reason is due
to the imprecise estimation of the error term by the PC method. So the gain from
estimating the serial correlations in the next step is limited. However, if the first step
is conducted by the ML method, the performance is substantially improved, which

1We also consider ρi from U [0.5, 0.9] and the simulation results are presented in Appendix G.
2To calculate PC-ITE and ML-ITE, we limit the number of iterations to 5. As pointed out by

Breitung and Tenhofen and also confirmed in our simulation, increasing the number of iterations
does not noticeably improve the performance.
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is reflected in the ML-GLS column. As for the estimation of F , the advantage of the
ML-class of estimators over those in the PC class is even more pronounced. Even the
QMLE can perform better than PC-ITE. The former ignore the serial correlations in
eit, while the latter estimates serial correlation in eit. This is especially true for small
or moderate N (N ≤ 50). Of the seven estimators, ML-EM performs the best in all
combinations of N and T . This is due to the benefit of the simultaneous estimation
of all parameters. All estimators, except for PC, perform comparably under large N
(say, N = 150, T = 100). This is consistent with the theory.

Table 2 reports the trace ratios when there exist cross-sectional correlations in
eit and autocorrelations in ft. In this setting, all the seven estimators have misspec-
ification problem because they do not take into consideration of the cross-sectional
correlations in eit. The performance of all estimators deteriorates to some extent.
For example, when N = 10, T = 30, the TR values of the QMLE in Table 1 are 0.916
for Λ and 0.819 for F . In contrast, the counterparts in Table 2 are 0.783 for Λ and
0.681 for F . However, when the sample size becomes large, the performance of the
estimators improves substantially. When N = 150, T = 100, the TR values of the
QMLE in table 2 are 0.944 for Λ and 0.991 for F . This result confirms the theory
that the QMLE are robust under misspecification. Also, the estimators in the ML
class still outperform those in the PC class, especially when the sample size is small
or moderate.
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Table 1.1: The Trace Ratio of the seven estimators for estimating Λ
with u = 0.1, τ = 0, ψ = 0 and ρi ∼ U [0, 0.9]

PC Class ML Class
N T PC PC-GLS PC-ITE QMLE ML-GLS ML-ITE ML-EM
10 30 0.847 0.874 0.893 0.916 0.939 0.943 0.947
10 50 0.865 0.896 0.913 0.948 0.966 0.968 0.972
10 100 0.890 0.919 0.932 0.973 0.984 0.984 0.986
20 30 0.760 0.801 0.883 0.899 0.931 0.933 0.936
20 50 0.803 0.845 0.922 0.939 0.961 0.962 0.963
20 100 0.849 0.887 0.949 0.971 0.982 0.982 0.982
50 30 0.753 0.804 0.908 0.890 0.925 0.926 0.927
50 50 0.816 0.866 0.951 0.934 0.957 0.957 0.958
50 100 0.878 0.918 0.974 0.966 0.979 0.979 0.979
100 30 0.798 0.856 0.922 0.890 0.925 0.925 0.925
100 50 0.877 0.922 0.955 0.933 0.956 0.956 0.956
100 100 0.932 0.960 0.978 0.966 0.978 0.978 0.978
150 30 0.824 0.883 0.924 0.890 0.924 0.924 0.925
150 50 0.898 0.939 0.956 0.933 0.956 0.956 0.956
150 100 0.948 0.970 0.978 0.966 0.978 0.978 0.978

Table 1.2: The Trace Ratio of the seven estimators for estimating F
with u = 0.1, τ = 0, ψ = 0 and ρi ∼ U [0, 0.9]

PC Class ML Class
N T PC PC-GLS PC-ITE QMLE ML-GLS ML-ITE ML-EM
10 30 0.655 0.711 0.702 0.819 0.825 0.828 0.836
10 50 0.640 0.703 0.699 0.837 0.843 0.845 0.871
10 100 0.648 0.717 0.718 0.856 0.860 0.860 0.888
20 30 0.633 0.754 0.840 0.909 0.915 0.917 0.926
20 50 0.646 0.780 0.863 0.922 0.926 0.927 0.939
20 100 0.662 0.808 0.879 0.931 0.933 0.933 0.946
50 30 0.715 0.881 0.951 0.966 0.970 0.970 0.974
50 50 0.743 0.915 0.964 0.971 0.973 0.973 0.978
50 100 0.781 0.943 0.969 0.974 0.975 0.975 0.980
100 30 0.820 0.951 0.983 0.984 0.986 0.986 0.988
100 50 0.866 0.978 0.986 0.986 0.987 0.987 0.989
100 100 0.892 0.985 0.988 0.987 0.988 0.988 0.990
150 30 0.871 0.974 0.991 0.989 0.991 0.991 0.992
150 50 0.914 0.989 0.992 0.991 0.992 0.992 0.993
150 100 0.933 0.991 0.992 0.992 0.992 0.992 0.994
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Table 2.1: The Trace Ratio of the seven estimators for estimating Λ
with u = 0.1, τ = 0.7, ψ = 0.5 and ρi ∼ U [0, 0.9]

PC Class ML Class
N T PC PC-GLS PC-ITE QMLE ML-GLS ML-ITE ML-EM
10 30 0.738 0.749 0.764 0.783 0.801 0.808 0.816
10 50 0.749 0.757 0.764 0.804 0.816 0.819 0.829
10 100 0.762 0.771 0.781 0.828 0.841 0.846 0.853
20 30 0.672 0.690 0.756 0.792 0.828 0.837 0.848
20 50 0.702 0.719 0.796 0.849 0.883 0.890 0.903
20 100 0.736 0.749 0.827 0.898 0.919 0.923 0.936
50 30 0.670 0.706 0.856 0.829 0.881 0.886 0.890
50 50 0.747 0.783 0.913 0.890 0.929 0.931 0.933
50 100 0.813 0.838 0.952 0.940 0.964 0.964 0.966
100 30 0.728 0.783 0.887 0.837 0.888 0.891 0.893
100 50 0.814 0.862 0.934 0.895 0.934 0.935 0.936
100 100 0.888 0.920 0.966 0.943 0.967 0.967 0.968
150 30 0.754 0.814 0.889 0.835 0.887 0.890 0.891
150 50 0.848 0.899 0.937 0.896 0.936 0.937 0.937
150 100 0.915 0.945 0.968 0.944 0.967 0.968 0.968

Table 2.2: The Trace Ratio of the seven estimators for estimating F
with u = 0.1, τ = 0.7, ψ = 0.5 and ρi ∼ U [0, 0.9]

PC Class ML Class
N T PC PC-GLS PC-ITE QMLE ML-GLS ML-ITE ML-EM
10 30 0.587 0.615 0.599 0.681 0.681 0.679 0.694
10 50 0.562 0.587 0.562 0.662 0.662 0.658 0.686
10 100 0.550 0.578 0.561 0.669 0.669 0.668 0.698
20 30 0.584 0.653 0.705 0.810 0.814 0.814 0.843
20 50 0.581 0.663 0.730 0.839 0.842 0.841 0.873
20 100 0.578 0.666 0.733 0.854 0.856 0.854 0.887
50 30 0.669 0.805 0.924 0.950 0.955 0.957 0.963
50 50 0.709 0.857 0.946 0.960 0.963 0.963 0.971
50 100 0.732 0.890 0.955 0.966 0.967 0.967 0.974
100 30 0.788 0.914 0.977 0.978 0.981 0.982 0.985
100 50 0.834 0.957 0.984 0.983 0.985 0.985 0.987
100 100 0.868 0.975 0.985 0.985 0.986 0.986 0.989
150 30 0.844 0.953 0.988 0.986 0.988 0.989 0.990
150 50 0.896 0.983 0.990 0.989 0.990 0.990 0.992
150 100 0.920 0.988 0.991 0.991 0.991 0.991 0.993
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7 Application
In this section, we estimate the U.S. yield curves by the factor method. The data
used here are the U.S. Treasury yields for the period of November 1971 to May 2009,
with the same 17 maturities as in Diebold and Li (2006). These maturities are 3, 6,
9, 12, 15, 18, 21, 24, 28, 32, 36, 48, 60, 72, 84, 96, 108 months.

A well-known parametric model for yield curves is that of Nelson-Siegel (see,
Diebold et al. (2006) and Nelson and Siegel (1987)):

yt(τ) = Lt + St

(1− e−λτ
λτ

)
+ Ct

(1− e−λτ
λτ

− e−λτ
)

+ etτ . (13)

where yt(τ) denotes the yield at time t with maturity τ ; Lt, St and Ct denote the
time-varying level, slope, and curvature factors. These factors are interpreted as long-
term, short-term and medium term factors; see Diebold and Li (2006) for details.

Specification (13) is parametric because all the factor loadings depend on a single
parameter λ. For comparison purpose, we also fit the data to this parametric model.
Our estimation is as follows: (i) for a given λ, obtain Lt, St and Ct by regressing yt(τ)
on the known factor loadings; (ii) given the estimated factors L̂t, Ŝt and Ĉt, obtain
λ by the nonlinear least squares. Iterating the above two steps until the changes in
λ are small. Using this method, the estimate of λ is 0.0606, which is close to 0.0609
in Diebold and Li (2006), who obtain the value by maximizing the loading on the
curvature factor at maturity τ = 30 months.

We next relax the restrictions on the factor loadings and consider the following
nonparametric specification:

yt(τ) = Lt + StDτ1 + CtDτ2 + etτ . (14)

Equation (14) is more general than (13). The factor loadings Dτ1 and Dτ2 are not
restricted to be parametric. This provides a way of checking wether the parametric
specification of (13) is supported by the actual data. To estimate (14), we first esti-
mate Lt by the cross-sectional mean, then apply the QML method to the demeaned
data. For economic interpretation, we use identification IC1. More specifically, we
rotate the estimated factor loadings [D̂τ1 , D̂τ2 ] in such a way that the upper 2 × 2
submatrix is identical to the parametric estimates. Note that fix an r × r block of
the factor loading matrix to any given matrix (not necessarily an identity matrix) is
equivalent to IC1. For comparison, we also compute the PC estimate of (14).

The following two figures depict the estimated slope and curvature factors by the
three methods. The level factor is not shown since the three methods all estimate
the level factor as the sample mean over τ .

Figure 1 shows that the three different methods give similar estimates for the slope
factor; the QML method and the parametric method are especially close. Figure 1
also shows that the slope factors are mostly negative over the sample period and
they experience dramatic swings during 1990-1995 and 2001-2006.

Figure 2 displays the estimated curvature factor by the three methods. Although
the estimates of the curvature factor by the QML and the parametric methods do
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not match so well as for the slope factor, they are not far apart. As a compari-
son, the estimates by the PC method show noticeable departures (scaled by 0.5 as
in Diebold and Li). Nevertheless, Figure 2 shows that the three methods identify
similar turning points for the rise and fall in the curvature factor. Taking together,
the nonparametrically estimated yield curves appear to support the Nelson-Siegel
parametric model.
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Figure 1: Estimates of the slope factor by three different methods
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Figure 2: Estimates of the curvature factor by three different methods
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8 Conclusion
This paper develops an inferential theory for the likelihood-based estimators of ap-
proximate factor models under high dimension. The idiosyncratic errors in the model
exhibit heteroscedasticity and correlations of unknown forms over the cross sections
and over the time dimension. Various identification conditions are considered. We
show that the likelihood based estimators are consistent; we also derive the rates
of convergence and the limiting distributions. Monte Carlo simulations show that
the likelihood method is easy to implement and the ML-type estimators are more
efficient than the PC-type estimators.
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Supplementary document

Appendix A: Consistency and its proof
We start with an average consistency stated in the following proposition.

Proposition A.1 (Average consistency) Let θ̂ be the solution by maximizing (3),
where θ̂ = (λ̂1, · · · , λ̂N , φ̂2

1, · · · , φ̂2
N , M̂ff ). Under Assumptions A-D, when N, T →

∞, with any one of the identification conditions, we have

1
N

N∑
i=1

1
φ̂2
i

‖λ̂i − λi‖2
p−→ 0

1
N

N∑
i=1

(φ̂2
i − φ2

i )2 p−→ 0

M̂ff −Mff
p−→ 0

where φ2
i = 1

T

∑T
t=1E(e2it) = 1

T

∑T
t=1 τii,t.

To prove the proposition, we introduce some preliminary results and notations.
Throughout, we define H = (Λ′Φ−1Λ)−1 and G = (M−1

ff + Λ′Φ−1Λ)−1. Matrix
algebra shows H = G(I − M−1

ff G)−1. Let Ĥ denote the estimated version, i.e.,
Ĥ = (Λ̂′Φ̂−1Λ̂)−1. Let Ĝ be defined similarly. We also put HN = N · H and
GN = N ·G. We first state several moment inequalities implied by the assumptions
in the main text. These results will be used in the following proof.

Under Assumptions A and C.4, we have, for all i = 1, 2, · · · , N ,

E
(∥∥∥ 1√

T

T∑
t=1

fteit
∥∥∥2
)
≤ C (A.1)

E
( 1
N

N∑
i=1

∥∥∥ 1√
T

T∑
t=1

fteit
∥∥∥2
)
≤ C (A.2)

Furthermore, under Assumption C.5, we have, by taking i = j,

E
[∣∣∣∣ 1√

T

T∑
t=1

(e2it − φ2
i )
∣∣∣∣2] ≤ C (A.3)

To prove consistency, we need to distinguish three sets of parameters: the true
parameters, the estimator, and the arguments of the likelihood function (input vari-
ables). We use a superscript “*" to denote the true parameters such that θ∗ =
(Λ∗,Φ∗,M∗

ff ). Parameters without the superscript “*" denote the arguments of
the likelihood function such that θ = (Λ,Φ,Mff ). The estimator is denoted by
θ̂ = (Λ̂, Φ̂, M̂ff ). Once consistency is established, we will remove the superscript “*"
from the true parameters.
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Lemma A.1 Let Q be an r × r matrix satisfying

QQ′ = I, and Q′V Q = D

where V is a diagonal matrix with strictly positive and distinct elements, arranged
in decreasing order, and D is also diagonal. Then Q must be a diagonal matrix with
elements either −1 or 1 and V = D.

Proof of Lemma A.1: See Bai and Li (2012). �
Let θ = (Λ,Φ,Mff ) and let Θ denote the parameter space such that Φ and Mff

satisfy Assumption D.

Lemma A.2 Under Assumptions A-D, we have

(a) sup
θ∈Θ

1
NT

tr
[
Λ∗′Σ−1

zz

T∑
t=1

etf
∗′
t

]
p−→ 0

(b) sup
θ∈Θ

1
NT

tr
[ T∑
t=1

(ete′t − Ω∗t )Σ−1
zz

]
p−→ 0

(c) sup
θ∈Θ

1
N
tr
[
ēē′Σ−1

zz

]
p−→ 0

where θ∗ is the true parameter, and Σzz=ΛMffΛ′+Φ, depending on θ = (Λ,Φ,Mff ),
and Ω∗t = E(ete′t).

Proof of Lemma A.2: Notice that

1
N

N∑
i=1
‖ 1
T

T∑
t=1

f ∗t eit‖2 = Op(T−1),

1
N

N∑
i=1

( 1
T

T∑
t=1

(e2it − φ∗2i )
)2

= Op(T−1),

1
N2

N∑
i=1

N∑
j=1

( 1
T

T∑
t=1

[eitejt − E(eitejt)]
)2

= Op(T−1).

The first result follows by (A.2). The second result follows by (A.3). The third result
is implied by Assumption C.5.

Given the above three results, Lemma A.2 can be proved similarly as Lemma A.2
of Bai and Li (2012). �

Lemma A.3 Under Assumptions A-D, for θ = (Λ,Φ,Mff ), we have

(a) sup
θ∈Θ

1
N
tr
[ 1
T

T∑
t=1

Ω∗tΦ−1ΛGΛ′Φ−1
]

= Op(N−1) = op(1)

(b) sup
θ∈Θ

1
N
tr
[( 1
T

T∑
t=1

Ω∗t − Φ∗
)
Σ−1
zz

]
= Op(N−1) = op(1)
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Proof of Lemma A.3: Consider (a). The left hand side of (a) can be written as
1
N
tr[Λ′Φ−1 1

T

∑T
t=1 Ω∗tΦ−1ΛG], which, by the definition of Ω∗t , is equivalent to

1
N
tr
[ N∑
i=1

N∑
j=1

1
φ2
iφ

2
j

H1/2λiλ
′
jH

1/2 1
T

T∑
t=1

τij,t(H1/2M−1
ff H

1/2 + Ir)−1
]
.

Consider the term 1
N

∑N
i=1

∑N
j=1

1
φ2
iφ

2
j
H1/2λiλ

′
jH

1/2 1
T

∑T
t=1 τij,t, which is bounded

in norm by
1
N

N∑
i=1

N∑
j=1

∥∥∥ 1
φ2
i

H1/2λi
∥∥∥ · ∥∥∥ 1

φ2
j

λ′jH
1/2
∥∥∥ · ∣∣∣ 1

T

T∑
t=1

τij,t
∣∣∣.

By the boundedness of φ2
i and |τij,t| ≤ τij, the above term is bounded by

C2 1
N

N∑
i=1

N∑
j=1

∥∥∥ 1
φi
H1/2λi

∥∥∥ · ∥∥∥ 1
φj
λ′jH

1/2
∥∥∥τij.

Let χi = ‖ 1
φi
H1/2λi‖ and χ = (χ1, χ2, · · · , χN)′, the above term is equal to 1

N
C2χ′T χ

with ‖χ‖2 = ∑N
i=1 χ

2
i = ∑N

i=1 ‖ 1
φi
H1/2λi‖2 = r, where T is a N ×N matrix consisting

of τij. So the above term is bounded by C2r 1
N
τmax, where τmax is the largest eigenvalue

of the matrix T . By Assumption C.3, τmax ≤ C. Then (a) follows.
Consider (b). The left hand side of (b) can be written as

sup
θ∈Θ

tr
[ 1
N

( 1
T

T∑
t=1

Ω∗t − Φ∗
)
(Φ−1 − Φ−1ΛGΛ′Φ−1)

]
.

The term tr[ 1
N

( 1
T

∑T
t=1 Ω∗t −Φ∗)Φ−1] = 0 because the diagonal elements of 1

T

∑T
t=1 Ω∗t

−Φ∗ are all zero and Φ is a diagonal matrix. The term tr[ 1
NT

∑T
t=1 Ω∗tΦ−1ΛGΛ′

Φ−1] = op(1) has already been proved by (a). It remains to prove tr[ 1
N

Φ∗Φ−1

ΛGΛ′Φ−1] = op(1) uniformly on Θ. Since the matrix Φ∗Φ−1 is bounded by C4IN ,
the term tr[ 1

N
Φ∗Φ−1ΛGΛ′Φ−1] is bounded by C4 1

N
tr[Λ′Φ−1ΛG]. By the definition of

G, (b) follows. �

Lemma A.4 Under Assumptions A-D, we have

(a) ĤΛ̂′Φ̂−1Λ∗( 1
T

T∑
t=1

f ∗t ejt) = ‖N1/2Ĥ1/2‖ ·Op(T−1/2), for each j

(b) ĤΛ̂′Φ̂−1( 1
T

T∑
t=1

etf
∗
t
′) = ‖N1/2Ĥ1/2‖ ·Op(T−1/2)

(c) Ĥ
( N∑
i=1

1
φ̂2
i

λ̂i
1
T

T∑
t=1

[eitejt − E(eitejt)]
)

= ‖N1/2Ĥ1/2‖ ·Op(T−1/2), for each j

(d) Ĥ
( N∑
i=1

N∑
j=1

1
φ̂2
i φ̂

2
j

λ̂iλ̂
′
j

1
T

T∑
t=1

[eitejt − E(eitejt)]
)
Ĥ = ‖N1/2Ĥ1/2‖2 ·Op(T−1/2)
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Proof of Lemma A.4: This lemma can be proved similarly as Lemma A.3 in Bai
and Li (2012). �.

Lemma A.5 Under Assumptions A-D, we have

(a) ĤΛ̂′Φ̂−1ēē′Φ̂−1Λ̂Ĥ = ‖N1/2Ĥ1/2‖2 ·Op(T−1)

(b) Ĥ
1
T

N∑
i=1

T∑
t=1

1
φ̂2
i

λ̂iE(eitejt) = ‖Ĥ1/2‖ ·Op(1), for each j

(c) ĤΛ̂′Φ̂−1ēēj = ‖N1/2Ĥ1/2‖ ·Op(T−1), for each j

(d) ĤΛ̂′Φ̂−1(Φ̂− 1
T

T∑
t=1

Ω∗t )Φ̂−1Λ̂Ĥ = ‖Ĥ‖ ·Op(1) + ‖N1/2Ĥ1/2‖2 ·Op(N−1)

Proof of Lemma A.5: Consider (a). The left hand side of (a) is bounded in
norm by

C2‖Ĥ1/2‖2
( N∑
i=1

1
φ̂2
i

‖Ĥ1/2λ̂j‖2
)( N∑

i=1

( 1
T

T∑
t=1

eit
)2
)

Since ∑N
i=1

1
φ̂2
i

‖Ĥ1/2λ̂j‖2 = r, the above term is bounded by

C2r‖N1/2Ĥ1/2‖2 1
N

N∑
i=1

( 1
T

T∑
t=1

eit

)2

which is ‖N1/2Ĥ1/2‖2Op(T−1) because T−1∑T
t=1 eit = Op(T−1/2).

