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Abstract

In the dynamic two-sided market environment, overpricing one side of the market

not only discourages demand on that side but also discourages participation on the

other side. Over time, this process can lead to a death spiral. This paper develops a

dynamic structural model of the video game market to study launch failures in two-sided

markets. The paper models consumers' purchase decisions for hardware platforms and

a�liated software products and software �rms' entry and pricing decisions. This paper

also develops a Bayesian Markov Chain Monte Carlo approach to estimate dynamic

structural models. The results of the counterfactual simulations show that a failed

platform could have survived if it had lowered its hardware prices and that it could not

have walked out of the death spiral if it had subsidized software entry.
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1 Introduction

In many two-sided or �platform� markets, consumers join a platform to access goods that

�rms a�liated with that platform provide, and �rms join a platform to reach consumers who

have joined that platform. The number of consumers on a platform depends on the avail-

ability, quality, and prices of the a�liated products. The success of the a�liated products

depends on the number of consumers on the platform. In literature on two-sided markets,

this interdependence, or externality between two groups of agents that a platform serves,

is called indirect network e�ects. Moreover, platform markets are often inherently dynamic

environments due to the durability of platform intermediaries and the a�liated products.

Two-sidedness and dynamics are important features of many key industries such as eReaders

and ebooks, video games and consoles, operation systems and software, DVD players and

DVDs, and smart phones and apps.

Some platforms may be able to grow rapidly from a small base because customers on one

side attract customers from the other side, but most platforms do not. Many banks launched

credit card systems in the 1950s, and almost all failed. Sony Betamax lost in the videotape

format war with its competitor VHS in the late 1970s and the 1980s, but Sony Blu-ray took

the lead over its main competitor, HD-DVD, only one and half years after its launch. This

paper asks why some platforms launch successfully but others fail.

Theory tells us that platforms need to �get both sides on board� to launch successfully

(Rochet and Tirole, 2003; Armstrong, 2006; Hagiu, 2006; Weyl, 2010). In two-sided markets,

pricing on one side of the market not only a�ects the demand on that side but also a�ects

participation on the other side of the market. Hence, charging low, or even negative, prices

during the launching stage is crucial to achieve the snowball e�ect. In practice, Amazon sold

the Kindle Fire slightly below its manufacturing cost to attract users during the launching

stage1, and yellow-page publishers o�er free advertisements in the �rst year that they enter

1According to an IHS analysis, Amazon's Kindle Fire (8GByte) costs $201.70 to manufacture but was
sold at $199 at release.
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a local market.

To analyze how a platform grows or shrinks, we need to know how customers on both

sides of the market behave. In this paper, I set up a dynamic structural model that describes

consumers' purchase decisions on hardware platforms and their a�liated software products,

and software �rms' dynamic pricing and entry decisions.2 To estimate the model I use a

data set from the 32- and 64-bit generation, or �fth-generation, U.S. video game market

including three dominating consoles: Sega Saturn, Sony PlayStation, and Nintendo 64. Sega

Saturn failed during this generation, even though it had been very successful in the previous

generation. The counterfactual simulations suggest that Sega priced inconsistently with the

two-sided business pricing model and therefore was shaken out of the market. Sega would

have survived if it had lowered its console price to attract more consumers and hence more

games. However, it would not have walked out of the death spiral if it had only subsidized

software entry.

This paper contributes to literature on two-sided markets that has been growing quickly

in the last decade. Rysman (2009) provides a general review of the literature in this �eld. In

those markets with positive indirect network e�ects, one side of the market is always waiting

for the other side to act before taking its own action. Previous literature has emphasized that

platforms need to �get both sides on board� and solve the �chicken-and-egg� coordination

problem that Caillaud and Jullien (2003) originally pointed out. With a few exceptions,

previous studies have usually modeled the launch of new platforms as an event, not a process;

they have not focused on the start-up problems that new platforms face.3 This paper analyzes

2I do not model platform makers' decisions on price and entry for two reasons. First, both consumers
and software �rms are modeled as forward-looking agents, and thus their decision-making processes are
complicated by themselves. It is extremely hard to go further to model the decisions of platform makers who
choose their price and entry taking into account consumers' purchase decisions and software �rms' price and
entry decisions. Second, the goal of this paper is to study launch failures in two-sided markets, in particular
whether a failed platform would survive by taking alternative strategic options. To achieve this goal, I model
how the two sides respond to platform makers' choices and simulate the results when a failed platform takes
an alternative option.

3One exception is Evans and Schmalensee (2010), who show that a platform business needs to pass an
initial critical mass that depends on the nature of network e�ects, the dynamics of customer behavior, and
the distribution of customer tastes.
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the dynamics of platform growth and looks at how a price change during the launching stage

a�ects a platform's formation process.

In this paper, consumers are heterogeneous, forward-looking, and have rational expecta-

tions about future software entry and prices. In each time period, consumers choose whether

and when to purchase hardware and a�liated software. The hardware purchase and the soft-

ware purchase are interdependent decisions. On one hand, the value of hardware depends on

the value of being able to purchase a�liated software, so consumers rationally anticipate the

software market when they make their hardware purchasing decisions. On the other hand,

the number of potential consumers for a software product depends on how many consumers

have purchased the compatible hardware. On the software side of the market, there exists a

�nite number of separate submarkets. In each submarket and each time period, the existing

software �rms decide how much to charge, and potential entrants decide whether to enter.

At equilibrium, given other agents' strategies, each agent's best response is the solution to a

single-agent dynamic programming problem. Furthermore, the equilibrium is the �xed point

of the system of best response operators.

To estimate this complicated model, this paper provides a practical estimation procedure

that combines the Bayesian algorithm and the �xed-point algorithm. In the outer-loop, I

use the Metropolis-Hastings algorithm to draw a sequence of parameter vectors from their

posterior distributions. In the inner-loop, for a given parameter vector along the MCMC

chain, I non-parametrically approximate each agent's value function and best response func-

tion by using the pseudo-value functions and pseudo-best response functions from previous

MCMC iterations. Then I adopt an interpolation approach to obtain each agent's contin-

uation value, solve for each agent's best response function (pseudo-best-response function)

and value function (pseudo-value function) given that other agents play their equilibrium

strategies, and store these pseudo-best response functions and pseudo-value functions for

future MCMC iterations. This estimation procedure does not fully solve the dynamic model

but incorporates the approximation and the interpolation approaches. The estimation proce-
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dure signi�cantly alleviates computational burden and makes the Bayesian MCMC method

applicable to estimating dynamic equilibrium models.

This paper contributes to the literature on Bayesian estimation methods that has been

commonly applied to static discrete choice models with latent variables.4 Imai, Jain and

Ching (2009), and Norets (2009) pioneered the use of Bayesian estimation methods for

dynamic discrete choice models. In contrast to those two papers, the estimation procedure

in this paper is designed to estimate dynamic games that are more complicated because

the equilibrium is the �xed point of the best response system. This paper also extends

the estimation method of Pakes and McGuire (2001) to the Bayesian framework. In Pakes

and McGuire's algorithm, they approximate the continuation value using the average of the

returns from past outcomes of the algorithm, and the value and policy functions are updated

at a recurrent class of points, rather than at all possible points, in the state space.

The rest of the paper is organized as follows. Section 2 describes the data set and the U.S.

video game industry. Section 3 builds a structural model of dynamic demand and dynamic

supply. Section 4 describes the Bayesian MCMC estimation procedure and discusses the

related computational issues. Section 5 reports the estimation results and examines the

�t of the model. In Section 6, I conduct two counterfactual exercises to examine Sega's

alternative strategic options. Section 7 concludes the �ndings.

2 The U.S. Video Game Market

Since Pong was �rst introduced in the early 1970s, the U.S. video game industry has grown

signi�cantly. In 2008 the industry grossed $22 billion, more than twice the total box-o�ce

revenue in the movie industry, which grosses $10 billion. The video game industry is a two-

sided market in which consoles (hardware) act as platform intermediaries, and consumers

and producers of video games (software) are on the two sides of the market. On one side

of the market, console providers design and sell consoles to consumers who pay a one-time

4See Albert and Chib (1993), McCulloch and Rossi (1994), Jiang, Manchanda and Rossi (2009).
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�xed fee for the console that allows them to join a platform. On the other side of the market,

console providers charge independent game producers a royalty fee for the rights to the code

that allows game producers to make their games compatible with the console. The royalty

fee is not a one-time payment; rather, it is a unit payment for each copy that they sell to

consumers. In fact, console providers manufacture all the video games themselves so they

can track sales for royalty collection. Console makers also develop and publish video games

for their own hardware platforms; in-house game titles do not need to pay royalty fees to

console makers. I treat their prices and availabilities as given to other independent software

�rms.

To satisfy consumers' needs for the latest technology, console providers have introduced

new systems approximately every �ve years. The data used in this paper cover the 32- and

64-bit generation, or �fth generation, of the U.S. video game market. The data include three

speci�c consoles: the Sega Saturn, released in May 1995; the Sony PlayStation, released

in September 1995; and the Nintendo 64, released in September 1996. One novelty of this

generation is that Sega, a very successful incumbent for many years in this industry, failed

to launch its platform and exited the industry. Additionally, none of the consoles was

backwardly compatible, eliminating the concern that a previously existing consumer base

might have given one console platform an advantage.

2.1 Data

The main data set is obtained from the NPD Group, a market research �rm. The data

include the monthly revenue and unit sales of three �fth-generation consoles, Sega Saturn

(Saturn), Sony PlayStation (PS), and Nintendo 64 (N64), from May 1995 through February

2002. Sony was a new entrant to this industry and the PS soon became the leading platform,

taking around 60 percent of the market. Nintendo was the main competitor of Sony and

had a market share of 37 percent. Sega ran a distant third behind the other two and

actually stopped producing in 1998. I take the ratio of revenue over unit sales in each month
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to calculate the console price. Since the sixth generation started when Sony launched its

PlayStation 2 in October 2000, the data set covers the entire �fth-generation video game

industry.

