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Abstract. We consider estimation for general power GARCH models under stable–

Paretian innovations. Exploiting the simple structure of the conditional characteristic func-

tion of the observations driven by these models we propose minimum distance estimation

based on the empirical characteristic function of corresponding residuals. Consistency of the

estimators is proved, and we obtain a singular asymptotic distribution which is concentrated

on a hyperplane. Efficiency issues are explored and finite–sample results are presented as

well as applications of the proposed procedures to real data from the financial markets. A

multivariate extension is also considered.

Keywords. GARCH model; Minimum distance estimation; Heavy–tailed distribution; Em-

pirical characteristic function.

1 Introduction

Consider observations yt from the so–called power GARCH model defined by

(1.1)





yt = ctεt

cρ
t = µ +

∑p
j=1 bj |yt−j |ρ +

∑q
j=1 γjc

ρ
t−j , ∀t = 1, 2, ...,

where {εt} is a sequence of i.i.d. random variables (with location zero and unit scale)

independent of {ct}, and ρ, µ, {bj}p
j=1, and {γj}q

j=1 denote unknown parameters. If the
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innovations {εt} are standard normal and the power parameter ρ is set equal to two

we obtain the classical Gaussian GARCH model. From the time of Mandelbrot (1963)

and Fama (1965) however there is strong evidence that the distribution of financial

returns could be heavy–tailed and possibly asymmetric, and many authors advocated

the use of the stable–Paretian (SP) distribution instead of the normal distribution in

financial modelling. For more recent evidence of stable–Paretian behavior of financial

assets the reader is referred to the papers of Mittnik and Rachev (1993), Koutrouvelis

and Meintanis (1999), Liu and Brorsen (1995a), Paolella (2001), Tsionas (2002), Akgül

and Sayyan (2008), Tavares et al. (2008), Curto et al. (2009), and Xu et al. (2011),

and the volumes by Adler et al. (1998), Rachev and Mittnik (2000), Rachev (2003)

and Nolan, 2012).

Therefore one of the popular generalizations of model (1.1) is to assume that {εt}
follow a stable-Paretian distribution. We shall call this model SP power GARCH (SP–

PGARCH) model. The most convenient way to introduce SP distributions is by means

of their characteristic function (CF). Specifically if we assume that εt are zero–location

SP random variables with unit scale, then their CF is given by

ϕε(u) = e−|u|α{1−iβsgn(u) tan(πα/2)}, α 6= 1,(1.2)

= e−|u|{1+iβ 2

π
sgn(u) log |u|}, α = 1,

where 0 < α ≤ 2, −1 ≤ β ≤ 1, and sgn(u) = 1, u > 0, sgn(0) = 0, and sgn(u) =

−1, u < 0. Note that α is a shape parameter often referred to as the ‘tail index’ and

that the SP law reduces to the Gaussian distribution at α = 2. On the other hand β

measures skewness, and if β = 0 the corresponding SP law is symmetric. Besides the

normal law, well known particular cases are the Cauchy distribution for (α, β) = (1, 0)

and the Lévy distribution which corresponds to (α, β) = (1/2, 1). Several authors (see

for instance Mittnik et al. 1999, Liu and Brorsen 1995b, and Bonato 2009) proposed

maximum likelihood estimation of the SP–PGARCH model. However since the density

of the SP law is generally not available in closed form various approximations are

needed, and therefore likelihood methods may be characterized as computationally

demanding.

In this paper we capitalize on the simplicity of eq. (1.2) and suggest to employ the
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CF in order to estimate the parameters of SP–PGARCH models. The remainder of the

paper is outlined as follows. In Section 2 we introduce the new estimation procedure.

Section 3 is devoted to the asymptotic properties of the proposed method. The esti-

mator is consistent under mild regularity conditions but, surprisingly, its asymptotic

distribution is non standard, with a degenerate support concentrated on a hyperplane.

Interestingly, the estimator of the SP parameter has a standard asymptotic distribu-

tion and enjoys an adaptiveness property with respect to the GARCH parameters.