Consider (b). The left hand side of (b) is equal to Ĥ∑N
i=1

1
φ̂2
i

λ̂i
1
T

∑T
t=1 τij,t, which

is bounded in norm by

C‖Ĥ1/2‖ ·
N∑
i=1
‖ 1
φ̂i
Ĥ1/2λ̂i‖τij.

By the Cauchy-Schwarz inequality,

N∑
i=1
‖ 1
φ̂i
Ĥ1/2λ̂i‖τij ≤

( N∑
i=1

1
φ̂2
i

‖Ĥ1/2λ̂i‖2
)1/2( N∑

i=1
τ 2
ij

)1/2
=
√
r
( N∑
i=1

τ 2
ij

)1/2
.

However, ∑N
i=1 τ

2
ij ≤ C

∑N
i=1 τij ≤ C2 because τij ≤ C and ∑N

i=1 τij ≤ C. Given this
result, the above expression is O(1). Then (b) follows.

Consider (c). By (a), it follows that ‖ĤΛ̂′Φ̂−1ē‖ = ‖N1/2Ĥ1/2‖ · Op(T−1/2). So
(c) follows by ēj = Op(T−1/2) due to Assumption C.4.

Consider (d). The left hand side of (d) is equal to

Ĥ − ĤΛ̂′Φ̂−1 1
T

T∑
t=1

Ω∗t Φ̂−1Λ̂Ĥ.

The first term is ‖Ĥ‖ · Op(1). The second term can be proved to be ‖N1/2Ĥ1/2‖2
Op(N−1), similarly as result (a) of Lemma A.3. �
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Proof of Proposition A.1: By zt = α∗ + Λ∗f ∗t + et, it follows that

Mzz = Λ∗M∗
ffΛ∗

′ + Φ∗ + 1
T

T∑
t=1

Λ∗f ∗t e′t +
1
T

T∑
t=1

etf
∗
t
′Λ∗′

+ 1
T

T∑
t=1

(ete′t − Ω∗t ) + ( 1
T

T∑
t=1

Ω∗t − Φ∗)− ēē′
(A.4)

Let Σzz(θ∗) = Λ∗M∗
ffΛ∗′ + Φ∗. Furthermore, we define

L(θ) = − 1
2N ln |Σzz| −

1
2N tr[Σzz(θ∗)Σ−1

zz ]

R1(θ) = − 1
2N tr

[( 1
T

T∑
t=1

Λ∗f ∗t e′t +
1
T

T∑
t=1

etf
∗′
t Λ∗′ + 1

T

T∑
t=1

(ete′t − Ω∗t )
)
Σ−1
zz

]

R2(θ) = − 1
2N tr

[(
( 1
T

T∑
t=1

Ω∗t − Φ∗)− ēē′
)
Σ−1
zz

]
Then the likelihood function can be written as

L(θ) = L(θ) +R(θ)

where R(θ) = R1(θ) + R2(θ). Lemma A.2 and Lemma A.3 imply that supθ |R1(θ)|
= op(1) and supθ |R2(θ)| = op(1). Thus supθ∈Θ |R(θ)| = op(1). So the present
objective function has the same properties as that of Proposition 5.1 in Bai and Li
(2012). Using their arguments, we have

1
N

N∑
i=1

(φ̂2
i − φ∗2i )2 p−→ 0 (A.5)

Ĝ = op(1); Ĥ = op(1) (A.6)

In addition, let A = (Λ̂− Λ∗)′Φ̂−1Λ̂(Λ̂′Φ̂−1Λ̂)−1, then

1
N

Λ∗′Φ∗−1Λ∗ − (Ir − A)
( 1
N

Λ̂′Φ̂−1Λ̂
)
(Ir − A)′ p−→ 0 (A.7)

and
1
N

(Λ̂− Λ∗)′Φ̂−1(Λ̂− Λ∗)− A
( 1
N

Λ̂′Φ̂−1Λ̂
)
A′

p−→ 0 (A.8)

Now we turn to the first order conditions. The jth column of the first order
condition (4) implies

λ̂j − λ∗j = −M̂−1
ff ĤΛ̂′Φ̂−1(Λ̂− Λ∗)M∗

ffλ
∗
j − M̂−1

ff (M̂ff −M∗
ff )λ∗j

+M̂−1
ff ĤΛ̂′Φ̂−1Λ∗ 1

T

T∑
t=1

f ∗t ejt + M̂−1
ff ĤΛ̂′Φ̂−1 1

T

T∑
t=1

etf
∗′
t λ
∗
j
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+M̂−1
ff Ĥ

N∑
i=1

1
φ̂2
i

λ̂i
1
T

T∑
t=1

[eitejt − E(eitejt)]− M̂−1
ff Ĥλ̂j (A.9)

+M̂−1
ff Ĥ

1
T

N∑
i=1

T∑
t=1

1
φ̂2
i

λ̂iE(eitejt)− M̂−1
ff ĤΛ̂′Φ̂−1ēēj

The first order condition for Mff in (5) implies

M̂ff −M∗
ff = −ĤΛ̂′Φ̂−1(Λ̂− Λ∗)M∗

ff −M∗
ff (Λ̂− Λ∗)′Φ̂−1Λ̂Ĥ (A.10)

+ĤΛ̂′Φ̂−1(Λ̂− Λ∗)M∗
ff (Λ̂− Λ∗)′Φ̂−1Λ̂Ĥ − ĤΛ̂′Φ̂−1ēē′Φ̂−1Λ̂Ĥ

+ĤΛ̂′Φ̂−1Λ∗ 1
T

T∑
t=1

f ∗t e
′
tΦ̂−1Λ̂Ĥ + ĤΛ̂′Φ̂−1 1

T

T∑
t=1

etf
∗′
t Λ∗′Φ̂−1Λ̂Ĥ

+ĤΛ̂′Φ̂−1 1
T

T∑
t=1

(ete′t − Ω∗t )Φ̂−1Λ̂Ĥ − ĤΛ̂′Φ̂−1(Φ̂− 1
T

T∑
t=1

Ω∗t )Φ̂−1Λ̂Ĥ

Substituting (A.10) into (A.9), we have

λ̂j−λ∗j = M̂−1
ff M

∗
ff (Λ̂−Λ∗)′Φ̂−1Λ̂Ĥλ∗j − M̂−1

ff ĤΛ̂′Φ̂−1(Λ̂−Λ∗)M∗
ff (Λ̂−Λ∗)′Φ̂−1Λ̂Ĥλ∗j

−M̂−1
ff ĤΛ̂′Φ̂−1Λ∗( 1

T

T∑
t=1

f ∗t e
′
t)Φ̂−1Λ̂Ĥλ∗j − M̂−1

ff ĤΛ̂′Φ̂−1( 1
T

T∑
t=1

etf
∗′
t )Λ∗′Φ̂−1Λ̂Ĥλ∗j

−M̂−1
ff ĤΛ̂′Φ̂−1 1

T

T∑
t=1

(ete′t − Ω∗t )Φ̂−1Λ̂Ĥλ∗j + M̂−1
ff ĤΛ̂′Φ̂−1ēē′Φ−1Λ̂Ĥλ∗j

+M̂−1
ff ĤΛ̂′Φ̂−1(Φ̂− 1

T

T∑
t=1

Ω∗t )Φ̂−1Λ̂Ĥλ∗j + M̂−1
ff ĤΛ̂′Φ̂−1Λ 1

T

T∑
t=1

f ∗t ejt

+M̂−1
ff ĤΛ̂′Φ̂−1 1

T

T∑
t=1

etf
∗′
t λ
∗
j + M̂−1

ff ĤΛ̂′Φ̂−1 1
T

T∑
t=1

[etejt − E(etejt)]

−M̂−1
ff Ĥλ̂j + M̂−1

ff Ĥ
1
T

N∑
i=1

T∑
t=1

1
φ̂2
i

λ̂iE(eitejt)− M̂−1
ff ĤΛ̂′Φ̂−1ēēj (A.11)

Consider (A.10). The sixth term on the right of (A.10) can be written as

ĤΛ̂′Φ̂−1 1
T

T∑
t=1

etf
∗
t − ĤΛ̂′Φ̂−1 1

T

T∑
t=1

etf
∗
t A

where A = (Λ̂− Λ∗)′Φ̂−1Λ̂Ĥ. The first term of the above is ‖N1/2Ĥ1/2‖ · Op(T−1/2)
by Lemma A.4(b) and the second term is A · ‖N1/2Ĥ1/2‖ ·Op(T−1/2). The fifth term
of (A.10) is the transpose of the sixth. The last term is governed by Lemma A.5(d).
The fourth term is governed by Lemma A.5(a). These results together with (A.6)
imply that, in terms of A,

M̂ff −M∗
ff = −A′M∗

ff −M∗
ffA+ A′M∗

ffA− A · ‖N1/2Ĥ1/2‖ ·Op(T−1/2) (A.12)
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+‖N1/2Ĥ1/2‖ ·Op(T−1/2) + ‖N1/2Ĥ1/2‖2 · [Op(T−1/2) +Op(N−1)] + op(1)
By the definition of Ĥ, NĤ = ( 1

N
Λ̂′Φ̂−1Λ̂)−1. Equation (A.7) implies ( 1

N
Λ̂′Φ̂−1Λ̂)−1 =

(Ir − A)′( 1
N

Λ∗′Φ∗−1Λ∗)−1(Ir − A) + op(‖Ir − A‖2). So we have

‖N1/2Ĥ1/2‖2 = tr[NĤ] = tr
[
(Ir − A)′( 1

N
Λ∗′Φ∗−1Λ∗)−1(Ir − A) + op(‖Ir − A‖2)

]
These results imply that matrixA is stochastically bounded. To see this, the left hand
side of (A.12) is stochastically bounded by Assumption D. If A is not stochastically
bounded, the right hand side is dominated by A′M∗

ffA, which will be unbounded
since M∗

ff is positive definite. Thus a contradiction is obtained. It follows that
A = Op(1), and hence ‖N1/2Ĥ1/2‖ = Op(1) by the preceding equation. From this,
we have, by (A.12),

M̂ff −M∗
ff = −A′M∗

ff −M∗
ffA+ A′M∗

ffA+ op(1) (A.13)

Next consider (A.11). The last two terms are all op(1) by Lemma A.5 and
‖N1/2Ĥ1/2‖ = Op(1). The third from the last term can be written as φ̂iM̂−1

ff Ĥ
1/2

Ĥ1/2 1
φ̂i
λ̂i, which is bounded in norm by C2‖Ĥ1/2‖ · ‖ 1

φ̂i
Ĥ1/2λ̂i‖ due to the bound-

edness of φ̂i and M̂ff . This term is further bounded by
√
rC2‖Ĥ1/2‖ by ∑N

i=1 ‖ 1
φ̂i

Ĥ1/2λ̂i‖2 = r. So the third from the last term is op(1) by (A.6). The 3rd-10th terms
are summarized in Lemmas A.4 and A.5 and they are all op(1) due to ‖N1/2Ĥ1/2‖ =
Op(1). Thus we can express (A.11) as

λ̂j − λ∗j = M̂−1
ff M

∗
ffAλ

∗
j − M̂−1

ff A
′M∗

ffAλ
∗
j + op(1) (A.14)

Results (A.13) and (A.14), together with the identification conditions, imply A =
(Λ̂ − Λ∗)′Φ̂−1Λ̂Ĥ p−→ 0, as is shown by Bai and Li (2012). With A

p−→ 0, equation
(A.8) implies 1

N
(Λ̂− Λ∗)′Φ̂−1(Λ̂− Λ∗) = op(1), which is the first part of Proposition

A.1. Moreover, (A.13) implies that M̂ff −Mff = op(1), which is the last part of
Proposition A.1. This completes the proof of the proposition. �

Corollary A.1 Under Assumptions A-D, irrespective which set of identification con-
ditions, we have

(a) 1
N

Λ̂′Φ̂−1Λ̂− 1
N

Λ∗′Φ∗−1Λ∗ = op(1)

(b) Ĥ = Op(N−1), ĤN = Op(1), Ĝ = Op(N−1), ĜN = Op(1)

(c) 1
N

(Λ̂− Λ∗)′Φ̂−1Λ̂ = op(1)

Proof of Corollary A.1: Irrespective which identification conditions, we have
A = (Λ̂ − Λ∗)′Φ̂−1Λ̂Ĥ = op(1). Part (a) follows from (A.7). Result (a) implies
that Ĥ = Op(N−1) since N−1Λ∗′Φ∗−1Λ∗ → Q > 0 by Assumption B. It follows
ĤN = N · Ĥ = Op(1). The claims on Ĝ follows from the relationship between
Ĝ and Ĥ. Part (c) follows from A = op(1) and NĤ has a positive limit since
NĤ = ( 1

N
Λ∗′Φ∗−1Λ∗)−1 + op(1) by part (a). �
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Appendix B: Proof of the convergence rate
Having established consistency, we drop the superscript “*" from the true parameters
for notational simplicity (there is no need to carry them). Any element without a
hat denotes the true element from the model. We focus on the aspects that call for
different analysis from the exact factor models in previous literature.

Lemma B.1 Under Assumptions A-D,

(a)
∥∥∥ĤΛ̂′Φ̂−1(Λ̂− Λ)

∥∥∥ = Op

([ 1
N

N∑
i=1

1
φ̂2
i

‖λ̂i − λi‖2
]1/2)

(b)
∥∥∥ĤΛ̂′Φ̂−1 1

T

T∑
t=1

etf
′
t

∥∥∥ = Op(T−1/2)

Lemma B.2 Under Assumptions A-D:

(a) 1
N

N∑
j=1

∥∥∥ĤΛ̂′Φ̂−1Λ 1
T

T∑
t=1

ftejt
∥∥∥2

= Op(T−1)

(b) 1
N

N∑
j=1

∥∥∥Ĥ( N∑
i=1

1
φ̂2
i

λ̂i
1
T

T∑
t=1

[eitejt − E(eitejt)]
)∥∥∥2

= Op(T−1)

(c)
∥∥∥∥Ĥ( N∑

i=1

N∑
j=1

1
φ̂2
i φ̂

2
j

λ̂iλ̂
′
j

1
T

T∑
t=1

[eitejt − E(eitejt)]
)
Ĥ
∥∥∥∥2

= Op

(
T−1

)

Lemma B.3 Under Assumptions A-D:

(a)
∥∥∥∥ĤΛ̂′Φ̂−1Λ 1

T

T∑
t=1

ftξ
′
t

∥∥∥∥2
= Op(T−1)

(b)
∥∥∥∥Ĥ( N∑

i=1

1
φ̂2
i

λ̂i
1
T

T∑
t=1

[eitξ′t − E(eitξ′t)]
)∥∥∥∥2

= Op(T−1)

where ξ′t = (e1t, e2t, · · · ert).

The above three lemmas can be proved similarly as Lemmas B1, B2, and B3 of
Bai and Li (2012). So the detailed proofs are omitted. We need an additional lemma
to establish Proposition B.1 given below.
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Lemma B.4 Let E =
[

1
N

∑N
i=1

1
φ̂2
i

‖λ̂i − λi‖2
]1/2

. Under Assumptions A-D, we have

(a) ĤΛ̂′Φ̂−1(Φ̂− 1
T

T∑
t=1

Ωt)Φ̂−1Λ̂Ĥ = Op(N−1)

(b) ĤΛ̂′Φ̂−1ēē′Φ̂−1Λ̂Ĥ = Op(T−1)

(c) Ĥ
1
T

N∑
i=1

T∑
t=1

1
φ̂2
i

λ̂iE(eitξ′t) = Op(N−1) + E ·Op(N−1/2)

(d) ĤΛ̂′Φ̂−1ēξ̄′ = Op(T−1)

(e) Ĥ
1
T

N∑
i=1

T∑
t=1

1
φ̂2
i

λ̂iE(eitejt) = Op(N−1) + E ·Op(N−1/2) for any j

(f) ĤΛ̂′Φ̂−1ēēj = Op(T−1) for any j

where ξt is defined in Lemma B.3.

Proof of Lemma B.4: Part (a) is a direct result of Lemma A.5(d) and Corollary
A.1(b). Part (b) is a direct result of Lemma A.5(a) and Corollary A.1(b).

Consider (c). The left hand side of (c) can be written as

Ĥ
1
T

N∑
i=1

T∑
t=1

1
φ̂2
i

λiE(eitξ′t) + Ĥ
1
T

N∑
i=1

T∑
t=1

1
φ̂2
i

(λ̂i − λi)E(eitξ′t) = I1 + I2 say

Consider I1, which is bounded in norm by

‖Ĥ‖
(

max
i≤N
‖ 1
φ̂2
i

λi‖
) N∑
i=1

1
T

T∑
t=1
‖E(eitξ′t)‖ ≤ C3‖Ĥ‖

N∑
i=1

1
T

T∑
t=1
‖E(eitξ′t)‖

where ξt = (e1t, e2t, · · · , ert). For any j ≤ r, by Assumption C.3, we have
N∑
i=1

1
T

T∑
t=1
|E(eitejt)| ≤

N∑
i=1

1
T

T∑
t=1
|τij,t| ≤

N∑
i=1

τij ≤ C

So the term ∑N
i=1

1
T

∑T
t=1 ‖E(eitξ′t)‖ is bounded by

√
rC. Given this result, we have

I1 = Op(N−1) by Corollary A.1(b).
Consider I2. I2 is bounded in norm by

C‖ĤN‖
( 1
N

N∑
i=1

1
φ̂2
i

‖λ̂i − λi‖2
)1/2( 1

N

N∑
i=1

∥∥∥∥ 1
T

T∑
t=1

E(eitξ′t)
∥∥∥∥2)1/2

Noting ξt = (e1t, e2t, ..., ert)′. For any j ≤ r,

1
N

N∑
i=1

( 1
T

T∑
t=1

E(eitejt)
)2
≤ 1
N

N∑
i=1

τ 2
ij ≤

1
N

sup
i≤N
|τii|

N∑
i=1
|τij| ≤ N−1C

Thus, I2 = E ·Op(N−1/2), and (c) follows.
Part (d) is a direct result of Lemma A.5(c) and ‖N1/2Ĥ1/2‖ = Op(1).
The proofs of (e) and (f) are contained in the proofs of (c) and (d). �
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Proposition B.1 Under Assumptions A-D, irrespective which set of identification
conditions,

Mff (Λ̂− Λ)′Φ̂−1Λ̂Ĥ = Op(T−1/2) +Op(N−1) +Op

([ 1
N

N∑
i=1

(φ̂2
i − φ2

i )2
]1/2)

+ op(E)

where E is defined in Lemma B.4.

Proof of Proposition B.1: The proof depends on the identification restrictions,
so we consider each set of identification conditions separately.

