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Abstract

This note provides explanations for an unexpected result, namely, the estimated parameter

of the correlation coefficient of the trend shock and cycle shock in the state-space model is almost

always (positive or negative) unity, even when the true variance of the trend shock is zero. It is

shown that the set of the true parameter values lies on the restriction that requires the variance-

covariance matrix of the errors to be nonsingular, therefore, almost always the likelihood function

has its (constrained) global maximum on the boundary where the correlation coefficient implies

perfect correlation.

JEL Classification Number: C13, C22.

Keywords: Trend-Cycle Decomposition, Unit-root, Maximum likelihood.

1 Introduction

When the trend-cycle decomposition of economic time series data is implemented through a state-

space (or unobserved components, UC) model, the correlation of a shock (error) to the trend and

a shock (error) to the cycle is often assumed to be zero. This is due to the fact that the correlation

coefficient is generally unidentified, as Watson (1986) demonstrates. A recent influential paper

by Morley et al. (2003), however, shows that the correlation of errors can be identified only if

identification conditions are satisfied; and that whether or not allowing such a correlation is a key

to understanding the substantial differences between “business cycles” estimated by the Beveridge-

Nelson decomposition and by the UC model.

Among others, a study by Perron and Wada (2009) finds that US GDP follows a stationary

process, when the trend function is allowed to have sudden changes. Although there is no shocks to

trend,1 the maximum likelihood estimator implies perfect correlation. In addition, their simulation

shows that the estimated correlation parameter is almost always (positive or negative) unity. This

unexpected result is worth exploring. Since, in practice, researchers may estimate the correlation of

the errors by simply assuming the data are non-stationary without applying a variety of unit root

∗I am grateful to an anonymous referee for useful comments. All remaining errors are mine.
†Department of Economics, Wayne State University, 656 W. Kirby St., Detroit, MI, 48202 (tat-

suma.wada@wayne.edu).
1Except the shock that causes the trend to change suddenly.

1



tests; hence, knowing properties of the estimator when the true parameter is not identified, serves

the purpose of diagnosing model misspecification. In line with the idea of detecting misspecification

via correlated UCmodels, Morley et al. (2011) propose a likelihood ratio test of stationarity utilizing

the fact that the correlation is observed only when trend errors exist.

This note demonstrates that such a perfect correlation, when the true data generating process

(DGP) is stationary, is artificially created due to the restriction requiring that the variance-

covariance matrix of the errors be positive-semi-definite. Since the true parameters lie on the

boundary of this restriction, where the correlation coefficient is positive or negative unity, or one

of the variances is zero, the estimated correlation coefficient is almost always 1 or -1, as Table 1

displays,2 rather than the undefined correlation with zero variance. The rest of this note is orga-

nized as follows. Section 2 explains our model. The likelihood function and its properties for a

simple model under the restriction are analyzed in Section 3. An extension to the AR(p) error in

the cyclical component is presented in Section 4. Section 5 concludes.

2 Model

Our model is given by:

 =   +  (1)

  =  −1 + 

() = 

where  is observable variable;   and  are the trend and cyclical components, respectively; ()

is the lag-polynomial; the shock to the trend  and the shock to the cycle  are drawn from the

bivariate Normal distribution:⎡⎣ 



⎤⎦ ∼  

⎛⎝⎡⎣ 0
0

⎤⎦ 
⎡⎣ 2 

 2

⎤⎦⎞⎠ 

The correlation coefficient is defined as  =  ().