Optimality issues are also considered. The results of a Monte Carlo study for the

finite–sample properties of the method are presented in Section 4. In Section 5 we con-

sider an extension of the estimation procedure to multivariate SP–PGARCH models,

while in Section 6 empirical applications are presented. Finally, we end in Section 7

with conclusions and discussion. An Appendix contains parts of the proofs.

2 CF estimation of the SP–PGARCH model

Consider the SP–PGARCH model whereby the observations yt, (t = 1, ..., T ), are

driven by equation (1.1) and the innovations εt have CF given by (1.2). We assume the

standard positivity conditions µ > 0, {bj ≥ 0, 1 ≤ j ≤ p} and {γj ≥ 0, 1 ≤ j ≤ q}.
Denote by θ = (ρ, µ, b1, . . . , bp, γ1, . . . , γq)

′ the PGARCH parameter and by λ =

(α, β)′ the SP parameter. We suggest to estimate the parameter ϑ = (θ′, λ′)′), by

minimum distance between the CF and a suitable empirical counterpart. Specifically,

given the observations (y1, ..., yT ) and fixed initial values (y0, ..., y1−p) and (c̃0, ..., c̃1−q),

the estimation method is defined as

ϑ̂T = arg min
ϑ∈Ξ

∆̃T (ϑ),(2.1)

where Ξ denotes the parameter space and

∆̃T (ϑ) =

∫ ∞

−∞

|ϕ̃T (u) − ϕε(u)|2 W (u)du,(2.2)

with W (·) being a nonnegative weight function. In (2.2) ϕ̃T (u) := ϕT (u; ε̃1, ..., ε̃T ) is

the empirical CF (ECF) defined by

ϕT (u; x1, ..., xT ) =
1

T

T∑

t=1

eiuxt,(2.3)
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and computed from the residuals ε̃t = yt/c̃t, with c̃t being recursively defined for t ≥ 1,

by

c̃ρ
t = µ +

p∑

j=1

βj |yt−j|ρ +

q∑

j=1

γj c̃
ρ
t−j .(2.4)

Note that the introduction of the weight function W (·) in (2.2) is necessary in order to

neutralize the periodic components in the ECF ϕ̃T (u) and thus render the correspond-

ing integral finite. For the moment we shall only assume that W (·) is symmetric, i.e.,

W (u) = W (−u), and impose further conditions as they occur.

Estimation methods defined by (2.1) date back to Heathcote (1977), Thornton and

Paulson (1997) and Bryant and Paulson (1979), for i.i.d. data. There is also work on

ECF–based estimation for dependent data, but in a context different from the present

one. The interested reader is referred to Kotchoni (2012), Carrasco et al. (2007), and

Feuerverger (1990), and references therein.

Note that the ECF, ϕ̃T (u), involves the PGARCH parameter θ and the CF, ϕε(u),

involves the SP parameter λ. In the existing literature, the unknown parameter is only

involved in the CF, the ECF being computed directly from the observations y1, . . . , yT .

The reason why we can not use the standard approach in our framework is that, for

a PGARCH model, there exists no closed form for the CF of a vector of the form

(yt, . . . , yt−h), h ≥ 0.

3 Asymptotic properties

Now consider the asymptotic properties of the estimator (2.1) of the parameter of the

SP–PGARCH(p, q) model (1.1)-(1.2). Recall that the parameter vector is decomposed

as ϑ = (θ′, λ′)′ with θ = (ρ, µ, b1, . . . , bp, γ1, . . . , γq)
′ ∈ Θ and λ = (α, β)′ ∈ Λ. The true

parameter value is denoted by ϑ0 = (θ′
0, λ

′
0)

′ with θ′
0 = (ρ0, µ0, b01, . . . , b0p, γ01, . . . , γ0q)

and λ′
0 = (α0, β0). Following the seminal paper of Bougerol and Picard (1992), it is

easy to see that the necessary and sufficient condition for strict stationarity of (1.1)

takes the form γ(θ0) < 0, where γ(θ0) is the top-Lyapounov exponent of the model,

as defined in Appendix A of Hamadeh and Zakoïan (2011).

Let Bθ(z) =
∑p

j=1 bjz
j and Gθ(z) = 1 −∑q

j=1 γjz
j . By convention, Bθ(z) = 0 if

4



p = 0 and Gθ(z) = 1 if q = 0. To show the strong consistency, the following assumptions

will be made.