Under IC1: The left hand side of the first r equations in (A.11) are zero. So
we have

Mff (Λ̂− Λ)′Φ̂−1Λ̂Ĥ = ĤΛ̂′Φ̂−1(Λ̂− Λ)Mff (Λ̂− Λ)′Φ̂−1Λ̂Ĥ

+ĤΛ̂′Φ̂−1Λ 1
T

T∑
t=1

fte
′
tΦ̂−1Λ̂Ĥ + ĤΛ̂′Φ̂−1 1

T

T∑
t=1

etf
′
tΛ′Φ̂−1Λ̂Ĥ

+ĤΛ̂′Φ̂−1Λ 1
T

T∑
t=1

(ete′t − Ωt)Φ̂−1Λ̂Ĥ − ĤΛ̂′Φ̂−1(Φ̂− 1
T

T∑
t=1

Ωt)Φ̂−1Λ̂Ĥ

−ĤΛ̂′Φ̂−1ēē′Φ−1Λ̂Ĥ − ĤΛ̂′Φ̂−1Λ 1
T

T∑
t=1

ftξ
′
t − ĤΛ̂′Φ̂−1 1

T

T∑
t=1

etf
′
t (B.1)

−ĤΛ̂′Φ̂−1 1
T

T∑
t=1

[etξ′t − E(etξ′t)] + Ĥ − Ĥ 1
T

N∑
i=1

T∑
t=1

1
φ̂2
i

λ̂iE(eitξ′t) + ĤΛ̂′Φ̂−1ēξ̄′

Consider the right hand side of the above equation. The first term is of a smaller
order term than (Λ̂ − Λ)′Φ̂−1Λ̂Ĥ and hence negligible. The 2nd, 3rd and 8th
terms are Op(T−1/2) by Lemma B.1(b) and Corollary A.1(c). The 4th term is
Op(T−1/2) by Lemma B.2(c). The 5th and 6th term are Op(N−1) and Op(T−1)
by Lemma B.4(a) and (b). The 7th term is Op(T−1/2) by Corollary A.1(c) and the
fact E‖ 1√

T

∑T
t=1 ftξt‖2 <∞. The 9th term is Op(T−1/2) by Lemma B.3(b). The last

two terms are Op(N−1) + Op(T−1) + op(E) by Lemma B.4(c) and (d). Given these
results, we have

Mff (Λ̂− Λ)′Φ̂−1Λ̂Ĥ = Op(T−1/2) +Op(N−1) + op(E)

Under IC2: From the identification condition 1
N

Λ̂′Φ̂−1Λ̂ = 1
N

Λ′Φ−1Λ = Ir, by
adding and subtracting terms, we have the identity

1
N

(Λ̂− Λ)′Φ̂−1Λ̂ + 1
N

Λ̂′Φ̂−1(Λ̂− Λ)

= − 1
N

Λ′(Φ̂−1 − Φ−1)Λ + 1
N

(Λ̂− Λ)′Φ̂−1(Λ̂− Λ)
(B.2)

The first term on right hand side of the above equation is 1
N

∑N
i=1

1
φ̂2
iφ

2
i

(φ̂2
i − φ2

i )λiλ′i,
which is bounded in norm by( 1

N

N∑
i=1

1
φ̂4
iφ

4
i

‖λi‖4
)1/2( 1

N

N∑
i=1

(φ̂2
i − φ2

i )2
)1/2
≤ C6

( 1
N

N∑
i=1

(φ̂2
i − φ2

i )2
)1/2
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From this and noticing 1
N

(Λ̂− Λ)′Φ̂−1(Λ̂− Λ) = op(E), we have

1
N

(Λ̂− Λ)′Φ̂−1Λ̂ + 1
N

Λ̂′Φ̂−1(Λ̂− Λ)′ = Op

([ 1
N

N∑
i=1

(φ̂2
i − φ2

i )2
]1/2)

+ op(E) (B.3)

Consider (A.10). Since both M̂ff and Mff are diagonal matrices, we have

Ndiag
{
ĤΛ̂′Φ̂−1(Λ̂− Λ)Mff +Mff (Λ̂− Λ)′Φ̂−1Λ̂Ĥ

}

= Ndiag
{
ĤΛ̂′Φ̂−1(Λ̂− Λ)Mff (Λ̂− Λ)′Φ̂−1Λ̂Ĥ + ĤΛ̂′Φ̂−1Λ 1

T

T∑
t=1

fte
′
tΦ̂−1Λ̂Ĥ

+ĤΛ̂′Φ̂−1 1
T

T∑
t=1

etf
′
tΛ′Φ̂−1Λ̂Ĥ + ĤΛ̂′Φ̂−1 1

T

T∑
t=1

(ete′t − Ωt)Φ̂−1Λ̂Ĥ (B.4)

−ĤΛ̂′Φ̂−1(Φ̂− 1
T

T∑
t=1

Ωt)Φ̂−1Λ̂Ĥ − ĤΛ̂′Φ̂−1ēē′Φ̂−1Λ̂Ĥ
}

where Ndiag denotes the off-diagonal elements. Following the discussion after equa-
tion (B.1), the right hand side of the above equation is Op(T−1/2) +Op(N−1). Thus
equation (B.4) can be written as

Ndiag
{
ĤΛ̂′Φ̂−1(Λ̂− Λ)Mff +Mff (Λ̂− Λ)′Φ̂−1Λ̂Ĥ

}
= Op(T−1/2) +Op(N−1) (B.5)

Note that under IC2, Ĥ = 1
N
Ir, thus both (B.3) and (B.5) put restrictions on 1

N
(Λ̂−

Λ)′Φ̂−1Λ̂. Equation (B.3) puts 1
2r(r + 1) restrictions, while (B.5) puts 1

2r(r − 1)
restrictions. So the r × r matrix 1

N
(Λ̂ − Λ)′Φ̂−1Λ̂ can be uniquely determined. By

solving the system of equations of (B.3) and (B.5) we obtain,

Mff (Λ̂− Λ)′Φ̂−1Λ̂Ĥ = Op(T−1/2) +Op(N−1) +Op

([ 1
N

N∑
i=1

(φ̂2
i − φ2

i )2
]1/2)

+ op(E)

Under IC3: The proof of Proposition B.1 under IC3 is quite similar to the case
of IC2. The details are omitted; also see, Bai and Li (2012).

Under IC4: Consider (A.11). Pre-multiplying M̂ff on both sides, the first r
equations can be written as

M̂ff (Λ̂′1 − Λ′1) = Mff (Λ̂− Λ)′Φ̂−1Λ̂ĤΛ′1 − ĤΛ̂′Φ̂−1(Λ̂− Λ)Mff (Λ̂− Λ)′Φ̂−1Λ̂ĤΛ′1

−ĤΛ̂′Φ̂−1Λ 1
T

T∑
t=1

fte
′
tΦ̂−1Λ̂ĤΛ′1 − ĤΛ̂′Φ̂−1 1

T

T∑
t=1

etf
′
tΛ′Φ̂−1Λ̂ĤΛ′1 (B.6)

−ĤΛ̂′Φ̂−1Λ 1
T

T∑
t=1

(ete′t − Ωt)Φ̂−1Λ̂ĤΛ′1 + ĤΛ̂′Φ̂−1(Φ̂− 1
T

T∑
t=1

Ωt)Φ̂−1Λ̂ĤΛ′1

+ĤΛ̂′Φ̂−1ēē′Φ−1Λ̂ĤΛ′1 + ĤΛ̂′Φ̂−1Λ 1
T

T∑
t=1

ftξ
′
t + ĤΛ̂′Φ̂−1 1

T

T∑
t=1

etf
′
tΛ′1
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+ĤΛ̂′Φ̂−1 1
T

T∑
t=1

[etξ′t − E(etξ′t)]− ĤΛ̂′1 + Ĥ
1
T

N∑
i=1

T∑
t=1

1
φ̂2
i

λ̂iE(eitξ′t)− ĤΛ̂′Φ̂−1ēξ̄′

Consider the third to last term. It can be split into ĤΛ′1 and Ĥ(Λ̂′1 − Λ′1). The
former term is Op(N−1) by Corollary A.1(b) and the latter one is of a smaller order
term than M̂ff (Λ̂′1 − Λ′1) by M̂ff

p−→ Mff . So this term is Op(N−1). Given this
result, following the discussion after equation (B.1), the right hand side of the above
equation, except the first term, is Op(T−1/2)+Op(N−1)+op(E). Thus, we can rewrite
(B.6) as

M̂ff (Λ̂′1 − Λ′1) = Mff (Λ̂− Λ)′Φ̂−1Λ̂ĤΛ′1 +Op(T−1/2) +Op(N−1) + op(E)

However, by the identification restrictions, the left hand side matrix is upper trian-
gular and has zero diagonal elements, so its elements on and below the diagonal are
all zero. This is still true after multiplying Λ′−1

1 on each side since the latter matrix
is also upper triangular. It follows that

nonupper
{
Mff (Λ̂− Λ)′Φ̂−1Λ̂Ĥ

}
= Op(T−1/2) +Op(N−1) + op(E) (B.7)

where nonupper means lower triangular elements plus diagonal ones. The above
equation has 1

2r(r + 1) restrictions. But equation (B.5), which holds since IC4 also
requires that M̂ff and Mff be diagonal matrices, gives another 1

2r(r−1) restrictions.
So the matrix Mff (Λ̂−Λ)′Φ̂−1Λ̂Ĥ can be uniquely determined by solving (B.5) and
(B.7). Then we obtain

Mff (Λ̂− Λ)′Φ̂−1Λ̂Ĥ = Op(T−1/2) +Op(N−1) + op(E)

Under IC5: The above result still holds under IC5. The derivation is similar to
IC4 and hence omitted.

Summarizing all the results, we obtain Proposition B.1.�

In order to prove Theorem 1, we need the following lemma.

Lemma B.5 Under Assumptions A-D,

(a) 1
N

N∑
j=1

∥∥∥∥λ′jĤ( N∑
i=1

1
φ̂2
i

λ̂i
1
T

T∑
t=1

[eitejt − E(eitejt)]
)∥∥∥∥2

= Op(T−1)

(b) 1
N

N∑
j=1

∥∥∥∥λ′jĤΛ̂′Φ̂−1(Λ̂− Λ) 1
T

T∑
t=1

ftejt

∥∥∥∥2
= op(T−1)

(c) 1
N

N∑
j=1

∥∥∥∥λ′jĤ 1
T

N∑
i=1

T∑
t=1

1
φ̂2
i

λ̂iE(eitejt)
∥∥∥∥2

= Op(N−2) + 1
N
Op(

1
N

N∑
i=1

1
φ̂2
i

∥∥∥λ̂i − λi∥∥∥2
)

(d) 1
N

N∑
j=1

∥∥∥∥λ′jĤΦ̂−1ēēj

∥∥∥∥2
= Op(T−2)
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Proof of Lemma B.5: The proofs of (a) and (b) are similar to those of Lemma
B.4 in Bai and Li (2012) and hence omitted.

Consider (c). The term ‖λ′jĤ 1
T

∑N
i=1

∑T
t=1

1
φ̂2
i

λ̂iE(eitejt)‖ is bounded by

∥∥∥∥λ′jĤ N∑
i=1

1
φ̂2
i

λi
1
T

T∑
t=1

τij,t

∥∥∥∥+
∥∥∥∥λ′jĤ N∑

i=1

1
φ̂2
i

(λ̂i − λi)
1
T

T∑
t=1

τij,t

∥∥∥∥
So the left hand side of (c) is bounded by

2 1
N

N∑
j=1

(∥∥∥∥λ′jĤ N∑
i=1

1
φ̂2
i

λi
1
T

T∑
t=1

τij,t

∥∥∥∥2
+
∥∥∥∥λ′jĤ N∑

i=1

1
φ̂2
i

(λ̂i − λi)
1
T

T∑
t=1

τij,t

∥∥∥∥2)

By the boundedness of λi, φ̂2
i , the first term of the above is bounded by 2C8‖Ĥ‖2 1

N

∑N
j=1

(∑N
i=1 τij)2. So the first term is Op(N−2) by ∑N

i=1 τij < C for all j. By∥∥∥∥λ′jĤ N∑
i=1

1
φ̂2
i

(λ̂i − λi)
1
T

T∑
t=1

τij,t

∥∥∥∥2
≤ C4‖ĤN‖2

( 1
N2

N∑
i=1

1
φ̂2
i

∥∥∥λ̂i − λi∥∥∥2
)( N∑

i=1
τ 2
ij

)

because τij,t ≤ τij for all t. Note that ∑N
i=1 τ

2
ij is bounded, thus (c) follows.

Consider (d). The left hand side of (d) is equal to ‖ĤΦ̂−1ē‖2 1
N

∑N
j=1 ‖λj ēj‖2.

Since ‖ĤΦ̂−1ē‖2 = Op(T−1) by Lemma B.4(c) and 1
N

∑N
j=1 ‖λj ēj‖2 = Op(T−1), (d)

follows. �

Proof of Theorem 1: We begin with the first order condition on diag{Φ}.
By the same method in deducing (A.9) and (A.10), we have

φ̂2
j − φ2

j = 1
T

T∑
t=1

(e2jt − φ2
j)− (λ̂j − λj)′M̂ff (λ̂j − λj) (B.8)

+λ′jĤΛ̂′Φ̂−1(Λ̂− Λ)Mff (Λ̂− Λ)′Φ̂−1Λ̂Ĥλj + 2λ′jĤΛ̂′Φ̂−1Λ 1
T

T∑
t=1

fte
′
tΦ̂−1Λ̂Ĥλj

+λ′jĤ
( N∑
i=1

N∑
j=1

1
φ̂2
i φ̂

2
j

λ̂iλ̂
′
j

1
T

T∑
t=1

[eitejt − E(eitejt)]
)
Ĥλj − λ′jĤΛ̂′Φ̂−1ēē′Φ̂−1Λ̂′Ĥλj

−λ′jĤΛ̂′Φ̂−1(Φ̂− 1
T

T∑
t=1

Ωt)Φ̂−1Λ̂′Ĥλj − 2λ′jĤΛ̂′Φ̂−1 1
T

T∑
t=1

etf
′
tλj

+2λ′jĤλ̂j − 2λ′jĤ
1
T

N∑
i=1

T∑
t=1

1
φ̂2
i

λ̂iE(eitejt)− 2λ′jĤ
( N∑
i=1

1
φ̂2
i

λ̂i
1
T

T∑
t=1

[eitejt − E(eitejt)]
)

+2λ′jĤΛ̂′Φ̂−1(Λ̂− Λ) 1
T

T∑
t=1

ftejt + 2λ′jĤΛ̂′Φ̂−1ēēj = a1,j + a2,j + · · ·+ a13,j say

By the Cauchy-Schwarz inequality, we have

1
N

N∑
j=1

(φ̂2
j − φ2

j)2 ≤ 1
N

N∑
j=1
‖a1,j + · · ·+ a13,j‖2 ≤ 13 1

N

N∑
j=1

(‖a1,j‖2 + · · ·+ ‖a13,j‖2)
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The first term is 1
N

∑N
j=1[ 1

T

∑T
t=1(e2jt − φ2

j)]2 = Op(T−1) by (A.3). The second term
is bounded by ‖M̂ff‖ · 1

N

∑N
j=1 ‖λ̂j − λj‖4. Using (A.11), this term, by neglecting

the smaller order term of 1
N

∑N
j=1(φ̂2

j − φ2
j)2 is bounded by Op(T−2) + Op(N−4) +

1
N
Op( 1

N

∑N
i=1

1
φ̂2
i

‖λ̂i − λi‖2). Consider the 3rd term, which is bounded in norm by

∥∥∥∥(Λ̂− Λ)′Φ̂−1Λ̂Ĥ
∥∥∥∥4∥∥∥Mff

∥∥∥2 1
N

N∑
j=1
‖λj‖4

By Proposition B.1, the 3rd term is Op(T−2)+Op(N−4)+Op([ 1
N

∑N
i=1(φ̂2

i −φ2
i )2]2)+

op(E2). The 4th term can be proved to be Op(T−1) similarly as the 3rd term due to
Lemma B.1(b) and Corollary A.1(c). The 5th term is Op(T−1) due to Lemma B.2(c).
The 6th term is Op(T−2) due to Lemma B.4(b). The 7th term is Op(N−2) due to
Lemma B.4(a). The 8th term is Op(T−1) due to Lemma B.1(b). Consider the 9th
term. Because λ′jĤλ̂j = λ′jĤλj +λ′jĤ(λ̂j −λj), the 9th term is bounded in norm by

1
N

N∑
j=1
‖a9,j‖2 ≤ 2

( 1
N

N∑
j=1
‖λ′jĤλj‖2 + 1

N

N∑
j=1
‖λ′jĤ(λ̂j − λj)‖2

)

The first term is Op(N−2) by Ĥ = Op(N−1). The second term is bounded by
C2‖Ĥ‖2 1

N

∑N
j=1 ‖λ̂j−λj‖2, which is further bounded by C4‖Ĥ‖2 1

N

∑N
j=1

1
φ̂2
j

‖λ̂j−λj‖2.

However, 1
N

∑N
j=1

1
φ̂2
j

‖λ̂j −λj‖2 = op(1), so the second term is dominated by the first
one. Given these results, the 9th term is Op(N−2). The 10-13th terms are summa-
rized in Lemma B.5. So we have

1
N

N∑
j=1

(φ̂2
j − φ2

j)2 = Op(T−1) +Op(N−2) + op

( 1
N

N∑
i=1

1
φ̂2
i

∥∥∥λ̂i − λi∥∥∥2
)

(B.9)

We next derive bounds involving ‖λ̂j − λj‖2 and M̂ff −Mff . Consider (A.11).
There are 13 terms on the left hand side of (A.11). We use b1j, b2,j, · · · , b13,j to denote
them. By the Cauchy-Schwarz inequality, ‖b1,j + b2,j + · · · + b13,j‖2 ≤ 13(‖b1j‖2 +
‖b2,j‖2 + · · ·+ ‖b13,j‖2). By this inequality, and noticing C−2 ≤ φ̂2

j ≤ C2, we have

1
N

N∑
j=1

1
φ̂2
j

∥∥∥λ̂j − λj∥∥∥2
≤ C2 1

N

N∑
j=1

∥∥∥λ̂j − λj∥∥∥2
≤ 13C2 1

N

N∑
j=1

(‖b1j‖2 + · · ·+ ‖b13,j‖2)

The 1st term 1
N

∑N
j=1 ‖b1,j‖2 is bounded by ‖M̂−1

ff ‖2‖Mff (Λ̂−Λ)′Φ̂−1Λ̂Ĥ‖2 1
N

∑N
j=1 ‖λj‖2.

Notice ‖M̂−1
ff ‖2 = Op(1) by Proposition A.1 and 1

N

∑N
j=1 ‖λj‖2 = O(1) by Assumption

B. By Proposition B.1 and negelcing the smaller order term of 1
N

∑N
j=1

1
φ̂2
j

‖λ̂j − λj‖2,
we have

1
N

N∑
j=1
‖b1,j‖2 = Op(T−1) +Op(N−2) +Op

( 1
N

N∑
i=1

(φ̂2
i − φ2

i )2
)
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The 2nd term 1
N

∑N
j=1 ‖b2,j‖2 is dominated by the first and is negligible. By Lem-

mas B.1 and B.2, the 3rd-10th terms are Op(T−1)+Op(N−2)+Op( 1
N

∑N
i=1(φ̂2

i −φ2
i )2).

The 10th term can be proved to be Op(N−2) similarly as 1
N

∑N
j=1 ‖a9,j‖2. The last

two terms are summarized in Lemma B.5. So we have

1
N

N∑
j=1

1
φ̂2
j

∥∥∥λ̂j − λj∥∥∥2
= Op(T−1) +Op(N−2) +Op

( 1
N

N∑
i=1

(φ̂2
i − φ2

i )2
)

(B.10)

Similarly, using Lemmas B.1, B.2 and B.5, we deduce

‖M̂ff −Mff‖2 = Op(T−1) +Op(N−2) +Op

( 1
N

N∑
i=1

(φ̂2
i − φ2

i )2
)

+ op

( 1
N

N∑
i=1

1
φ̂2
i

∥∥∥λ̂i − λi∥∥∥2
) (B.11)

Substituting (B.10) into (B.9), we obtain 1
N

∑N
i=1 (φ̂2

i − φ2
i )2 = Op(T−1) + Op(N−2).

Substituting 1
N

∑N
i=1 (φ̂2

i − φ2
i )2 = Op(T−1)+Op(N−2) into (B.10) and (B.11), we ob-

tain the two remaining results of Theorem 1. This completes the proof of Theorem 1.
�

Corollary B.1 Under Assumptions A-D, irrespective which set of identification con-
ditions,

Mff (Λ̂− Λ)′Φ̂−1Λ̂Ĥ = Op(T−1/2) +Op(N−1)

Corollary B.1 is a direct result of Proposition B.1 and Theorem 1.

Appendix C: Proof for the asymptotic representa-
tions
Given Assumption E.1, we have

E
(∥∥∥ 1√

NT

N∑
i=1

T∑
t=1

1
φ2
i

λif
′
teit

∥∥∥2
)
≤ C. (C.1)

We need the following lemmas to derive the limiting distributions.
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Lemma C.1 Under Assumptions A-E,

(a)
∥∥∥∥ĤΛ̂′Φ̂−1(Λ̂− Λ)

∥∥∥∥ = Op(T−1/2) +Op(N−1)

(b)
∥∥∥∥Ĥ N∑

i=1

1
φ̂2
i

λ̂i
( 1
T

T∑
t=1

[eitξ′t − E(eitξ′t)]
)∥∥∥∥ = Op(N−1/2T−1/2) +Op(T−1)

(c)
∥∥∥∥Ĥ N∑

i=1

1
φ̂2
i

λ̂i
( 1
T

T∑
t=1

εij,t
)∥∥∥∥ = Op(N−1/2T−1/2) +Op(T−1)

(d)
∥∥∥∥Ĥ( N∑

i=1

N∑
j=1

1
φ̂2
i φ̂

2
j

λ̂iλ̂
′
j

1
T

T∑
t=1

εij,t

)
Ĥ
∥∥∥∥ = Op(T−1) +Op(N−1/2T−1/2)

(e)
∥∥∥∥ĤΛ̂′Φ̂−1 1

T

T∑
t=1

etf
′
t

∥∥∥∥ = ‖ĤN‖
∥∥∥∥ 1
NT

N∑
i=1

T∑
t=1

1
φ2
i

λif
′
teit

∥∥∥∥+Op(T−1)

+Op(N−1T−1/2) = Op(N−1/2T−1/2) +Op(T−1)

where εij,t = eitejt − E(eitejt) for notational simplicity.

Proof of Lemma C.1: Part (a) is implied by Lemma B.1(a) and Theorem 1. It
is also implied by Corollary B.1.

