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Abstract 

 

Typically, a two-stage production process assumes that the first stage transforms 

external inputs to a number of intermediate measures, which then are used as inputs to 

the second stage that produces the final outputs. The three fundamental approaches to 

efficiency assessment in the context of DEA (two-stage DEA) are the simple (or 

independent), the multiplicative and the additive. The simple approach does not 

assume any relationship between the two stages and estimates the overall efficiency 

and the individual efficiencies for the two stages independently with typical DEA 

models. The other two approaches assume a series relationship between the two 

stages and differ in the way they conceptualize the decomposition of the overall 

efficiency to the efficiencies of the individual stages.  This paper presents an 

alternative approach to additive efficiency decomposition in two-stage DEA. We 

show that when using the intermediate measures as pivot, it is possible to aggregate 

the efficiency assessment models of the two individual stages in a single linear 

program. We test our models with data sets taken from previous studies and we 

compare the results with those reported in the literature.  
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1. Introduction 

 

Data envelopment analysis (DEA) is the leading technique for measuring the 

efficiency of decision making units (DMU) in the presence of multiple inputs and 

outputs. The two milestone DEA models, namely the CCR [4] and the BCC [1] 

models have become standards in the literature of performance measurement under 

the assumptions of constant and variable returns-to-scale respectively. Typically, a 

single stage production process is assumed, that transforms inputs to final outputs. 

However, there is an increasing literature body that is devoted to the efficiency 

assessment in multistage production processes.  Castelli et al. [2] provide a 

comprehensive categorized overview of models and methods developed for different 

multi-stage production architectures. In this paper, however, we focus on the typical 

architecture of a two-stage production process, which assumes that the external inputs 

entering the first stage of the process are transformed to a number of intermediate 

measures that are then used as inputs to the second stage to produce the final outputs. 

In this model, nothing but the external inputs to the first stage enters the system and 

nothing but the outputs of the second stage leaves the system. Seiford and Zhu [11] 

studied such a production process in the banking sector by treating the two stages 

independently, i.e. without assuming any relationship between the two stages. Kao 

and Hwang [8] introduced a novel approach that takes into account a series 

relationship of the two stages and developed a model that estimates the overall 

efficiency of the production process as the product of the efficiencies of the two 

individual stages. Their approach is based on the reasonable assumption that the 

values of the intermediate measures (virtual intermediate measures) are the same, no 

matter if they are considered as outputs of the first stage or inputs to the second stage. 

This multiplicative approach to efficiency decomposition is restricted to constant 

returns-to-scale (CRS) situations. Chen et al. [5] introduced the additive efficiency 

decomposition in two-stage process under the assumption of series relationship. They 

derive the overall efficiency of the production process as a weighted average of the 

efficiencies of the individual stages. Their modeling approach facilitates the 

linearization of a non-linear mathematical program and is based on the assumption 

that the weighting of the two stages derives endogenously by the optimization 

process, in a manner that reflects the size of the two stages. The additive 

decomposition approach is extendable to variable returns-to-scale (VRS) situations. 

Liang et al. [10] view the efficiency assessments in two-stage process in terms of a 

game approach. 

 In this paper we present an alternative additive decomposition approach in 

two-stage DEA under the common assumption of the series relationship of the two 

stages.  In such a setup, we maintain the assumption that the virtual intermediate 

measures are common in both stages. Selecting an output orientation for the first stage 

and an input orientation for the second stage, we show that it is possible to aggregate 

additively the efficiency measures of the two individual stages in a bi-objective linear 

program. Our model estimates simultaneously optimal efficiency scores for the two 

stages, which then are used to calculate the overall efficiency of the production 
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process as a simple average. However, if it is to assign different importance to the two 

stages, a weighted average could be calculated with a priori and externally defined 

weights. Our model is easily extended to a VRS variant. Our experiments show that 

efficiency scores obtained by our approach for the individual stages are comparable to 

those obtained in [5].  

 The paper unfolds as follows. In section two we outline the two basic 

approaches for the two-stage DEA: The multiplicative approach [8] and the additive 

approach [5]. In section three we present our approach and we formulate a linear 

model that assesses efficiency scores for the two stages under the CRS assumption. 

Then we give its VRS variant. In section four we apply our models to two data sets 

obtained from the literature and we compare our results with those reported in [5]. In 

section five we discuss some further issues raised in the literature as for the 

deficiencies and limitations observed in two-stage DEA models. Concluding remarks 

are given in section six. 