A1: ϑ0 ∈ Ξ := Θ×Λ where Θ is a compact subset of (0,∞)2 × [0,∞)p+q and Λ

is a compact subset of (1, 2) × [−1, 1].

A2: γ(θ0) < 0 and ∀θ ∈ Θ,
∑q

j=1 γj < 1.

A3(j): W (·) is strictly positive over R \ {0}, with
∫
|u|jW (u)du < ∞.

A4: if q > 0, Bθ0
(z) and Gθ0

(z) have no common root, Bθ0
(1) 6= 0, and b0p +

γ0q 6= 0.

Assumption A1 imposes standard positivity constraints on the PGARCH coefficients.

It also puts restrictions on the value of the tail index α0. DuMouchel (1983) showed

that, in the case of a sample of stable distribution, the asymptotic distribution of the

MLE is not standard when α0 = 2. Note also that when α0 = 2, the coefficient β0 is

not identifiable. We impose α0 > 1 because we need E|εt| < ∞. Assumption A2 and

the identifiability assumption A4 are also required for the consistency of the QMLE

of GARCH models.

It will be convenient to approximate the sequence (c̃t) defined by (2.4) by an

ergodic stationary sequence. Note that, under A2, the roots of Gθ(z) are outside the

unit disk. Therefore, denote by (ct) = {ct(θ)} the strictly stationary, ergodic and

nonanticipative solution of

(3.1) cρ
t = µ +

p∑

j=1

bj |yt−j |ρ +

q∑

j=1

γjc
ρ
t−j , ∀t.

To show the identifiability of the conditional characteristic function (see Remark A.2),

the following assumption will be needed.

A5: E sup
θ∈Θ

c1(θ0)
c1(θ)

10
< ∞.

For an ARCH(p) model, we have

ct(θ0)

ct(θ)
=

(
µ0 +

∑p
j=1 b0jy

ρ
t−j

µ +
∑p

j=1 bjy
ρ
t−j

)1/ρ

≤
(

µ0

µ
+

p∑

j=1

b0j

bj

)1/ρ

.
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Therefore, in the ARCH case, Assumption A5 is satisfied when infθ∈Θ min bj > 0. In

the general case, it can be shown that Assumption A5 is satisfied when Θ is suffi-

ciently small (see (5.15) and (5.16) in Hamadeh and Zakoïan (2011), referred to as HZ

hereafter).

Let

∆T (ϑ) =

∫ ∞

−∞

|ϕT (u) − ϕε(u)|2 W (u)du,

where ϕT (u) = ϕT (u; ε1, ..., εT ) is the ECF in (2.4) computed from the standardized

innovations εt = εt(θ) = yt/ct. Note that ∆T (ϑ) is well defined under A3(0) because

supu |ϕT (u) − ϕε(u)|2 < ∞. We are now in a position to state our first result.

Theorem 3.1 Let (ϑ̂T ) be a sequence of CF estimators satisfying (2.1). Under the

regularity conditions A1, A2, A3(0), A3(1), A4 and A5, almost surely ϑ̂T → ϑ0,

as T → ∞.

Let K and ̺ be generic constants, whose values will be modified along the proofs,

such that K > 0 and 0 < ̺ < 1.

Proof of Theorem 3.1. In the appendix, we show the asymptotic irrelevance of the

initial values by proving that

(3.2) lim
T→∞

sup
ϑ∈Ξ

|∆T (ϑ) − ∆̃T (ϑ)| = 0, a.s.

Let us show that the limiting criterion is minimal only at the true value, that is

(3.3) ∀ϑ 6= ϑ0, lim
T→∞

∆T (ϑ) > 0 and lim
T→∞

∆T (ϑ0) = 0 a.s.

We will write

ϕT (u; θ) = ϕT (u) and ϕ(u; λ) = ϕε(u)

when it is necessary to emphasize that the empirical CF depends on θ and the theo-

retical CF depends on λ. The ergodic theorem shows that, almost surely,

ϕT (u, θ0) → Eeiuεt(θ0) = ϕ(u, λ0) as T → ∞.

