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New Non-Linearity Test to Circumvent the Limitation of

Volterra Expansion

Abstract:

In this article we propose a quick, efficient, and easy method to detect whether a time

series Yt possesses any nonlinear feature. The advantage of our proposed nonlinearity test

is that it is not required to know the exact nonlinear features and the detailed nonlinear

forms of Yt. Our proposed test could also be used to test whether the model, including

linear and nonlinear, hypothesized to be used for the variable is appropriate as long as

the residuals of the model being used could be estimated. Our simulation results show

that our proposed test is stable and powerful while our illustration on Wolf’s sunspots

numbers is consistent with the findings from existing literature.

Keywords: linearity, nonlinearity, U-statistics, Volterra expansion

1 Introduction

It is well-known that nonlinearity is always observed in many time series like natural data

and economic and financial time series, including some benchmark datasets such as the

sunspot, Canadian lynx (Tong, 1990, 1995; Tjostheim, 1994), and inflation rate (Engle

1982). In practice, nonlinearity is common in both stationary or non-stationary time

series. Nevertheless, detecting nonlinearity in time series is very important because very

often academics and practitioners have to know this feature in the data before conducting

their analysis. For example, Fourier analysis assumes the time series to be linear and

stationary while, on the other hand, the wavelet analysis is raised for linear but nonsta-

tionary. Thus, before academics and practitioners apply Fourier analysis and/or wavelet

analysis in their work, they have to examine whether there is any nonlinearity in the time

series. This is only one of the many reasons why testing for nonlinearity is one of most

important issues in time series analysis. There are many works on this area for stationary

and nonstationary time series. In this paper we focus on developing a nonlinearity test for

a stationary time series, which is often ignored by academics and practitioners especially

in applied science such as finance and economics.
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It is a growing interest in the testing, estimation, specification, and developing proper-

ties for nonlinearity for decades. Nonlinear features include asymmetric cycles, nonlinear

relationship among the variables being studied and their lags, time irreversibility, sen-

sitivity to initial conditions, and others. There are infinitely many nonlinear forms to

be explored. The early development of nonlinear time series analysis focused on various

nonlinear parametric forms (Tong, 1990; Tjotheim, 1994), including the ARCH-model

(Engle, 1982; Bollerslev, 1986) and the threshold model (Tong, 1990; Tiao and Tsay,

1994). On the other hand, developments in nonparametric regression techniques provide

an alternative to model nonlinear time series (Tjotheim, 1994; Yao and Tong, 1995 a,b;

Härdle, Lütkepohl, and Chen 1997; Masry and Fan, 1997). Nonetheless, the most general

form of a nonlinear stationary process is the Volterra expansion.

In particular, various tests for linearity have been proposed to illustrate the nonlinear

nature of certain well-known processes (Subba Rao & Gabr, 1980; Hinich, 1982; Maravell,

1983; Hinich & Patterson, 1985) and to support the need for nonlinear time series models

(Granger & Andersen, 1978). Keenan (1985) adopts the idea of Tukey’s (1949) one degree

of freedom test for nonadditivity to derive a time-domain statistic, as an alternative

of the frequency-domain statistics, for example, bispectrum, for discriminating between

nonlinear and linear models. Keenan’s test is motivated by the similarity of Volterra

expansions to polynomials. Tsay (1986) improves Keenan’s test and obtains a more

powerful test.

Since the number of parameters of the nonlinearity part could be very large, this could

affect the performance of the existing nonlinear tests. In addition, nonlinearity may occur

in many and could be infinitely ways. The advantage of our proposed nonlinearity test

is that it is not required to know the exact nonlinear features and the detailed nonlinear

forms of a time series. Under the null hypothesis of linearity, residuals of an appropriate

linear model should be independent, in this paper we use this idea to develop a new

nonlinearity test to check whether there is any nonlinearity in a time series. As a nonlinear

phenomenon is typically more complex and more difficult to model than a linear one, so

it is not reasonable to restrict the form of nonlinearities. The objective in this paper is to

circumvent the limitation of Volterra expansion or other similar approaches that result in
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many parameters in the estimation by developing a new method to test the nonlinearity

for a time series that do not involve many parameters.

We note that our test could not only be used to detect any nonlinearity for the variable

being examined. Our test could also be used to test whether the hypothesized model,

including linear and nonlinear, to the variable being examined is appropriate as long as

the residuals of the model being used could be estimated. We will discuss this feature

more in the conclusion section.

The result of our simulation shows that Tsay’s test is more powerful than our proposed

test in a region while our test is more powerful in another region. We note that this finding

is not surprised because nonlinearity may occur in many ways and thus there may not

exist any single test that could dominate the others in detecting nonlinearity. However,

our simulation shows that our proposed test has three desirable features when comparing

with Tsay’s test: our proposed test is more stable, the power of our proposed test increases

while that of Tsay’s test could decrease when the magnitude of parameter increases, and

the power of our proposed test reaches one quickly while that of Tsay’s test could not

reach one when the magnitude of parameter increases. Thus, the result of our simulation

supports our claim that our proposed test is a more desirable test.