 

2. Multiplicative and additive decomposition in two-stage DEA 

 

Consider the generic case where each DMUj, j=1,…, n transforms inputs x to final 

outputs y with a two-stage process as shown in Fig.1.   

 

>> Figure 1 about here << 

 

Assume n units (j=1,…,n), each using m inputs xij, i=1,…,m to the first stage to 

produce q outputs zpj, p=1,…,q from that stage. The outputs obtained from the first 

stage are then used as inputs to the second stage to produce s final outputs yrj, 

r=1,…,s. Treating the two stages independently, the stage 1 and stage 2 CRS 

efficiency scores for the evaluated unit j0 are obtained from the following two 

conventional CCR DEA models (1) and (2) respectively: 
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The independent overall efficiency score of unit j0 is similarly obtained by the 

following CCR DEA model (3): 
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To link the efficiency assessments of the two stages and to obtain jointly the 

overall efficiency score of the unit j0, Kao and Hwang [8] assumed that the total 

virtual output 
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feeds the second stage (i.e. ˆ , 1,...,p p p qϕ ϕ= = ). Based on this assumption, the overall 

efficiency score of unit j0 is obtained by aggregating multiplicatively the efficiencies 

of the two stages as follows: 
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Notice that the constraint 
1 1

0
s m

r rj i ij

r i

y xω η
= =

− ≤∑ ∑ included in the original model has 

been omitted in (4) as it is redundant. Applying the Charnes and Cooper [3] 

transformation (C-C transformation hereafter) to the fractional program (4), the 

following linear equivalent is obtained and solved for one unit at a time: 
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Once an optimal solution ( * * *, ,r i pu v w ) of model (5) is obtained, the first stage, the 

second stage and the overall efficiency scores 
0 0 0

1 2, , o
j j je e e of the evaluated unit j0 are 

obtained respectively by the following relations: 
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Model (5) cannot be readily extended to treat DEA assessments under the VRS 

assumption.  Working with BCC models of different orientations for the individual 
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stages, Kao and Hwang [9] proposed an approach to decompose technical and scale 

efficiencies under the multiplicative decomposition model. 

 Chen et al. [5] developed an alternative two-stage DEA model by assuming a 

weighted average of the efficiencies of the two stages as follows: 
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To enable the transformation of (6) to a linear equivalent, they assumed further that 

the weights t1 and t2 are endogenously defined as functions of the variables, as: 
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Substituting t1 and t2 in model (6) they derive the following model under the CRS 

assumption: 
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Applying the C-C transformation, the linear equivalent of (7) is as follows: 
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The optimal solution of (8) can be used to calculate the efficiency scores 
0 0

1 2,j jθ θ  of 

unit j0 for the two individual stages and then the overall efficiency
0 0 0

0 * 1 * 2
1 2j j jt tθ θ θ= + , 

where * *
1 2,t t are the weights calculated a posteriori on the basis of the optimal solution 

of (8). Notice, however, that the overall efficiency of j0 derives also as the optimal 

value of the objective function in (8). In case of multiple optimal solutions in (8), two 

extra linear programs are solved to calculate 
0 0

1 2,j jθ θ [5]. The above additive 

decomposition approach enables the extension of model (8) to a variant that can be 

used under the VRS assumption [5]. 

 

3. An alternative additive model for two-stage DEA 

 

Consider the linear equivalent of the output oriented variant of the first-stage model 

(1): 
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and the linear equivalent of the second-stage model (2):  
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Stage2: input oriented 
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Appending the constraints 
1 1
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the following augmented model for the first stage: 
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Similarly, adding the constraints 
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obtain the following augmented model for the second stage: 
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Notice that an optimal solution of model (9) is also optimal in model (11). Indeed, one 

can always choose small enough values for u in model (11) to make any optimal 

solution of model (9) feasible, yet optimal, in model (11).  Analogously, an optimal 

solution of model (10) is also optimal in model (12), as one can choose large enough 

values for v in model (12) to make any optimal solution of model (10) feasible, yet 

optimal, in model (12). For the completeness of our developments, compact proofs of 

these statements are given in Appendix.  