3 A Simple White Noise Case

3.1 The Likelihood Function

Let the data DGP be a white noise process:

 = 

where  is a zero-mean, normally distributed iid process with a variance of 
2
. Consider the

state-space model:

 =  + 

 = −1 + 

2As Table1 reveals, it is still possible to obtain an estimate that is neither 1 nor -1. The relative frequency of

finding such estimates is, however, only about 10%. Note also that the results displayed in Table 1 are different from

Perron and Wada’s (2009) simulation results, since their model includes a change in the slope of the deterministic

trend, in addition to the stationary component.
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Assuming that  and  are Normally distributed iid processes, the vector form of the model

is (Tanaka 1996)

 = +  ∼ 
¡
0 2

¡
 +  0

¢¢
where

 = (1      )
0 ;  = (1      )

0 ;  =
2
2
;

with the random walk generating matrix

 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0

1 1 0 · · · 0

1 1
. . .

. . .
...

...
... 1 0

1 1 · · · 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦


The log-likelihood function (without constant) is

 = −1
2
log
¯̄
2
¡
 +  0

¢¯̄− 1

22
0
¡
 +  0

¢−1


In order to allow the correlation in errors  and , let us assume

 =  +

s
 − 2


 (2)

where  is a constant that represents the covariance of  and ; shocks  and  are independent:⎡⎣ 



⎤⎦ ∼ 

⎛⎝0 2
⎡⎣  0

0 1

⎤⎦⎞⎠ ;  = 2

2


By (2),  and  are now correlated,3 thereby allowing us to find the likelihood function (see

Online Appendix4 for details). Since the variance of  
2
, is non-zero, it is convenient to find the

concentrated likelihood function (with respect to 2):

 ( ) = −1
2
log ||− 

2
log 0−1

3Alternatively, we can write the error processes as 



 =
 

−2




0 1

 



 
so that shocks  and  are contemporaneously correlated: 



 ∼ 

0 2
  

 1

 ;  = 

2


4http://www.clas.wayne.edu/multimedia/usercontent/File/Economics/wada/tech_appendix_rho.pdf
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where  =  +  0 +  ( +  0). Using the concentrated likelihood function, we obtain the
following three lemmas that clarify the properties of the likelihood function.

Lemma 1 The first order conditions are given by:

 ( )


= −1

2


©
−1

¡
 + 0

¢ª
+



2

0−1 ( +  0)−1
0−1

= 0

and
 ( )


= −1

2


©
−1 0

ª
+



2

0−1 0−1
0−1

= 0

Lemma 2 At  =  = 0,
 ( )


= −

2

µ
( + 1)

2
− 0 0

0

¶
and for  →∞, we have

−2
 ( )


⇒ 1

2

∙Z 1

0

[ ()]2  − 1
2

¸
where “⇒” represents weak convergence in distribution; and  () is the standard Wiener process

on C[0 1].

Lemma 3 At  =  = 0,
 ( )


= −

2

µ
2− 0 ( +  0) 

0

¶
and for  →∞, we have

−1
 ( )


⇒
Z 1

0

 ()  () =
1

2

h
 (1)2 − 1

i


3.2 The Restriction

We impose the restriction that the variance-covariance matrix of the errors is positive-semi-definite.

In our case, this restriction is  ≥ 2. Figure 1 displays such a restriction on the parameter space:

The horizontal axis represents , the covariance parameter, while the vertical axis represents ,

the ratio of the variance of the trend errors to the variance of the cycle error. As one can see,

the boundary is a parabola: along the quadratic curve, the correlation coefficient is -1 (when

corresponding  is negative) or 1 (when corresponding  is positive), except for the point where

 =  = 0, at which the correlation is undefined and at which the set of the true parameter values

is located. It is obvious from Figure 1 that the true parameter values are, in fact, close by the

restriction that implies a perfect correlation.

As is well known, the gradient at the true parameter values is not necessarily zero, since the

gradient itself is composed of random variables. Because 
R 1
0
[ ()]2  = 12 and 

h
 (1)2

i
=

1,5 the gradient becomes zero only as the expected value, asymptotically. Still, the fact that the

probability of 2 (1) being less than unity is 0.683, implies −1 ( )  is often negative at the

5
 1
0
[ ()]

2
 =

 1
0
 [ ()]

2
 = 

 1
0
 = 1

2
; and  [ (1)]

2
= 


2 (1)


= 1.
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true parameter values. Hence, the likelihood function has its global maximum at somewhere other

than the true parameter values; many times it can be found on the boundary of the parameter

space with negative . As an example, see Figure 2: The likelihood function does not have its

global maximum at  =  = 0. It is important to keep in mind that increasing the sample size does

not prevent one from finding the artificial perfect correlation.