At last, we apply both Tsay’s test and the nonlinearity test we developed in this paper

to test whether there is any nonlinear feature in the sunspots data, one of the most typical

nonlinear cases. Our findings show that both our proposed test and Tsay’s test draw the

same conclusion that there exists nonlinearity in the Wolf’s sunspots numbers.

The remainder of the paper is organized as follows. In Section 2, we first discuss the

Volterra expansion and state the nonlinearity test developed by Tsay (1986). Thereafter,

we develop our proposed new nonlinearity test to circumvent the limitation of Volterra

expansion. In Section 3, we illustrate the superiority of the nonlinearity test we developed

in Section 2 by conducting simulation to examine its performance over that of the test

developed by Tsay (1986). In Section 4, we illustrate the applicability of our proposed

nonlinearity test by applying it to examine whether there is any nonlinear feature in the

sunspots data and compare the result with Tsay’s test. Section 5 wraps up the paper by

providing several well-grounded observations.
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2 Theory

A purely stochastic time series model for Yt is a function of an independent and identically-

distributed (iid) sequence containing the current and past shocks; that is, Yt = f(εt, εt−1, · · · ).
If f(·) is a linear function of its arguments, the model is linear. On the other hand, if

there exists any nonlinearity in f(·), the model is nonlinear. One of the most commonly

used linear models is an ARMA process that could be presented as an MA representation

or AR equation (Box, Jenkins, and Reinsel, 1994).

A nonlinear phenomenon is typically more complex and more difficult to model than a

linear one, and the available tools are not comprehensive and ineffective. There are many

approaches, for example, parametric, semi-parametric, and nonparametric approaches, to

identify an appropriate form in nonlinear modeling. Also, there are several nonlinearity

tests available, which may be divided into two categories: portmanteau tests, which

test for departure from linear models without specifying alternative models, and the tests

designed for some specific alternatives. Recently, the tests that make use of nonparametric

and semiparametric fitting have received considerable attention. For example, Fan and

Yao (2003) introduce a likelihood ratio test for a linear model against a TAR alternative

with two regimes introduced by Chan and Tong (1990) and Chan (1990b). Although the

test is designed for a specified alternative, it may be applied to test for a departure to a

general smooth nonlinear function since a piecewise linear function will provide a better

approximation than that from a global linear function. In addition, Cox (1981) suggests

to use quadratic or cubic regression for testing nonlinearity. The tests could be parametric

or nonparametric statistics. The Ljung-Box statistics of squared residuals, the bispectral

test, and the Brock, Dechert, and Scheinkman (BDS) test are nonparametric methods.

The RESET test (Ramsey, 1969), the F tests of Tsay (1986, 1989), and other Lagrange

multiplier and likelihood ratio tests depend on specific parametric functions.

One of the most commonly used approaches is to apply Volterra expansion (Wiener,

1958; Brillinger, 1970) to expand a nonlinear and stationary time series, say, Yt, to be in

terms of the linear, quadratic, cubic, etc. such that

Yt = µ +
∞

∑

−∞

auεt−u +
∞

∑

u,v=−∞

auvεt−uεt−v +
∞

∑

u,v,w=−∞

auvwεt−uεt−vεt−w + · · · , (1)
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where {εt,−∞ < t < ∞} is a strictly stationary process of independent and identically

distributed random variables with mean zero.

If the null hypothesis of linearity is true, residuals of an appropriate linear model should

be independent. For example, if the model by using the linear and quadratic terms of

the Volterra expansion is the right model, any violation of independence in the residuals

reveals that the hypothesized model with the linearity assumption is not appropriate.

This is the basic idea used in the development of various nonlinearity tests.

2.1 Tsay’s F Test

Tsay (1986) develops a nonlinearity test based on the idea of using the Volterra expansion.

His test is popular and is well-known to have decent power on detecting nonlinearity in

a sequence, say, {Yt}. Thus, we first discuss his test in our paper. The null hypothesis is

that

H0 : there is no nonlinearity in the time series being examined. (2)

Readers may refer to Tsay (1986) for more details. The test mainly consists three steps:

Step 1: Regress Yt on {1, Yt−1, · · · , Yt−M} by least squares and obtain the residuals {êt},
for t = M + 1, · · · , T . The regression model is denoted by Yt = WtΦ + et, where

Wt = (1, Yt−1, · · · , Yt−M), M is a pre-specified positive integer, and T is the length

of sequence {Yt}.