 Models (11) and (12) have common constraints. The need to formulate these 

two models is now apparent; they enable us to jointly consider them as a bi-objective 

linear program. Aggregating the two objective functions additively, we derive the 

following single-objective linear program: 
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Once an optimal solution ( * * *, ,r i pu v w ) of model (13) is obtained, the efficiency scores 

for unit j0 in the first and the second stage are respectively: 
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Notice that the unit j0 is overall efficient, if and only if the optimal value of the 

objective function is zero (F*=0). Model (13) does not provide a direct measure of the 

overall efficiency, as it is the case in the multiplicative model (5) and the additive 

model (8). As noticed in [10], it is reasonable to define the overall efficiency of the 

two-stage process as the average (arithmetic mean) of the efficiencies of the two 

individual stages.  In this line of thought, the overall efficiency of unit j0 is defined as 

0 0 0

1 2( ) / 2o
j j je e e= + .  

 Our developments are based on the selection of the output orientation for the 

first stage and the input orientation for the second stage. This is the key that enables 

us to aggregate the two stages in an additive form, without the need to assume weights 

for the two stages. Hence, our approach can be considered as “neutral”, as opposed to 

the Chen’s et al. [5] one, where, for the sake of linearization, the unit under evaluation 

assigns its own weights to the efficiency scores of the two individual stages. 

Nevertheless, if it is to assign different importance to each of the two stages, one 

might consider as well weights a1, a2 (a1+a2=1) to compute the overall efficiency

0 0 0

1 2
1 2

o
j j je a e a e= + . The difference between such weights and the weights t1 and t2 

assumed in (6) is that they are specified a priori by the user and are common for all 

the DMUs. Going one step further, in line with the argument that the “size” of a stage 

reflects its importance [5], the weights could be defined as: 
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 where ijx and pjz derive by max-normalizing the raw data, column-wise, i.e.: 
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In [5], the size of a stage is represented by the portion of the total resources used in 

each stage by the evaluated unit, in terms of values (virtual inputs). Hence the size is 

viewed differently from each DMU. Let us call this perspective a “DMU-centric 

perspective”. Our approach to weighting the two stages is based on a “stage-centric 

perspective”, as the size of a stage is represented by the portion of the total resources 

used in each stage by all the DMUs, in terms of the raw quantities. Actually, the raw 

quantities are max-normalized to make them units free.  

Model (13) may have multiple optimal solutions and, thus, the decomposition 

may not by unique. To make the efficiency assessments comparable across all the 

units, we address this issue in a manner analogous to those proposed in Kao and 

Hwang [8] and Chen et al. [5]. Particularly, in a post-optimality stage, we seek the 

largest efficiency score in the first or the second stage (depending on the given 
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priority), while retaining the optimal value F* of the objective function in model (13). 
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Analogous is the derivation of the efficiency scores if priority is given to the second 

stage. The highest stage-2 efficiency score 
0

2

2, j
e for unit j0 is obtained from model (12), 

after appending the same, as above, constraint to retain the optimal F*.   Then 
0

1

2, j
e is 

obtained from the corresponding post-optimal solution. Apparently, if 
0 0

1 1

1, 2,=
j j

e e  or 

0 0

2 2

1, 2,=
j j

e e  the efficiency decomposition provided by model (13) is unique. 

 Our approach to the additive efficiency decomposition enables us to extend 

our developments under the VRS assumption. Indeed, the VRS variant of model (13) 

can be obtained from the VRS variants of (9) and (10) as follows: 

 

0 0

0

2 1

1 1

1

1

1 1

2

1 1

max

. .

1

0, 1,...,

0, 1,...,

0, 0, 0 1,..., ; 1,..., ; 1,...,

= =

=

= =

= =

= − − +

=

− + ≤ =

− − ≤ =

≥ ≥ ≥ = = =

∑ ∑

∑

∑ ∑

∑ ∑

s m

r rj i ij

r i

q

p pj

p

q m

p pj i ij

p i

qs

r rj p pj

r p

i p r

F u y d v x d

s t

w z

w z v x d j n

u y w z d j n

v w u i m p q r s

(14) 

 

4. Applications 

 

First we apply our approach to the 24 Taiwanese non-life insurance companies 

originally studied in Kao and Hwang [8]. The authors consider a two-stage production 

process with two inputs (Operation expenses-X1 and Insurance expenses-X2), two 

intermediate measures (Direct written premiums-Z1 and Reinsurance premiums-Z2) 

and two final outputs (Underwriting profit-Y1 and Investment profit-Y2). Table 1 

exhibits the data set. 
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>> Table 1 about here << 

 

Table 2 reports the efficiency scores obtained by applying model (13) on the data of 

Table 1 (third to fifth columns) and the corresponding results reported in [5] along 

with the weights used (last five columns). 