The data set also includes the monthly revenue and unit sales for 1,697 unique game

titles released for the three consoles during this period: 240 Saturn game titles, 1,172 PS

game titles, and 385 N64 game titles. The data set was collected from 30 of the largest

retailers in the U.S., retailers that account for around 85 percent of video game sales. The

NPD Group extrapolated the set for the entire U.S. market. I take the ratio of revenue over

unit sales in every month to calculate the game price. The data I use to estimate the game

market only includes sports games. I did this because it is relatively easy to sort sports

games into groups, and using a smaller sample reduces estimation time. The data used in

the estimation contains 397 sports games divided in 29 software submarkets. Additionally,

I collected the data on user and critics rating scores for each game title from several large

websites such as IGN, GameRankings, GameSpot, and Gamasutra.

General descriptive statistics are provided in Table 1. Up to February 2002, the installed

bases of users in the U.S. market for the Saturn, PS, and N64 were 1.28 million, 28.25 million,

and 17.17 million, respectively. The total unit sales of their a�liated video games were 8.09

million, 300.02 million and 111.55 million, respectively. Even though Saturn was the �rst

mover, the console became the �other� system barely two years after its release, running a

distant third behind its two rivals.

2.2 Industry Description

Below I brie�y discuss the important features of this industry, the positive indirect network

e�ect, the declining pattern of game price and sales, and the seasonality of console and game

sales.
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Table 1: Statistics of the U.S. Fifth-generation Video Game Industry

Sega Saturn PlayStation Nintendo 64

HARDWARE

Release Date May 1995 Sept. 1995 Sept. 1996

Provider Sega Sony Nintendo

CPU bits 32 32 64

MHZ 28 33.87 93.75

Starting price $399.9 $299.7 $199.8

Ending price $41.0 $112.2 $87.1

Average unit sales per month (million) 0.02 0.36 0.26

Installed base (million) 1.28 28.25 17.17

SOFTWARE

Total active titles 240 1172 385

Total unit sold (million) 8.09 300.20 111.55

Average units sold per title (million) 0.03 (0.04) 0.26 (0.48) 0.39 (0.67)

Average revenue per title (million) 1.25 (1.61) 8.47 (26.71) 18.73 (34.69)

Average starting price $52.66 ($7.83) $41.57 ($12.02) $54.57 ($8.16)

Notes: Summary statistics for Saturn are for the 82-month period between May 1995 and February 2002;

statistics for PS are for the 78-month period between September 1995 and February 2002; and statistics for

N64 are for the 66-month period between September 1996 and February 2002. Ending price, Installed base,

total active titles and total unit sold with any console are for February 2002, the last month in the sample.

Numbers in parenthesis are standard deviations. Data source: NPD group.

1. Positive Indirect Network E�ects

Consumers buy a console to access its video games, and game producers make their games

compatible with a console to reach consumers who own that console. The number of users

of a console is therefore largely contingent on current and expected availability and game

prices, and the number of games a�liated with a console depends on how many users have

purchased and are expected to purchase that console. Figure 1 shows that the installed

base of hardware and the software variety have the same growth pattern, implying positive

correlation between consumer entry and software entry.

On one side of the market, consumers decide whether to purchase consoles and games.

A console has no stand-alone value; its value comes from its compatible game titles. Figure

1 (a) presents the number of each console's owners during the sample period. The installed
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Figure 1: Hardware Installed Base and Software Variety

(a) Hardware Installed Base
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(b) Active Game Variety
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Notes: (a) The installed base is measured by the accumulative units sold of each console in millions. The

monthly sales of Saturn were below 0.5 million units after January 1997. (b) Active games are referred to

those which has positive sales.

bases of PS users and N64 users grew quickly during this period. However, the number of

Saturn owners stopped growing one and a half years after its release.

On the other side of the market, incumbent game producers choose their prices, and

potential entrants choose whether to enter the market. Figure 1 (b) presents the number

of existing game titles sold for each console in every month during the sample period. The

number of PS game titles and the number of N64 game titles grew quickly. In contrast, the

number of Saturn game titles started to shrink from January 1998.

2. Console Price and Game Price Decline over Time

Console prices are shown in Figure 2(a). Saturn started retailing for $399 but in September

1995 cut its price by $100 to match the price of the newly launched PS. PlayStation started

at $299 in September 1995 and suddenly dropped below $200 in May 1996 before N64 was

launched. Nintendo 64 was sold at $199 when it came to market and thereafter was sold at

almost the same price as PS. Both PS and N64 cut their prices by $50 in March 1997, by

around $20 in June 1998, and by around $30 in September 1999. Overall, hardware prices
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were declining. It is widely speculated that all the major consoles were initially sold at a

price near marginal cost. Industry reports also indicate that console prices fell slower than

production costs, and thus the margin actually increased over time.

Figure 2(b) shows the average game price for each console over time. Software prices

increased slightly during the �rst few months after a console was introduced, and thereafter

declined smoothly over time. Initially, N64 games were much more expensive than others,

but the price gap became smaller over time.

Figure 2: Console Price and Average Game Price over Time
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(a) Hardware Price
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(b) Average Price of Games

Notes: (a) Average monthly (nominal) prices faced by consumers in retailer stores for each console in the

U.S. market from May 1995 to February 2002. (b) Average monthly (nominal) prices of video games released

for each console.

3. Seasonality and Life-Cycle Pattern

Figure 3 shows the monthly unit sales of each console and the monthly unit sales of the

a�liated games from May 1995 through February 2002. During holiday months, November

and December, sales are easily double or triple the average sales in other months.

After adjusting for seasonality, both the console and game sales had U-shaped patterns;

that is, both grew initially until reaching a peak and thereafter declined. This life-cycle pat-

tern can be explained as follows. In the early months, very few consumers owned consoles
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and the small market size resulted in low game sales. Meanwhile, very few games were avail-

able, so the consumption values of consoles were low, and console sales were low. However,

as more consumers purchased consoles over time, game sales increased. Meanwhile, as more

and more new games were released over time, the consumption value of consoles increased

and console sales increased. At the end of the sample period, the new-generation consoles

and games were available, so the sales of old-generation consoles and games declined over

time.

Figure 3: Unit Sales of Consoles and Games (millions)
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4. Game Prices and Sales Decline with Age

An important feature of the video game market is that game price and sales start at a

high level then decline rapidly in the �rst six months after being released. In Figure 4, the

horizontal axis is the game age measured by the months since introduction, and the vertical

axis is the average game price in (a) and the average unit sales in (b). The average game

price was around $45 per copy at release and then dropped to about $23 the following year.

The average game unit sales were around 40,000 in the �rst month and then fell to around

5,000 per month after the �rst year.

What drives game prices and sales to drop so quickly? A falling-cost explanation is

not convincing for this industry. Once a video game is developed, the producer only needs

to pay royalty fees to the console maker and pay for its own production cost. Both costs
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Figure 4: Game Price and Unit Sale at Each Age

(a) Game Price
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(b) Game Unit Sales

�

�

��

��

��

��

��

��

��

� �� �� �� �� �� �� ��

��
��

���
�	�


���
��
	��

��
��
��

��	
���
��	���������
��
�
��
�

remain roughly constant per unit over time.5 The most reasonable explanation is inter-

temporal price discrimination (Nair 2007). Consumers are heterogeneous in their preferences

for product characteristics, price, or both. Consumers purchase consoles and games at

di�erent times, and, as a result, the distribution of potential buyers of a game title changes

over time. The di�erent composition of consumers at di�erent times induces game producers

to charge di�erent prices. Intuitively, consumers with high net valuations purchase earlier

than those with low net valuations. Thus, it is optimal for game producers to set high

initial prices to sell to consumers with high net valuations and then cut prices to appeal

to consumers with low net valuations. Additionally, the entry of new games leads to more-

intense competition and thus induces the manufacturers of existing game titles to cut their

prices.

3 Model Framework

In this section, I present a structural model to describe consumers' demand for hardware and

a�liated software and software �rms' choices of entry and prices. The model is dynamic, time

5Coughlan (2001) reports that production and packaging costs for 32-bit CD-ROM games remains roughly
constant at $1.50 per disc. Nair (2007) reports that the royalty fee for the 32-bit Sony PlayStation compatible
games was pre-announced and held �xed at $10 by Sony throughout the life cycle.
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is discrete. and the horizon is �nite.6 There exists a �nite number of hardware platforms.

Platforms' choices, including the entry fees to each side and the transaction fee, are taken as

given at the beginning of the �rst time period.7 The structure of the model can be displayed

by the Figure 5.

Figure 5: Model Structure

On the consumer side, consumers with no hardware decide whether to buy one in each

time period. Each consumer is allowed to buy at most one hardware in her life-time.8 Once

she owns one hardware platform, she become a potential buyer for the a�liated software

products. The software side consists of a �nite number of separate submarkets. Each con-

sumer can purchase at most one software product within a submarket. This setup of the

software market explicitly assumes that software products in the same submarket are sub-

stitutable and that software products from di�erent submarkets are independent. In the

context of video games, I de�ne a software submarket that a game title belongs to based on

the console that game is compatible with and the game genre it is grouped in.9 I examine the

6In the application to the video game industry, I focus on the 5th generation. I assume that this generation
dies after 100 months (roughly 8 years).

7The model does not endogenize the platforms' choices. Rather, it describes how the consumers and the
software �rms respond to platforms' choices. This can be treated as a two-stage game: in the �rst stage,
platforms choose their prices to consumers (console prices) and the entry cost to software �rms before the
generation starts; and, in the the second stage, with all the choices made by the platforms given, consumers
make their purchase decisions of hardware and a�liated software, and software �rms decide on whether to
enter and what prices to charge. The model can be considered as the second stage of the two-stage game.

8Ruling out multiple console purchasing may potentially cause biases. This paper does not allow for con-
sumer multi-homing for two main reasons. First, including multi-homing purchase signi�cantly complicates
the estimation. Lee (2010) allows for multi-homing, but he does not model the supply side. However, the
model in this paper is an equilibrium model of both demand and supply. Second, precise data on the degree
of multi-homing is unavailable.

9For example, PS Football games is a submarket, PS Baseball games is a submarket, Nintendo Football
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substitutability of software products (see Appendix A for details). The preliminary empirical

results indicate that games grouped in the same submarket are strongly substitutable, while

games grouped in di�erent submarkets are weakly substitutable.

On the software side, each software �rm is assumed to produce only one product.10 The

following events occur in each software submarket and in each time period:

(i) Each incumbent software �rm decides how much to charge. Each potential entrant

draws an entry cost from a known distribution, and decides whether to enter. If it enters, it

starts to earn pro�t in the next period. Price and entry decisions are made simultaneously.