Step 2: Regress the vector Zt on {1, Yt−1, · · · , Yt−M} and obtain the residual vector {X̂t},
for t = M + 1, · · · , T . Here, the multivariate regression model is Zt = WtH + Xt,

where Zt is an M∗ = 1
2
M(M + 1) dimensional vector defined by ZT

t = vech(VT
t Vt)

with Vt = (Yt−1, · · · , Yt−M) and vech denotes the half stacking vector. In other

words, ZT
t is obtained from the symmetric matrix VT

t Vt by the usual column stack-

ing operator and using only those elements on or below the main diagonal of each

column.

Step 3: Regress êt on X̂t and let F̂ be the F ratio of the mean square of regression to

the mean square of error. That is, fit êt = X̂tβ + εt, (t = M + 1, · · · , T ) and obtain
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the Tsay’s test by

F̂ = {(
∑

X̂têt)(
∑

X̂T
t X̂t)

−1(
∑

X̂T
t êt)/M

∗}/{
∑

ε̂2
t /(T − M − M∗ − 1)} , (3)

where the summations are over t from M + 1 to T .

Under the null hypothesis of linearity and for large T , the statistic F̂ follows approx-

imately a F -distribution with degrees of freedom 1
2
M(M + 1) and T − 1

2
M(M + 3) − 1.

Thus, for test level α, one could reject the null hypothesis of linearity if

F̂ > F(

1

2
M(M+1),T− 1

2
M(M+3)−1

)(α) . (4)

2.2 New Non-Linearity Test

The major drawback of applying the Volterra expansion is that the number of parameters

is too large. To circumvent the limitation, one could assume au, auv, and auvw in equation

in (1) to be functions of small numbers of parameters. However, the problem of this

approach is that we do not know the forms of “functions” and in fact, such “functions”

may not exist. Thus, in this paper we introduce another approach to circumvent the

limitation of the Volterra expansion of getting too many parameters. It is not necessary

to assume any form of nonlinear function for Yt for our proposed test. To identify any

nonlinearity of time series {Yt}, it is common that an AR model is used to remove any

serial correlation in the data (Tsay, 1986), and thereafter apply the nonlinearity tests to

the residual series of the model. In this paper we follow this suggestion to first fit the

following linear AR model like the first step in Tsay’s F test to identify its linearity:

Yt =

p
∑

i=1

φiYt−i + et , (5)

where εt ∼ WN(0, σ2) and WN stands for ‘white noise.’ After removing the linear compo-

nents in {Yt} by introducing the linear model in (5), we proceed to examine whether there

is any remaining incremental power from time t to the later time t + h in the residuals

sequence. If such power is identified, the model is concluded that there exists nonlinear

feature in the corresponding residuals, {êt}. We are using this concept to develop a non-

linearity test to the residual series {êt} of the variables being studied to examine whether
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there is any remaining nonlinearity in the residuals. For simplicity, we denote Yt to be

the corresponding residuals of the variable being examined. We first state the following

definition:

Definition 2.1 For any strictly stationary and weakly dependent series {Yt}, the m-

length lead vector of Yt is given by

Y m
t ≡

(

Yt, Yt+1, · · · , Yt+m−1

)

, m = 1, 2, · · · , t = 1, 2, · · ·

and Ly-length lag vector of Yt is defined as

Y
Ly

t−Ly
≡

(

Yt−Ly
, Yt−Ly+1, · · · , Yt−1

)

, Ly = 1, 2, · · · , t = Ly + 1, Ly + 2, · · · .

In addition, we define

Y
m+Ly

t−Ly
≡

(

Yt−Ly
, · · · , Yt−1, Yt, Yt+1, · · · , Yt+m−1

)

, Ly = 1, 2, · · · , t = Ly + 1, Ly + 2, · · · .

Series {Yt} does not possess any nonlinearity if and only if

Pr
(

‖Y m
t − Y m

s ‖ < e
∣

∣

∣
‖ Y

Ly

t−Ly
− Y

Ly

s−Ly
‖< e

)

= Pr (‖Y m
t − Y m

s ‖ < e) ,

where Pr(· | · ) denotes conditional probability and ‖ · ‖ denotes the maximum norm which

is defined as

‖X − Y ‖ = max
(

|x1 − y1|, |x2 − y2|, · · · , |xn − yn|
)

,

for any two vectors X =
(

x1, · · · , xn

)

and Y =
(

y1, · · · , yn

)

.