 

>> Table 2 about here << 

 

The two additive approaches provide the same efficiency scores for the 

individual stages for all units but one; the DMU 16 (Allianz President), where one can 

spot the only difference when comparing e1 and e2 with θ1 and θ2 respectively. The 

overall efficiency scores e
o and θo cannot be compared directly, as the former is 

calculated as a simple average while the latter is derived as a weighted average, with 

the weights varying across the DMUs. Obviously, when equal weights w1 and w2 are 

assigned to the individual stages, the overall efficiency scores are identical. This is the 

case of DMUs 2, 9, 12, 15, 19 and 24.  

Table 3 summarizes the results obtained from model (14) and the 

corresponding results given in [5] under the VRS assumption.  

    

>> Table 3 about here << 

 

In the standard DEA approach, the efficiency scores obtained under the VRS 

assumption are not less than their counterparts under the CRS assumption. Although 

this is true in our additive two-stage DEA models for the overall efficiency scores, the 

results show that not all the intermediate efficiency scores comply with this 

conventional principle. This is the case for the DMUs 12 and 20, with respect to their 

first stage efficiency scores e
1, and for DMU 18 with respect to the second stage 

efficiency e2. A similar irregularity has been spotted in Chen et al. [5].  

 To extend our comparisons, we apply our approach and then Chen’s et al. [5] 

additive model to another data set, originally used in Wang et al. [12] and later in 

Chen and Zhu [6], in investigating the impact of information technology on 

productivity. There are 27 units in the study evaluated on three inputs (Fixed assets-

X1, IT budget-X2 and Number of employees-X3), a single intermediate measure 

(Deposits-Z1) and two final outputs (Profit-Y1 and Fraction of loans recovered-Y2). 

The data set is given in Table 4.  

 

>> Table 4 about here << 

 

Table 5 reports the efficiency scores obtained by applying model (13) on the IT data 

of Table 4 (second to fourth columns) and the corresponding scores along with the 

weights obtained by our calculations based on the model of Chen et al. [5] (last five 

columns). As concerns the efficiency scores for the two individual stages, the results 

obtained from the two models are identical. However, the overall efficiency scores eo 
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and θo differentiate. Indeed, there are numerous units (thirteen of the twenty-seven 

DMUs), for which eo > θo. DMU 18 has been commonly identified by both models as 

overall efficient. 

 

>> Table 5 about here << 

 

The post-optimality stage applied to both examples showed that the efficiency 

decompositions obtained from models (13) and (14) are unique.  

 

 

6. Conclusion 

 

We presented in this paper an alternative model for two-stage DEA under the 

assumption of series relationship between the two stages. Our modeling approach is 

based on the selection of an output orientation for the first stage and an input 

orientation for the second stage. In this manner, the intermediate measures are used as 

pivot that links the efficiency assessment models for the two stages in a single linear 

program. The proposed CRS model is straightforwardly extended to fit VRS 

situations. The additive efficiency decomposition approach coined in this paper is 

straightforward and, thus, free of the weighting assumption made in the original 

additive model [5]. Testing our models with data sets taken from previous studies, 

shows that the results obtained are comparable to those reported in the literature.  

 

Appendix 

 

An optimal solution of model (9) is also optimal in model (11).  

 

Proof: 

 

Let *, 1,...,
i

v i m=  and 
* , 1,...,
p

w p q=  be an optimal solution of (9). First we will show 

that this solution is feasible in (11). Indeed, it satisfies the first two constraints of (11), 

as they are identical to the constraints in (9). Notice that the first two constraints of 

(11) are independent of the variables , 1,...,
r

u r s= , which appear only in the third 

constraint. Then,  

(a) If s≤q, the third constraint of (11) is satisfied for  

 
* min

max
0, 1,...,r r

r

r

w z
u r s

y
= ≥ =  

where min min{ }r rj
j

z z= is the smallest observed value of the intermediate measure zr and 

max max{ }r rj
j

y y= is the largest observed value of output yr. 