(ii) Potential buyers immediately observe the software prices but not the entry outcomes.

However, they have rational expectations about software �rms' entry strategy. They decide

whether to buy an a�liated software product and, if so, which one. Once she makes a

purchase in a submarket, she leaves that submarket forever.

(iii) Software entry decisions are implemented. We move to the next period.

Below, I �rst describe consumer dynamic purchase of hardware and software, software

�rms' dynamic pricing and entry, and lastly the equilibrium concept for the model.

3.1 Demand for Hardware

There is a discrete �nite number of consumer types in the population (indexed by i), each

having the same preference for product characteristics but with di�erent preferences over

price. A hardware product itself has no stand-alone value; its value comes from the a�liated

software. Let Γilt be the expected value of optimally purchasing software associated with

platform l. The functional form of Γilt is derived from the software adoption portion of the

model, which will be described in the next subsection. The expected lifetime utility that a

games is another submarket, and so on.
10In reality, some software �rms publish more than one software titles. For example, EA Sports published

more than 100 game titles from May 1995 to February 2002. However, it is computationally di�cult to
accommodate multi-product �rms. This single-product assumption holds if the team of publishing a software
title is an independent decision maker and thus each team can be treated as a single software �rm.
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type-i consumer can obtain from purchasing platform l at time t is

Uilt = Γilt − αiPlt +Xtγ + ζlt + εilt,

where Plt is the price of hardware product l, αi represents consumer type-speci�c sensitiv-

ity to price, Xt is the holiday dummy11, ζlt represents additional hardware characteristics

observed by consumers but not by researchers and εilt is idiosyncratic consumer taste.

Since hardware products are durable goods, consumers are forward-looking when they

decide whether to buy them. The no-purchase option captures the value of delaying purchases

to a future period. I specify the utility of not buying at time t as the sum of the discounted

expected value of waiting and an idiosyncratic consumer taste:

Ui0t = βcEt

[
max{max

l
Uilt+1, Ui0t+1}

]
+ εi0t,

where βc is the consumer's discount factor and the expectation is taken with respect to

the distribution of future variables unknown to the consumer conditional on the current

information. As usual in the literature, εilt and εi0t are assumed to follow the standard

Type-I Extreme Value distribution and are i.i.d. over time, products, and consumer types.

Let St denote the information set that a�ects consumer purchase decision of hardware

at time t. Then, a type-i consumer's dynamic optimization problem can be written as

Hit(εit,St) = max
{
max
l

Uilt, εi0t + βcE [EεHit+1(εit+1,St+1) | εit,St]
}
,

where Hit(εit,St) is type-i consumer's value function with information set St and tastes εit.

Let Hit(St) denote the expected value function, that is, the value function before consumers

11It includes two variables, Novt = I{Novermber} and Dect = I{December}, where I{·} is an indicator
function. Hence, Xtγ ≡ γNovNovt + γDecDect.
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know their demand shocks εit,

Hit(St) =

ˆ
ε

Hit(εit,St))dFε(εit).

Following Rust (1987), the integration with respect to the extreme value error terms has a

closed form, and the deterministic component of the consumer's value function satis�es

Hit(St) = ln{
∑
l

exp(Γilt − αiPlt +Xtγ + ζlt) + exp[βcEHit+1(St+1 | St)]}. (1)

Then, the probability that a type-i consumer purchases hardware l at time t is

Bilt(St) =
exp(Γilt − αiPlt +Xtγ + ζlt)

exp[βcEHit+1(St+1 | St)] +
∑
l

exp(Γilt − αiPlt +Xtγ + ζlt)
. (2)

The demand for the hardware l at time t is

Qlt =
∑
i

NitBilt,

where Nit is the number of consumers who have not purchased any hardware product at

time t. Recall that a consumer is assumed to buy at most one hardware in her life time, and

once she makes a purchase of hardware, she is no longer an active consumer for the hardware

market. Hence, in this dynamic models of discrete choice demand, {Nit}Tt=1 evolves according

to

Nit+1 = Nit(1−
∑
l

Bilt).

3.2 Demand for Software

Recall that the software market consists of a �nite number of separate submarkets. Be-

low I describe consumers' demand for software, and software �rms' pricing and entry in a

representative software submarket.
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Software Utility

Let Jmt denote the set of software products available for consumers to purchase in submarket

m at time t. A type-i consumer's lifetime expected utility from purchasing a software product

j ∈ Jmt at time t (provided she already owns the compatible hardware) is

uijt = xjtψ − ϕipjt + ξjt + εijt,

where xjt is a vector of observed software product characteristics, including platform-speci�c

dummy, online rating score, product age, and holiday dummies;12 pjt is the price of software

j; ξjt is additional software characteristics observed by consumers but not by researchers;

and εijt is idiosyncratic consumer taste. Here, ψ represents consumer preferences in observed

software characteristics, and ϕi is type-i consumer's sensitivity to software price.

In the dynamic environment, the utility of not buying in the submarket m at time t is

the sum of the discounted expected value of waiting and an idiosyncratic consumer taste:

uim0t = βcEt

[
max{ max

j∈Jmt+1

uijt+1, uim0t+1}
]

+ εim0t

where εim0t is the idiosyncratic taste from not buying any product in submarket m. εijt and

εim0t are assumed to follow the standard Type-I Extreme Value distribution and i.i.d. over

time, products and consumer types.

Consumer Belief

Most previous research on estimating dynamic demand models assumes that consumer pur-

chase decisions are only based on a scalar state variable (the inclusive value) which follows

12Consumers' utility declines with game age in di�erent ways for new games and old games. So, I treat a
game as a new game if it has been in the market shorter than one year, and as an old game if it has been in
the market longer than one year. Hence, xjtψ = ψN64I{j is aN64 game}+ ψ1ratingj + ψ2min(agejt, 12) +
ψ3max(agejt − 12, 0) + ψNovNovt + ψDecDect, where agejt is the months after release.
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an AR(1) process.13 Such a restriction on the functional form of consumer beliefs is di�-

cult to reconcile with a supply model, in which �rms condition their actions on consumer

responses. This paper considers an alternative where consumers have rational expectations

regarding the future environment. They can calculate the equilibrium strategies for all mar-

ket participants as well as their own expected utility. This assumption is always adopted by

the theory literature and can be reconciled with a consistent supply model. Additionally, a

recent empirical paper, Goettler and Gordon (2011), also adopted the same assumption as

in this paper.

Information Set

Let smt denote the information set a�ecting agents' choices in submarket m at time t. It

includes (1) the time period, t; (2) the set of available products, Jmt; (3) the observed

and unobserved product characteristics of each available product, xmt ≡ {xjt}j∈Jmt and

ξmt ≡ {ξjt}j∈Jmt ; and (4) the mass of consumers remaining, nmt ≡ {nmit}Ii=1, where nmit is

the number of type-i consumers who have not purchased any product in the submarket m at

the beginning of period t. Consumers can also observe the price of each available product,

pmt ≡ {pjt}j∈Jmt , and their own demand shocks in submarket m, εmit = ({εijt}j∈Jmt , εim0t).

Software Purchase

Let Git(smt,pmt) denote type-i consumer's expected value function. Then, it can be written

as

Git(smt,pmt) = log{
∑
j∈Jmt

exp(xjtψ − ϕipjt + ξjt)

+exp[βcEGit+1(smt+1,pmt+1 | smt,pmt)]}. (3)

13See Lee (2010), Gowrisankaran and Rysman (2011), Gowrisankaran, Park and Rysman (2011), and
Hendel and Nevo (2007).
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The probability that a type i consumer purchases software j ∈ Jmt at time t is

bijt(smt,pmt) =
exp(xjtψ − ϕipjt + ξjt)

exp[βcEGit+1(smt+1,pmt+1 | smt,pmt)] +
∑

j∈Jmt
exp(xjtψ − ϕipjt + ξjt)

.(4)

The demand for software j ∈ Jmt at time t is

qjt(smt,pmt) =
∑
i

nmitbijt(smt,pmt),

where nmit is the number of active type-i consumers in submarket m at time t. Recall that

each consumer is assumed to buy at most one software product in a submarket. Under this

assumption, a consumer is no longer an active consumer in a submarket once she has made

a purchase in that submarket. Meanwhile, new consumers enter a submarket once they

purchase the compatible hardware. Therefore, the evolution of {nmit} follows

nmit+1 = nmit(1−
∑
j∈Jmt

bijt) + nemit, (5)

where nmit(1 −
∑

j∈Jmt
bijt) is the mass of consumers who do not buy in period t and remain

active the next period; and nemit = NitBilt is the mass of new consumers who purchase

the compatible hardware l, as described in the previous subsection. Notice that the mass of

consumers remaining in a submarket is endogenous to the historic entry and pricing behavior

of all software �rms in that submarket. The dynamics of entry and pricing introduce a

dynamic evolution of the consumer distribution in the software submarket m.

Total Software Utility

In the previous subsection, I specify that the consumption value of a hardware product

depends on the total utility from being able to purchase its a�liated software, Γilt. To

close the demand side of the model, I need to link it to the value of being able to purchase

the a�liated software products. Recall that a consumer who purchases a hardware product
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starts to buy the a�liated software in the next period. Hence, Γilt is type-i consumer's

discounted total value being active in all submarkets a�liated with hardware l at time t+ 1,

Γilt = βcE

[∑
m∈Ml

Git+1(smt+1,pmt+1)

]
, (6)

where Ml is the set of software submarkets a�liated with hardware l.

3.3 Software Pricing and Entry

In the 5th-generation U.S. video game market, a single software product was tiny compared to

the whole market.14 Hence, I assume that no single software �rm can strategically in�uence

the sales of hardware, and so that software �rms do not take that e�ect into account when

they make their choices. Under this assumption, strategic interactions occur only among

software �rms in the same submarket. Dube, Hitsch, and Chintagunta (2010) adopts the

same assumption. Notice that this assumption would be more tenuous for more recent

generations now that blockbuster games have become more common.

Below, I describe how software �rms behave in a submarket m, that is, how the incum-

bents set their optimal sequence of prices over time and how potential entrants make their

optimal choices of whether or not to release a new product.