The second convergence of (3.3) is thus a direct consequence of the dominated con-

vergence theorem and A3(0). Using W (·) > 0 and the continuity of the characteristic
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functions, the same arguments show that limT→∞ ∆T (ϑ) = 0 iff ϕ(u, λ) is the charac-

teristic function of

ε1(θ) =
c1(θ0)ε1(θ0)

c1(θ)
,

that is iff

∀u, ϕ(u, λ) = Eϕ

(
u
c1(θ0)

c1(θ)
, λ0

)
.

Lemma A.1 of the appendix shows that, under A5, this is only possible if

λ = λ0 and c1(θ0) = c1(θ) a.s.,

which is equivalent to ϑ = ϑ0 by A4 (see the proof of Theorem 3.1 in HZ). The proof

of (3.3) is complete.

We need to show that the inequality in (3.3) holds locally uniformly, i.e. that

there exists a neighborhood V (ϑ∗) of ϑ∗ = (θ∗′ , λ∗′)′ such that

(3.4) lim inf
T→∞

inf
ϑ∈V (ϑ∗)

∆T (ϑ) > 0 if ϑ∗ 6= ϑ0.

Let Eeiuε1 be the almost sure limit of ϕT (u, θ). Lemma A.3 shows that the convergence

is actually uniform:

(3.5) ∀u, sup
θ∈Θ

∣∣ϕT (u, θ) − Eeiuε1

∣∣→ 0 a.s.

Now note that

∆T (ϑ) = aT (θ) + b(ϑ) + dT (ϑ)

with

aT (θ) =

∫ +∞

−∞

∣∣ϕT (u, θ) − Eeiuε1

∣∣2 W (u)du,

b(ϑ) =

∫ +∞

−∞

∣∣Eeiuε1 − ϕ(u, λ)
∣∣2 W (u)du,

dT (ϑ) =

∫ +∞

−∞

2Re
{
ϕT (u, θ) − Eeiuε1

}{
Ee−iuε1 − ϕ(u, λ)

}
W (u)du.

Using (3.5), A3(0) and the bound
∣∣ϕT (u, θ) − Eeiuε1

∣∣ ≤ 2, we show that supθ∈Θ aT (θ) →
0 a.s. By the Cauchy-Schwarz inequality, we similarly obtain sup

ϑ∈Ξ dT (ϑ) → 0 a.s.
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For any positive integer k, let Vk(ϑ
∗) be the open ball of center ϑ∗ and radius 1/k. By

Beppo Levi, as k → ∞

inf
ϑ∈Vk(ϑ∗)

b(ϑ) ≥
∫ +∞

−∞

inf
ϑ∈Vk(ϑ∗)

∣∣Eeiuε1 − ϕ(u, λ)
∣∣2 W (u)du

↑
∫ +∞

−∞

∣∣Eeiuε1(θ
∗) − ϕ(u, λ∗)

∣∣2 W (u)du = lim
T→∞

∆T (ϑ∗) > 0,

where the last inequality comes from (3.3). It follows that there exists a neighborhood

V (ϑ∗) such that infϑ∈V (ϑ∗) b(ϑ) > 0. We then obtain (3.4) by noting that

inf
ϑ∈V (ϑ∗)

∆T (ϑ) ≥ inf
ϑ∈V (ϑ∗)

b(ϑ) − sup
θ∈Θ

aT (θ) − sup
ϑ∈Θ

dT (ϑ).

The conclusion follows from (3.2), (3.3) and (3.4) and a standard compactness

argument. 2

To show the asymptotic normality, the following additional assumption is needed.

A6: ϑ0 ∈
◦

Ξ, where
◦

Ξ denotes the interior of Ξ.

We also need to introduce few additional notations. Let gt(u, ϑ) = eiuεt − ϕε(u) and

the vector of dimension d = p + q + 3

Υt =

∫ ∞

−∞

Re

(
gt(u, ϑ0)E

∂g1(u, ϑ0)

∂ϑ

)
W (u)du.