4 An AR(p) Case

Our framework can be extended to an AR(p) case. To do so, first we modify our model:

 = +Φ−1

where

Φ−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

 1 0

2  1
. . .

. . . 0

−1 2  1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
for an AR(1) case. The log-likelihood function (concentrated with respect to 2) is then

 ( Φ) = −1
2
log ||− 

2
log 0Φ0−1Φ (3)

where  =  +  0Φ0 + Φ + Φ 0Φ0. Similar to the previous section, our strategy here is that
we concentrate the likelihood function with respect to Φ, so that (3) is a function of ( ):

 ( Φ ( )) = −1
2
log | ( )|− 

2
log 0Φ ( )0 ( )−1Φ ( )  (4)

Note that Φ ( ) is obtained by solving  ( Φ)  = 0 with respect to .

Assuming DGP to be  = Φ−1, Lemmas 1-3 are altered to:

Lemma 4 The first order conditions are given by:

 ( Φ ( ))


= −1

2


©
−1

¡
 0Φ0 +Φ

¢ª
+



2

0Φ0−1 ( 0Φ0 +Φ)−1Φ
0Φ0−1Φ

= 0

and
 ( Φ ( ))


= −1

2


©
−1Φ 0Φ0

ª
+



2

0Φ0−1Φ 0Φ0−1Φ
0Φ0−1Φ

= 0

Lemma 5 At  =  = 0 and for  →∞, we have

−2
 ( Φ ( ))


⇒ (1− )2

2

∙Z 1

0

[ ()]2  − 1
2

¸
where “⇒” represents weak convergence in distribution; and  () is the standard Wiener process

on C[0 1].

5



Lemma 6 At  =  = 0 and for  →∞, we have

−1
 ( Φ ( ))


⇒ (1− )

Z 1

0

 ()  () =
(1− )

2

n
[ (1)]2 − 1

o


Clearly,  = 0 is the previous case. Also, it is not difficult to extend the Lemmas noted above

to an AR(2) model, which is argued in Morley et al. (2003).6 For a finite sample, Figure 3 is

computed as follows: first, b is obtained as a function of ( ), i.e., by solving  ( Φ)  = 0
with respect to , using the MATLAB function “fzero.” Then, given b, the likelihood function is
computed by (4).

5 Conclusion

When data are generated by a stationary process, the correlation in the error of a stochastic trend

and errors of cycles in the state-space model is undefined because there is no stochastic trend. If

one allows for such a correlation and estimate the parameters, the correlation parameter will be

unidentified, and unexpectedly, the estimated parameters will almost always be 1 or -1. It is shown

that the following two facts explain such a result: (i) We impose the restriction that requires the

variance covariance matrix of the errors to be positive semi-definite (in other words, either the

variance of the trend error is zero or the correlation is perfect). The set of the true parameter

values lies on the boundary in the parameter space and in the neighborhood of parameters that

imply perfect correlation. (ii) The likelihood function has its (constrained) global maximum at the

true parameters only on average. Almost always its global maximum is on the boundary.