(b) If s>q, the third constraint of (11) is satisfied for 
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* min

max
0, 1,..., , 0, 1,...,

p p

p r

p

w z
u p q u r q s

y
= ≥ = = = +  

Thus, the optimal solution *, 1,...,
i

v i m=  and 
* , 1,...,
p

w p q= of (9) is a feasible solution 

of (11). Moreover, as the objective functions in both the (9) and (11) are independent 

of ur, the above solution is optimal in (11) as well.  
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An optimal solution of model (10) is also optimal in model (12).  

 

Proof: 

 

Let * , 1,...,
r

u r s=  and 
* , 1,...,
p

w p q=  be an optimal solution of (10). First we will show 

that this solution is feasible in (12). Indeed, it satisfies the first and the third constraint 

of (12), as they are identical to the constraints in (10). Notice that the first and the 

third constraint of (12) are independent of the variables , 1,...,
i

v i m= , which appear 

only in the second constraint. Then,  

(a) If q≤m, the second constraint of (12) is satisfied for  
* max

min
, 1,...

p p

p

p

w z
v p q

x
= = , 0, 1,...,iv i q m≥ = +  

where max max{ }p pj
j

z z= is the largest observed value of the intermediate measure zp and 

min min{ }p pj
j

x x= is the smallest observed value of the input xp.  

(b) If q>m, the second constraint of (12) is satisfied for  
* max

min

* max* max

min min
1

, 1,... 1i i
i

i

q
p pm m

m

m mp m

w z
v i m

x

w zw z
v

x x= +

= = −

= + ∑
 

Thus, the optimal solution * , 1,...,
r

u r s=  and 
* , 1,...,
p

w p q= of (10) is a feasible 

solution of (12). Moreover, as the objective functions in both the (10) and (12) are 

independent of vi, the above solution is optimal in (12) as well. 
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Figures 

 

 

Figure 1: The architecture of a generic two-stage process 
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Tables 

 
Table 1: Taiwanese non-life insurance companies data set (source: Kao and Hwang [8]). 

# DMU X1 X2 Z1 Z2 Y1 Y2 

1 Taiwan Fire 1178744 673512 7451757 856735 984143 681687 

2 Chung Kuo 1381822 1352755 10020274 1812894 1228502 834754 

3 Tai Ping 1177494 592790 4776548 560244 293613 658428 

4 China Mariners 601320 594259 3174851 371863 248709 177331 

5 Fubon 6699063 3531614 37392862 1753794 7851229 3925272 

6 Zurich 2627707 668363 9747908 952326 1713598 415058 

7 Taian 1942833 1443100 10685457 643412 2239593 439039 

8 Ming Tai 3789001 1873530 17267266 1134600 3899530 622868 

9 Central 1567746 950432 11473162 546337 1043778 264098 

10 The First 1303249 1298470 8210389 504528 1697941 554806 

11 Kuo Hua 1962448 672414 7222378 643178 1486014 18259 

12 Union 2592790 650952 9434406 1118489 1574191 909295 

13 Shing kong 2609941 1368802 13921464 811343 3609236 223047 

14 South China 1396002 988888 7396396 465509 1401200 332283 

15 Cathay Century 2184944 651063 10422297 749893 3355197 555482 

16 Allianz President 1211716 415071 5606013 402881 854054 197947 

17 Newa 1453797 1085019 7695461 342489 3144484 371984 

18 AIU 757515 547997 3631484 995620 692731 163927 

19 North America 159422 182338 1141950 483291 519121 46857 

20 Federal 145442 53518 316829 131920 355624 26537 

21 Royal & Sunalliance 84171 26224 225888 40542 51950 6491 

22 Aisa 15993 10502 52063 14574 82141 4181 

23 AXA 54693 28408 245910 49864 0.1 18980 

24 Mitsui Sumitomo 163297 235094 476419 644816 142370 16976 
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Table 2: Results from model (13) compared to Chen et al. [5] 

  Our CRS model (13) Chen et al. [5] – CRS model 

# DMU e1 e2 eo=(e1+e2)/2 θ
1 θ

2 θ
ο w1 w2 

1 Taiwan Fire 0.993 0.704 0.849 0.993 0.704 0.849 0.502 0.498 
2 Chung Kuo 0.998 0.626 0.812 0.998 0.626 0.812 0.500 0.500 
3 Tai Ping 0.690 1 0.845 0.690 1 0.817 0.592 0.408 
4 China Mariners 0.724 0.420 0.572 0.724 0.420 0.596 0.580 0.420 
5 Fubon 0.831 0.923 0.877 0.831 0.923 0.873 0.546 0.454 
6 Zurich 0.961 0.406 0.683 0.961 0.406 0.689 0.510 0.490 
7 Taian 0.752 0.352 0.552 0.752 0.352 0.580 0.571 0.429 
8 Ming Tai 0.726 0.378 0.552 0.726 0.378 0.579 0.580 0.420 
9 Central 1 0.223 0.612 1 0.223 0.612 0.500 0.500 