The next lemma, whose proof is in the appendix, shows the existence of V = VarΥ1,

as well as the existence of the matrix

G =

∫ ∞

−∞

Re

(
E

∂g1(u, ϑ0)

∂ϑ
E

∂g1(u, ϑ0)

∂ϑ′

)
W (u)du.

Lemma 3.2 Under the assumptions of Theorem 3.1, the matrices G and V are well

defined and are singular.

Proof. We have

(3.6)
∂gt(u, ϑ)

∂θ
=

∂eiuεt

∂θ
= −iueiuεtεt

1

ct

∂ct

∂θ
,

and

(3.7)
∂gt(u, ϑ

∂λ
) = −∂ϕ(u, λ)

∂λ
= ϕ(u, λ)



 τ1(u)

τ2(u)



 ,
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with

τ1(u) = |u|α0

{
log |u| − iβ0sgn (u)

(
log |u| tan

(πα0

2

)
+

π

2

1

cos2
(

πα0

2

)
)}

,

τ2(u) = −i|u|α0sgn(u) tan
(πα0

2

)
.

Since E |εt(θ0)| < ∞, and εt(θ0) and ct(θ) are independent, we have

E

∥∥∥∥
∂gt(u, ϑ)

∂θ

∥∥∥∥ ≤ E

∥∥∥∥u
ct(θ0)

ct(θ)
εt(θ0)

1

ct

∂ct(θ)

∂θ

∥∥∥∥ ≤ K|u|Ect(θ0)

ct(θ)

∥∥∥∥
1

ct

∂ct(θ)

∂θ

∥∥∥∥ .

It can be shown (see (5.16) in HZ) that for all r > 0 there exists a neighborhood V (θ0)

of θ0 such that

(3.8) E sup
θ∈V (θ0)

(
ct(θ0)

ct(θ)

)r

< ∞.

In view of (5.20) in HZ and its extension Page 506, we also have

(3.9) E sup
θ∈Θ

∥∥∥∥
1

ct

∂ct(θ)

∂θ

∥∥∥∥
r

< ∞ for all r > 0.

The Hölder inequality then entails that for some neighborhood V (ϑ0) of ϑ0, we have

(3.10) E sup
ϑ∈V (ϑ0)

∥∥∥∥
∂g1(u, ϑ)

∂ϑ

∥∥∥∥ < ∞,

where the norm of a complex vector denotes the sum of the norms of its real and

imaginary parts. By Lebesgue’s dominated convergence theorem, we thus have

E
∂g1(u, ϑ)

∂θ
=

∂Eeiuε1

∂θ
=

∂

∂θ
Eϕ

(
ct(θ0)

ct(θ)
u, λ0

)
= −uEϕ′

(
ct(θ0)

ct(θ)
u

)
ct(θ0)

ct(θ)

1

ct(θ)

∂ct

∂θ
,

where

ϕ′(u) = −ϕ(u, λ0)α0|u|α0−1
{

1 − iβ0sgn (u) tan
(πα0

2

)}
.

We then have

(3.11) E
∂g1(u, ϑ0)

∂θ
= ϕ(u, λ0)τ 3(u),

with

τ 3(u) = τ3(u)E
1

ct

∂ct

∂θ
(θ0), τ3(u) = sgn (u) α0|u|α0

{
1 − iβ0sgn (u) tan

(πα0

2

)}
.
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In view of (3.7) and (3.11), each component of E ∂
∂ϑ

g1(u, ϑ0) is a bounded function of

u (since ϕ(u, λ0) tends to zero at an exponential rate as |u| → ∞). The existence of

G thus follows from A3(0). Since |gt(u, ϑ0)| ≤ 2, the existence of V also follows.

Let us show that G is singular. This is equivalent to prove that there exists a 6= 0

such that a′E ∂g1(u,ϑ0)
∂ϑ

= 0 for all u (see Theorem 2 in Bryant and Paulson, 1979).

Letting a = (a′
1, a2, a3)

′ with a1 ∈ R
p+q+2, and using (3.7) and (3.11), we have

a′E
∂g1(u, ϑ0)

∂ϑ
= ϕ(u, λ0)

{
a′

1E
1

ct

∂ct

∂θ
(θ0)τ3(u) + a2τ1(u) + a3τ2(u)

}
.