3.3.1 An Incumbent Software Firm's Problem

Let cl denote the unit cost of software a�liated to hardware l, including the production cost

and the royalty fee paid to hardware provider l. Both of the two costs are time-invariant

and platform-speci�c. An incumbent software �rm's one-period pro�t depends on its own

price choice this period (pjt) and its competitors' prices (p−jt); moreover, it also depends

on the state vector smt in the submarket m including the set of available products, product

14In this generation, the blockbuster games were smaller in magnitude. Among all Nintendo games, only
three games took over 4% of the total game sales on the N64 platform, and only 21 games captured over 1%
of the total game sales. Among all PS games, only �ve games captured over 1% of total game sales on the
PS platform, none of them taking over 2%.
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characteristics, and the consumer distribution.

Let βf denote a software �rm's discount factor. An incumbent's optimization problem is

to pick a price to maximize its own discounted pro�t,

Πjt(smt, pjt,p−jt) = E [πjt(smt, pjt,p−jt)]

+E

{
T∑

τ=t+1

βτ−tf

[
max
pjτ

πjτ (smτ , pjτ ,p−jτ )

]
| smt,pmt

}
,

where πjt(smt, pjt,p−jt) = (pjt − cl)qj(smt,pmt) is �rm j's one-period pro�t, the �rst ex-

pectation is taken with respect to competitors' price choices in this time period, and the

second expectation is taken with respect to the distribution of future state variables and

competitors' price choices in the future periods.

3.3.2 A Potential Software Entrant's Problem

Every period, there is �nite number of potential entrants outside the software submarket

m. Let Emt denote the set of potential entrants. The entry cost of a potential entrant j is

assumed to be λl + νjt where λl is the component that is common to all software a�liated

with platform l and νjt is a private information shock which is assumed to be independently

and identically distributed across �rms and periods with c.d.f. Fν(·).

Each potential entrant j ∈ Emt �rst draws an entry cost from a known distribution

and then decides whether to enter. Potential entrants are short-lived and base their entry

decisions on the net present value of entering today; they do not take the option value of

delaying entry into account. If it enters, it pays the entry cost and starts to earn pro�t next

period; if not, it earns zero pro�ts.

Let yjt+1 = 1 denote that entrant j decides to enter at time t. A potential entrant j's

optimization problem is to compare the entry cost and the expected pro�t. The optimal

strategy is to enter if the expected pro�t exceeds the entry cost and not to enter otherwise.
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3.3.3 Perceived Strategy Function

Because a potential entrant's entry decision depends on its own entry cost shock νjt which

is unobservable to consumers and other software �rms, other agents cannot know exactly

a potential entrant's entry strategy even if they can observe the actual outcomes. We can

de�ne a set of conditional choice probabilities for j ∈ Emt such that

ρjt(smt) =

ˆ
I(yjt+1(smt, νjt) = 1)dFν(νjt),

where I(·) is the indicator function. The probabilities represent the expected behavior of

entrant j from the point of view of consumers and the rest of the software �rms. The game

has a Markov structure, and I assume that each software �rm plays Markov strategies. In

particular, if smt = sm′t, then �rm j's decision in submarket m and m′ are the same. Let

Ψ = {Ψjt(smt)} be a set of strategy functions or decision rules, one for each software �rm,

with Ψjt(smt) = pjt(smt) if j is an incumbent �rm and Ψjt(smt) = ρjt(smt) if j is a potential

entrant.

3.3.4 Incumbent's Bellman Equation

Let Vjt(smt | Ψ) denote the expected net present value of all future cash �ows to incumbent

�rm j ∈ Jmt at state vector smt, computed under the presumption that consumers respond

optimally and other software �rms follow their strategies in Ψ. By Bellman's principle of

optimality, it can be written as

Vjt(smt | Ψ) = max
p̃jt

πjt(smt, p̃jt, p−jt) + βfE [Vjt+1(smt+1 | Ψ) | smt, p̃jt,Ψ−jt] , (7)

where

E [Vjt+1(smt+1 | Ψ) | smt, pjt,Ψ−j ] =

ˆ
ξmt+1

 ∑
ymt+1

Vjt+1(smt+1 | Ψ)fj(ymt+1 | smt, pjt,Ψ−jt)

 dξmt+1
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is the expected value function conditional on �rm j choosing pjt and the other �rms behaving

according to Ψ. Here, the conditional transition probability function is given by

fj(ymt+1 | smt, pjt,Ψ−j) =
∏

k∈Emt

ρkt(smt)
ykt+1(1− ρkt(smt))1−ykt+1 . (8)

The optimal pricing strategy in response to pro�le Ψ is the solution of the right-hand side

of equation (7), denoted as pjt(smt | Ψ).

3.3.5 Entrant's Bellman Equation

Let V e
jt(smt, νjt | Ψ) denote the expected net present value of all future cash �ows to potential

entrant j ∈ Emt at state vector smt and entry cost shock νjt, computed under the presumption

that consumers respond optimally and other software �rms behave according to strategy

pro�le Ψ:

V e
jt(smt, νjt | Ψ) = max

ỹjt+1

ỹjt+1 {−λl − νjt + βfE[Vjt+1(smt+1 | Ψ) | smt,Ψ]} ,

where

E[Vjt+1(smt+1 | Ψ) | smt,Ψ] =

ˆ
ξmt+1

[∑
ymt+1

Vjt+1(smt+1 | Ψ)fj(ymt+1 | smt,Ψ)

]
dξmt+1

is the expected value function conditional on on software �rm j choosing entering and the

other software �rms behaving according to strategy pro�le Ψ. Here, the conditional transition

probability function is given by

fj(ymt+1 | smt,Ψ) =
∏

k∈Emt,k 6=j

ρkt(smt)
ykt+1(1− ρkt(smt))1−ykt+1 , (9)

where the jth dimension of ymt+1 is equal to one.
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The optimal entry decision follows a cuto� rule characterized by

yjt+1(smt, νjt | Ψ) =


1, if νjt ≤ ν̄jt(smt | Ψ)

0, otherwise

where

ν̄jt(smt | Ψ) = βfE[Vjt+1(smt+1 | Ψ) | smt,Ψ]− λm

is the cuto� entry cost shock for which the potential entrant is indi�erent between entering

and staying out of the submarket. Then, the probability of entering is

ρjt(smt | Ψ) =

ˆ
I[νjt ≤ ν̄jt(smt | Ψ)]dFν(νjt) = Fν [ν̄jt(smt | Ψ)].

Therefore, the unconditional Bellman equation of a potential entrant j can be written as

V e
jt(smt | Ψ) = max

ρ̃jt
−
ˆ
νjt<F

−1
ν (ρ̃jt)

νjtdFν(νjt)

+ρ̃jt {−λl + βfE[Vjt+1(smt+1 | Ψ) | smt,Ψ]} . (10)

3.4 Equilibrium Concept

This paper adopts the Markov Perfect Equilibrium (MPE) concept. The MPE in this model

is de�ned by a set of value functions, {Git(smt,p
∗
mt), Hit(St)}Ii=1 and {Vjt(smt)}j∈Jmt , a set

of price functions, {p∗jt(smt)}j∈Jmt , and a set of entry functions, {ρ∗jt(smt)}j∈Emt , such that

equation (1) - (10) are simultaneously satis�ed at every state smt. In other words, the

equilibrium is the �xed point of the game de�ned by equations (1) - (10), with the following

properties.

(i) Software Firms. Equation (7) implies that in equilibrium, when faced with state smt,

each incumbent software �rm's pricing policy is a best response to other software �rms'
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strategies and consumers' behavior at that state. Meanwhile, equation (10) implies that in

equilibrium, when faced with state smt, each entrant's entry policy is a best response to other

software �rms' strategies and consumers' behavior at that state.

(ii) Consumers. Equation (3) and (4) imply that when faced with a state smt and price

p(smt), consumers who own a hardware rationally anticipate software �rms' future pricing

and entry, and optimally make purchase decisions of software. At the same time, equation

(1) and (2) imply that in equilibrium, consumers who do not own any hardware make

purchase decisions of hardware by maximizing inter-temporal utility. In addition, the value

of a hardware is given by the equation (6).

(iii) State Transition. Software �rms take into account the e�ect of their actions on

the evolution of states in the submarket. The transition of consumer distribution follows

the equation (5). In the eyes of incumbent software �rms, the transition of the product

availability follows the equation (8); and in the eyes of potential entrants who decide to

enter, it follows the equation (9).

4 Bayesian Estimation

In this section, I describe the estimation procedure in detail. Let θ denote the vector of

parameters in the model that need to be estimated. Let data denote all the data available

for estimation which includes two parts: (i) the prices and quantity sold of each hardware

product in each time period; and (ii) the availability, characteristics, prices, and quantity

sold of each software in each time period acrossM independent software submarkets. Hence,

data = {Pt,Qt, {ymt,xmt,pmt,qmt}Mm=1}
Td
t=1, where Td is the number of time periods in the

data set. I assume that the data are generated from the model presented in the previous

section.
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4.1 Posterior

Let L(data | θ) denote the likelihood. Rather than using the maximum likelihood estimation

method, I employ the Bayesian MCMC method to sample the parameter vector θ from its

posterior distribution,

P(θ | data) ∝ L(data | θ)π(θ), (11)

where π(θ) is the prior distribution of the parameter vector θ.

4.2 Likelihood Contributions

The demand for hardware is a dynamic discrete choice model. I assume that the unobserved

(to researcher) platform-speci�c demand shifters ζlt are normally distributed with mean zero

and variance σ2
ζ , independent across all products and over time. The distribution of the

aggregate demand shocks generate the distribution of the units sold of each hardware in

each time period. Conditional on the state St, the joint density of the sales of all hardware

at time t is

LQ(Qt | St; θ) =
∏
l

[φ(ζlt/σζ)/σζ ] |
(
J(Qt→ζlt)

)−1 | . (12)

where φ(·) is the pdf of the standard normal distribution and J(Qt→ζlt) is the Jacobian matrix.