However, caution is necessary. Unlike Morley et al. (2011), whose proposed likelihood ratio

test of stationarity compares the likelihood value with the restriction of  =  = 0 to the likelihood

value without the restriction, our diagnosis principle does not fit the framework of a rigorous test

of stationarity. This is because an estimated perfect correlation does not necessarily mean that the

true DGP is stationary; it might as well be that the true DGP is non-stationary with a perfect

correlation.
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6 Appendix

• Proof of Lemma2
 ( )



¯̄̄̄
==0

= −
2

µ
( + 1)

2
− 0 0

0

¶
= −

2

µ
( + 1)

2
− 0 0

0

¶


Since

−10→

2

−20 0 = −2
X
=1

2 ⇒ 2

Z
[ ()]2 

where

 = −1 +  with 0 = 0;

and “→

” denotes convergence in probability. We have then

−2
 ( )



¯̄̄̄
==0

⇒ 1

2

∙Z 1

0

[ ()]2  − 1
2

¸
• Proof of Lemma 3

 ( )



¯̄̄̄
==0

= −1
2


¡
 +  0

¢
+



2

0 ( +  0) 
0

= − + 

2

0 ( +  0) 
0

= − + 
0
0

Note further that

−10→

2

−10 = −1
X
=1

 = −1
X
=1

−1 + −1
X
=1

2

⇒ 1

2
2

n
[ (1)]2 − 1

o
+ 2
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Hence,

−1
 ( )



¯̄̄̄
==0

⇒ −1 + 1
2

n
[ (1)]2 − 1

o
+ 1

=
1

2

n
[ (1)]2 − 1

o


• Proof of Lemma 4 (Sketch)
The derivations are similar to those given in Lemma 1. Note that the Envelope theorem:

 ( Φ ( ))

Φ ( )

Φ ( )


= 0;

 ( Φ ( ))

Φ ( )

Φ ( )


= 0

is used to obtain the results.

• Proof of Lemma 5
At  =  = 0,  =  and  = 0 holds. Then, we can prove that the estimator for 

is a consistent estimator. To show this, noting that Φ = (1− )  + −1, the first order
condition for ,

0 =
 ( Φ)


= −1

2


µ
−1





¶
−
2

−2
³
0 Φ



0
−1Φ

´
− 

³


−1Φ0Φ0−1

´
0Φ0−1Φ



is simplified at  =  = 0 to

0 = 0
Φ



0
Φ = 0

¡
−1 − 

¢0
Φ

and hence,7 b = P
=2 −1P
=2 

2
−1

→



Since the least square estimator is consistent under the DGP process considered here (see

Fuller 1996, for example), our estimator for the autoregressive parameters is consistent.

7The first order condition is now


0 

−1 − 

0
Φ =




0 0

−1 0

. . .
. . .

0 −1 0




1

2

...







0


1 0

− 1

. . .
. . .

0 − 1




1

2

...






= −


=2

( − −1) −1
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Next, we note that

Φ 0Φ0 = b2 + b³1− b´ ¡ +  0
¢
+
³
1− b´2 0;


¡
Φ 0Φ0

¢
= b2 + b³1− b´ 2 + ³1− b´2  ( + 1)

2


Since b →

 and the fact that DGP is  = Φ−1, the same argument as Lemma 2 leads to

the limit distribution.

• Proof of Lemma 6
The limit distribution is obtained since

Φ + 0Φ0 =
³
1− b´ ¡ +  0

¢
+ 2b; 

¡
Φ +  0Φ0

¢
= 2

Table 1: Frequency Distributions of the Estimated Correlation 

Data Generating Process

Estimated  AR(0) AR(1) AR(2)

  −099 710 654 711

−099 ≤  ≤ 099 85 116 102

099   205 230 187

||  099 915 (915%) 884 (884%) 898 (898%)

Notes: 1) The estimated frequencies are are computed from the sample size  = 500 with 1,000 replications. 2) For

the AR(1) model, DGP is  = 09 −1 + , where  ∼ i i d (0 1) and 0 = 0. 3) For the AR(2) model, DGP is

 = 128 −1 − 038 −2 + , where  ∼ i i d (0 1) and 0 = −1 = 0 . For more details, see Online Appendix.
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Figure 1: Parameter space and the restriction
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Figure 2: Typical Likelihood Surface: AR(0) with T=500.
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Figure 3: Typical Likelihood Surface: AR(1) with T=500.