In addition, we define

C1

(

m + Ly, e
)

≡ Pr
(

‖ Y
m+Ly

t−Ly
− Y

m+Ly

s−Ly
‖< e

)

C2

(

Ly, e
)

≡ Pr
(

‖ Y
Ly

t−Ly
− Y

Ly

s−Ly
‖< e

)

C3

(

m, e
)

≡ Pr (‖Y m
t − Y m

s ‖ < e) .
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Because

Pr
(

‖ Y m
t − Y m

s ‖< e
∣

∣ ‖ Y
Ly

t−Ly
− Y

Ly

s−Ly
‖< e

)

=
Pr

(

‖ Y m
t − Y m

s ‖< e, ‖ Y
Ly

t−Ly
− Y

Ly

s−Ly
‖< e

)

Pr
(

‖ Y
Ly

t−Ly
− Y

Ly

s−Ly
‖< e

)

=
C1

(

m + Ly, e
)

C2

(

Ly, e
) ,

when one tests the existence of the nonlinearity of a sequence {Yt}, instead of testing the

linearity hypothesis stated in (2), one could test the following hypothesis:

H0 :
C1

(

m + Ly, e
)

C2

(

Ly, e
) − C3

(

m, e
)

= 0 . (6)

{Yt} is said to possess nonlinearity if the hypothesis H0 in (6) is rejected.

Under Definition 2.1, the nonlinearity test statistic is given by

√
n

(

C1

(

m + Ly, e, n
)

C2

(

Ly, e, n
) − C3

(

m, e, n
)

)

, (7)

where

C1

(

m + Ly, e, n
)

≡ 2

n(n − 1)

∑∑

t<s

I
(

y
m+Ly

t−Ly
, y

m+Ly

s−Ly
, e

)

,

C2

(

Ly, e, n
)

≡ 2

n(n − 1)

∑∑

t<s

I
(

y
Ly

t−Ly
, y

Ly

s−Ly
, e

)

,

C3

(

m, e, n
)

≡ 2

n(n − 1)

∑∑

t<s

I (ym
t , ym

s , e) , and

I(x, y, e) =

{

0, if ‖x − y‖ > e

1, if ‖x − y‖ ≤ e
.

Here, t, s = Ly + 1, · · · , T − m + 1, n = T + 1 − m − Ly, T is the length of sequence Yt.

The test statistic possesses the following property:

Theorem 2.1 For given values of m, Ly, and e > 0 defined in Definition 2.1 and

under the assumptions that {Yt} is strictly stationary, weakly dependent, and satisfies
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the conditions stated in Denker and Keller [13], if {Yt} does not possess any nonlinear

feature, then the test statistic defined in (7) is distributed as N
(

0, σ2(m,Ly, e)
)

asymp-

totically. When the test statistic in (7) is too far away from zero, we reject the linearity

null hypothesis defined in (2) or (6). A consistent estimator of the variance σ2(m,Ly, e)

follows:

σ̂2
(

m,Ly, e
)

= ∇̂f(θ)
T

· Σ̂ · ∇̂f(θ)
T

,

in which:

∇̂f(θ) =

[

1

θ̂2

,
−θ̂1

θ̂2
2

,−1

]T

=

[

1

C2

(

Ly, e, n
) ,−C1

(

m + Ly, e, n
)

C2
2

(

Ly, e, n
) ,−1

]T

,

each component Σi,j (i, j = 1, 2, 3), of the covariance matrix Σ is given by:

Σi,j = 4 ·
∑

k≥1

ωkE(Ai,t · Aj,t+k−1),

ωk =

{

1 if k = 1

2, otherwise
,

A1,t = h11

(

y
m+Ly

t−Ly
, e

)

− C1(m + Ly, e) ,

A2,t = h12

(

y
Ly

t−Ly
, e

)

− C2(Ly, e) ,

A3,t = h13 (ym
t , e) − C3(m, e) ,

where zt = Y
m+Ly

t−Ly
, and h1i(zt), i = 1, · · · , 3, is the conditional expectation of hi(zt, zs)

given the value of zt as follows:

h11

(

y
m+Ly

t−Ly
, e

)

= E
(

h1

∣

∣ y
m+Ly

t−Ly

)

,

h12

(

y
Ly

t−Ly
, e

)

= E
(

h2

∣

∣ y
Ly

t−Ly

)

,

h13 (ym
t , e) = E

(

h3

∣

∣ ym
t

)

.

Moreover, a consistent estimator of Σi,j elements is given by:

Σ̂i,j = 4 ·
K(n)
∑

k=1

ωk(n)

[

1

2(n − k + 1)

∑

t

(

Âi,t(n) · Âj,t−k+1(n) + Âi,t−k+1(n) · Âj,t(n)
)

]

,
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in which t = Ly + k, · · · , T − m + 1, K(n) = [n1/4], [x] is the integer part of x,

ωk(n) =

{

1, if k = 1

2
(

1 − [(k − 1)/K(n)]
)

, otherwise
,

Â1,t =
1

n − 1

(

∑

s 6=t

I
(

Y
m+Ly

t−Ly
, Y

m+Ly

s−Ly
, e

)

)

− C1

(

m + Ly, e, n
)

,

Â2,t =
1

n − 1

(

∑

s 6=t

I
(

Y
Ly

t−Ly
, Y

Ly

s−Ly
, e

)

)

− C2

(

Ly, e, n
)

,

Â3,t =
1

n − 1

(

∑

s 6=t

I
(

Y m
t , Y m

s , e
)

)

− C3

(

Ly, e, n
)

,

t, s = Ly + 1, · · · , T − m + 1 .