To specify the likelihood contribution of the demand for software, I assume that the

unobserved game-speci�c demand shifters ξjt are normally distributed with mean zero and

variance σ2
ξ , independent across all products and over time.15 The distribution of the ag-

gregate demand shocks generate the distribution of the units sold of each existing software

product in each time period. Conditional on the state (smt,pmt), the joint density of the

sales of all existing software products in submarket m at time t is

Lq(qmt | smt,pmt; θ) =
∏
j∈Jmt

[φ(ξjt/σξ)/σξ] |
(
J(qmt→ξmt)

)−1 |, (13)

15In the context of sports video games, ξjt may capture such demand shocks as events related to the
celebrities on whom game characters are based, e.g., their performance in major tournaments and even their
scandals. Those shocks occur independently across products and over time, and thus it is reasonable to
assume no cross-correlation and no auto-correlation.
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To evaluate the likelihood, I need to derive ξjt, which is described in the next subsection,

and evaluate the Jacobian, J(qmt→ξmt), which is derived in Appendix B.1.

Next I specify the likelihood contribution of the software pricing policy function. Let p̃jt

and p∗jt denote the observed price and the actual price of product j at time t, respectively. I

assume that the observed price is proportional to the actual price, that is, p̃jt = p∗jtςjt where

ςjt is the measurement error that re�ects discrepancies between the observed prices and the

actual prices.16 Furthermore, it is assumed to follow a log-normal distribution with mean

zero and variance σ2
ς , independent over time and across products. Hence, conditional on the

state vector smt, the likelihood contribution of incumbent j ∈ Jmt at time t is given by

Lp(pjt | smt; θ) =
1

σς
φ

(
ln[p̃jt/pj(smt, θ)]

σς

)
. (14)

To specify the likelihood contribution of the software entry policy function, I assume that the

entry cost shocks follow an independent normal distribution with mean zero and variance

σ2
ν .
17 Hence, conditional on the state vector smt, the likelihood contribution of entrant

j ∈ Emt is

Ly(yjt+1 | smt; θ) =

(
Φ

[
βfE[Vjt+1(smt+1 | smt; θ)]− λ

σν

])yjt+1

×
(

1− Φ

[
βfE[Vjt+1(smt+1 | smt; θ)]− λ

σν

])1−yjt+1

. (15)

Therefore, the likelihood can be written as

L(data | θ) =

Td∏
t=1

LQ(Qt | St; θ)
M∏
m=1

Lq(qmt | smt,pmt; θ) ∏
j∈Jmt

Lp(pjt | smt; θ)
∏

j∈Emt

Ly(yjt+1 | smt; θ)

 .

16In the data set, I can observe the revenue (measured in dollars) and the units sold in each month of
each game title released during the sample period. The price in each month is measured by the average
price in that month, i.e., the ratio of the revenue over the units sold. However, this measurement of price
contains some measurement error because the actual price changes during each month. Hence, I add the
measurement error term ςjt.

17We should notice that this assumption on entry cost shocks may not hold if we consider learning-by-doing
or technology spillover e�ect.
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4.3 Estimation Algorithm

The estimation procedure involves two loops: in the outer-loop, I use the Metropolis-Hastings

algorithm to update the structural parameters; and in the inner-loop, for a given parameter

vector, I update each agent's value function and best response function by using the results

from previous MCMC iterations. This estimation procedure does not fully solve the dynamic

model but incorporates the approximation approach. Hence, it signi�cantly alleviates the

computational burden and makes Bayesian estimation method applicable to dynamic games.

Below, I describe the estimation procedure in detail.

4.3.1 Outer-Loop: Metropolis-Hastings (MH) Step

The posterior distribution in equation (11) is a high-dimensional and complex function of

the parameters. It is known that, instead of drawing the entire parameter vector at once, it

is often simpler to partition it into blocks and draw the parameters of each block separately

given the other parameters (see McCulloch and Rossi 1994, Albert and Chib 1993, Imai, Jain

and Ching 2007). Based on the model, I partition all parameters into four blocks: (i) the �rst

block includes all parameters directly a�ecting consumer purchase decisions of hardware,

i.e., the parameters in the utility function of hardware, θ1 = (γ, αi, σζ); (ii) the second

block includes all parameters directly a�ecting consumer purchase decisions of software, i.e.,

the parameters in the utility function of software, θ2 = (ψ, ϕi, σξ); (iii) the third block

includes all parameters directly a�ecting incumbent software �rms' pricing decisions, i.e.,

the unit cost of games sold on each platform and the standard deviation of the pricing error,

θ3 = (cSaturn, cPS, cN64, σς); and (iv) the last block includes all parameters directly a�ecting

entrants' entry decisions, i.e., the mean and the standard deviation of game producers' entry

cost to each platform, θ4 = (λSaturn, λPS, λN64, σν) .

Consider a particular iteration k. For each block l, the procedure goes as follows.

The �rst step is to draw the candidate parameter vector θ
∗(k)
l from a proposed density.
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As usual in the literature,18 I use the Random-Walk (RW) Metropolis chain as the proposal

density

θ
∗(k)
l = θ

(k−1)
l +MVN(0, κΣl)

where Σl is the candidate covariance matrix and κ is a scaling constant.

The second step is to construct the acceptance-rejection ratio, given by

η
∗(k)
l =

[∑R
r=1 λ

(k−1)
r Ll(· | θ

∗(k)
l , θ

(k−1)
−l )

]
fl(θ

∗(k)
l | θ(k−1)l )πl(θ

∗(k)
l )[∑R

r=1 λ
(k−1)
r Ll(· | θ

(k−1)
l , θ

(k−1)
−l ))

]
fl(θ

(k−1)
l | θ∗(k)l )πl(θ

(k−1)
l )

,

where Ll(· | θ) equals to equation (12), (13), (14) and (15), respectively; fl(θ
∗(k)
l | θ(k−1)l ) is

the transition probability, and πl(θ
∗(k)
l ) is the prior distribution.

Lastly, I accept the candidate parameter vector θ
∗(k)
l with probability min{η∗(k)l , 1}.

4.3.2 Inner-Loop: Fixed Point (FP) Step

Evaluating the acceptance-rejection ratio in the outer-loop requires evaluating the likelihood

which requires solving the dynamic game given a vector of parameters. The computation

di�culty comes in two parts. One part is computing the equilibrium strategies of all agents

which are the �xed points of the best response system. The other part is computing each

agent's value function given other agents play their equilibrium strategies, which is the �xed

point of a single-agent dynamic programming (DP) problem. In this paper, I develop a new

procedure of solving the �xed point of a dynamic model suitable for use in conjunction with

the Bayesian MCMC estimation.

For a given draw of the parameter vector along the MCMC chain, I �rst randomly pick

a subset from the entire state space for each period; then, for each given point in the subset,

I non-parametrically approximate each agent's equilibrium strategy and value function by

using the pseudo-best response functions and pseudo-value functions from previous MCMC

iterations; after that, I adopt an interpolation approach to obtain each agent's continuation

18See Jiang, Manchanda and Rossi (2009), and Imai, Jain, and Ching (2009).
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value, solve for each agent's best response function (pseudo-best response function) and value

function (pseudo-value function) given that other agents play their equilibrium strategies,

and store these pseudo-best response functions and pseudo-value functions for future MCMC

iterations. This procedure is similar to the method of Pakes and McGuire (2001). In their

algorithm, the continuation value is approximated by the average of the returns from past

outcomes of the algorithm, and the value and policy functions are updated at a recurrent

class of points (rather than at all possible points) in the state space.

Nonparametric Approximation of Equilibrium Strategy

One challenge in computing the likelihood is to compute the equilibrium of a dynamic game

which is the �xed point of the best response system. In the literature, the nested �xed

point approach computes the equilibrium numerically.19 However, applying it for relatively

complicated models becomes extremely di�cult and even impossible even for one guess of

the parameter vector. The two-step approach (Bajari, Benkard and Levin, 2007), sidesteps

the equilibrium computation step by substituting nonparametric functions of the data for the

continuation values in the game, which is in general much computationally easier than the

�xed point calculations. However, this approach su�ers from a small sample bias problem

and also can not easily deal with the unobservables.20

In this paper, I propose to use a kernel method to approximate the equilibrium strategies

using the pseudo-best response of the past iterations in which the parameter vector is �close�

to the current parameter vector. The equilibrium strategy of software producer j in iteration

k is computed as

Ψ̂
(k)
jt (smt, θ) =

N(k)∑
n=1

Ψ
(k−n)
jt (smt, θ

∗(k−n))× Kh(θ − θ∗(k−n))∑N(k)
n=1 Kh(θ − θ∗(k−n))

, (16)

19The general idea is to start with an initial guess at the value function and substitute that into the right-
hand side of the Bellman equation. Then, at each state point and for each agent, solve the maximization
problem yielding a new estimate of the value function. Iterate this procedure until convergence. The
literature of NFP approach includes Pakes and McGuire (1994, 2001).

20Hu and Shum (2011) consider nonparametric identi�cation of dynamic models with general unobserv-
ables.
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where Ψ
(k)
jt is the pseudo-best response function in the iteration k. For incumbent �rm j,

the pseudo-best response in price is the solution to the incumbent's optimization problem,

p
(k)
jt (smt, θ), and Appendix B.2 presents the computation method in detail. For entrant j,

the pseudo-best response in entering probability is the solution to the potential entrant's

optimization problem. Under the assumption of normally distributed entry cost shocks, it is

ρ
(k)
jt (smt, θ) = Φ

([
βf ÊV

(k)
jt+1(· | smt)− λ

]
/σν

)
.

In essence, the equilibrium strategies are approximated by the weighted average of pseudo-

best response of past iterations. In terms of computation, this method is much easier than

calculating the �xed point of the best response system. Moreover, similar to the idea of the

IJC, as the number of MCMC iterations and the number of past iterations for approximating

the equilibrium strategies increase, the pseudo-best response function converges to the true

best response function, and the posterior parameter draws based on the pseudo-best response

functions converge to the true posterior distributions.

Basically, I combine the MH step with the FP step for a single iteration. I do not fully

solve for the equilibrium of the dynamic model but use the results from previous MCMC

iterations. This spirit is similar to Aguirregabiria and Mira (2007)'s nested pseudo likelihood

method that gradually updates the equilibrium probabilities and recursively obtains the

estimators.