Since |ϕ(u, λ0)| > 0 and since the functions τ1(u), τ2(u) and τ3(u) are linearly inde-

pendent, a′E ∂g1(u,ϑ0)
∂ϑ

= 0 for all u if and only if

a2 = a3 = 0 and a′
1E

1

ct

∂ct

∂θ
(θ0) = 0.

This can obviously be achieved by choosing a1 6= 0. Note that the rank of G is equal

to 3. The singularity of V is shown similarly. 2

We are now in a position to give the asymptotic distribution of the CF estimators.

Theorem 3.3 Under the assumptions of Theorem 3.1, A3(4) and A6, G
√

T (ϑ̂T −ϑ0)

converges in law to the N (0,V) distribution as T → ∞.

Proof of Theorem 3.3. In the appendix, it is shown that there exists a neighborhood

V (ϑ0) of ϑ0 such that

(3.12) lim
T→∞

√
T sup

ϑ∈V (ϑ0)

∥∥∥∥∥
∂∆T (ϑ)

∂ϑ
− ∂∆̃T (ϑ)

∂ϑ

∥∥∥∥∥ = 0, a.s.

Assumption A6 and the consistency of ϑ̂T entail that ∂∆̃T (ϑ̂T )/∂ϑ = 0, at least

for T large enough. In view of (3.12) and (A.3), we thus have

oP (1) =
√

T
∂∆T (ϑ̂T )

∂ϑ

= 2

∫ +∞

−∞

1√
T

T∑

t=1

Re

(
gt(u, ϑ̂T )

1

T

T∑

s=1

∂gs(u, ϑ̂T )

∂ϑ

)
W (u)du.(3.13)

Using Taylor expansions, the ergodic theorem and the consistency of ϑ̂T , it is shown

in the appendix that

1√
T

T∑

t=1

gt(u, ϑ̂T ) =
1√
T

T∑

t=1

gt(u, ϑ0) +

{
E

∂g1(u, ϑ0)

∂ϑ

}
√

T (ϑ̂T − ϑ0) + oP (1)
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and
1

T

T∑

s=1

∂gs(u, ϑ̂T )

∂ϑ
= E

∂g1(u, ϑ0)

∂ϑ
+ oP (1).

Showing that the limit of (3.13) as T → ∞ can be taken under the integral sign (see

the appendix for details), we obtain

(3.14) oP (1) =
1√
T

T∑

t=1

Υt + G

√
T (ϑ̂T − ϑ0).

The conclusion follows from the central limit theorem. 2

Because the matrix G is singular, the previous theorem does not entail the asymp-

totic normality of the entire estimator
√

T
(
ϑ̂T − ϑ0

)
=

√
T
(
θ̂
′

T − θ′
0, λ̂

′

T − λ′
0

)′
.

As a consequence of the following result, we have however asymptotic normality of
√

T
(
λ̂T − λ0

)
.

Theorem 3.4 Under the assumptions of Theorem 3.3, we have G = ABA′ where

A =


 E 1

c1

∂c1(θ0)
∂θ

0

0 I2




has full rank 3 and B is an invertible 3×3 matrix. Moreover
√

TA′(ϑ̂T −ϑ0) converges

in law to the N
(
0,Σ := B−1UB−1

)
distribution, where B and U explicitly depend on

λ0 and W (·) (see (3.15) and (3.16) below), but not on θ0.

Proof of Theorem 3.4. In view of (3.7) and (3.10), we have

E
∂

∂ϑ
g1(u, ϑ0) = Aτ (u), τ (u) = ϕ(u, λ0)




τ3(u)

τ1(u)

τ2(u)


 .

Since the 3 functions τi(u), i = 1, 2, 3, are linearly independent, the matrix

(3.15) B := Re

∫
τ (u)τ (u)′W (u)du

is invertible (see Theorem 2 in Bryant and Paulson, 1979), and we have

G := Re

∫
E

∂g1(u, ϑ0)

∂ϑ
E

∂g1(u, ϑ0)

∂ϑ′ W (u)du = ABA′.