The hypothesis H0 is rejected at level α if
∣

∣

∣

∣

∣

√
n

(

C1

(

m + Ly, e, n
)

C2

(

Ly, e, n
) − C3

(

m, e, n
)

)
∣

∣

∣

∣

∣

> N
(α

2
; 0, σ̂2(m,Ly, e)

)

,

and, in this situation, Yt is concluded to possess nonlinearity.

3 Simulation

In this section, we illustrate the superiority of the nonlinearity test we have developed

in Section 2 by conducting simulation to examine its performance over that of the test

developed by Tsay (1986). For simplicity, we call the test developed by Tsay (1986) “Tsay

test” and the test developed in this paper “BHW test.”

As Volterra expansion in (3) is one of the most commonly used forms for a nonlinear

and stationary time series while threshold autoregressive model is another popular method

in nonlinear analysis, in this paper we will use the following two models in our simulation:

Model A : Yt = εt + βεt−1εt−2 , and

Model B : Yt =

{

−βYt−1 + εt Yt−1 ≥ 0

βYt−1 + εt Yt−1 < 0
, (8)

where {εt} is assumed to be iid N(0, 1) for both Models A and B and |β| < 1 for Model

B. Readers may refer to Tsay (1986) for more information about Model A and we modify
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a simple threshold autoregressive model in Fan and Yao (2003) to get Model B. Both

models are stationary, weakly dependent, and satisfy the conditions stated in Denker and

Keller [13] and thus we can use the test statistic defined in (7) to conduct our simulation.

We use 10000 replications to generate different samples in our simulation to examine the

performance of our test with Tsay’s test.

Let R be the times of rejection the null hypothesis that Yt does not possess any

nonlinearity in the 10000 replications at level 5% and the empirical power is then R
10000

.

To conduct simulation, we let Ly = m = 1 and e = 1.5 for the BHW test and let M = 4

for the Tsay’s F test, this is the same M used in Tsay (1986) in his simulations.

Figure 1: Empirical Power of the BHW Test for different values of β in Model A.
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Note: The solid line and dotted line show the power of the BHW Test for different values of β

in Model A for the sample size T = 100 and 200, respectively. Simulation is conducted with the
test level α = 5% and 10000 replications.

We first conduct simulation for the BHW test for the sample size T = 100 and 200 for

both Models A and B. The results are plotted in Figures 1 and 2, respectively. For Model

B, we only conduct simulation for β ≥ 0 due to the symmetry property of the model.

From both Figures 1 and 2, our findings show that (1) for both T = 100 and 200, our test

gets higher power when nonlinear feature weights more in absolute values, (2) for any β,

the empirical power increases as the length T increases, and (3) when T = 200, our test’s
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Figure 2: Empirical Power of the BHW Test for different values of β in Model B.
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Note: The solid line and dotted line show the power of the BHW Test for different values of β

in Model A for the sample size T = 100 and 200, respectively. Simulation is conducted with the
test level α = 5% and 10000 replications.

power quickly reach 1, inferring that our test is powerful and stable.

We turn to compare the power and size of our test with those of Tsay’s test for different

values of β in Models A and B as shows Figures 3 and 4 and Tables 1 and 2, respectively.

For Model A, we observe from Figure 3 and Table 1 that Tsay’s test is more powerful

than our proposed test for 0 < |β| < 1 whereas our proposed test is much more powerful

than Tsay’s test when |β| > 1. However, our simulation shows that (1) the empirical

power of Tsay’s test decreases sharply when |β| > 1 and (2) it decreases further when

the magnitude of |β| increases further after 1 and becomes stabilized at power below 0.4

when |β| > 2. On the contrary, the empirical power of our proposed test increases steadily

as nonlinear weight |β| increases, and quickly increases to 1 when the length T = 200.

This shows that our proposed test is more stable than Tsay’s test. For Model B, the

conclusion drawn from the results of our simulation are similar to those for Model A: (1)

Tsay’s test is more powerful than our proposed test when |β| < 0.65 while our proposed

test is more powerful afterward for both T = 100 and 200, and (2) the empirical power of

Tsay’s test decreases sharply when |β| > 0.65 and decreases further when the magnitude

12



Table 1: Powers of the BHW and Tsay tests for different values of β in Model A

T = 100 T = 200
β BHW test Tsay test BHW test Tsay test
-5 0.9018 0.2694 0.9996 0.3054
-4 0.8926 0.2667 0.9992 0.3157
-3 0.8462 0.2854 0.9971 0.3419
-2 0.7384 0.3403 0.9768 0.4467
-1 0.4199 0.5971 0.7473 0.8533
0 0.0367 0.0543 0.0395 0.0495
1 0.4205 0.5958 0.7475 0.8473
2 0.7248 0.3434 0.9765 0.4503
3 0.8475 0.2804 0.9966 0.3412
4 0.8885 0.2541 0.9987 0.312
5 0.9003 0.2641 0.9994 0.303