Non-Parametric Approximation of Value Function

To compute the value function at a given state point, the conventional estimation methods

iterate the Bellman operator until convergence. It is computationally di�cult for relatively

complicated models. The IJC proposes a nonparametric kernel approach to approximate the

expected value function using the weighted average of pseudo-value functions of most recent

iterations. Unlike conventional approaches, in which value functions need to be computed at

all or a subset of pre-determined grid points in all periods (e.g., Rust 1997), the IJC algorithm
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computes pseudo-value functions at only one randomly drawn state point in each period, and

the integration of the continuation value with respect to continuous state variables can simply

be done by the weighted average of past pseudo-value functions. Thus, it has the potential

to reduce the computational burden.

One issue in applying the IJC algorithm to the current model is that it is a �nite-period

model which is non-stationary; however, the original IJC algorithm applies to stationary

dynamic programming problems. Following the same idea as in Ishihara and Ching (2011), I

compute and store the pseudo-value functions for each period, and approximate the expected

value functions in period t using the set of pseudo-value functions in period t+ 1.

For consumers, the value function at state (smt,pmt) in iteration k is approximated as

Ĝ
(k)
it (smt,pmt, θ) =

N(k)∑
n=1

G
(k−n)
it (smt,pmt, θ

∗(k−n))× Kh(θ − θ∗(k−n))∑N(k)
n=1 Kh(θ − θ∗(k−n))

, (17)

where Kh(·) is a multivariate kernel with bandwidth h > 0, and G
(k)
it (smt,pmt, θ) is con-

sumer's pseudo-value function at state (smt,pmt) conditional on that all software �rms play-

ing the equilibrium Ψ̂(k)

G
(k)
it (smt,pmt, θ) = ln{

∑
j∈Jmt

exp(xjtψ − ϕipjt + ξjt)

+exp
(
βcÊ[G

(k)
it+1(smt+1, p̂

(k)
mt+1, θ) | smt,pmt, Ψ̂

(k), θ]
)
} (18)

The approximated value function given by equation (17) is the weighted average of the

pseudo-value functions of N(k) most recent iterations. IJC (2009) show that, as the MCMC

iterations and the number of past iterations for approximating the value functions increase,

the pseudo-value function converges to the true value functions, and the posterior parameter

draws based on the pseudo-value functions converges to the true posterior distributions.

Moreover, the convergence of the approximated value function to the true value function

requires that N(k)→∞ and k −N(k)→∞ as k →∞.
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A similar method applies to computing the software �rm's value function

V̂
(k)
jt (smt, θ) =

N(k)∑
n=1

V
(k−n)
jt (smt, θ

∗(k−n))× Kh(θ − θ∗(k−n))∑N(k)
n=1 Kh(θ − θ∗(k−n))

(19)

where V
(k)
jt (smt, θ) is the incumbent software �rm j' pseudo-value function at state smt con-

ditional on that all other software �rms playing the equilibrium Ψ̂(k):

V
(k)
jt (smt, θ) = max

p̃jt
πjt(smt, p̃jt, p̂

(k)
−jt) + βf Ê

[
V

(k)
jt+1(smt+1, θ) | smt, p̃rjt, Ψ̂(k), θ

]
. (20)

Store the solved best response functions (pseudo-best response functions), p
(k)
jt (smt, θ), and

the solved value functions (pseudo-value functions), V
(k)
jt (smt, θ) and G

(k)
it (smt,pmt, θ), for

future MCMC iterations.

Interpolation

However, to obtain the expected value functions in equation (18) and equation (20), we still

need to compute equations (17) and (19) for every possible point of the state space. Due to

the �curse of dimensionality�,21 it is computationally burdensome to achieve it even with the

nonparametric approximation method proposed above.

In the literature, the simulation and interpolation approach proposed by Keane and

Wolpin (1994) has been the most widely used for applications with �nite horizon problems

with large state spaces. This method obtains simulated-based approximations to the ex-

pected value function only at a (randomly chosen) subset of the state points every period,

and obtains the expected values at other points as the predicted values from a regression

function which is estimated from the points in that subset.

In the spirit of Keane and Wolpin's method, I propose a new procedure to deal with the

large state space problem. In the �rst step, I randomly choose a subset of the state points

21The number of possible state vectors grows geometrically in the number of agents and exponentially in
the number of states per agent. For example, if we have N agents, K state variables each taking on M
distinct values, then the number of possible state vectors for each agent is (KM)N .
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every period, and obtain the values at those points with the non-parametric approximation

approach described above. Next, I interpolate the value functions with a quadratic-in-states

polynomial approximation in that subset. Lastly, for each current state, I simulate a next-

period-state using the approximated equilibrium strategies, and then use the predicted value

at that simulated next-period-state as the continuation value. In practice, I simulate the

next-period-state for a �nite number of times and then take the average of the predicted

values. This estimation procedure is similar to Pakes and McGuire (2001) where they never

attempt to obtain accurate policies on the entire state space, just on a recurrent class of

points.

This procedure signi�cantly alleviates the computational burden and makes it possible

to estimate models with very large state spaces and rich structure. However, we also should

notice that estimators of structural parameters are not consistent as long as interpolation is

used, because the approximation errors in the expected value functions enter non-linearly in

optimization problems.22

Recall that the state vector in the model includes the availability and characteristics of

each software product in a submarket, and the distribution of remaining consumers of each

type. In addition, consumers can also observe the price of each software product in the

submarket. Among those state variables, the product characteristics evolves exogenously

and deterministically; the consumer distribution evolves deterministically depending on con-

sumers purchase choices; the software product availability depends on all potential entrants'

entry choices up to the previous period; and the software price is chosen by incumbent soft-

ware �rms based on the state vector. In terms of computation, it is extremely di�cult and

even impossible to include all of those state variables. Hence, I characterize each agent's

state vector as follows.

Consumers trace the time periods to the end, the number of software products available

22Note that approximation error in the expected value function is not the only source of potential inconsis-
tency, for example, discretization of continuous variables, approximate convergence of the Bellman operator
in in�nite horizon problems and others.
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for purchase, the distribution of remaining consumers of each type, his/her own mean utility

from the top-ranked software product, and the average of his/her mean utility from all

existing products. Incumbent software �rms trace the time periods to the end, the number

of software competitors in the same submarket, the distribution of remaining consumers of

each type, consumer's valuation of the top-ranked product, and consumer's valuation about

its product. Potential entrants trace almost the same variables as incumbents do. The only

di�erence is that they trace the expected value of new product instead of the value of its

own product.

Computing ζlt and ξjt

Once we obtain the consumer's continuation values, we can compute each consumer's prob-

ability of purchasing from equation (4) and then the predicted demand of each product.

To obtain the likelihood contribution of demand in equation (12), I update the aggregate

demand shocks based on the expression,

ξ
(k)
jt = ξ

(k−1)
jt + ln(q̃jt)− ln

(
q
(k)
jt (smt, θ)

)
,

where q̃jt is the units sold observed in the data and q
(k)
jt (smt, θ) is the predicted quantity

using the demand shocks of the (k − 1)th iteration, ξ
(k−1)
mt . This procedure is similar to

the inversion proposed by BLP (1995). The main di�erence is that, unlike BLP, consumers

in this paper maximize inter-temporal utility, implying that the corresponding aggregate

demands, qjt(smt, θ), are a function of the consumer's value of waiting each period. Another

di�erence is that, unlike BLP which iterates the aggregate demand shocks until convergence

for any given parameter vector, I update it only once during each MCMC iteration. A similar

procedure applies to computing the aggregate demand shocks of hardware, ζlt, given by

ζ
(k)
lt = ζ

(k−1)
lt + ln(Q̃lt)− ln

(
Q

(k)
lt (St, θ)

)
.
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5 Estimation Results

5.1 Econometric Details

Consumer Heterogeneity. For simplicity but without loss of generality, I assume two

consumer types who have di�erent sensitivity to price: high-type consumers and low-type

consumers.23 At the outset, it is necessary to choose an initial number of consumers, N0.

Once this is pinned down, the future distribution of each consumer type is determined

by the consumer purchase decisions of hardware and software. In particular, consumers'

purchase decision of software in a submarket determines the number of consumers remaining

for the next period, and their purchase decision of hardware determines the number of new

consumers who enter the software market next period. In this paper, I set N0 to 100 million.

Discount Factors. Previous literature has noted that it is di�cult to estimate discount

factors, so I do not attempt to estimate the discount factors for consumers and software �rms

(βc and βf ). Instead, I set the discount rates to 0.95, which is lower than the monthly interest

rate. However, previous studies in experimental and behavioral economics have found that

the discount factor is lower than the interest rate.

Prior Distribution. In order to estimate the model it is necessary to specify the prior

distribution for the parameters to be estimated. Consumer preference to product characteris-

tics (ψ and γ) and consumer sensitivity to price (ϕi and αi) follow normal distributions with

means of zero and large standard deviations. The initial share of high-type consumers (δ)

follows a uniform distribution on the interval [0,1]. To guarantee that cost parameters and

standard deviations are non-negative, their prior distributions are log-normal with means of

zero and large standard deviations.

23The number of customer types (I) should be determined by adding types till one of the type sizes is not
statistically di�erent from zero (Besanko et al. 2003). Nair (2007) says that the estimates for the three-type
model yielded several insigni�cant parameters and thus he presented the estimates for the two-type case.
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Initial Guess of Equilibrium Strategies and Value Functions. To compute the ini-

tial guess for consumer value functions and incumbent value functions I assume that both

consumers and software �rms are myopic. The initial guesses for product prices are the

predicted values from a hedonic regression of price on state variables. I compute the initial

guess of the entry probability based on the initial value functions.

5.2 Posterior Statistics

I draw 100,000 samples from the posterior distribution and use the last 50,000 samples to

derive the posterior means and standard deviations. The last 50,000 samples are reported

in Table 2. I also compute the posterior means and standard deviations from the last 25,000

samples. The �ndings in the two sets of samples are not statistically di�erent. I repeat this

procedure several times and �nd that the posterior statistics are robust to initial values of

parameters that are drawn from their prior distributions. I conclude that the samples I use

to compute the posterior statistics are drawn from a stable distribution.

The estimates in the consumer utility function of hardware are consistent with our ex-

pectation. High-type consumer price sensitivity to hardware is 0.018 and low-type consumer

price sensitivity to hardware is 0.064. The numbers are positive because they enter the util-

ity function as a negative term. Consumers obtain higher utility from purchasing consoles in

November or December, probably because consoles are good gifts during the holiday season.