Consider (b). The left-hand side of (b) is bounded by

‖ĤN‖
∥∥∥∥ 1
NT

N∑
i=1

1
φ2
i

λi
T∑
t=1

[eitξ′t − E(eitξ′t)]
∥∥∥∥

+‖ĤN‖
∥∥∥∥ 1
NT

N∑
i=1

( 1
φ̂2
i

− 1
φ2
i

)
λi

T∑
t=1

[eitξ′t − E(eitξ′t)]
∥∥∥∥

+‖ĤN‖
∥∥∥∥ 1
NT

N∑
i=1

1
φ̂2
i

(
λ̂i − λi

) T∑
t=1

[eitξ′t − E(eitξ′t)]
∥∥∥∥

The first expression is Op(N−1/2T−1/2) by Assumption E.2. Using the Cauchy-
Schwarz inequality, the second term is bounded by

‖ĤN‖
( 1
N

N∑
i=1

( 1
φ̂2
i

− 1
φ2
i

)2
)1/2( 1

N

N∑
i=1

∥∥∥∥ 1
T

T∑
t=1

λi[eitξ′t − E(eitξ′t)]
∥∥∥∥2)1/2

which is further bounded by

C5‖ĤN‖
( 1
N

N∑
i=1

(φ̂2
i − φ2

i )2
)1/2( 1

N

N∑
i=1

∥∥∥∥ 1
T

T∑
t=1

[eitξ′t − E(eitξ′t)]
∥∥∥∥2)1/2

which is Op(T−1) + Op(N−1T−1/2) by E(‖ 1√
T

∑T
t=1[eitξ′t − E(eitξ′t)]‖2) ≤ C for all i.

The third term can be proved to be Op(T−1)+Op(N−1T−1/2) similarly as the second.
This proves (b).

The proof of (c) is similar to that of (b) and hence omitted.
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Consider (d). Note Ĥ = HN ·N−1 and ‖ĤN‖ = Op(1). Adding and subtracting
terms and ignoring ‖HN‖2, (d) is bounded by

∥∥∥∥ 1
N2T

N∑
i=1

N∑
j=1

1
φ2
iφ

2
j

λiλ
′
j

T∑
t=1

εij,t

∥∥∥∥+
∥∥∥∥ 1
N2T

N∑
i=1

N∑
j=1

( 1
φ̂2
iφ

2
j

− 1
φ2
iφ

2
j

)
λiλ

′
j

T∑
t=1

εij,t

∥∥∥∥
+
∥∥∥∥ 1
N2T

N∑
i=1

N∑
j=1

( 1
φ̂2
i φ̂

2
j

− 1
φ̂2
iφ

2
j

)
λiλ

′
j

T∑
t=1

εij,t

∥∥∥∥
+
∥∥∥∥ 1
N2T

N∑
i=1

N∑
j=1

1
φ̂2
i φ̂

2
j

(λ̂i − λi)λ′j
T∑
t=1

εij,t

∥∥∥∥
+
∥∥∥∥ 1
N2T

N∑
i=1

N∑
j=1

1
φ̂2
i φ̂

2
j

λ̂i(λ̂j − λj)′
T∑
t=1

εij,t

∥∥∥∥
The first term is bounded in norm by

( 1
N

N∑
i=1
‖ 1
φ2
i

λi‖2
)1/2( 1

N

N∑
i=1
‖ 1
NT

N∑
j=1

T∑
t=1

1
φ2
j

λjεij,t‖2
)1/2

which is Op(N−1/2T−1/2) by Assumption E.2. The second term is bounded by

( 1
N2

N∑
i=1

N∑
j=1

∥∥∥∥ φ̂2
i − φ2

i

φ̂2
iφ

2
iφ

2
j

λiλ
′
j

∥∥∥∥2)1/2( 1
N2

N∑
i=1

N∑
j=1

( 1
T

T∑
t=1

εij,t
)2
)1/2

.

The above term is further bounded by

C8
[ 1
N

N∑
p=1

(φ̂2
i − φ2

i )2
]1/2( 1

N2

N∑
i=1

N∑
j=1

( 1
T

T∑
t=1

εij,t
)2
)1/2

which isOp(T−1)+Op(N−1T−1/2). The remaining terms are allOp(T−1)+Op(N−1T−1/2)
by similar arguments. This proves (d).

Using the similar arguments, by (C.1), (e) can be proved and the details are
omitted. �

Lemma C.2 Under Assumptions A-E,

1
N

N∑
i=1

φ̂2
i − φ2

i

φ4
i

λiλ
′
i = Op(N−1) +Op(N−1/2T−1/2) +Op(T−1)

Proof of Lemma C.2: Using (B.8), the expression 1
N

∑N
i=1

φ̂2
i−φ

2
i

φ4
i
λiλ

′
i can be ex-

panded into 13 terms. We consider them one by one. The first term is equal to

1
NT

N∑
i=1

T∑
t=1

1
φ4
i

(e2it − φ2
i )λiλ′i
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which is Op(N−1/2T−1/2) by Assumption E.3. The second term is equal to

1
N

N∑
i=1

1
φ4
i

(λ̂i − λi)′M̂ff (λ̂i − λi)λiλ′i

which is bounded in norm by C8‖M̂ff‖ · 1
N

∑N
i=1

1
φ̂2
i

‖λ̂i − λi‖2, which is Op(T−1) +
Op(N−2) by Proposition A.1 and Theorem 1.

Consider the third term, which is equal to

1
N

N∑
i=1

λiλ
′
iĤΛ̂′Φ̂−1(Λ̂− Λ)Mff (Λ̂− Λ)′Φ̂−1Λ̂Ĥλiλ′i

The above term is bounded in norm by ‖Mff‖ · ‖(Λ̂ − Λ)′Φ̂−1Λ̂Ĥ‖2 1
N

∑N
i=1 ‖λi‖4,

which is Op(T−1) +Op(N−2) by Corollary B.1. The 4th-8th terms can be proved to
be Op(N−1) +Op(N−1/2T−1/2) +Op(T−1) similarly as the third term.

The 9th term is 1
N

∑N
i=1

1
φ4
i
λ′iĤλ̂iλiλ

′
i, which is equivalent to

1
N

N∑
i=1

1
φ4
i

λ′iĤλiλiλ
′
i +

1
N

N∑
i=1

1
φ4
i

λ′iĤ(λ̂i − λi)λiλ′i = c1 + c2

The term c1 is bounded in norm by ‖Ĥ‖ · 1
N

∑N
i=1 ‖ 1

φi
λi‖4, which is Op(N−1) by

Corollary A.1(b). The term c2 is bounded in norm by

C‖Ĥ‖
( 1
N

N∑
i=1

1
φ8
i

‖λi‖6
)1/2( 1

N

N∑
i=1

1
φ̂2
i

‖λ̂i − λi‖2
)1/2

which is of a smaller order term than ‖Ĥ‖. So the 9th term is Op(N−1).
The 10th term is 1

N

∑N
i=1

∑N
j=1

1
φ4
i φ̂

2
j

λiλ
′
i(λ′iĤλ̂j) 1

T

∑T
t=1 τij,t, which is equal to

1
N

N∑
i=1

N∑
j=1

λiλ
′
i(λ′iĤλj)
φ4
i φ̂

2
j

1
T

T∑
t=1

τij,t +
1
N

N∑
i=1

N∑
j=1

1
φ4
i φ̂

2
j

λiλ
′
i[λ′iĤ(λ̂j − λj)]

1
T

T∑
t=1

τij,t

We use c3 and c4 to denote the above two terms. Notice | 1
T

∑T
t=1 τij,t| ≤ τij. By the

boundedness of λi, φ2
i , φ̂

2
i , term c3 is bounded in norm by

C10‖Ĥ‖ 1
N

N∑
i=1

N∑
j=1

τij

which is Op(N−1) by Assumption C.3 and ‖Ĥ‖ = Op(N−1). Consider c4, which is
bounded in norm by

C‖Ĥ‖
( 1
N

N∑
i=1

N∑
j=1

1
φ8
i

‖λi‖6τij
)1/2( 1

N

N∑
i=1

N∑
j=1

1
φ̂2
j

‖λ̂j − λj‖2τij
)1/2
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The above is easily shown to be op(‖Ĥ‖) = op(1/N) because the middle factor is
O(1) and last factor is op(1). Thus, the 10th term is Op(N−1).

The 11th term is 1
N

∑N
i=1

1
φ4
i
λiλ

′
i(λ′iĤ

∑N
j=1

1
φ̂2
j

λ̂j
1
T

∑T
t=1 εij,t), where εij,t = eitejt −

E(eitejt). This term can be written as

1
N

N∑
i=1

N∑
j=1

1
φ4
i φ̂

2
j

λiλ
′
i[λ′iĤ(λ̂j − λj)]

1
T

T∑
t=1

εij,t

− 1
N

N∑
i=1

N∑
j=1

φ̂2
j − φ2

j

φ4
iφ

2
j φ̂

2
j

λiλ
′
i(λ′iĤλj)

1
T

T∑
t=1

εij,t

+ 1
N

N∑
i=1

N∑
j=1

1
φ4
iφ

2
j

λiλ
′
i(λ′iĤλj)

1
T

T∑
t=1

εij,t = c5 − c6 + c7

The term c5 is bounded in norm by

C‖ĤN‖
( 1
N

N∑
i=1

1
φ8
i

‖λi‖6
)1/2( 1

N

N∑
j=1

1
φ̂2
j

‖λ̂j − λj‖2
)1/2

[ 1
N2

N∑
i=1

N∑
j=1

( 1
T

T∑
t=1

εij,t

)2]1/2

which is Op(T−1) + Op(N−1T−1/2) by Theorem 1 and Assumption C.5. By the
boundedness of φ2

i , φ̂
2
i and λi, the term c6 is bounded in norm by

C12‖ĤN‖
( 1
N

N∑
j=1

(φ̂2
j − φ2

j)2
)1/2( 1

N2

N∑
i=1

N∑
j=1

( 1
T

T∑
t=1

εij,t)2
)1/2

which is also Op(T−1)+Op(N−1T−1/2) by Theorem 1 and Assumption C.5. The term
c7 is bounded in norm by

‖ĤN‖
( 1
N

N∑
i=1

1
φ8
i

‖λi‖6
)1/2( 1

N

N∑
i=1

∥∥∥∥ 1
N

N∑
j=1

1
φ2
j

λj
1
T

T∑
t=1

εij,t

∥∥∥∥2)1/2

which isOp(N−1/2T−1/2) by Assumption E.2. So the 11th term isOp(T−1)+Op(N−1/2T−1/2).
The 12th term is 1

N

∑N
i=1

1
φ4
i
λiλ

′
i(λ′iĤΛ̂′Φ̂−1(Λ̂−Λ) 1

T

∑T
t=1 fteit), which is an r× r

matrix. We consider its (g, h) (g, h = 1, 2, · · · , r) entry, which is equal to

tr
[
ĤΛ̂′Φ̂−1(Λ̂− Λ) 1

NT

N∑
i=1

T∑
t=1

1
φ4
i

λigλihftλ
′
ieit

]

Since
E(
∥∥∥ 1
NT

N∑
i=1

T∑
t=1

1
φ4
i

λigλihftλ
′
ieit
∥∥∥2

)

= tr
[ 1
N2T 2

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

1
φ4
iφ

4
j

λigλihλjgλjhftλ
′
iλjf

′
sγij,ts

]
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≤ C16tr
[ 1
N2T 2

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1
|γij,ts|

]
= O(N−1T−1)

by Assumption E.1. So tr[ĤΛ̂′Φ̂−1(Λ̂−Λ) 1
NT

∑N
i=1

∑T
t=1

1
φ4
i
λigλihftλ

′
ieit] = Op(N−1/2T−1)

+Op(N−3/2T−1/2) by Corollary B.1. This implies that the 12th term isOp(N−1/2T−1)+
Op(N−3/2T−1/2).

The 13th term is 1
N

∑N
i=1

1
φ4
i
λiλ

′
i(λ′iĤΛ̂′Φ̂−1ēēi). We denote the lth element of

ĤΛ̂′Φ̂−1ē by δl temporarily. Notice that Lemma A.5 (a) indicates ĤΛ̂′Φ̂−1ē is
Op(T−1/2). That is, δl = Op(T−1/2) for all l = 1, 2, · · · , r. The 13th term is an
r × r matrix, whose (g, h) element (g, h = 1, 2, · · · , r) is equal to

1
N

N∑
i=1

r∑
l=1

1
φ4
i

λigλilδlλihēi =
r∑
l=1

δl
1
N

N∑
i=1

1
φ4
i

λigλilλihēi

Consider the term 1
N

∑N
i=1

1
φ4
i
λigλilλihēi, which is equal to 1

NT

∑N
i=1

∑T
t=1

1
φ4
i
λigλilλiheit

and can be easily shown to be Op(N−1/2T−1/2). So the 13th term is Op(N−1/2T−1).
Summarizing all the results, we obtain Lemma C.2. �

Proof of Theorems 2–4: The limiting distributions depend on the identifi-
cation conditions, and we derive the limits under each of identification conditions.

Under IC1: By equation (B.1), Lemma C.1, and Theorem 1, we have

Mff (Λ̂− Λ)′Φ̂−1Λ̂Ĥ = − ĤΛ̂′Φ̂−1Λ
( 1
T

T∑
t=1

ftξ
′
t

)
+Op(N−1) +Op(N−1/2T−1/2) +Op(T−1)

(C.2)

Substituting the above result into (A.11) and using the results of Lemmas B.4 and
C.1, we have

λ̂j − λj = −M̂−1
ff ĤΛ̂′Φ̂−1Λ 1

T

T∑
t=1

ftξ
′
tλj + M̂−1

ff ĤΛ̂′Φ̂−1Λ 1
T

T∑
t=1

ftejt

+Op(N−1) +Op(N−1/2T−1/2) +Op(T−1)
(C.3)

Since ĤΛ̂′Φ̂−1Λ = Ir − A′
p−→ Ir and M̂−1

ff

p−→ M−1
ff by Proposition A.1, it follows,

under the condition
√
T/N → 0,

√
T (λ̂j − λj) = −M−1

ff

( 1√
T

T∑
t=1

ftξ
′
t

)
λj +M−1

ff

( 1√
T

T∑
t=1

ftejt

)
+ op(1) (C.4)

By Assumption F.1, it follows
√
T (λ̂j − λj) d−→ N

(
0, (M ff )−1Γλj (M ff )−1

)
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For the limiting distribution of φ̂2
i −φ2

i , consider equation (B.8). By Lemmas B.1,
B.2 and C.1, equation (B.8) reduces to

φ̂2
i − φ2

i = 1
T

T∑
t=1

(e2it − φ2
i )− (λ̂j − λj)′M̂ff (λ̂i − λi)

+Op(N−1) +Op(N−1/2T−1/2) +Op(T−1)

Although equation (C.3) implies that λ̂j − λj is Op(T−1/2) + Op(N−1), we avoid
using this result since its derivation depends on the identification conditions. Here is
a different argument that holds under all identification conditions. Equation (A.11)
and Lemmas B.4 and C.1 imply that

λ̂j − λj = M̂−1
ff Mff (Λ̂− Λ)′Φ̂−1Λ̂Ĥλj +Op(T−1/2) +Op(N−1)

But Lemma C.1(a) implies that the first term of the above is also Op(T−1/2) +
Op(N−1). It follows λ̂j − λj = Op(T−1/2) +Op(N−1), from which we obtain

φ̂2
i − φ2

i = 1
T

T∑
t=1

(e2it − φ2
i ) +Op(N−1) +Op(N−1/2T−1/2) +Op(T−1) (C.5)

By Assumption F.2, it follows, under the condition
√
T/N → 0,

√
T (φ̂2

j − φ2
j)

d−→ N(0, σ2
j )

The above derivation shows that the limiting distribution applies to all five sets
of identification conditions.

For the limiting distribution of M̂ff −Mff , consider equation (A.10). By Lem-
mas B.4 and C.1, (A.10) implies that

M̂ff −Mff = −ĤΛ̂′Φ̂−1(Λ̂− Λ)Mff −Mff (Λ̂− Λ)′Φ̂−1Λ̂Ĥ

+Op(N−1) +Op(N−1/2T−1/2) +Op(T−1)

Using (C.2) and noticing ĤΛ̂′Φ̂−1Λ p−→ Ir, we have

M̂ff −Mff = 1
T

T∑
t=1

ftξ
′
t +

1
T

T∑
t=1

ξtf
′
t +Op(N−1) +Op(N−1/2T−1/2) +Op(T−1)

Since M̂ff and Mff are both symmetric matrices, under the condition
√
T/N → 0,

the above result can be further written as
√
Tvech(M̂ff −Mff ) = D+

r

( 1√
T

T∑
t=1

ξt ⊗ ft +
1√
T

T∑
t=1

ft ⊗ ξt
)

+ op(1) (C.6)

where D+
r denotes the Moose-Penrose inverse of the r-order duplication matrix Dr.

By Assumption F.1, it follows ,
√
Tvech(M̂ff −Mff ) d−→ N

(
0, 4D+

r ΓMD+′
r

)
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Under IC2: Consider equation (B.2). The term 1
N

∑N
i=1(Λ̂ − Λ)′Φ̂−1(Λ̂ − Λ) is

Op(T−1) +Op(N−2) by Theorem 1. The term 1
N

Λ′(Φ̂−1 − Φ−1)Λ can be written as

1
N

Λ′(Φ̂−1 − Φ−1)Λ = − 1
N

N∑
i=1

φ̂2
i − φ2

i

φ̂2
iφ

2
i

λiλ
′
i

= − 1
N

N∑
i=1

φ̂2
i − φ2

i

φ4
i

λiλ
′
i +

1
N

N∑
i=1

(φ̂2
i − φ2

i )2

φ4
i φ̂

2
i

λiλ
′
i

The last term is bounded in norm by C8 1
N

∑N
i=1(φ̂2

i − φ2
i )2 and hence Op(T−1) +

Op(N−2) by Theorem A.1. Thus we can rewrite (B.2) as

1
N

(Λ̂− Λ)′Φ̂−1Λ̂ + 1
N

Λ̂′Φ̂−1(Λ̂− Λ) = 1
N

N∑
i=1

φ̂2
i − φ2

i

φ4
i

λiλ
′
i +Op(T−1) +Op(N−2)

By Lemma C.2, we can further write it as
1
N

(Λ̂− Λ)′Φ̂−1Λ̂ + 1
N

Λ̂′Φ̂−1(Λ̂− Λ)

= Op(N−1/2T−1/2) +Op(N−1) +Op(T−1)
(C.7)

Both M̂ff and Mff are diagonal matrices. By (A.10) and Lemmas B.4 and C.1,
we have

Ndiag
{
ĤΛ̂′Φ̂−1(Λ̂− Λ)Mff +Mff (Λ̂− Λ)′Φ̂−1Λ̂Ĥ

}
= Ndiag{ζ}+Op(N−1) +Op(T−1)

(C.8)

where ζ is defined as ζ = 1
NT

∑T
t=1 fte

′
tΦ−1Λ+Λ′Φ−1 1

NT

∑T
t=1 etf

′
t and Ndiag(A) means

the off-diagonal elements of A. Since ζ = Op(N−1/2T−1/2), we have (notice Ĥ = 1
N
Ir

under IC2)

Ndiag
{ 1
N

Λ̂′Φ̂−1(Λ̂−Λ)Mff +Mff (Λ̂− Λ)′Φ̂−1Λ̂ 1
N

}
= Op(N−1/2T−1/2) +Op(N−1) +Op(T−1)

(C.9)

Equation (C.7) puts 1
2r(r+1) restrictions (instead of r2 due to symmetry) on 1

N
(Λ̂−

Λ)′Φ̂−1Λ̂, and equation (C.9) puts 1
2r(r− 1) restrictions. So the r× r matrix 1

N
(Λ̂−

Λ)′Φ̂−1Λ̂ can be uniquely determined by solving (C.7) and (C.9). We have

1
N

(Λ̂−Λ)′Φ̂−1Λ̂ ≡ (Λ̂−Λ)′Φ̂−1Λ̂Ĥ = Op(N−1/2T−1/2)+Op(N−1)+Op(T−1) (C.10)

Given this result, it follows, by (A.10) and Lemma C.1,

M̂ff −Mff = Op(N−1) +Op(N−1/2T−1/2) +Op(T−1).

Next, consider the right hand side of (A.11). The first term is Op(N−1/2T−1/2) +
Op(N−1) +Op(T−1) by (C.10) and Proposition A.1. The other terms except the 8th
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are all Op(N−1/2T−1/2) +Op(N−1) +Op(T−1) due to the results of Lemmas B.4 and
C.1. So it follows

λ̂j − λj = M̂−1
ff ĤΛ̂′Φ̂−1Λ

( 1
T

T∑
t=1

ftejt

)
+Op(N−1) +Op(N−1/2T−1/2) +Op(T−1)

Since M̂−1
ff ĤΛ̂′Φ̂−1Λ p−→ M−1

ff by Proposition A.1 and Corollary A.1(c), it follows,
under the condition

√
T/N → 0,

√
T (λ̂j − λj) = M−1

ff

1√
T

T∑
t=1

ftejt + op(1) (C.11)

So we have √
T (λ̂j − λj) d−→ N

(
0, (M ff )−1Υλ

j (M ff )−1
)

Under IC3: The matrix Mff is known, thus not estimated. The derivation of
λ̂j − λj is quite similar to IC2 and hence omitted.