10 The First 0.862 0.541 0.701 0.862 0.541 0.713 0.537 0.463 
11 Kuo Hua 0.729 0.207 0.468 0.729 0.207 0.509 0.578 0.422 
12 Union 1 0.760 0.880 1 0.760 0.880 0.500 0.500 
13 Shing kong 0.811 0.243 0.527 0.811 0.243 0.557 0.552 0.448 
14 South China 0.725 0.374 0.549 0.725 0.374 0.577 0.580 0.420 
15 Cathay Century 1 0.614 0.807 1 0.614 0.807 0.500 0.500 
16 Allianz President 0.907 0.336 0.621 0.886 0.362 0.639 0.530 0.470 
17 Newa 0.723 0.460 0.591 0.723 0.460 0.613 0.580 0.420 
18 AIU 0.794 0.326 0.560 0.794 0.326 0.587 0.558 0.442 
19 North America 1 0.411 0.706 1 0.411 0.706 0.500 0.500 
20 Federal 0.933 0.586 0.759 0.933 0.586 0.765 0.517 0.483 
21 Royal & Sunalliance 0.751 0.262 0.506 0.751 0.262 0.541 0.571 0.429 
22 Aisa 0.590 1 0.795 0.590 1 0.742 0.629 0.371 
23 AXA 0.843 0.499 0.671 0.843 0.499 0.685 0.543 0.457 
24 Mitsui Sumitomo 1 0.087 0.544 1 0.087 0.544 0.500 0.500 
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Table 3: Results from model (14) compared to Chen et al. [5] under the VRS assumption 

 Our VRS model (14) Chen et al. [5] – VRS model 

DMU e1 e2 eo=(e1+e2)/2 θ
1 θ

2 θ
ο w1 w2 

1 1 0.736 0.868 0.990 0.743 0.867 0.503 0.497 
2 1 0.711 0.856 1 0.711 0.856 0.500 0.500 
3 0.700 1 0.850 0.690 1 0.818 0.587 0.413 
4 0.724 0.425 0.575 0.726 0.424 0.599 0.581 0.419 
5 1 1 1 1 1 1 0.483 0.517 
6 0.975 0.490 0.733 0.964 0.490 0.732 0.511 0.489 
7 0.803 0.592 0.698 0.752 0.593 0.684 0.571 0.429 
8 0.838 0.687 0.762 0.783 0.722 0.754 0.523 0.477 
9 1 0.285 0.643 1 0.276 0.639 0.501 0.499 

10 0.862 0.727 0.794 0.862 0.727 0.780 0.538 0.462 
11 0.750 0.432 0.591 0.741 0.443 0.614 0.576 0.424 
12 0.968 0.803 0.885 0.968 0.803 0.887 0.511 0.489 
13 0.869 0.763 0.816 0.846 0.763 0.804 0.494 0.506 
14 0.725 0.555 0.640 0.725 0.555 0.654 0.581 0.419 
15 1 0.880 0.940 1 0.880 0.940 0.503 0.497 
16 0.910 0.417 0.663 0.911 0.417 0.676 0.526 0.474 
17 0.723 1 0.862 0.724 1 0.840 0.581 0.419 
18 0.974 0.278 0.626 0.850 0.369 0.618 0.517 0.483 
19 1 0.657 0.828 1 0.657 0.833 0.515 0.485 
20 0.894 1 0.947 0.902 1 0.946 0.548 0.452 
21 0.895 0.362 0.628 0.913 0.362 0.679 0.575 0.425 
22 1 1 1 1 1 1 0.634 0.366 
23 0.972 0.620 0.796 0.976 0.620 0.815 0.547 0.453 
24 1 0.101 0.551 1 0.098 0.564 0.517 0.483 
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Table 4: IT data (source: Wang et al. [12]) 

DMU 

X1 
Fixed assets 
($billions) 

X2 
IT budget 
($billions) 

X3  
Number of 
employees 
(thousand) 

Z1 Deposits 
($billions) 

Y1 
Profit 

($billions) 