High-type consumers correspond to 14.6 percent of the potential market at the beginning of

the console lifecyle.

The estimates in the consumer utility function of software are consistent with our ex-

pectation. Nintendo 64 games generate the highest utility because the console is more

technologically advanced than the other two. Consumers favor the games with high online

ratings, and consumers dislike games that have been in the market for a long time, partly

because most sports games are designed based on the latest tournaments. Consumers obtain

higher utility from purchasing games in November or December, probably because they can
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spend more time playing games during holiday season. High-type consumer price sensitivity

to software is 0.014 and low-type consumer price sensitivity to software is 0.051.

Table 2: Posterior Means and Standard Deviations

Last 50,000 Samples Last 25,000 Samples

Mean Std dev Mean Std dev

Block 1: Demand for Hardware

α1 (H-type consumer price sensitivity) 0.018 0.004 0.018 0.003

α2 (L-type consumer price sensitivity) 0.064 0.015 0.064 0.012

γNov (Nov. dummy) 0.745 0.217 0.746 0.219

γDec (Dec. dummy) 2.405 0.903 2.399 0.903

σζ (std of hardware demand shocks) 0.105 0.581 0.106 0.612

δ (initial share of H-type consumers) 0.146 0.093 0.146 0.093

Block 2: Demand for Software

ψN64 (dummy for N64 games) 1.544 0.343 1.537 0.074

ψ1 (online rating score of games) 0.169 0.090 0.171 0.068

ψ2 (game age if new) -0.333 0.097 -0.341 0.023

ψ3 (game age if old) -0.189 0.062 -0.193 0.033

ψNov (Nov. dummy) 0.239 0.074 0.241 0.041

ψDec (Dec. dummy) 0.672 0.206 0.675 0.188

ϕ1 (H-type consumer price sensitivity) 0.014 0.005 0.014 0.002

ϕ2 (L-type consumer price sensitivity) 0.051 0.023 0.052 0.017

σξ (std of software demand shocks) 2.739 0.107 2.742 0.050

Block 3: Software Pricing

cSaturn (unit cost of games for Saturn) 14.652 2.176 14.774 2.322

cPS1 (unit cost of games for PS) 10.755 1.601 10.731 1.325

cN64 (unit cost of games for N64) 18.458 1.629 18.523 1.726

σς (std of price error) 0.879 0.220 0.895 0.154

Block 4: Software Entry

λSaturn (mean of entry cost to Saturn) 4.717 0.428 4.7292 0.170

λPS1 (mean of entry cost to PS) 3.663 0.505 3.700 0.417

λN64 (mean of entry cost to N64) 4.613 0.142 4.614 0.086

σν (std of entry cost shocks) 2.487 0.119 2.493 0.105

The cost per unit is $14.7, $10.8 and $18.5 for games released for Saturn, PS and N64,

respectively. As Coughlan (2001) reported, the production and packaging cost for 32-bit

CD-ROM games is around $1.5 per disc. Therefore, the royalty fees charged by Sega and

Sony were around $13.2 and $9.3 per copy sold. The unit cost of N64 games is much higher

than Saturn games and PS games because Nintendo used ROM cartridges to store games,
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so their production expense was much higher than the production expense for the compact

disc format that competitors used.

The average entry cost of Saturn games, PS games and N64 games are $4.7 million,

$3.7 million and $4.6 million, respectively. The standard deviation of entry cost is $2.5

million. Saturn games' research and development cost was on average signi�cantly higher

than PS games, partly due to Saturn's dual-CPU architecture and more complex graphics,

even though both Sega and Sony adopted very similar technology.24

5.3 Numerical Solution

To examine the �t of the model, I treat the posterior means of the last 50,000 samples

as the estimated values of the parameters and numerically solve the model by using the

approximation method described in the previous section. The algorithm is programmed in

Fortran 95 and converged smoothly for those parameters. The convergence of the numerical

solution indicates the existence of a unique equilibrium at those parameter values.25 However,

it is possible that multiple equilibria exist for other parameter values.

I now compare the predicted values to those observed in the data. Figure 6 (a) compares

the predicted and the observed number of console owners. Figure 6 (b) compares the pre-

dicted and the observed cumulative sales of sports games. Overall, the model �ts the data

very well.

24See http://en.wikipedia.org/wiki/Sega_Saturn#cite_note-16. �One very fast central processor would
be preferable. I don't think all programmers have the ability to program two CPUs�most can only get
about one-and-a-half times the speed you can get from one SH-2. I think that only 1 in 100 programmers
are good enough to get this kind of speed [nearly double] out of the Saturn. � �Yu Suzuki re�ecting upon
Saturn Virtual Fighter development.

25Generally speaking, it is di�cult to analytically prove the existence and uniqueness of a MPE in pure
strategy for dynamic oligopoly models. I have proved that, under some restrictions, there exists a unique
equilibrium in pure strategy for a dynamic oligopoly pricing model with forward-looking consumers. Yet it
is extremely hard to go further to show the equilibrium existence for this model which also contains software
�rms' dynamic entry and consumers' self-selection to platforms. Without analytical solutions, I am unable
to formally state whether an equilibrium exists and whether it is unique.
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Figure 6: Actual vs. Fitted Accumulative Sales of Consoles and Games

(a) Sega Saturn
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(b) Sony PlayStation
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(c) Nintendo 64
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Note: Solid lines represent actual data. Dashed lines are �tted values.

Figure 7 (a) compares the predicted and the observed prices across all sports games

at each game's age, or months since the game's introduction. The �gure indicates that the
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proposed model is able to explain the declining pattern of game price. However, the predicted

price does not drop as quickly the observed price. One possible reason is that the model

does not consider the second-hand market that contributes to the declining game price in

the data. Figure 7 (b) compares the predicted and the observed unit sales across all sports

games at each age. The �gure shows that the model �ts the data very well.

Figure 7: Actual vs. Fitted Game Price and Unit Sales in Age
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Note: Solid lines represent actual data. Dashed lines are �tted values.

6 Counterfactual Simulations

In this section, I make use of the recovered parameters in the demand and supply model

to conduct counterfactual exercises. The goal is to explore what contributed to the Sega

Saturn's failure. To be more speci�c, would Sega have survived if it had taken alternative

options such as charging lower console prices or subsidizing software entry in its initial stage?

In the �rst counterfactual exercise, I examine what would happen if Sega had lowered

its console prices by $100 for the �rst two years. The second counterfactual exercise looks

at whether Sega would have survived if it had reduced game producers' entry cost. In each

scenario, I change Sega's entry fee and simulate both the number of console owners and

the number of associated games. This approach might be doubted because the competing

platforms would react to the change. Unfortunately, this paper does not focus on the pricing
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competition among platforms. As a result, I do not know competing platforms' best response

functions. However, the simulation results of changing one platform and �xing the others

still shed some light on how a platform's prices a�ect that platform's formation process. The

simulation quantitatively measures how responsive consumers and software �rms are to a

platform's introductory prices.

6.1 Lowering Console Price

Figure 2 (a) presents the prices of the three �fth-generation consoles in every month during

the sample period. Console prices were generally declining over time. The �gure also shows

that Sega's console prices were $100 higher than competitors' prices at the same age for the

�rst two years. A high console price discouraged consumer entry and hence software entry.

It is speculated that this contributed to Sega's failure. In this counterfactual, I consider

what would happen if Sega had reduced its console prices by $100 for the �rst two years.

The goal is to investigate whether Sega could have survived if it had charged lower prices to

consumers. The simulated results are reported in Table 3.

Table 3: Results of Counterfactural 1: Lowering Sega's Console Price

Observed Data Counterfactual

Sega Saturn:
Hardware owners (2/2002, m) 1.28 9.71
Software accumulative units sold (2/2002, m) 2.11 16.02
Sony PlayStation:
Hardware owners (2/2002, m) 28.25 20.95
Software accumulative units sold (2/2002, m) 75.97 59.60
Nintendo 64:
Hardware owners (2/2002, m) 17.17 14.91
Software accumulative units sold (2/2002, m) 27.84 21.65

With the proposed price schedule for Sega, the number of Sega console owners would

increase by around 8 million at the end of the sample period (February 2002), and its

cumulative sports game sales would increase by around 14 million units. Because the $100
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price reduction is not a negligible number, the impact on consumer adoption of hardware

and software sales are considerably large. In one-sided markets, the responsiveness of the

quantity demanded to a price change depends on consumers' elasticity. However, in two-

sided markets, the responsiveness of the quantity demanded not only depends on consumers'

elasticity on the good but on the strength of the indirect network e�ects. For example, a

lower console price attracts new users and hence new games; games attract extra new users,

and so on. When consumers are very sensitive to hardware price and game producers highly

value the installed base of users, a change in the hardware price would have a huge impact.

However, when consumers are inelastic and game producers do not value the installed base

as much, the impact of a change in the hardware price would not be that big.

Due to the lower console price, Sega would lose $421.5 million on the console side of the

market. However, the increased sales of the sports games would lead to an extra $183.61

million in royalty fees from the game producers. Since I only know the increased royalty

fees from the sports games, the total net gain from this subsidy package is unknown. If

non-sports games behave the same way as the sports games, then the increased royalty fees

from all games would be scaled up to 831.44 ( = 183.61*240/53 ) million dollars26. As a

result, the total net gain would be $409.94 million. Therefore, reducing the console price in

the initial stage would be very e�ective in promoting Sega's platform size and increasing its

pro�t.

Sony PlayStation would su�er from Sega's lower console price strategy. PlayStation's

installed base of users would decrease by around 7 million, and its accumulated sports game

sales would decrease by around 16 million. Nintendo 64 would not be a�ected as much.

PlayStation technology and entry time were almost the same as Saturn's, and therefore was

the main rival of Saturn. However, N64 was more technologically advanced and entered the

market one and a half years later than Saturn, and hence was not Saturn's direct competitor.

26The sample contains 240 Saturn games in total among which 53 games are sports games.
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6.2 Subsidize Software Entry

The estimates of the entry costs of the game producers to the three platforms are considerably

di�erent from each other. Saturn's entry cost for games is on average signi�cantly higher

than PS games. High entry cost discourages software entry and thus discourages consumer

entry. In this counterfactual, I consider what would happen if Sega had given game producers

a subsidy of $1 million per game title. Even though a software producer's entry cost does not

directly go to platform providers' pockets, platforms can still strategically in�uence these

software entry fees, either by o�ering easier-learning development technology or by directly

subsidizing software research and development.