Simulation is conducted with the test level α = 5% and 10000 replications, sample

size T = 100 and 200. Model A is defined in (8).

of β increases further whereas the empirical power of our proposed test increases steadily

as β increases, and quickly increases to 1 for both T = 100 and 200. Thus, our proposed

test is more stable than Tsay’s test and is more powerful for large magnitude of β. We

note that because nonlinearity may occur in many ways, there may not exist any single

test that could dominate the others in detecting nonlinearity. Thus, we are not surprised

that Tsay’s test is more powerful than ours in a region while our test is more powerful in

another region. Nonetheless, to be stable is one of the most important features for a test

statistic and since our proposed test more stable than Tsay’s. In addition, the power of

our proposed test reaches one quickly when the magnitude of β increases is a desirable

property while the power of Tsay’s test is decreasing when the magnitude of β increases

is not a desirable feature. At last, from Tables 1 and 2, we notice that the size of our

proposed test is less than 5% while, in general, the size of Tsay’s test is more than 5% when

the level of significance is 5%. This infers that in general Tsay’s test slightly overreject

the null hypothesis whereas our proposed test slightly underreject the null hypothesis of

linearity when there is no nonlinearity. Underrejection the null hypothesis when the null

13



Table 2: Powers of the BHW and Tsay tests for different values of β in Model B

T = 100 T = 200
β BHW test Tsay test BHW test Tsay test
0 0.0318 0.0528 0.032 0.0525

0.1 0.037 0.0624 0.0385 0.068
0.2 0.0466 0.0908 0.0543 0.1335
0.3 0.0623 0.1401 0.0903 0.2714
0.4 0.1011 0.2251 0.169 0.4728
0.5 0.1786 0.3274 0.3418 0.6685
0.6 0.3285 0.4317 0.6307 0.8168
0.7 0.5802 0.5204 0.8992 0.8839
0.8 0.8544 0.5352 0.993 0.8963
0.9 0.9811 0.4395 0.9999 0.8004

Simulation is conducted with the test level α = 5% and 10000 replications, sample

size T = 100 and 200. Model B is defined in (8).

hypothesis is true is not a non-desirable property and thus, together with the features of

our proposed test we discussed before, we could claim that our test is a more desirable

test.
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Figure 3: Empirical Power of Tsay’s and BHW’s Tests for different values of β in Model
A.
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Note: The left panel shows the plot for the sample size T = 100 and the right panel displays
the plot for T = 200. The solid line exhibits the BHW’s test while the dashed line shows the
power of Tsay’s Test for different values of β in Model B. Simulation is conducted with the test
level α = 5% and 10000 replications.

Figure 4: Empirical Power of Tsay’s and BHW’s Tests for different values of β in Model
B.
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4 Illustration

In this section, we illustrate the applicability of the nonlinearity test we have developed in

Section 2 by applying both Tsay’s test and our proposed nonlinearity test to test whether

there exists any nonlinear feature in the sunspots data. Dark spots on the surface of

the sun have consequences in the overall evolution of its magnetic oscillation. They also

relate to the motion of the solar dynamo. The Zurich series of sunspot relative numbers

is one of the most commonly analyzed in the literature. Izenman (1983) attributes the

origin and subsequent development of the Zurich series to Johann Rudolf Wolf (1816-

1893) who introduced a formula for calculating the sunspots numbers, which is given by

R = k(10g + f), where g is the number of groups of sunspots, f is the total number of

individual spots and k is a constant for the observations. Thus, to honor the contribution

by Johann Rudolf Wolf, it is common to call sunspots number “Wolf’s sunspots number.”

Figure 5: Wolf’s Sunspots Numbers

Nu
m

be
r o

f S
un

sp
ot

s

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

1/
17

50

1/
17

60

1/
17

70

1/
17

80

1/
17

90

1/
18

00

1/
18

10

1/
18

20

1/
18

30

1/
18

40

1/
18

50

1/
18

60

1/
18

70

1/
18

80

1/
18

90

1/
19

00

1/
19

10

1/
19

20

1/
19

30

1/
19

40

1/
19

50

1/
19

60

1/
19

70

1/
19

80

1/
19

90

1/
20

00

1/
20

10

Note: Quarterly Wolf’s sunspots numbers from first quarter of 1749 to first quarter of 2012.
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The earliest linear model built for these data is probably done by Yule (1927) who first

introduces the class of linear autoregressive models to analyze the data. Since then, the

literature of linear time series analysis of these data has been growing almost exponen-

tially. Moran (1954), Schaerf (1964), Craddock (1967), Box, Jenkins, and Reinsel (1994).