Y2 
Fraction of 

loans 
recovered 

1 0.713 0.15 13.3 14.478 0.232 0.986 
2 1.071 0.17 16.9 19.502 0.34 0.986 
3 1.224 0.235 24 20.952 0.363 0.986 
4 0.363 0.211 15.6 13.902 0.211 0.982 
5 0.409 0.133 18.485 15.206 0.237 0.984 
6 5.846 0.497 56.42 81.186 1.103 0.955 
7 0.918 0.06 56.42 81.186 1.103 0.986 
8 1.235 0.071 12 11.441 0.199 0.985 
9 18.12 1.5 89.51 124.072 1.858 0.972 

10 1.821 0.12 19.8 17.425 0.274 0.983 
11 1.915 0.12 19.8 17.425 0.274 0.983 
12 0.874 0.05 13.1 14.342 0.177 0.985 
13 6.918 0.37 12.5 32.491 0.648 0.945 
14 4.432 0.44 41.9 47.653 0.639 0.979 
15 4.504 0.431 41.1 52.63 0.741 0.981 
16 1.241 0.11 14.4 17.493 0.243 0.988 
17 0.45 0.053 7.6 9.512 0.067 0.98 
18 5.892 0.345 15.5 42.469 1.002 0.948 
19 0.973 0.128 12.6 18.987 0.243 0.985 
20 0.444 0.055 5.9 7.546 0.153 0.987 
21 0.508 0.057 5.7 7.595 0.123 0.987 
22 0.37 0.098 14.1 16.906 0.233 0.981 
23 0.395 0.104 14.6 17.264 0.263 0.983 
24 2.68 0.206 19.6 36.43 0.601 0.982 
25 0.781 0.067 10.5 11.581 0.12 0.987 
26 0.872 0.1 12.1 22.207 0.248 0.972 
27 1.757 0.0106 12.7 20.67 0.253 0.988 
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Table 5: Results for IT data 

 Our CRS model (13) Chen et al. [5]- CRS model 

 e1 e2 eo θ
1 θ

2 θ
ο w1 w2 

1 0.639 0.746 0.692 0.639 0.746 0.681 0.610 0.390 
2 0.651 0.782 0.716 0.651 0.782 0.702 0.606 0.394 
3 0.518 0.773 0.645 0.518 0.773 0.605 0.659 0.341 
4 0.599 0.714 0.656 0.599 0.714 0.642 0.626 0.374 
5 0.556 0.724 0.640 0.556 0.724 0.616 0.643 0.357 
6 0.760 0.576 0.668 0.760 0.576 0.680 0.568 0.432 
7 1 0.576 0.788 1 0.576 0.788 0.500 0.500 
8 0.535 0.825 0.680 0.535 0.825 0.636 0.651 0.349 
9 0.625 0.635 0.630 0.625 0.635 0.629 0.615 0.385 

10 0.496 0.719 0.607 0.496 0.719 0.570 0.668 0.332 
11 0.495 0.719 0.607 0.495 0.719 0.569 0.669 0.331 
12 0.668 0.595 0.632 0.668 0.595 0.639 0.599 0.401 

13 0.949 0.858 0.903 0.949 0.858 0.905 0.513 0.487 
14 0.588 0.578 0.583 0.588 0.578 0.584 0.630 0.370 

15 0.658 0.603 0.631 0.658 0.603 0.636 0.603 0.397 
16 0.665 0.643 0.654 0.665 0.643 0.656 0.601 0.399 
17 0.718 0.788 0.753 0.718 0.788 0.747 0.582 0.418 
18 1 1 1 1 1 1 0.500 0.500 
19 0.814 0.593 0.703 0.814 0.593 0.715 0.551 0.449 
20 0.693 1 0.847 0.693 1 0.819 0.591 0.409 
21 0.707 0.994 0.850 0.707 0.994 0.825 0.586 0.414 
22 0.794 0.641 0.717 0.794 0.641 0.726 0.557 0.443 
23 0.780 0.699 0.740 0.780 0.699 0.745 0.562 0.438 
24 0.930 0.714 0.822 0.930 0.714 0.826 0.518 0.482 
25 0.627 0.652 0.639 0.627 0.652 0.636 0.615 0.385 
26 1 0.515 0.758 1 0.515 0.758 0.500 0.500 
27 1 0.564 0.782 1 0.564 0.782 0.500 0.500 

 

 