Table 4: Results of Counterfactural 2: Lowering the Entry Cost of Sega Games

Observed Data Counterfactual

Sega Saturn:
Hardware owners (2/2002, m) 1.28 4.73
Software accumulative units sold (2/2002, m) 2.11 7.36
Sony PlayStation:
Hardware owners (2/2002, m) 28.25 24.78
Software accumulative units sold (2/2002, m) 75.97 68.34
Nintendo 64:
Hardware owners (2/2002, m) 17.17 16.08
Software accumulative units sold (2/2002, m) 27.84 25.22

Table 4 reports the simulation results. Sega would attract 12 new sports games. This

requires Sega pay a $65-million subsidy to the producers of sports games. Sega's hardware

users would increase by around 3.46 million at the end of the sample period, and its cumu-

lative sports game sales would increase by around 5.25 million. The increased sales of sports

games would generate $69.3 million in royalty fees for Sega. As a result, this subsidizing

package would generate a net gain of $4.3 million from the sports games. If non-sports games

behave the same as sports games, then the total net gain would be scaled up to 19.47 ( =

4.3*240/53 ) million dollars. Therefore, subsidizing software entry would not help Sega very

much. This result indicates that when compared to the high console prices to consumers,
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the high entry cost to software �rms was not the main cause of Sega's failure. This might

be because software �rms were not as sensitive to entry costs, or because consumers did not

value software variety as much, or both.

Under this counterfactual, PlayStation's console owners would decrease by around 3.47

million and its cumulative sports game sales would drop by around 7.63 million. Nintendo

64 would not su�er very much.

7 Concluding Remarks

In this paper, I present a dynamic structural model to study consumers' demand for hardware

and associated software, and software �rms' entry and pricing decisions. I examine Sega's

alternative strategic options such as reducing its console prices for the �rst two years or

subsidizing software entry. For each alternative option, I simulate the number of participants

and Sega's revenue. The results show that Sega would have survived if it had reduced console

price by $100 in the launching stage, and that subsidizing software entry would not have

helped Sega walk out of the death spiral.

This paper provides a framework to structurally model a two-sided market, especially

a hardware-software market. On the consumer side, the value of a hardware platform de-

pends on the expected value of optimally purchasing software products associated with that

platform. Moreover, the number of potential buyers for a software product depends on the

number of users who have adopted the compatible hardware. The demand system of the

model accounts for dynamic selection of forward-looking and heterogeneous consumers into

platforms for a�liated software products, and allows for the contingency of platforms' value

on the availability and prices of the a�liated products. By incorporating the complementar-

ity between hardware and software, I am able to examine the e�ects that subsidizing entry

of the software side has on consumer entry to a platform.

On the software side, software producers compete within a submarket. Incumbents choose
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their prices, and potential entrants choose whether to enter. Potential entrants strategically

account for competitor reactions and consumer responses. I have investigated the impacts

that subsidizing entry on the consumer side has on software producers' entry and price

choices. Counterfactual experiments demonstrate that lowering console price has signi�-

cantly increased consumer entry and therefore software entry.

This paper also develops a practical Bayesian MCMC procedure for structural estimation

of dynamic models. I use the outcomes from past MCMC iteration to approximate each

agent's equilibrium strategy and value function for the current draw of parameter vector.

This estimation procedure signi�cantly reduces computational burden. To avoid computing

the value function at all possible points of the state space, I combine the nonparametric

approximation method and interpolation method. I also implement the estimation procedure

to estimate a dynamic model in the video game market. The estimation procedure can be

used to estimate other dynamic models, especially those with unobserved heterogeneity and

large state space.
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A Substitution of the Software Market

In this paper, I assume that software products in the same submarket are substitutable and

submarkets are separate from each other. Below I specify three di�erent regression models

to test the substitution between sports games, and the results are presented in Table 5.

Table 5: Empirical Results of Testing Software Competition Structure

Model 1 Model 2 Model 3

price ($) ln(qjt) ln(qjt)

its own price -.0126∗∗∗ -.009∗∗∗

(.0019) (.002)

competition in the same submarket -.148∗∗ -.0359∗∗∗ -.219∗∗∗

(.060) (.0045) (.019)

competition from other submarkets -.011 .0002 -.012

(0.066) (.0004) (.024)

online rating score 1.417∗∗∗ .3419∗∗∗ .261∗∗∗

(.047) (.0099) (.010)

product age (months) -1.141∗∗∗ -.1988∗∗∗ -.199∗∗∗

(.015) (.0099) (.004)

age square .013∗∗∗ .0015∗∗∗ .002∗∗∗

(.002) (.0000) (.000)

market size (million) 3.353∗∗∗ .2438∗∗∗ .803∗∗∗

(.088) (.0466) (.034)

R-square 0.68 0.63 0.53

observations 13779 13024 12794

Notes: ∗ indicates signi�cance at 10 percent level; ∗∗ indicates signi�cance at 5 percent level; and
∗∗∗ indicates signi�cance at 1 percent level.

In the �rst regression, the dependent variable is a game's price and the independent

variables include: (i) the competition level within a submarket measured by the number of

existing games in the same market; (ii) the competition from other submarkets measured by

the number of existing games in all other submarkets; (iii) observed characteristics including

the online rating score and the game age measured by the months after release; (iv) the

market size measured by the log of the console owners; and (v) monthly dummies. The �rst

important result is that the price of an existing game is lower by $0.148 if additional game is

released in the same submarket and this impact is statistically signi�cant. It implies that the
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competition within a market is strong. The second important result is that the competition

e�ect from other submarkets is not statistically signi�cant, which implies that submarkets

are separate from each other. Besides, the game price is increasing in its online rating score,

declining in its age and increasing in the number of console owners.

In the second regression, the dependent variable is the log of a game's unit sales (measured

in thousands). The independent variables are the same as in the �rst model except that I

include an extra independent variable, the current price. To address the endogeneity of the

price, I use the lagged price as an instrument for the current price. The third column in table

5 lists the estimation results which are consistent with the assumption of strong competition

within a market and weak competition across markets.

The last regression mimics Nair (2007).27 I still use the log of a game's unit sales as the

dependent variable. However, I use the log of the total unit sales of all existing games in

the same submarket to measure the competition level within a submarket, and the log of

the total unit sales of all existing games in other submarkets to measure the competition

e�ect from other submarkets. To address the endogeneity problem, I use the lagged price as

an instrument for the current price, the number of existing games within the a submarket

as an instrument for the within-submarket sales, and the number of existing games in other

submarkets as an instrument for the outside-submarket sales. The results also show that

the substitution e�ect within a submarket is strong while the substitution from games sold

in other markets is insigni�cant.

27In Nair (2007), the dependent variable is ln(sjt/s0t), where sjt is the market share of game j and s0t is
the share of the outside good. He uses ln(sjt|g/s0t) to measure the e�ect within a market, where sjt|g is the
share of units sales of the game within its genre, g. He �nds that the substitution e�ect from other games
with the same game genre is not signi�cant, and thus he concludes that video games are separate from each
other.
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B Computation

B.1 Jacobian Matrix

The Jacobian Matrix in equation (12) is

J(qmt→ξmt) ≡‖ ∇ξmtqmt ‖=


∂q1t/∂ξ1t ... ∂q1t/∂ξJt

...
. . .

...

∂qJt/∂ξ1t · · · ∂qJt/∂ξJt


with

∂qjt
∂ξlt

=


−
∑I

i=1 nmit

[
bijtbilt + βcbijtbim0t

∂EGmit+1

∂ξlt

]
if l 6= j∑I

i=1 nmit

[
bijt(1− bijt) + βcbijtbim0t

∂EGmit+1

∂ξjt

]
if l = j

Here, bim0t = 1−
∑

j∈Jmt
bijt is the probability of not purchasing. Notice that ∂EGmit/∂ξjt and

∂bim0t/∂ξjt are determined by the following system of equations:


∂EGmit+1

∂ξjt
=
∑

l
∂EGmit+1

∂nmlt+1
nmlt

∂bim0t

∂ξjt
for all i

∂bim0t

∂ξjt
= −bijtbim0t + βcbim0t(1− bim0t)

dEGmit+1

dξjt
for all i

In the application part, I only assume two types of consumers. So, the above system includes

four linear equations and four unknowns. It is not hard to solve for ∂EGmit/∂ξjt for all i.

B.2 Best Response in Price

An incumbent software �rm's problem is to pick a price to maximize the discounted pro�t:

max
p̃jt

πj(p̃jt, p−jt, smt) + βfE [Vjt+1(smt+1) | smt, p̃jt,Ψ−j] ,
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with

πj(pjt, p−jt, smt) = (pjt − c)

[∑
i

nmitbij(pjt, p−jt, smt)

]

bij(pjt, p−jt, smt) =
exp(xjtψ − ϕipjt + ξjt)

exp[βcEGit+1(pmt+1, smt+1 | pjt, p−jt, smt)] +
∑

j∈Jmt
exp(xjtψ − ϕipjt + ξjt)

.

Below I show how to compute the marginal e�ect of current price on software �rms' con-

tinuation values. Take an incumbent j's continuation value, E [Vjt+1(smt+1) | smt, p̃jt,Ψ−j],

for example. The state vector smt includes the number of existing games in the same sub-

market, the number of active high-type consumers, the number of active low-type con-

sumers, the value of the No. 1 product in the same submarket, and its own consump-

tion value. Notice that given competitors' prices and entrants' entry probabilities, a soft-

ware's current price only a�ects the number of next-period active consumers but not other

next-period state variables. The number of next-period active consumers is the sum of

the number of consumers who do not make any purchase today and the number of new

consumers: nmit+1 = nmitbm0it + Qmit, from which we can obtain the analytical form of

∂smt+1(pjt, p−jt, smt)/∂pjt. Furthermore, along the estimation procedure, I approximated the

value functions Vjt+1(smt+1) by using polynomial regression in state variables. Therefore, I

can pin down how current price a�ects the expectation of the next-period value function.

A similar approach can be applied to computing the marginal e�ect of current price on

consumers' continuation values.
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