Under IC4: Consider (B.6). By Lemmas B.4, C.1 and Corollary B.1, the right
hand side of (B.6), except for the 1st and 8th terms, is Op(N−1) + Op(T−1). The
8th term is 1

T

∑T
t=1 ftξ

′
t + op(T−1/2) by Corollary A.1(c). Thus by letting A4 =

(Λ̂− Λ)′Φ̂−1Λ̂Ĥ and multiplying Λ′1
−1 on each side of (B.6), we obtain

M̂ff (Λ̂′1 − Λ′1)Λ′
−1
1 = MffA4 + 1

T

T∑
t=1

ftξ
′
tΛ′
−1
1 +Op(N−1) +Op(T−1)

However, by the identification conditions, the left hand side is an upper triangular
matrix, so its elements on and below the diagonal are all zeros, it follows that

nonupper
{
MffA4 + 1

T

T∑
t=1

ftξ
′
tΛ′
−1
1

}
= Op(N−1) +Op(T−1) (C.12)

where nonupper denotes the elements on and below the diagonal. Since under IC4
both M̂ff and Mff are diagonal matrices, equation (C.8) holds. The right hand side
of (C.8) is Op(N−1) +Op(T−1). Rewrite (C.8) in terms of A4,

nondiag
{
A′4Mff +MffA4

}
= Op(N−1) +Op(T−1) (C.13)

By solving the system of equations (C.12) and (C.13), we have

(A4)gh =
{
−T−1∑T

t=1m
−1
g ftgdht +Op(N−1) +Op(T−1) if g ≥ h

−m−1
g mh(A4)hg +Op(N−1) +Op(T−1) if g < h

(C.14)

where dht = ξ′tΛ′
−1
1 vh, vh is the hth column of an r × r identity matrix, fth is hth

component of ft. That is,

A4 = Pt +Op(N−1) +Op(T−1) (C.15)
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where Pt is defined in the main body of the text.
Consider (A.11). By Lemmas B.4 and C.1, (A.11) can be simplified as

λ̂j − λj = M̂−1
ff MffA4λj + M̂−1

ff ĤΛ̂′Φ̂−1Λ
( 1
T

T∑
t=1

ftejt

)

+Op(N−1/2T−1/2) +Op(N−1) +Op(T−1)
Since M̂−1

ff

p−→ M−1
ff by Proposition A.1 and ĤΛ̂′Φ̂−1Λ p−→ Ir by Corollary A.1(c), we

have, under the condition
√
T/N → 0,

√
T (λ̂j − λj) = 1√

T

T∑
t=1

(Ptλj +M−1
ff ftejt) + op(1)

By Assumption F.1, it follows, under the condition
√
T/N → 0,

√
T (λ̂j − λj) d−→ N(0,Πλ

j )

It remains to derive the limiting distribution of M̂ff −Mff . By Lemmas B.4 and
C.1, equation (A.10) can be simplified, in terms of A4, as

M̂ff −Mff = −A′4Mff −MffA4 +Op(N−1) +Op(N−1/2T−1/2) +Op(T−1)

Since both M̂ff and Mff are diagonal matrices, we have

diag{M̂ff −Mff} = −2diag{MffA4}+Op(N−1) +Op(N−1/2T−1/2) +Op(T−1)

= 2diag
{ 1
T

T∑
t=1

ftξ
′
tΛ′
−1
1

}
+Op(N−1) +Op(N−1/2T−1/2) +Op(T−1)

where the second equality follows from (C.12). By Assumption F.1, we have, under
the condition

√
T/N → 0,

√
Tdiag{M̂ff −Mff}

d−→ N
(
0, 4JrΠMJ ′r

)
where Jr is defined as diag{M} = Jrvec(M) for any r × r matrix M .

Under IC5: The derivation of limiting distribution of λ̂j − λj is similar to IC4.
The main difference is that for A5 = (Λ̂−Λ)′Φ̂−1Λ̂Ĥ, the solution by solving a system
equations is, analogous to (C.15),

A5 = Qt +Op(N−1) +Op(T−1)

where Qt is defined in the main body of the text. The details are omitted.
This completes the proof of Theorems 2–4. �

Corollary C.1 Assume that Assumptions A-E hold. Under either IC2 or IC3,

(Λ̂− Λ)′Φ̂−1Λ̂Ĥ = Op(N−1) +Op(T−1)

Proof of Corollary C.1: Under IC2, Corollary C.1 is immediately obtained by
(C.10). Under IC3, an analogous result to (C.10) can still be derived. So Corollary
C.1 holds. �
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Appendix D: Proof of results for estimated factors
Lemma D.1 Under Assumptions A-E, we have

(a) 1
N

N∑
i=1

1
φ̂2
i

(λ̂i − λi)eit = Op(N−3/2) +Op(T−1) +Op(N−1/2T−1/2)

(b) 1
N

N∑
i=1

( 1
φ̂2
i

− 1
φ2
i

)λieit = Op(N−3/2) +Op(T−1) +Op(N−1/2T−1/2)

(c) 1
N

N∑
i=1

1
φ̂2
i

λ̂i(eit − ēi) = 1
N

N∑
i=1

1
φ2
i

λieit +Op(T−1) +Op(N−1/2T−1/2)

Proof of Lemma D.1: Consider (a). Substituting (A.11) into (a), the left hand
side can be expanded into an expression with 13 terms. The 1st term is equal to

M̂−1
ff Mff (Λ̂− Λ)′Φ̂−1Λ̂Ĥ

( 1
N

N∑
i=1

1
φ2
i

λieit +
1
N

N∑
i=1

( 1
φ̂2
i

− 1
φ2
i

)λieit
)

The term M̂−1
ff Mff (Λ̂− Λ)′Φ̂−1Λ̂Ĥ = Op(T−1/2) + Op(N−1) by Proposition A.1 and

Corollary B.1. The term 1
N

∑N
i=1

1
φ2
i
λieit = Op(N−1/2) due to E(‖ 1

N

∑N
i=1

1
φ2
i
λieit‖2) =

O(N−1) by Assumption C.3. The term 1
N

∑N
i=1( 1

φ̂2
i

− 1
φ2
i
)λieit is bounded in norm by

C4
( 1
N

N∑
i=1

(φ̂2
i − φ2

i )2
)1/2( 1

N

N∑
i=1
‖λieit‖2

)1/2

which is Op(T−1/2)+Op(N−1) by Theorem 1 and Assumption C.3. Given this result,
we have the 1st term is Op(T−1) + Op(N−1/2T−1/2) + Op(N−3/2). The 2nd-7th and
9th terms can be proved to be Op(T−1) + Op(N−1/2T−1/2) + Op(N−3/2) similarly as
the 1st one. The 11th term, which is M̂−1

ff Ĥ
1
N

∑N
i=1

1
φ̂2
i

λ̂i eit, is of a smaller order term
than 1

N

∑N
i=1

1
φ̂2
i

λ̂ieit. So it is negligible. We remain to check the 8th, 10th, 12th, and
13th terms. The 8th term is 1

NT

∑N
i=1

∑T
s=1

1
φ̂2
i

fs eiteis, which is equivalent to

1
NT

N∑
i=1

T∑
s=1

1
φ̂2
i

fs[eiseit − E(eiseit)] + 1
NT

N∑
i=1

T∑
s=1

1
φ̂2
i

fsρi,ts

The second expression 1
NT

∑N
i=1

∑T
s=1

1
φ̂2
i

fsρi,ts is bounded by C3 1
NT

∑N
i=1

∑T
s=1 ρts ≤

C4T−1 by ∑T
s=1 ρts ≤ C by Assumption C.4′. The first expression can be written as

1
NT

N∑
i=1

T∑
s=1

1
φ2
i

fs[eiseit − E(eiseit)] + 1
NT

N∑
i=1

T∑
s=1

( 1
φ̂2
i

− 1
φ2
i

)fs[eiseit − E(eiseit)]

The first expression 1
NT

∑N
i=1

∑T
s=1

1
φ2
i
fs[eiseit − E(eiseit)] is Op(N−1/2T−1/2) by As-

sumption E.4 and the second expression is bounded in norm by

C4
( 1
N

N∑
i=1

(φ̂2
i − φ2

i )2
)1/2( 1

N

N∑
i=1

∥∥∥ 1
T

T∑
s=1

fs[eiteis − E(eiteis)]
∥∥∥2
)1/2
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which is Op(T−1) + Op(N−1T−1/2) by Assumption E.5 and Theorem 1. So the 8th
term is Op(T−1) +Op(N−1T−1/2).

Consider the 10th term, which is equal to

M̂−1
ff Ĥ

1
N

N∑
i=1

N∑
j=1

1
φ̂2
j

λ̂j
1
T

T∑
s=1

[ejseis − E(ejseis)]
1
φ̂2
i

eit

We use εij,s = eisejs − E(eisejs) temporarily. The above term is equal to

M̂−1
ff Ĥ

1
N

N∑
i=1

N∑
j=1

1
φ̂2
i φ̂

2
j

(λ̂j − λj)eit
1
T

T∑
s=1

εij,s

+M̂−1
ff Ĥ

1
N

N∑
i=1

N∑
j=1

( 1
φ̂2
j

− 1
φ2
j

) 1
φ̂2
i

λjeit
1
T

T∑
s=1

εij,s (D.1)

+M̂−1
ff Ĥ

1
N

N∑
i=1

N∑
j=1

1
φ2
j

( 1
φ̂2
i

− 1
φ2
i

)λjeit
1
T

T∑
s=1

εij,s

+M̂−1
ff Ĥ

1
N

N∑
i=1

N∑
j=1

1
φ2
iφ

2
j

λjeit
1
T

T∑
s=1

εij,s

The first expression is bounded in norm by

C3‖M̂−1
ff ĤN‖

( 1
N

N∑
i=1

e2it
)1/2( 1

N

N∑
j=1

1
φ̂2
j

‖λ̂j − λj‖2
)1/2( 1

N2

N∑
i=1

N∑
j=1

( 1
T

T∑
s=1

εij,s)2
)1/2

which is Op(T−1) + Op(N−1T−1/2) by Theorem 1 and Assumption C.5. The second
expression is bounded in norm by

C7‖M̂−1
ff ĤN‖

( 1
N

N∑
i=1

e2it
)1/2( 1

N

N∑
j=1

(φ̂2
j − φ2

j)2
)1/2( 1

N2

N∑
i=1

N∑
j=1

( 1
T

T∑
s=1

εij,s)2
)1/2

which is also Op(T−1) + Op(N−1T−1/2) by Theorem 1 and Assumption C.5. The
third expression is bounded in norm by

‖M̂−1
ff ĤN‖

( 1
N2

N∑
i=1

(φ̂2
i − φ2

i )2

φ̂4
iφ

4
i

N∑
j=1

‖λj‖2

φ4
j

)1/2( 1
N2

N∑
i=1

N∑
j=1

e2it(
1
T

T∑
s=1

εij,s)2
)1/2

which is further bounded by

C10‖M̂−1
ff ĤN‖

( 1
N

N∑
i=1

(φ̂2
i − φ2

i )2
)1/2( 1

N2

N∑
i=1

N∑
j=1

e2it(
1
T

T∑
s=1

εij,s)2
)1/2

The last factor of the above expression is bounded by
( 1
N

N∑
i=1

e4it

)1/4( 1
N2

N∑
i=1

N∑
j=1

( 1
T

T∑
s=1

εij,s)4
)1/2
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which is Op(N−1/2T−1/2) by Assumption C.1 and C.5. So the third expression is
Op(T−1) +Op(N−1T−1/2). The last expression is bounded in norm by

‖M̂−1
ff ĤN‖

( 1
N

N∑
i=1

e2it
φ4
i

)1/2( 1
N

N∑
i=1

( 1
NT

N∑
j=1

T∑
s=1

1
φ2
j

λjεij,s
)2
)1/2

which is Op(N−1/2T−1/2) by Assumption E.2. Given all the results, it follows that
the 10th term is Op(T−1) +Op(N−1/2T−1/2).

The 12th term is equal to

M̂−1
ff ĤN

1
N2

N∑
i=1

N∑
j=1

1
φ̂2
i φ̂

2
j

λ̂jeit
1
T

T∑
s=1

τij,s

The above term can be split into

M̂−1
ff ĤN

1
N2

N∑
i=1

N∑
j=1

1
φ̂2
i φ̂

2
j

(λ̂j − λj)eit
1
T

T∑
s=1

τij,s

+M̂−1
ff ĤN

1
N2

N∑
i=1

N∑
j=1

1
φ̂2
j

( 1
φ̂2
i

− 1
φ2
i

)λjeit
1
T

T∑
s=1

τij,s (D.2)

+M̂−1
ff ĤN

1
N2

N∑
i=1

N∑
j=1

1
φ2
i

( 1
φ̂2
j

− 1
φ2
j

)λjeit
1
T

T∑
s=1

τij,s

+M̂−1
ff ĤN

1
N2

N∑
i=1

N∑
j=1

1
φ2
iφ

2
j

λjeit
1
T

T∑
s=1

τij,s

The first expression of the above is bounded in norm by

C3‖M̂−1
ff ĤN‖

( 1
N

N∑
i=1

e2it

)1/2( 1
N

N∑
j=1

1
φ̂2
j

‖λ̂j − λj‖2
)1/2( 1

N2

N∑
i=1

N∑
j=1

( 1
T

T∑
s=1

τij,s)2
)1/2

Since

1
N2

N∑
i=1

N∑
j=1

( 1
T

T∑
s=1

τij,s)2 ≤ 1
N2

N∑
i=1

N∑
j=1

τ 2
ij ≤ ( sup

i,j≤N
τij)

1
N2

N∑
i=1

N∑
j=1

τij = O(N−1) (D.3)

by supi,j≤N τij ≤ supi≤N
∑N
j=1 τij ≤ C, we have the first term is Op(N−1/2T−1/2) +

Op(N−3/2) by Theorem 1. The second expression is bounded in norm by

C7‖M̂−1
ff ĤN‖

( 1
N

N∑
i=1

(φ̂2
i − φ2

i )2
)1/2( 1

N2

N∑
i=1

N∑
j=1

e2it(
1
T

T∑
s=1

τij,s)2
)1/2

which is Op(N−1/2T−1/2) +Op(N−3/2) by

1
N2

N∑
i=1

N∑
j=1

e2it(
1
T

T∑
s=1

τij,s)2 ≤ 1
N2

N∑
i=1

N∑
j=1

e2itτ
2
ij ≤ ( sup

i,j≤N
τij)

1
N2

N∑
i=1

e2it

N∑
j=1

τij
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≤ C( sup
i,j≤N

τij)
1
N2

N∑
i=1

e2it = Op(N−1)

The third expression is bounded in norm by

C7‖M̂−1
ff ĤN‖|

( 1
N

N∑
i=1

e2it

)1/2( 1
N

N∑
j=1

(φ̂2
j − φ2

j)2
)1/2( 1

N2

N∑
i=1

N∑
j=1

( 1
T

T∑
s=1

τij,s)2
)1/2

which is Op(N−1/2T−1/2) + Op(N−3/2) by Theorem 1 and (D.3). Consider the last
expression. Since

E
(∥∥∥∥ 1
N2

N∑
i=1

N∑
j=1

1
φ2
iφ

2
j

λjeit
1
T

T∑
s=1

τij,s

∥∥∥∥2)

= 1
N4

N∑
i=1

N∑
j=1

N∑
m=1

N∑
n=1

1
φ2
iφ

2
jφ

2
mφ

2
n

λ′jλnE(eitemt)(
1
T

T∑
s=1

τij,s)(
1
T

T∑
s=1

τmn,s)

≤ C10 1
N4

N∑
i=1

N∑
j=1

N∑
m=1

N∑
n=1

τimτijτmn ≤ C11 1
N4

N∑
i=1

N∑
j=1

N∑
m=1

τimτij (D.4)

≤ C12 1
N4

N∑
i=1

N∑
m=1

τim ≤ C13N−3

by Assumption C.3. So the last expression is Op(N−3/2). Summing the four expres-
sions gives the 12th term is Op(N−1/2T−1/2)+Op(N−3/2). The 13th term is Op(T−1)
which can be easily verified.

Summarizing results, we have

1
N

N∑
i=1

1
φ̂2
i

(λ̂i − λi)eit = Op(N−3/2) +Op(N−1/2T−1/2) +Op(T−1).

Consider (b), which can be written as

− 1
N

N∑
i=1

1
φ4
i

(φ̂2
i − φ2

i )λieit −
1
N

N∑
i=1

1
φ̂2
iφ

4
i

(φ̂2
i − φ2

i )2λieit (D.5)

Using (B.8), the term 1
N

∑N
i=1

1
φ4
i
(φ̂2

i − φ2
i )λieit can be expanded into a 13-term ex-

pression. The first term is

1
NT

N∑
i=1

T∑
s=1

1
φ4
i

λi(e2is − φ2
i )eit

which is Op(N−1/2T−1/2) by Assumption E.6. The second term is

1
N

N∑
i=1

1
φ4
i

(λ̂i − λi)′M̂ff (λ̂i − λi)λieit
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The above expression is bounded in norm by

C4
( 1
N

N∑
i=1
‖λ̂i − λi‖2

)1/2
‖M̂ff‖

( 1
N

N∑
i=1
‖(λ̂i − λi)λieit‖2

)1/2

The first factor is Op(T−1/2) +Op(N−1) The last factor is bounded by

C2
( 1
N

N∑
i=1
‖λ̂i − λi‖2e2it

)1/2

Using the argument following (B.9) on ‖λ̂i − λi‖2, the above is also Op(T−1/2) +
Op(N−1). Given these two results, the second term is Op(T−1) +Op(N−2).

The third term is

1
N

N∑
i=1

1
φ4
i

(
λ′iĤΛ̂′Φ̂−1(Λ̂− Λ)Mff (Λ̂− Λ)′Φ̂−1Λ̂Ĥλi

)
λieit.

Its kth element (k = 1, 2, · · · , r) can be written as

tr
[
ĤΛ̂′Φ̂−1(Λ̂− Λ)Mff (Λ̂− Λ)′Φ̂−1Λ̂Ĥ 1

N

N∑
i=1

1
φ4
i

λiλ
′
iλikeit

]

The term 1
N

∑N
i=1 λiλ

′
iλikeit is Op(N−1/2) due to E‖ 1

N

∑N
i=1 λiλ

′
iλikeit‖2 = O(N−1) by

Assumption C.3. So the third term is Op(N−1/2T−1) +Op(N−5/2) in view of Lemma
C.1(a). The 4th-8th terms can be proved to be Op(N−1T−1/2) + Op(N−1/2T−1) +
Op(N−3/2) similarly as the third term.

The 9th term is equal to 1
N

∑N
i=1

1
φ4
i
λieit(λ′iĤλ̂i). Its kth element can be written

as
tr
[
Ĥ

1
N

N∑
i=1

1
φ4
i

λikλiλ
′
ieit + Ĥ

1
N

N∑
i=1

1
φ4
i

λik(λ̂i − λi)λ′ieit
]

The first expression is Op(N−3/2) by Assumption C.3 and ‖Ĥ‖ = Op(N−1). The
second expression inside the trace operator is bounded in norm by

C7‖Ĥ‖
( 1
N

N∑
i=1

e2it

)1/2( 1
N

N∑
i=1

1
φ̂2
i

‖λ̂i − λi‖2
)1/2

which is Op(N−1T−1/2) + Op(N−2) by ‖Ĥ‖ = Op(N−1) [Corollary A.1(a)] and The-
orem 1. So the 9th term is Op(N−3/2) +Op(N−1T−1/2).

The 10th term is equal to

1
N

N∑
i=1

1
φ4
i

λ′iĤ
N∑
j=1

T∑
s=1

1
φ̂2
j

λ̂jE(ejseis)λieit

Its kth element can be written as

tr
[
ĤN

1
N2

N∑
i=1

N∑
j=1

1
φ4
i φ̂

2
j

λ̂jλ
′
iλikeit

1
T

T∑
s=1

τij,s

]
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The above expression is equal to

tr
[
ĤN

1
N2

N∑
i=1

N∑
j=1

1
φ4
i φ̂

2
j

(λ̂j − λj)λ′iλikeit
1
T

T∑
s=1

τij,s

]

+tr
[
ĤN

1
N2

N∑
i=1

N∑
j=1

1
φ4
i

( 1
φ̂2
j

− 1
φ2
j

)λjλ′iλikeit
1
T

T∑
s=1

τij,s

]

tr
[
ĤN

1
N2

N∑
i=1

N∑
j=1

1
φ4
iφ

2
j

λjλ
′
iλikeit

1
T

T∑
s=1

τij,s

]

Using the argument in analyzing (D.2), each of the first two expressions isOp(N−1/2T−1/2)+
Op(N−3/2) and the third expression isOp(N−3/2). So the 10th term isOp(N−1/2T−1/2)+
Op(N−3/2).