Bloomfield (1976), and Akaike (1978) are only some among many others. However, some

works, see, for example, Tong and Lim (1980), Ghaddar (1980), and Lim (1981), point

out that linear model is not adequate for fitting the data and forecasting.

In this paper we illustrate the applicability of our proposed test and Tray’s test to

examine the nonlinearity in the quarterly Wolf’s sunspot numbers from the first quarter

of 1749 to the first quarter of 2012. Let Yt be Wolf’s quarterly sunspots numbers from the

first quarter of 1749 to the first quarter of 2012, we draw its time series plot in Figure 5.

We first discuss how to use our test statistic to examine whether there is any nonlinearity

in {Yt}. To do so, as we discussed in Section 2, we first fit the data by using the following

AR(p) model:

Yt =

p
∑

i=1

φiYt−i + et, et ∼ WN(0, σ2) (9)

to the sunspot data. We find that the “best” linear model for the sunspot data is

Yt = 19.88492 − 0.70514Yt−1 − 0.1549Yt−2 − 0.18732Yt−3 − 0.0834Yt−4

+0.10553Yt−6 + 0.07121Yt−7 + 0.08101Yt−9 + et (10)

and the detailed results are exhibited in Table 1. Thereafter, we apply the Ljung-Box test

to test whether the autocorrelations up to lag k for the residuals are zero and display the

results in Table 2. In addition, we plot the autocorrelations of the residuals in Figure 6.

The results from Table 2 and Figure 6 show that the autocorrelations of the residuals are

not significantly different from zero for any lag up to 42 and thus one may conclude that

the AR model in (10) is adequate and there is no other linear relationship remained in

the residuals.

One may believe that the linear model in (10) is appropriate and it could explain the

sunspot data well. To check whether this is true, we apply the test we have developed

in Section 2 to examine whether there is any nonlinearity in the standardized residuals
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Table 3: The Results of the Linear AR Model

Parameter Estimate Standard Error t Value
intercept 19.88492 2.28728 8.694***

Yt−1 0.70293 0.03056 23.004***
Yt−2 0.15452 0.03756 4.114***
Yt−3 0.18726 0.03785 4.948***
Yt−4 0.08835 0.03539 2.497**
Yt−6 -0.10490 0.03538 -2.965***
Yt−7 -0.07221 0.03466 -2.083**
Yt−9 -0.08301 0.02474 -3.355***

Note: This table exhibits the results of the linear AR model as shown in (10).

*, **, and *** mean significant at levels 10%, 5%, and 1%, respectively.

(that is,
(

êt − mean(êt)
)/

√

var(êt)) obtained from fitting the linear models in (9), To

do so, we use Ly = m = 1 and e = 1.5 for our proposed test, as the same values being

used our simulation. The p value of the BHW test is 6.98374e−7, which strongly reveals

nonlinearity within the residuals. Thus, applying our test, one could realize that there

still exists nonlinearity component in the sunspot data. This result is consistent with

the findings by Tong and Lim (1980), Tong (1983), and many others. In addition, we

use Tsay’s test to detect the nonlinearity in the Wolf’s Sunspots numbers. Its p value

is 3.541611e−14, inferring that both our proposed test and Tsay’s test draw the same

conclusion that there exists nonlinearity in the Wolf’s Sunspots numbers.

5 Conclusion

Academics are interested in developing nonlinearity tests that could be divided into two

categories: portmanteau tests, which test for departure from linear models without spec-

ifying alternative models, and the tests designed for some specific alternatives. More

recently, the tests that make use of nonparametric and semiparametric fitting have re-

ceived considerable attention (Fan and Yao, 2003). They introduce a likelihood ratio test

for a linear model against a TAR alternative with two regimes introduced by Chan and

Tong (1990) and Chan (1990b). Although the test is designed for a specified alternative,
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Table 4: Autocorrelation Check: The Result of Ljung-Box Test

Check for Sunspots Numbers Check for Residuals
Lag (k) df χ2(k) Lag (k) df χ2(k)

6 6 4075.119*** 12 5 6.632
12 12 4708.268*** 18 11 13.3774
18 18 5146.997*** 24 17 18.3663
24 24 6232.194*** 30 23 25.4344
30 30 6540.412*** 36 29 33.2317
36 36 7060.406*** 42 35 46.5823

Note: The null hypothesis of Ljung-Box test is that the autocorrelations up to lag k in the
population from which the sample is taken are 0. χ2(k) is the test statistic with k degrees of
freedom. Readers may refer to Ljung and Box (1978) for more details of the test. The left
panel displays the values of χ2(k) for the Sunspots numbers while the right panel shows the
values for the residuals after fitting the linear AR model as shown in (10).

*, **, and *** mean significant at levels 10%, 5%, and 1%, respectively.

it may be applied to test for a departure to a general smooth nonlinear function since

a piecewise linear function will provide a better approximation than that from a global

linear function. This is in the same direction as Cox (1981) who suggested the use of

quadratic or cubic regression for testing nonlinearity. The tests could be parametric or

nonparametric statistics. The Ljung-Box statistics of squared residuals, the bispectral

test, and the Brock, Dechert, and Scheinkman (BDS) test are nonparametric methods.

The RESET test (Ramsey, 1969), the F tests of Tsay (1986, 1989), and other Lagrange

multiplier and likelihood ratio tests depend on specific parametric functions.

A nonlinear phenomenon is typically more complex and more difficult to model than

a linear one, and the available tools are much less comprehensive and less effective. The

number of parameters of the nonlinearity part could be very large, this could affect the

performance of the existing nonlinear tests. Nonlinearity may occur in many and could

be infinitely ways, so it is not our intention to develop a single test that dominates the

others in detecting nonlinearity. There are many works on this area. In this paper we

focus on nonlinearity within a stationary time series, which is often ignored by many

people especially in applied science such as finance and economics. We add a reliable,
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Figure 6: Plots of the Autocorrelation Functions
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Note: The left panel exhibits the ACF for Sunspots numbers whereas the right panel displays
the ACF for the residuals after fitting the linear AR model as shown in (10).

user-friendly, desirable, and powerful test to the nonparametric nonlinearity test category

in the literature. As a nonlinear phenomenon is typically more complex and more difficult

to model than a linear one, so it is not reasonable to restrict the form of the nonlinearities

at the stage of detecting them within a sequence. Our test circumvents this type of

limitation, including the Volterra expansion.

Our simulation shows that Tsay’s test is more powerful than ours in a region while

our test is more powerful in another region. We note that this finding is not surprised

because nonlinearity may occur in many ways that there may not exist any single test

that could dominate the others in detecting nonlinearity. However, our simulation shows

that our proposed test has three desirable features than Tsay’s test: (1) our proposed test

is more stable, (2) the power of our proposed test increases while that of Tsay’s test could

decrease when the magnitude of parameter increases, and (3) the power of our proposed

test reaches one quickly but the power of Tsay’s test is decreasing when the magnitude of

β increases. Thus, the results of our simulation support our claim that our test is a more

desirable test.

Thereafter, we apply both Tsay’s test and the nonlinearity test we developed in this

paper to test whether there exists any nonlinear feature in the sunspots data, one of
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the most typical nonlinear cases. Our findings show that both our proposed test and

Tsay’s test draw the same conclusion that there exists nonlinearity in the Wolf’s Sunspots

numbers. The illustration reveals that our test is useful.

At last, we note that our test could not only be used to detect any nonlinearity for

the variable being examined. If one believes a predetermined model could be fitted to

the variable and its residuals could be estimated. Then, the test developed in this paper

could also be used to examine whether there is an nonlinearity in the residuals and, in

turn, test whether the model being used to fit to the variable is appropriate. For example,

if one believes that Model A, which could be linear or nonlinear, is the right model for the

data and thus she could fit Model A to the variable, obtain its residuals, and thereafter

apply our test to test the residuals and see whether our test rejects the null hypothesis of

linearity. If it does not, this infers that Model A is appropriate to be used for the variable

being studied. On the other hand, if our test rejects the linearity of the residuals, this

infers that the model is not appropriate. However, if one could not find any model to

be appropriate for the data but one could find, say two models, Model A and Model B,

that could be the best choices for the data and one could estimate the residuals for both

Models A and B. Then, one could still apply the our proposed statistic to test for their

residuals and the one with smaller p-value will be the more desirable model for the data.

There are many nonlinear time series models, for example, the bilinear models (Granger

and Andersen, 1978), the threshold autoregressive (TAR) model, (Tong, 1978), the state-

dependent model (Priestley, 1980), the Markov switching model (Hamilton, 1989). the

nonlinear state-space model (Carlin, Polson, and Stoffer, 1992), the functional coefficient

autoregressive model (Chen and Tsay, 1993a), the nonlinear additive autoregressive model

(Chen and Tsay, 1993b), and the multivariate adaptive regression spline model (Lewis and

Stevens, 1991). One may not be able to estimate the residuals for some of these nonlinear

time series models. However, it is still possible for academics and practitioners to estimate

the residuals for some nonlinear time series models, for example, one could choose a few

terms such as the linear, quadratic and cubic terms in the Volterra expansion to be the

one’s desired nonlinear time series models. As long as the residuals of the nonlinear time

series models can be estimated, one could apply the test developed in this paper to test
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whether there is still any nonlinearity in the residuals. If the null hpyothesis of linearity

is not rejected, then one could conclude that the chosen nonlinear time series model is

appropriate.
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