The 11th term is equal to

1
N

N∑
i=1

1
φ4
i

λ′iĤ
N∑
j=1

1
φ̂2
j

λ̂j
1
T

T∑
s=1

[ejseis − E(ejseis)]λieit

We use εij,s = eisejs − E(eisejs) temporarily. Its kth element is

tr
[
ĤN

1
N2

N∑
i=1

N∑
j=1

1
φ4
i φ̂

2
j

λ̂jλ
′
iλikeit

1
T

T∑
s=1

εij,s

]

which can be written as

tr
[
ĤN

1
N2

N∑
i=1

N∑
j=1

1
φ4
i φ̂

2
j

(λ̂j − λj)λ′iλikeit
1
T

T∑
s=1

εij,s

]

tr
[
ĤN

1
N2

N∑
i=1

N∑
j=1

1
φ4
i

( 1
φ̂2
j

− 1
φ2
j

)λjλ′iλikeit
1
T

T∑
s=1

εij,s

]

tr
[
ĤN

1
N2

N∑
i=1

N∑
j=1

1
φ4
iφ

2
j

λjλ
′
iλikeit

1
T

T∑
s=1

εij,s

]
Using argument in analyzing (D.1), each of the first two expressions is Op(T−1) +
Op((NT )−1/2) and the third expression isOp((NT )−1/2). So the 11th term isOp(T−1)+
Op((NT )−1/2).

The 12th term is equal to

1
N

N∑
i=1

1
φ4
i

λieit(λ′iĤΛ̂′Φ̂−1(Λ̂− Λ) 1
T

T∑
s=1

fseis)

Its kth element is

tr
[
ĤΛ̂′Φ̂−1(Λ̂− Λ) 1

NT

N∑
i=1

T∑
s=1

1
φ4
i

λikfsλ
′
ieiteis

]
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Since the term 1
NT

∑N
i=1

∑T
s=1

1
φ4
i
λikfsλ

′
ieiteis is bounded in norm by

( 1
N

N∑
i=1

1
φ8
i

‖λikλi‖2e2it
)1/2( 1

N

N∑
i=1
‖ 1
T

T∑
s=1

fseis‖2
)1/2

which is Op(T−1/2) by (A.2). Thus the kth element of the 12th term is Op(T−1) +
Op(N−1T−1/2) by Corollary B.1. So the 12th term is Op(T−1) +Op(N−1T−1/2).

The 13th term is equal to 1
N

∑N
i=1

1
φ4
i
λieit(λ′iĤΛ̂′Φ̂−1ēēi). Its kth element is

tr
[
ĤΛ̂′Φ̂−1ē

1
N

N∑
i=1

1
φ4
i

λikeitēiλ
′
i

]

The term 1
N

∑N
i=1

1
φ4
i
λikeitēiλ

′
i is bounded in norm by

C6
( 1
N

N∑
i=1

e2it

)1/2( 1
N

N∑
i=1

ē2i

)1/2

which is Op(T−1/2) by Assumption C.4. However, the term ĤΛ̂′Φ̂−1ē is Op(T−1/2)
by Lemma B.4(b). So the last term is Op(T−1).

Summarizing results, we have

1
N

N∑
i=1

1
φ4
i

(φ̂2
i − φ2

i )λieit = Op(T−1) +Op(N−1/2T−1/2) +Op(N−3/2).

Next, consider the second term of (D.5), i.e. 1
N

∑N
i=1

1
φ̂2
iφ

4
i

(φ̂2
i − φ2

i )2λieit, which
can be written as

1
N

N∑
i=1

(
φ̂2
i − φ2

i

φ̂2
iφ

4
i

)(
(φ̂2

i − φ2
i )λieit

)
By the Cauchy-Schwarz inequality, the above term is bounded in norm by

( 1
N

N∑
i=1

( φ̂2
i − φ2

i

φ̂2
iφ

4
i

)2
)1/2( 1

N

N∑
i=1

∥∥∥(φ̂2
i − φ2

i )λieit
∥∥∥2
)1/2

which is further bounded by

C7
( 1
N

N∑
i=1

(φ̂2
i − φ2

i )2
)1/2( 1

N

N∑
i=1

(φ̂2
i − φ2

i )2e2it

)1/2

The first factor of the above expression is Op(T−1/2) + Op(N−1). Using the argu-
ment following (B.8) on ‖φ̂i − φi‖2, the second factor of the above expression is also
Op(T−1/2) +Op(N−1). This yields that

1
N

N∑
i=1

1
φ̂2
iφ

4
i

(φ̂2
i − φ2

i )2λieit = Op(T−1) +Op(N−2),
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completing the proof of (b).
Consider (c). The term 1

N

∑N
i=1

1
φ̂2
i

λ̂iēi can be written as

1
N

N∑
i=1

1
φ̂2
i

(λ̂i − λi)ēi +
1
N

N∑
i=1

( 1
φ̂2
i

− 1
φ2
i

)λiēi +
1
N

N∑
i=1

1
φ2
i

λiēi = c1 + c2 + c3

Term c1 is bounded in norm by

C
( 1
N

N∑
i=1

1
φ̂2
i

‖λ̂i − λi‖2
)1/2( 1

N

N∑
i=1

ē2i

)1/2

which is Op(T−1) +Op(N−1T−1/2) by Theorem 1 and ēi = Op(T−1/2).
Term c2 is bounded in norm by

C5
( 1
N

N∑
i=1

(φ̂2
i − φ2

i )2
)1/2( 1

N

N∑
i=1

ē2i

)1/2

which is also Op(T−1) +Op(N−1T−1/2) by the same argument as c1.
Term c3 is equal to 1

NT

∑N
i=1

∑T
t=1

1
φ2
i
λieit, which isOp((NT )−1/2). Thus 1

N

∑N
i=1

1
φ̂2
i

λ̂iēi =
Op(T−1) +Op(N−1/2T−1/2).

Nest, we consider 1
N

∑N
i=1

1
φ̂2
i

λ̂ieit, which can be written as

1
N

N∑
i=1

1
φ̂2
i

(λ̂i − λi)eit +
1
N

N∑
i=1

( 1
φ̂2
i

− 1
φ2
i

)λieit +
1
N

N∑
i=1

1
φ2
i

λieit

By parts (a) and (b) of this lemma, we have

1
N

N∑
i=1

1
φ̂2
i

λ̂ieit = 1
N

N∑
i=1

1
φ2
i

λieit +Op(T−1) +Op(N−1/2T−1/2)

This yields (c). �

Given Lemma D.1, the proof of Theorem 5 is the same as those of Proposition
6.1 and Theorem 6.1 of Bai and Li (2012). The details are omitted here.

The following average consistency result for the estimated factors is due to Lemma
D.1

Proposition D.1 Assume that Assumptions A-E hold. Under each of IC1, IC4,
and IC5, we have

1
T

T∑
t=1
‖f̂t − ft‖2 = Op(

1
N

) +Op(
1
T

),

and under IC2 or IC3, we have

1
T

T∑
t=1
‖f̂t − ft‖2 = Op(

1
N

) +Op(
1
T 2 ).
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Remark: The different convergence rates for 1
T

∑T
t=1 ‖f̂t − ft‖2 are due to the

different convergence rates of Ir − Λ′Φ̂−1Λ̂(Λ̂′Φ̂−1Λ̂)−1 under different identification
restrictions. As pointed out in the discussion preceding Theorem 1 the matrix
Λ′Φ̂−1Λ̂(Λ̂′Φ̂−1Λ̂)−1 plays the same role as the rotation matrix and its asymptotic
property depends on the identification conditions.

The principal components estimator uses similar identifications as IC2 and IC3,
but the convergence rate is 1

T

∑T
t=1 ‖f̂t − R1ft‖2 = Op(T−1) + Op(N−1), see Bai

(2003), where R1 is an invertible matrix. So the rate is slower than the likelihood
method. The primary reason is that the principal components method ignore the
heteroskedasticity and there is a bias of order O(1/T ).

The simulation results of Doz et al. (2011a) show that the likelihood method
performs better than the principal components method, Corollary 4 and Proposition
D.1 provide a theoretical justification.

Furthermore, if one is more interested in the factor process ft, it can be directly
estimated by the maximum likelihood method. Putting the model in the form zi =
δ+Fλi+ ei, where F = (f1, ..., fT )′, and zi is T ×1 (instead of N ×1). In this setup,
we avoid estimating Λ, but only the sample variance of the factor loadings. And we
would have

1
T

T∑
t=1
‖f̂t − ft‖2 = Op(N−1) +Op(T−2)

under all identification conditions, an analogous result to Theorem 1 by switching
the role of N and T . Directly estimating ft is preferred when T is small relative to
N . This is because the number of parameters in F is smaller than in Λ.

Appendix E: Assumptions and proofs for Section 5
The following assumptions are needed to derive the limiting results in Theorem 6.
In what follows, C is a generic constant large enough.

Assumption 5A: Assumption A is satisfied when ft are fixed constants. When
ft is a random process, ft admits a wold representation ft = ut+C1ut−1+C2ut−2+. . .
such that ∑∞i=1 ‖Ci‖ <∞ and ut is an i.i.d process with E‖ut‖4 <∞.

Assumption 5B: The factor loadings λi satisfy ‖λi‖ ≤ C for all i. In addition,
there exists an r × r positive matrix Q such that lim

N→∞
N−1Λ′Φ−1Λ = Q, where

Φ = diag(φ2
1, . . . , φ

2
N) with φ2

i = E(e2it).
Assumption 5C: The idiosyncratic error terms eit satisfy

1. The lags pi are bounded by some pmax for all i;

2. The roots of the polynomial ρi(L) = 1 − ρi,1L − · · · − ρi,piLpi are outside the
unit circle for all i (uniformly bounded away from 1 in norm).

3. The variance of the innovation εit, denoted by σ2
εi, is bounded from above and

below, i.e., C−2 ≤ σ2
εi ≤ C2 for all i. Furthermore, εit is independent over i and

i.i.d. over t for each given i. The fourth moment of εit is bounded for each i,
i.e., E(ε4it) ≤ C.
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These assumptions imply that φ2
i = E(eit)2 is bounded above and away from zero.

Assumption 5D (Identification conditions): To fix the rotational indetermi-
nacy, we impose N−1Λ′Φ−1Λ to be a diagonal matrix with distinct diagonal elements
(arranged in decreasing order) and 1

T

∑T
t=1 ftf

′
t = Ir.

For ease of reference, we list the symbols used in the following proofs.
ψit = (eit−1, eit−2, . . . , eit−pi)′, accordingly ψ̂it = (êit−1, êit−2, . . . , êit−pi)′

ρi = (ρi,1, ρi,2, . . . , ρi,pi)′, accordingly ρ̂i = (ρ̂i,1, ρ̂i,2, . . . , ρ̂i,pi)′

git = ft − ρi,1ft−1 − · · · − ρi,pift−pi , accordingly ĝit = f̂t − ρ̂i,1f̂t−1 − · · · − ρ̂i,pi f̂t−pi
∆̂f t−p = f̂t−p − ft−p, for p = 0, 1, . . . , pi

∆̂λi = λ̂i − λi,
∆̂ρi,p = ρ̂i,p − ρi,p for p = 1, . . . , pi

we use p̄i to denote pi+1 for notational simplicity. Since the identification conditions
(Assumption 5D) employed in the present setting is IC3, Corollary C.1 holds. The
following two lemmas are useful.

Lemma E.1 Under Assumptions 5A-5D, we have

(a) 1
T − pi

T∑
t=p̄i

∆̂f t−p∆̂f
′
t−q = Op(N−1) +Op(T−1), for p, q = 0, 1, . . . , pi

(b) 1
T − pi

T∑
t=p̄i

ft−p∆̂f
′
t−q = Op(N−1) +Op(T−1), for p, q = 0, 1, . . . , pi

(c) 1
T − pi

T∑
t=p̄i

f̂t−p∆̂f
′
t−q = Op(N−1) +Op(T−1), for p, q = 0, 1, . . . , pi

Proof of Lemma E.1: Consider (a).

∆̂f t−p ≡ f̂t−p − ft−p = −(Λ̂′Φ̂−1Λ̂)−1Λ̂′Φ̂−1(Λ̂− Λ)ft−p + (Λ̂′Φ̂−1Λ̂)−1Λ̂′Φ̂−1et−p

= −A′ft−p + ĤΛ̂′Φ̂−1et−p
(E.1)

where Ĥ = (Λ̂′Φ̂−1Λ̂)−1 and A = (Λ̂− Λ)′Φ̂−1Λ̂Ĥ. The left hand side of (a) equals

A′
( 1
T − pi

T∑
t=p̄i

ft−pf
′
t−q

)
A+ ĤΛ̂′Φ̂−1 1

T − pi

T∑
t=p̄i

(et−pe′t−q)Φ̂−1Λ̂Ĥ

−
( 1
T − pi

T∑
t=p̄i

ĤΛ̂′Φ̂−1et−pf
′
t−q

)
A− A′

( 1
T − pi

T∑
t=p̄i

ft−pe
′
t−qΦ̂−1Λ̂Ĥ

) (E.2)

The first term of (E.2) is Op(N−2) + Op(T−2) by 1
T−pi

∑T
t=p̄i ft−pf

′
t−q = Op(1) and

62



Corollary C.1. The second term is equal to

Ĥ
( N∑
i=1

N∑
j=1

1
φ̂2
i φ̂

2
j

λ̂iλ̂
′
j

1
T − pi

T∑
t=p̄i

[eit−pejt−q − E(eit−pejt−q)]
)
Ĥ

+ Ĥ
( N∑
i=1

N∑
j=1

1
φ̂2
i φ̂

2
j

λ̂iλ̂
′
j

1
T − pi

T∑
t=p̄i

E(eit−pejt−q)
)
Ĥ

The first expression can be proved to be Op(N−1/2T−1/2) + Op(T−1) similarly as
Lemma C.1(d). The second expression is equal to Ĥ[∑N

i=1
1
φ̂4
i

λ̂iλ̂
′
i

1
T−pi

∑T
t=p̄i E(eit−peit−q)]Ĥ

by the assumption of cross-sectional independence, which is further bounded by

C2‖Ĥ1/2‖2
( N∑
i=1

∥∥∥∥Ĥ1/2 λ̂i

φ̂i

∥∥∥∥2)
· sup

i
|E(eit−peit−q)| = Op(N−1)

So the second term of (E.2) is Op(N−1)+Op(T−1). Term 1
T−pi

∑T
t=p̄i ĤΛ̂′Φ̂−1et−pf

′
t−q

is Op(N−1/2T−1/2) + Op(T−1), which can be shown similarly as Lemma C.1(e), so
the third term of (E.2) is Op(N−3/2T−1/2) +Op(T−2). The last term of (E.2) is also
Op(N−3/2T−1/2) +Op(T−2) by similar arguments.

Summarizing results, we obtain (a).
Consider (b). By (E.1), the left hand side of (b) is equal to

−
( 1
T − pi

T∑
t=p̄i

ft−pf
′
t−q

)
A+ 1

T − pi

T∑
t=p̄i

ft−pe
′
t−qΦ̂−1Λ̂Ĥ

The first term isOp(N−1)+Op(T−1) by Corollary C.1. The second term can be proved
to be Op(N−1/2T−1/2) +Op(T−1) similarly as Lemma C.1(d). Then (b) follows.

Consider (c). Notice

1
T − pi

T∑
t=p̄i

f̂t−p∆̂f
′
t−q = 1

T − pi

T∑
t=p̄i

∆̂f t−p∆̂f
′
t−q + 1

T − pi

T∑
t=p̄i

ft−p∆̂f
′
t−q.

So (c) follows immediately by (a) and (b). �

Lemma E.2 Under Assumptions 5A-5D,

(a) 1
T − pi

T∑
t=p̄i

∆̂f t−qεit = Op(N−1/2T−1/2) +Op(T−1), for q = 1, 2, . . . , pi

(b) 1
T − pi

T∑
t=p̄i

f̂t−qεit = Op(T−1/2), for q = 1, 2, . . . , pi

(c) 1
T − pi

T∑
t=p̄i

∆̂f t−peit−q = Op(N−1) +Op(T−1), for p, q = 0, 1, 2, . . . , pi

(d) 1
T − pi

T∑
t=p̄i

f̂t−peit−q = Op(T−1/2), for p, q = 0, 1, 2, . . . , pi
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Proof of Lemma E.2: Consider (a). By (E.1), the left hand side of (a) is

−A′ 1
T − pi

T∑
t=p̄i

ft−qεit +H
1

T − pi

T∑
t=p̄i

Λ̂′Φ̂−1et−qεit

The first term is Op(N−1T−1/2) + Op(T−3/2) by A = Op(N−1) + Op(T−1) as in
Corollary C.1. The second term is equal to Ĥ∑N

i=1
1
φ̂2
i

λ̂i
1

T−pi
∑T
t=p̄i eit−qεit. Notice

E(eit−qεit) = 0, thus this term can be proved to be Op(N−1/2T−1/2) + Op(T−1)
similarly as Lemma C.1(c). Given these results, we have (a).

Consider (b). The left hand side of (b) is equal to

1
T − pi

T∑
t=p̄i

∆̂f t−qεit +
1

T − pi

T∑
t=p̄i

ft−qεit

The first term is Op(N−1/2T−1/2)+Op(T−1) as in (a). The second term is Op(T−1/2).
These results imply (b).

Consider (c). By (E.1), the left hand side of (c) is equal to

−A′ 1
T − pi

T∑
t=p̄i

ft−peit−q +H
1

T − pi

T∑
t=p̄i

Λ̂′Φ̂−1et−peit−q

The first expression is Op(N−1T−1/2) + Op(T−3/2) by Corollary C.1. The second
expression can be split into

1
T − pi

Ĥ
N∑
j=1

T∑
t=p̄i

1
φ̂2
j

λ̂j[ejt−peit−q − E(ejt−peit−q)] + 1
φ̂2
i

Ĥλ̂i

( 1
T − pi

T∑
t=p̄i

E(eit−peit−q)
)

The first term can be proved to be Op(N−1/2T−1/2) + Op(T−1) similarly as Lemma
C.1(c). The second term is Op(N−1) by φ̂2

i

p−→ φ2
i , λ̂i

p−→ λi,
1

T−pi
∑T
t=p̄i E(eit−peit−q) =

O(1) and Ĥ = Op(N−1). Given these results, (c) follows.
Consider (d). Notice

1
T − pi

T∑
t=p̄i

f̂t−peit−q = 1
T − pi

T∑
t=p̄i

∆̂f t−peit−q + 1
T − pi

T∑
t=p̄i

ft−peit−q

The second term of the right hand side is Op(T−1/2). Then (d) follows by (c). �

The following lemma is useful in deriving the asymptotic representation of ρ̂i−ρi.
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Lemma E.3 Under Assumptions 5A-5D,

(a) 1
T − pi

T∑
t=p̄i

êit−pεit = 1
T − pi

T∑
t=p̄i

eit−pεit +Op(N−1/2T−1/2) +Op(T−1), for p = 1, . . . , pi

(b) 1
T − pi

T∑
t=p̄i

êit−p∆̂f
′
t−q = Op(N−1) +Op(T−1), for p, q = 0, 1, . . . , pi

(c) 1
T − pi

T∑
t=p̄i

êit−pf̂
′
t−q = Op(N−1) +Op(T−1/2), for p, q = 0, 1, . . . , pi

(d) 1
T − pi

T∑
t=p̄i

êit−pêit−q = 1
T − pi

T∑
t=p̄i

eit−peit−q +Op(N−1) +Op(T−1), for p, q = 1, . . . , pi

Proof of Lemma E.3 : Consider (a). By

êit−p = eit−p − λ′i(f̂t−p − ft−p)− (λ̂i − λi)′f̂t−p = eit−p − λ′i∆̂f t−p − ∆̂λi
′
f̂t−p, (E.3)

we have the left hand side of (a) is equal to

1
T − pi

T∑
t=p̄i

eit−pεit − λ′i
( 1
T − pi

T∑
t=p̄i

∆̂f t−pεit
)
− ∆̂λi

′
( 1
T − pi

T∑
t=p̄i

f̂t−pεit

)

The second term of the above expression is Op(N−1/2T−1/2) + Op(T−1) by Lemma
E.2(a). The third term is Op(N−1/2T−1) + Op(T−3/2) by Lemma E.2(b) and ∆̂λi =
Op(N−1) +Op(T−1/2). Given these results, (a) follows.

Consider (b). By (E.3), the left hand side of (b) is equal to

1
T − pi

T∑
t=p̄i

eit−p∆̂f
′
t−q − λ′i

( 1
T − pi

T∑
t=p̄i

∆̂f t−p∆̂f
′
t−q

)
− ∆̂λ

′
i

( 1
T − pi

T∑
t=p̄i

f̂t−p∆̂f
′
t−q

)

The first term of the above expression is Op(N−1)+Op(T−1) by Lemma E.2(c). The
second term is Op(N−1)+Op(T−1) by Lemma E.1(a) and the third term is Op(N−2)+
Op(N−1T−1/2)+Op(T−3/2) by Lemma E.1(c) and ∆̂λi = Op(N−1)+Op(T−1/2). Then
(b) follows.

Consider (c). By (E.3), the left hand side of (c) is equal to

1
T − pi

T∑
t=p̄i

eit−pf̂
′
t−q − λ′i

( 1
T − pi

T∑
t=p̄i

∆̂f t−pf̂ ′t−q
)
− ∆̂λ

′
i

( 1
T − pi

T∑
t=p̄i

f̂t−pf̂
′
t−q

)

The first term is Op(T−1/2) by Lemma E.2(d). The second term is Op(N−1)+Op(T−1)
by Lemma E.1(c). The third term is Op(N−1) +Op(T−1/2) by 1

T−pi
∑T
t=p̄i f̂t−pf̂

′
t−q =

Op(1), which is the result of Lemma E.1(b) and (c). Then (c) follows.
Consider (d). By (E.3), the left hand side of (d) is equal to

1
T − pi

T∑
t=p̄i

eit−peit−q − λ′i
( 1
T − pi

T∑
t=p̄i

∆̂f t−peit−q
)
− ∆̂λ

′
i

( 1
T − pi

T∑
t=p̄i

f̂t−peit−q

)
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−λ′i
( 1
T − pi

T∑
t=p̄i

∆̂f t−qeit−p
)
+λ′i

( 1
T − pi

T∑
t=p̄i

∆̂f t−p∆̂f
′
t−q

)
λ′i+∆̂λ

′
i

( 1
T − pi

T∑
t=p̄i

f̂t−p∆̂f
′
t−q

)
λi

−∆̂λ
′
i

( 1
T − pi

T∑
t=p̄i

f̂t−qeit−p

)
+λ′i

( 1
T − pi

T∑
t=p̄i

∆̂f t−pf̂ ′t−q
)
∆̂λi+∆̂λ

′
i

( 1
T − pi

T∑
t=p̄i

f̂t−pf̂
′
t−q

)
∆̂λi

The second and fourth terms are Op(N−1) + Op(T−1) by Lemma E.2(c). The third
and seventh terms are both Op(N−1T−1/2) +Op(T−1) by Lemma E.2(d) and ∆̂λi =
Op(N−1) +Op(T−1/2). Using the results in Lemma E.1, the remaining terms except
the first one are Op(N−1) +Op(T−1). These results imply (d). �

Proof of Theorem 6: Recall that the estimator ρ̂i is obtained by running the
regression

êit = ρi,1êit−1 + · · ·+ ρi,pi êit−pi + error, for t = pi + 1, . . . , T

where êit = zit − λ̂′if̂t. So we have

ρ̂i =
( T∑
t=p̄i

ψ̂itψ̂
′
it

)−1( T∑
t=p̄i

ψ̂itêit

)

Then it follows

ρ̂i − ρi =
( T∑
t=p̄i

ψ̂itψ̂
′
it

)−1( T∑
t=p̄i

ψ̂it(êit − ρi,1êit−1 − · · · − ρi,pi êit−pi)
)

By (E.3) and εit = eit − ρi,1eit−1 − · · · − ρi,pieit−pi , we have

êit− ρi,1êit−1− · · · − ρi,pi êit−pi = εit− λ′i
[
∆̂f t−

pi∑
j=1

ρi,j∆̂f t−j
]
− ∆̂λ

′
i

[
f̂t−

pi∑
j=1

ρi,j f̂t−j

]

So we have

ρ̂i − ρi =
( 1
T − pi

T∑
t=p̄i

ψ̂itψ̂
′
it

)−1[( 1
T − pi

T∑
t=p̄i

ψ̂itεit

)
−
( 1
T − pi

T∑
t=p̄i

ψ̂it∆̂f
′
t

)
λi (E.4)

−
( 1
T − pi

T∑
t=p̄i

ψ̂itf̂
′
t

)
∆̂λi+

pi∑
j=1

ρi,j

( 1
T − pi

T∑
t=p̄i

ψ̂it∆̂f
′
t−j

)
λi+

pi∑
j=1

ρi,j

( 1
T − pi

T∑
t=p̄i

ψ̂itf̂
′
t−j

)
∆̂λi

]
By Lemma E.3(a),

1
T − pi

T∑
t=p̄i

ψ̂itεit = 1
T − pi

T∑
t=p̄i

ψitεit +Op(N−1/2T−1/2) +Op(T−1)

By Lemma E.3(b),

−
( 1
T − pi

T∑
t=p̄i

ψ̂it∆̂f
′
t

)
λi +

pi∑
j=1

ρi,j

( 1
T − pi

T∑
t=p̄i

ψ̂it∆̂f
′
t−j

)
λi = Op(N−1) +Op(T−1)
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By Lemma E.3(c),

−
( 1
T − pi

T∑
t=p̄i

ψ̂itf̂
′
t

)
∆̂λi +

pi∑
j=1

ρi,j

( 1
T − pi

T∑
t=p̄i

ψ̂itf̂
′
t−j

)
∆̂λi

= [Op(N−1) +Op(T−1/2)][Op(N−1) +Op(T−1/2)] = Op(N−2) +Op(T−1)

By Lemma E.3(d),

1
T − pi

T∑
t=p̄i

ψ̂itψ̂
′
it = 1

T − pi

T∑
t=p̄i

ψitψ
′
it +Op(N−1) +Op(T−1)

Then it follows

ρ̂i − ρi =
( 1
T − pi

T∑
t=p̄i

ψitψ
′
it

)−1( 1
T − pi

T∑
t=p̄i

ψitεit

)
+Op(N−1) +Op(T−1) (E.5)

Given the above results, we have, under the condition
√
T/N → 0,

√
T − pi(ρ̂i − ρi) =

( 1
T − pi

T∑
t=p̄i

ψitψ
′
it

)−1( 1√
T − pi

T∑
t=p̄i

ψitεit

)
+ op(1) (E.6)

By the martingale difference central limiting theorem,
√
T − pi(ρ̂i − ρi) d−→ N

(
0, σ2

εi

[
plimT→∞

1
T − pi

T∑
t=p̄i

ψitψ
′
it

]−1)

This completes the proof of the ρ̂i part of Theorem 6. �

The following lemma is useful to derive the asymptotic representation of λ̃i− λi.

Lemma E.4 Under Assumptions 5A-5D,

(a) 1
T − pi

T∑
t=p̄i

ĝit∆̂f
′
t−q = Op(N−1) +Op(T−1), for q = 0, 1, . . . , pi

(b) 1
T − pi

T∑
t=p̄i

ĝiteit−p = Op(N−1) +Op(T−1/2), for p = 1, . . . , pi

(c) 1
T − pi

T∑
t=p̄i

ĝitεit = 1
T − pi

T∑
t=p̄i

gitεit +Op(N−1T−1/2) +Op(T−1)

(d) 1
T − pi

T∑
t=p̄i

ĝitĝ
′
it = 1

T − pi

T∑
t=p̄i

gitg
′
it +Op(N−1) +Op(T−1/2)

Proof of Lemma E.4: Consider (a). By ρ̂i,j f̂t−j = ρ̂i,j∆̂f t−j+ρ̂i,jft−j = ρ̂i,j∆̂f t−j+
∆̂ρi,jft−j + ρi,jft−j, we have

ĝit = git −
pi∑
j=1

∆̂ρi,jft−j − ∆̂f t −
pi∑
j=1

ρ̂i,j∆̂f t−j (E.7)
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Thus, the left hand side of (a) is equal to

1
T − pi

T∑
t=p̄i

git∆̂f
′
t−q −

pi∑
p=1

∆̂ρi,p
1

T − pi

T∑
t=p̄i

ft−p∆̂f
′
t−q

− 1
T − pi

T∑
t=p̄i

∆̂f t∆̂f
′
t−q −

pi∑
p=1

ρ̂i,j
1

T − pi

T∑
t=p̄i

∆̂f t−p∆̂f
′
t−q

The first and second terms are both Op(N−1) + Op(T−1) by the definition of git,
ρ̂i,j − ρi,j

p−→ 0 and Lemma E.1(b). The third and fourth terms are also Op(N−1) +
Op(T−1) by ρ̂i,j − ρi,j

p−→ 0 and Lemma E.1(a). This proves (a).
Consider (b). The left hand side of (b) is equal to

1
T − pi

T∑
t=p̄i

giteit−p −
pi∑
q=1

∆̂ρi,q
1

T − pi

T∑
t=p̄i

ft−qeit−p

− 1
T − pi

T∑
t=p̄i

∆̂f teit−p −
pi∑
q=1

ρ̂i,q
1

T − pi

T∑
t=p̄i

∆̂f t−qeit−p

The first term is Op(T−1/2). The second term is Op(N−1T−1/2)+Op(T−1) by ∆̂ρi,q =
Op(N−1) +Op(T−1/2). The third and fourth terms are both Op(N−1) +Op(T−1) by
Lemma E.2(c) and ρ̂i,q

p−→ ρi,q. This proves (b).
Consider (c). The left hand side of (c) is equal to

1
T − pi

T∑
t=p̄i

gitεit −
pi∑
q=1

∆̂ρi,q
1

T − pi

T∑
t=p̄i

ft−qεit

− 1
T − pi

T∑
t=p̄i

∆̂f tεit −
pi∑
q=1

ρ̂i,q
1

T − pi

T∑
t=p̄i

∆̂f t−qεit

The second term is Op(N−1T−1/2) + Op(T−1). The third and fourth terms are both
Op(N−1/2T−1/2) +Op(T−1) by Lemma E.2(a) and ρ̂i,q

p−→ ρi,q. Thus (c) follows.
Consider (d). Let ρ̂i,0 ≡ 1. Then equation (E.7) can be written as

ĝit = git −
pi∑
j=1

∆̂ρi,jft−j −
pi∑
j=0

ρ̂i,j∆̂f t−j

The left hand side of (d) can be written as

1
T − pi

T∑
t=p̄i

gitg
′
it −

pi∑
p=1

∆̂ρi,p
( 1
T − pi

T∑
t=p̄i

ft−pg
′
it

)
−

pi∑
p=0

ρ̂i,p

( 1
T − pi

T∑
t=p̄i

∆̂f t−pg′it
)

−
pi∑
q=1

∆̂ρi,q
1

T − pi

T∑
t=p̄i

gitf
′
t−q +

pi∑
p=1

pi∑
q=1

∆̂ρi,p∆̂ρi,q
1

T − pi

T∑
t=p̄i

ft−pf
′
t−q
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+
pi∑
p=0

pi∑
q=1

ρ̂i,p∆̂ρi,q
1

T − pi

T∑
t=p̄i

∆̂f t−pf ′t−q −
pi∑
q=0

ρ̂i,q

( 1
T − pi

T∑
t=p̄i

git∆̂f
′
t−q

)

+
pi∑
p=1

pi∑
q=0

∆̂ρi,pρ̂i,q
( 1
T − pi

T∑
t=p̄i

ft−p∆̂f
′
t−q

)
+

pi∑
p=0

pi∑
q=0

ρ̂i,pρ̂i,q

( 1
T − pi

T∑
t=p̄i

∆̂f t−p∆̂f
′
t−q

)

The second and fourth terms are both Op(N−1) +Op(T−1/2) by ∆̂ρi,p = Op(N−1) +
Op(T−1/2) and 1

T−pi
∑T
t=p̄i ft−pg

′
it = Op(1). The third and seventh terms are both

Op(N−1)+Op(T−1) by Lemma E.1(b) and ρ̂i,j
p−→ ρi,j. The sixth and eighth terms are

both Op(N−2)+Op(N−1T−1/2)+Op(T−3/2) by Lemma E.1(b) and ∆̂ρi,p = Op(N−1)+
Op(T−1/2). The fifth term is Op(N−2) + Op(T−1) by ∆̂ρi,p = Op(N−1) + Op(T−1/2)
and 1

T−pi
∑T
t=p̄i ft−pf

′
t−q = Op(1). The last term is Op(N−1) + Op(T−1) by Lemma

E.1(a) and ρ̂i,j
p−→ ρi,j. Summarizing all the results, we have (d). �

Proof of Theorem 6 (continued): Recall that the estimator λ̃i is obtained
by running the regression

zit−ρ̂i,1zit−1−· · ·−ρ̂i,pizit−pi = (f̂t−ρ̂i,1f̂t−1−· · ·−ρ̂i,pi f̂t−pi)′λi+error, for t = pi+1, . . . , T

Notice that ĝit = f̂t − ρ̂i,1f̂t−1 − · · · − ρ̂i,pi f̂t−pi , so we have

λ̃i =
( T∑
t=p̄i

ĝitĝ
′
it

)−1( T∑
t=p̄i

ĝit(zit − ρ̂i,1zit−1 − · · · − ρ̂i,pizit−pi)
)

Rewrite λ̃i as

λ̃i − λi =
( T∑
t=p̄i

ĝitĝ
′
it

)−1( T∑
t=p̄i

ĝit(zit − ρ̂i,1zit−1 − · · · − ρ̂i,pizit−pi − ĝ′itλi)
)

From zit = λ′ift + eit and the definition of ĝit, we have

λ̃i−λi =
( 1
T − pi

T∑
t=p̄i

ĝitĝ
′
it

)−1[( 1
T − pi

T∑
t=p̄i

ĝit∆̂f
′
t

)
−

pi∑
j=1

ρ̂i,j

( 1
T − pi

T∑
t=p̄i

ĝit∆̂f
′
t−j

)]
λi

+
( 1
T − pi

T∑
t=p̄i

ĝitĝ
′
it

)−1[( 1
T − pi

T∑
t=p̄i

ĝitεit

)
−

pi∑
j=1

∆̂ρi,j
( 1
T − pi

T∑
t=p̄i

ĝiteit−j

)]
(E.8)

By Lemma E.4(a),
( 1
T − pi

T∑
t=p̄i

ĝit∆̂f
′
t

)
−

pi∑
j=1

ρ̂i,j

( 1
T − pi

T∑
t=p̄i

ĝit∆̂f
′
t−j

)
= Op(N−1) +Op(T−1).

By Lemma E.4(b) and (E.5)
pi∑
j=1

∆̂ρi,j
( 1
T − pi

T∑
t=p̄i

ĝiteit−j

)
= Op(N−2) +Op(T−1).
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By Lemma E.4(c),

1
T − pi

T∑
t=p̄i

ĝitεit = 1
T − pi

T∑
t=p̄i

gitεit +Op(N−1T−1/2) +Op(T−1).

By Lemma E.4(d),

1
T − pi

T∑
t=p̄i

ĝitĝ
′
it = 1

T − pi

T∑
t=p̄i

gitg
′
it +Op(N−1) +Op(T−1/2).

Then it follows

λ̃i − λi =
( 1
T − pi

T∑
t=p̄i

gitg
′
it

)−1( 1
T − pi

T∑
t=p̄i

gitεit

)
+Op(N−1) +Op(T−1) (E.9)

Given the above results, we have, under the condition
√
T/N → 0,

√
T − pi(λ̃i − λi) =

( 1
T − pi

T∑
t=p̄i

gitg
′
it

)−1( 1√
T − pi

T∑
t=p̄i

gitεit

)
+ op(1) (E.10)

By the cental limiting theorem,
√
T − pi(λ̃i − λi) d−→ N

(
0, σ2

εi

[
plimT→∞

1
T − pi

T∑
t=p̄i

gitg
′
it

]−1)

We proceed to consider the limiting results on f̃t. Recall that f̃t is obtained by
the regression

1
φ̂i
zit = 1

φ̂i
λ̃′ift + error

So we have

f̃t =
( N∑
i=1

1
φ̂2
i

λ̃iλ̃
′
i

)−1( N∑
i=1

1
φ̂2
i

λ̃izit

)
=
( 1
N

N∑
i=1

1
φ̂2
i

λ̃iλ̃
′
i

)−1( 1
N

N∑
i=1

1
φ̂2
i

λ̃izit

)

By zit = λ′ift + eit, we have

f̃t−ft = −
( 1
N

N∑
i=1

1
φ̂2
i

λ̃iλ̃
′
i

)−1( 1
N

N∑
i=1

1
φ̂2
i

λ̃i(λ̃i−λi)′
)
ft+

( 1
N

N∑
i=1

1
φ̂2
i

λ̃iλ̃
′
i

)−1( 1
N

N∑
i=1

1
φ̂2
i

λ̃ieit

)
(E.11)

Given (E.9), together with the boundedness of φ̂2
i , it follows

1
N

N∑
i=1

1
φ̂2
i

‖λ̃i − λi‖2 = Op(N−2) +Op(T−1) (E.12)

Consider the expression 1
N

∑N
i=1

1
φ̂2
i

λ̃i(λ̃i − λi)′. By (E.9), the expression is equal to

1
N

N∑
i=1

1
φ̂2
i

λ̃i

( 1
T − pi

T∑
t=p̄i

g′itεit

)( 1
T − pi

T∑
t=p̄i

gitg
′
it

)−1
+Op(N−1) +Op(T−1)
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The first term of the above expression is equal to

1
N

N∑
i=1

1
φ̂2
i

(λ̃i − λi)
( 1
T − pi

T∑
t=p̄i

g′itεit

)( 1
T − pi

T∑
t=p̄i

gitg
′
it

)−1

+ 1
N

N∑
i=1

( 1
φ̂2
i

− 1
φ2
i

)λi
( 1
T − pi

T∑
t=p̄i

g′itεit

)( 1
T − pi

T∑
t=p̄i

gitg
′
it

)−1

+ 1
N

N∑
i=1

1
φ2
i

λi

( 1
T − pi

T∑
t=p̄i

g′itεit

)( 1
T − pi

T∑
t=p̄i

gitg
′
it

)−1

The first two terms can be proved to be Op(N−1/2T−1/2) +Op(T−1) in the same way
with Lemma C.1(b). The last term is Op(N−1/2T−1/2). So 1

N

∑N
i=1

1
φ̂2
i

λ̃i(λ̃i − λi)′ =
Op(N−1/2T−1/2) +Op(T−1). By the similar argument, we have

1
N

N∑
i=1

1
φ̂2
i

λ̃ieit = 1
N

N∑
i=1

1
φ2
i

λieit +Op(N−1/2T−1/2) +Op(T−1)

Given this result, notice 1
N

∑N
i=1

1
φ̂2
i

λ̃iλ̃
′
i = 1

N

∑N
i=1

1
φ2
i
λiλ

′
i + op(1), we have

f̃t − ft =
( 1
N

N∑
i=1

1
φ2
i

λiλ
′
i

)−1( 1
N

N∑
i=1

1
φ2
i

λieit

)
+Op(N−1) +Op(T−1)

Then it follows that under
√
N/T → 0,

√
N(f̃t − ft) =

( 1
N

N∑
i=1

1
φ2
i

λiλ
′
i

)−1( 1√
N

N∑
i=1

1
φ2
i

λieit

)
+ op(1)

This completes the proof of Theorem 6. �

Appendix F: The asymptotic equivalence between
the GLS estimators and the Kalman-soomther-based
estimators
Equation (7) can be viewed as the Kalman smoother in the absence of dynamics
in the factors. However, when the dynamics of factors are explicitly modeled, intu-
itively, the Kalman smoother should be a preferred method in the estimation. In this
appendix, we analyze the Kalman-smoother-based method. We present two results.
First, we prove that when ft is a vector autoregressive process as in Remark 2, model-
ing and estimating the dynamic process ft will not improve the asymptotic efficiency
of f̂t. A similar point is observed by Breitung and Tenhofen (2011). Second, we
deliver the limiting distributions of the Kalman-smoother-based estimators. Doz et
al. (2011b) also consider the Kalman-smoother-based estimators. They consider the
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rate of convergence of the estimators. Our results imply the limiting distributions of
the Kalman-smoother-based estimators.

Consider the following specification of the dynamics of the factors:

ft = Ψ1ft−1 + Ψ2ft−2 + · · ·+ ΨKft−K + ut. (F.1)

We rewrite Model (2) as Z = ΛF ′+E, where F = (f1, f2, . . . , fT )′, Z = (z1, z2, . . . , zT )
and E = (e1, e2, . . . , eT ). Both Z and E areN×T . Let Z = vec(Z),F = vec(F ′), E =
vec(E). Then we have

Z = (IT ⊗ Λ)F + E (F.2)
Throughout the section, the normality assumption is maintained. However, if we
interpret the conditional expectation as a linear population projection, normality is
not needed. Let ΣF = var(F). Given this assumption, by (F.2), we have[

F
Z

]
∼ N

([
0
0

]
,

[
ΣF ΣF(IT ⊗ Λ′)

(IT ⊗ Λ)ΣF (IT ⊗ Λ)ΣF(IT ⊗ Λ′) + IT ⊗ Φ

])

Thus the best prediction for F given (Z,Λ,Φ,ΣF), denoted by E(F|Z), is

E(F|Z) = ΣF(IT ⊗ Λ′)
[
(IT ⊗ Λ)ΣF(IT ⊗ Λ′) + IT ⊗ Φ

]−1
Z

=
(
Σ−1
F + IT ⊗ (Λ′Φ−1Λ)

)−1(
IT ⊗ (Λ′Φ−1)

)
Z

(F.3)

where the second equality uses the Woodbury identity. Equation (F.3) is the Kalman
smoother for the factors, which serve as the basis in the estimation of the factors.

To be consistent with the preceding analysis, we continue to allow et to be cor-
related and heteroskedastic over both the cross section and time dimensions. The
true conditional expectation in (F.3) will not have a diagonal Φ, but nothing pre-
vents us from evaluating the conditional expectation at a diagonal Φ. That is, the
Kalman smoother is computed as if et were i.i.d over the time dimension and were
uncorrelated over the cross sections.

Because the parameters Λ,Φ,ΣF are unknown we replace them with their corre-
sponding QMLE. More specifically, we first apply the QML method to obtain Λ̂, Φ̂, F̂ ,
where F̂ = Z ′Φ̂−1Λ̂(Λ̂′Φ̂−1Λ̂)−1 given in (8), then obtain Σ̂F by the standard vector
time series regression based on f̂t and (F.1). Given Σ̂F , Λ̂, Φ̂, the Kalman-smoother-
based estimator for ft, denoted by f̂kst , is

f̂kst = (v′t ⊗ Ir)
(
Σ̂−1
F + IT ⊗ (Λ̂′Φ̂−1Λ̂)

)−1(
IT ⊗ (Λ̂′Φ̂−1)

)
Z (F.4)

where vt is the t-th column of the T × T identity matrix.
For dynamic factors, we make the following assumption:
Assumption A′: The factor ft admits the VAR representation (F.1), where ut

is a mean-zero i.i.d process with E(‖ut‖4) ≤ C for some constant C large enough.
Furthermore, the roots of the polynomial Ψ(L) = Ir − Ψ1L − · · · − ΨKL

K = 0 are
all outside the unit circle.

Now we state the asymptotic results on f̂kst .
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Theorem F.1 (asymptotic equivalence between f̂kst and f̂t) Under Assumptions
A′, B-E, when N, T → 0, T/N3 → 0, we have

√
N(f̂kst − f̂t) = op(1)

where f̂t is the GLS estimator in (8).

Theorem F.1 implies that modeling the dynamics of factors will not improve the
asymptotic efficiency under large N, though there will be efficiency gain under small
N . The difference between the Kalman-smoother-based estimators, which take into
account of the dynamics of factors , and the projection-based estimators, which only
make use of the contemporaneous relations between the factors and the observables,
are asymptotically negligible.

To prove the theorem, we need additional results. Let

Ĝ = [Σ̂−1
F + IT ⊗ (Λ̂′Φ̂−1Λ̂)]−1.

Hereafter, we use ‖M‖2 to denote the operator norm of matrix M , i.e., ‖M‖2 =
inf{C, ‖Mv‖ ≤ C‖v‖ for all v}. We also use λmax(M) to denote the largest eigen-
value of the matrix M . It is well known that ‖M‖22 = λmax(M ′M). The following
lemma will be used in our derivation.

Lemma F.1 Under Assumptions A′ and B-E,

(a) ‖(Λ̂′Φ̂−1Λ̂)−1Λ̂′Φ̂−1‖2 = Op(N−1/2)
(b)

∥∥∥(Λ̂′Φ̂−1Λ̂)−1Λ̂′Φ̂−1 − (Λ′Φ−1Λ)−1Λ′Φ−1
∥∥∥
2

= Op(N−3/2) +Op(N−1/2T−1/2)

Proof of Lemma F.1: Consider (a). For notational simplicity, we use Ĥ =
(Λ̂′Φ̂−1Λ̂)−1 and H = (Λ′Φ−1Λ)−1. Notice Φ̂−1 ≤ C2IN , thus

‖ĤΛ̂′Φ̂−1‖22 = λmax

[
ĤΛ̂′Φ̂−2Λ̂Ĥ

]
≤ C2λmax

[
ĤΛ̂′Φ̂−1Λ̂Ĥ

]
= C2λmax(Ĥ) = Op(N−1).

Consider (b). The left hand side is equal to ‖ĤΛ̂′Φ̂−1 − HΛ′Φ−1‖2, which is
further bounded by

‖ĤΛ̂′Φ̂−1 −HΛ′Φ−1‖2 ≤ ‖(Ĥ −H)Λ̂′Φ̂−1‖2 + ‖H(Λ̂′Φ̂−1 − Λ′Φ−1)‖2

≤ ‖Ĥ −H‖2 · ‖Λ̂′Φ̂−1‖2 + ‖H‖2 · ‖(Λ̂− Λ)′Φ̂−1‖2 + ‖H‖2 · ‖Λ′(Φ̂−1 − Φ−1)‖2 (F.5)

Consider the first term. Notice ‖Ĥ − H‖2 = ‖Ĥ(Λ′Φ−1Λ − Λ̂′Φ̂−1Λ̂)H‖2 ≤ ‖Ĥ‖2 ·
‖Λ̂′Φ̂−1Λ̂ − Λ′Φ−1Λ‖2 · ‖H‖2, where the first equality uses the definitions of Ĥ and
H. Notice

1
N

Λ̂′Φ̂−1Λ̂− 1
N

Λ′Φ−1Λ = 1
N

(Λ̂− Λ)′Φ̂−1Λ̂ + 1
N

Λ̂′Φ̂−1(Λ̂− Λ)

− 1
N

(Λ̂− Λ)′Φ̂−1(Λ̂− Λ) + 1
N

Λ′(Φ̂−1 − Φ−1)Λ
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Corollary B.1 implies 1
N

(Λ̂ − Λ)′Φ̂−1Λ̂ = Op(N−1) + Op(T−1/2). Following the dis-
cussion below (B.2), 1

N
Λ′(Φ̂−1−Φ−1)Λ = Op(T−1/2)+Op(N−1). Given these results,

together with Theorem 1, we have 1
N

Λ̂′Φ̂−1Λ̂ − 1
N

Λ′Φ−1Λ = Op(N−1) + Op(T−1/2).
So ‖Ĥ −H‖2 = Op(N−2) + Op(N−1T−1/2). However, ‖Λ̂′Φ̂−1‖22 = λmax(Λ̂′Φ̂−2Λ̂) ≤
C2λmax(Λ̂′Φ̂−1Λ̂) = Op(N). This implies ‖Ĥ − H‖2 · ‖Λ̂′Φ̂−1‖2 = Op(N−3/2) +
Op(N−1/2T−1/2). Consider the second term of (F.5). Notice

1
N
‖(Λ̂−Λ)′Φ̂−1‖22 = λmax

( 1
N

(Λ̂−Λ)′Φ̂−2(Λ̂−Λ)
)
≤ C2λmax

( 1
N

(Λ̂−Λ)′Φ̂−1(Λ̂−Λ)
)

So the second term is Op(N−3/2) + Op(N−1/2T−1/2) by Theorem 1 and ‖H‖2 =
O(N−1). Consider the last term of (F.5). Notice

1
N
‖Λ′(Φ̂−1 − Φ−1)‖22 = λmax

( 1
N

Λ′(Φ̂−1 − Φ−1)2Λ
)

The expression in the parentheses is equal to 1
N

∑N
i=1

(φ̂2
i−φ

2
i )

2

φ̂4
iφ

4
i

λiλ
′
i, which is bounded

by C10 1
N

∑N
i=1(φ̂2

i −φ2
i )2, and thus is Op(N−2)+Op(T−1) by Theorem 1. So the third

term of (F.5) is Op(N−3/2) +Op(N−1/2T−1/2). These results imply (b). �

Lemma F.2 Under Assumptions A′ and B-E,

(a) ‖Ĝ‖2 = Op(N−1), ‖Σ̂F‖2 = Op(1), ‖Σ̂−1
F ‖2 = Op(1),

(b) ‖Σ−1
F − Σ̂−1

F ‖2 = Op(N−1) +Op(T−1/2)

Lemma F.2 is proved by Doz et al. (2011). �

Proof of Theorem F.1: Using (A+B)−1 = B−1 − (A+B)−1AB−1, we have

Ĝ ≡
(
Σ̂−1
F + IT ⊗ (Λ̂′Φ̂−1Λ̂)

)−1
= IT ⊗ (Λ̂′Φ̂−1Λ̂)−1−ĜΣ̂−1

F

(
IT ⊗ (Λ̂′Φ̂−1Λ̂)−1

)
(F.6)

So we have

f̂ smot = f̂t + (v′t ⊗ Ir)ĜΣ̂−1
F

[
IT ⊗ (Λ̂′Φ̂−1Λ̂)

]−1[
IT ⊗ (Λ̂′Φ̂−1)

]
Z. (F.7)

where f̂t is the GLS estimator considered in Subsection 4.1. We analyze the second
expression above. From Z = (IT ⊗ Λ)F + E , we have

(v′t ⊗ Ir)ĜΣ̂−1
F

[
IT ⊗ (Λ̂′Φ̂−1Λ̂)

]−1[
IT ⊗ (Λ̂′Φ̂−1)

]
Z

= (v′t ⊗ Ir)ĜΣ̂−1
F

(
IT ⊗ [(Λ̂′Φ̂−1Λ̂)−1Λ̂′Φ̂−1Λ]

)
F

+(v′t ⊗ Ir)ĜΣ̂−1
F

(
IT ⊗ [(Λ̂′Φ̂−1Λ̂)−1Λ̂′Φ̂−1]

)
E = IG1 + IG2, say
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To take into account of the many zeros in v′t ⊗ Ir, we split IG1 into

(v′t ⊗ Ir)[IT ⊗ (Λ̂′Φ̂−1Λ̂)−1]Σ̂−1
F

(
IT ⊗ [(Λ̂′Φ̂−1Λ̂)−1Λ̂′Φ̂−1Λ]

)
F

− (v′t ⊗ Ir)ĜΣ̂−1
F [IT ⊗ (Λ̂′Φ̂−1Λ̂)−1]Σ̂−1

F

(
IT ⊗ [(Λ̂′Φ̂−1Λ̂)−1Λ̂′Φ̂−1Λ]

)
F = IG3 − IG4

By ‖AB‖2 ≤ ‖A‖2‖B‖2, IG4 is bounded by

‖IG4‖ ≤‖(v′t ⊗ Ir)‖2 · ‖Ĝ‖2 · ‖Σ̂−1
F ‖2 · ‖[IT ⊗ (Λ̂′Φ̂−1Λ̂)−1]‖2

× ‖Σ̂−1
F ‖2 ·

∥∥∥∥IT ⊗ [(Λ̂′Φ̂−1Λ̂)−1Λ̂′Φ̂−1Λ]
∥∥∥∥
2
· ‖F‖,

which is Op(T 1/2N−2) by Lemma F.2. Now consider IG3, which is equal to

[v′t⊗(Λ̂′Φ̂−1Λ̂)−1]Σ−1
F F+[v′t⊗(Λ̂′Φ̂−1Λ̂)−1](Σ̂−1

F −Σ−1
F )F−[v′t⊗(Λ̂′Φ̂−1Λ̂)−1]Σ̂−1

F (IT⊗A′)F

The second term of the above expression is Op(T 1/2N−2) + Op(N−1) and the third
term is Op(T 1/2N−2) + Op(N−1) by Lemma F.2. Consider the first term. Notice
var(Σ−1

F F) = Σ−1
F , so each element of Σ−1

F F is Op(1). By the definition of vt
and (Λ̂′Φ̂−1Λ̂)−1 = Op(N−1), the first term is Op(N−1). So IG3 = Op(N−1) +
Op(T 1/2N−2). Given the results on IG3 and IG4, we have IG1 = Op(N−1) +
Op(T 1/2N−2).

Consider IG2, by (F.6), which is equal to

(v′t ⊗ Ir)[IT ⊗ (Λ̂′Φ̂−1Λ̂)−1]Σ−1
F

(
IT ⊗ [(Λ̂′Φ̂−1Λ̂)−1Λ̂′Φ̂−1]

)
E

+(v′t ⊗ Ir)[IT ⊗ (Λ̂′Φ̂−1Λ̂)−1](Σ̂−1
F − Σ−1

F )
(
IT ⊗ [(Λ̂′Φ̂−1Λ̂)−1Λ̂′Φ̂−1]

)
E

−(v′t ⊗ Ir)ĜΣ̂−1
F [IT ⊗ (Λ̂′Φ̂−1Λ̂)−1]

(
IT ⊗ [(Λ̂′Φ̂−1Λ̂)−1Λ̂′Φ̂−1]

)
E = IG5 + IG6 − IG7

However,

‖IG6‖ ≤ ‖v′t⊗Ir‖2·‖IT⊗(Λ̂′Φ̂−1Λ̂)−1‖2·‖(Σ̂−1
F −Σ−1

F )‖2·
∥∥∥∥IT⊗[(Λ̂′Φ̂−1Λ̂)−1Λ̂′Φ̂−1]

∥∥∥∥
2
·‖E‖

which is Op(N−3/2) +Op(N−5/2T 1/2) by Lemma F.2. Similarly,

‖IG7‖ ≤ ‖v′t⊗Ir‖2 ·‖Ĝ‖2 ·‖Σ̂−1
F ‖2 ·‖IT⊗(Λ̂′Φ̂−1Λ̂)−1‖2 ·

∥∥∥∥IT⊗[(Λ̂′Φ̂−1Λ̂)−1Λ̂′Φ̂−1]
∥∥∥∥
2
·‖E‖

which is Op(N−5/2T 1/2). Now consider IG5, which can be written as

(v′t ⊗ Ir)[IT ⊗ (Λ̂′Φ̂−1Λ̂)−1]Σ−1
F

(
IT ⊗ [(Λ̂′Φ̂−1Λ̂)−1Λ̂′Φ̂−1 − (Λ′Φ−1Λ)−1Λ′Φ−1]

)
E

+(v′t ⊗ Ir)[IT ⊗ (Λ̂′Φ̂−1Λ̂)−1]Σ−1
F

(
IT ⊗ [(Λ′Φ−1Λ)−1Λ′Φ−1]

)
E
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The first term is bounded in norm by

‖v′t⊗Ir‖2·‖IT⊗(Λ̂′Φ̂−1Λ̂)−1‖2·‖Σ−1
F ‖2

∥∥∥∥IT⊗[(Λ̂′Φ̂−1Λ̂)−1Λ̂′Φ̂−1−(Λ′Φ−1Λ)−1Λ′Φ−1]
∥∥∥∥·‖E‖

which is Op(N−5/2T 1/2)+Op(N−3/2) by Lemma F.1(b). The second term is equal to
[v′t ⊗ (Λ̂′Φ̂−1Λ̂)−1]A, where A = Σ−1

F

(
IT ⊗ [(Λ′Φ−1Λ)−1Λ′Φ−1]

)
E . It is easy to show

E(AA′) = Σ−1
F (IT ⊗H)Σ−1

F

Notice λmax(Σ−1
F (IT ⊗ H)Σ−1

F ) = O(N−1). So we have [v′t ⊗ (Λ̂′Φ̂−1Λ̂)−1]A =
Op(N−3/2). It follows that IG5 = Op(N−3/2) + Op(N−5/2T 1/2). The results on
IG5, IG6 and IG7 lead to IG2 = Op(N−3/2) + Op(N−5/2T 1/2). Summarizing the
results on IG1 and IG2, we have

f̂ smot = f̂t +Op(N−1) +Op(T 1/2N−2).

This proves Theorem F.1. �

Appendix G: Additional simulation results
Here we allow ρi in the error process eit = ρieit−1 + εit to be drawn from the uniform
distribution U [0.5, 0.9]. Tables 4 and 5 report the simulation results, which suggest
similar conclusions as for Tables 1 and 2.
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Table 4.1: The Trace Ratio of the seven estimators for estimating Λ.
with u = 0.1, τ = 0, ψ = 0 and ρi ∼ U [0.5, 0.9]

PC Class ML Class
N T PC PC-GLS PC-ITE QMLE ML-GLS ML-ITE ML-EM
10 30 0.811 0.872 0.916 0.873 0.933 0.950 0.963
10 50 0.843 0.907 0.941 0.924 0.970 0.978 0.983
10 100 0.866 0.931 0.956 0.959 0.986 0.989 0.991
20 30 0.722 0.808 0.916 0.860 0.938 0.954 0.963
20 50 0.771 0.860 0.947 0.925 0.975 0.978 0.980
20 100 0.806 0.895 0.962 0.963 0.989 0.989 0.990
50 30 0.680 0.791 0.943 0.873 0.952 0.956 0.958
50 50 0.769 0.877 0.969 0.928 0.975 0.976 0.976
50 100 0.858 0.942 0.986 0.964 0.988 0.988 0.988
100 30 0.703 0.826 0.953 0.875 0.954 0.957 0.958
100 50 0.817 0.926 0.974 0.927 0.975 0.975 0.975
100 100 0.915 0.975 0.987 0.964 0.988 0.988 0.988
150 30 0.712 0.842 0.954 0.874 0.953 0.956 0.957
150 50 0.844 0.945 0.975 0.927 0.975 0.975 0.975
150 100 0.930 0.982 0.988 0.964 0.988 0.988 0.988

Table 4.2: The Trace Ratio of the seven estimators for estimating F .
with u = 0.1, τ = 0, ψ = 0 and ρi ∼ U [0.5, 0.9]

PC Class ML Class
N T PC PC-GLS PC-ITE QMLE ML-GLS ML-ITE ML-EM
10 30 0.615 0.675 0.691 0.760 0.774 0.785 0.805
10 50 0.617 0.689 0.705 0.800 0.817 0.824 0.859
10 100 0.616 0.692 0.705 0.831 0.843 0.847 0.881
20 30 0.599 0.727 0.839 0.859 0.877 0.889 0.907
20 50 0.611 0.758 0.866 0.904 0.916 0.919 0.932
20 100 0.614 0.775 0.876 0.923 0.930 0.930 0.942
50 30 0.648 0.827 0.954 0.951 0.962 0.965 0.967
50 50 0.700 0.895 0.964 0.966 0.971 0.971 0.974
50 100 0.760 0.941 0.971 0.972 0.974 0.974 0.977
100 30 0.722 0.894 0.984 0.975 0.983 0.984 0.984
100 50 0.804 0.958 0.986 0.983 0.986 0.986 0.987
100 100 0.874 0.983 0.987 0.986 0.987 0.987 0.988
150 30 0.751 0.913 0.990 0.981 0.988 0.989 0.989
150 50 0.855 0.977 0.991 0.988 0.991 0.991 0.991
150 100 0.914 0.990 0.992 0.991 0.992 0.992 0.992
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Table 5.1: The Trace Ratio of the seven estimators for estimating Λ.
with u = 0.1, τ = 0.7, ψ = 0.5 and ρi ∼ U [0.5, 0.9]

PC Class ML Class
N T PC PC-GLS PC-ITE QMLE ML-GLS ML-ITE ML-EM
10 30 0.702 0.740 0.778 0.737 0.791 0.813 0.844
10 50 0.734 0.775 0.813 0.784 0.838 0.856 0.883
10 100 0.741 0.782 0.819 0.800 0.850 0.863 0.893
20 30 0.628 0.687 0.797 0.730 0.820 0.855 0.894
20 50 0.664 0.729 0.839 0.798 0.880 0.905 0.934
20 100 0.708 0.771 0.876 0.865 0.929 0.943 0.960
50 30 0.617 0.709 0.890 0.772 0.884 0.910 0.921
50 50 0.682 0.777 0.938 0.855 0.944 0.952 0.954
50 100 0.763 0.849 0.964 0.921 0.973 0.975 0.976
100 30 0.634 0.755 0.914 0.786 0.902 0.919 0.922
100 50 0.744 0.864 0.954 0.866 0.951 0.954 0.955
100 100 0.849 0.934 0.977 0.929 0.977 0.977 0.978
150 30 0.645 0.776 0.918 0.788 0.907 0.921 0.923
150 50 0.770 0.897 0.955 0.866 0.952 0.955 0.955
150 100 0.884 0.960 0.977 0.930 0.977 0.977 0.978

Table 5.2: The Trace Ratio of the seven estimators for estimating F .
with u = 0.1, τ = 0.7, ψ = 0.5 and ρi ∼ U [0.5, 0.9]

PC Class ML Class
N T PC PC-GLS PC-ITE QMLE ML-GLS ML-ITE ML-EM
10 30 0.569 0.601 0.597 0.655 0.660 0.664 0.659
10 50 0.557 0.593 0.589 0.658 0.666 0.670 0.672
10 100 0.538 0.579 0.578 0.652 0.661 0.664 0.678
20 30 0.574 0.655 0.735 0.779 0.792 0.805 0.824
20 50 0.561 0.655 0.748 0.798 0.813 0.824 0.859
20 100 0.562 0.669 0.767 0.828 0.844 0.851 0.885
50 30 0.651 0.792 0.933 0.920 0.935 0.947 0.956
50 50 0.662 0.827 0.949 0.947 0.958 0.961 0.964
50 100 0.700 0.875 0.954 0.961 0.965 0.966 0.969
100 30 0.722 0.873 0.979 0.964 0.976 0.980 0.981
100 50 0.783 0.940 0.984 0.978 0.983 0.984 0.985
100 100 0.840 0.971 0.986 0.984 0.986 0.986 0.987
150 30 0.751 0.897 0.987 0.975 0.985 0.987 0.988
150 50 0.838 0.967 0.990 0.986 0.990 0.990 0.991
150 100 0.903 0.988 0.991 0.990 0.991 0.991 0.992
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