11



By Theorem 3.3 and the fact that B−1(A′A)−1A′
G = A′, we obtain the asymptotic

normality with Σ = B−1(A′A)−1A′
VA(A′A)−1B−1. Since

Υt = A

∫ ∞

−∞

Re
{

eiuǫt(θ0)τ (u)
}

W (u)du− A

∫ ∞

−∞

Re
{

ϕ(u, λ0)τ (u)
}

W (u)du,

a computation similar to that of (17) in Bryant and Paulson (1979) gives V = AUA′

with

U =
1

2

∫ ∞

−∞

∫ ∞

−∞

Re
{
ϕ(u + v, λ0)τ (u) τ (v)

′
}

W (u)W (v)dudv(3.16)

+
1

2

∫ ∞

−∞

∫ ∞

−∞

Re
{
ϕ(u − v, λ0)τ (u) τ (v)′

}
W (u)W (v)dudv

−
∫ ∞

−∞

Re
{
ϕ(u, λ0)τ (u)

}
W (u)du

(∫ ∞

−∞

Re
{
ϕ(v, λ0)τ (v)

}
W (v)dv

)′

.

The conclusion follows. 2

The following corollary of Theorem 3.4 shows that the matrices B and Σ have

simple forms when W (·) is chosen to be even. This implies two interesting consequences

for the ECF estimator of ϑ0: i) adaptiveness of λ̂T with respect to θ0 and 2) singular

asymptotic distribution for θ̂T .

Corollary 3.5 Under the assumptions of Theorem 3.3, when W (·) is even the matrix

B and Σ are of the form

B =



 b11 0

0 B22



 and Σ =



 0 0

0 S



 ,

where S is the asymptotic variance of the ECF estimator of λ0 based on an iid sequence

(see Thornton and Paulson, 1977). The asymptotic distribution of
√

T
(
θ̂T − θ0

)
is

concentrated on the line

∆c =

{
x ∈ R

p+q+2 : x′E
1

ct

∂ct

∂θ
(θ0) = c

}

for some constant c.

Proof of Corollary 3.5. The block-diagonal form of B comes from the fact that,

for i = 1, 2, Re
{
τ3(u)τi(u)

}
is an odd function of u. Since Re

{
|ϕ(u, λ0)|2 τ3(u)

}
is

an odd function, the first component of the vector
∫∞

−∞
Re
{
ϕ(u, λ0)τ (u)

}
W (u)du is

12



equal to zero. Now note that τ1(−v) = τ1(v), τ2(−v) = τ2(v) and τ3(−v) = −τ3(v). It

follows that for the two matrices defined by the double integrals of (3.16), the elements

of the first row and first column are opposite. The form of Σ follows. Denoting by

Varas the variance of the asymptotic distribution, we thus have

Varas

{√
T
(
θ̂T − θ0

)
E

1

ct

∂ct

∂θ
(θ0)

}
= Σ(1, 1) = 0,

and the conclusion follows. 2

3.1 Efficient weight function

Theorem 3.4 shows that the asymptotic distribution of
√

TA′(ϑ̂T −ϑ0) is the same as

that of
√

TA′(ϑ̆T − ϑ0) where ϑ̆T =
(
θ̆
′
, λ̆

′
)′

is a consistent root of

(3.17) Re

∫ ∞

−∞

ω(u)
{
ϕT (u, θ̆) − ϕ(u, λ̆)

}
du = 0, ω(u) = τ (u)W (u).

Feuerverger and McDunnough (1981a, 1981b) studied in detail the asymptotic behavior

of estimators satisfying the estimation equation (3.17) in a general framework. They

found that, under general regularity conditions, the optimal weight function, allowing

for an estimator virtually as efficient as the MLE, is of the form

ω(u) =

∫ ∞

−∞

∂ log fϑ0
(x)

∂ϑ
e−iuxdx.

In our framework, the regularity assumptions are not satisfied because, when fϑ0
(x) is

the SP density it is easy to see that the function
∂ log fϑ0

(x)

∂ϑ
e−iux is not integrable.

A solution to solve the problem consists in optimizing directly the asymptotic

variance S = S(W, λ0) defined in Theorem 3.4–Corollary 3.5 as a function of W (·),
for a given value of λ0. Assume that the problem of interest is to minimize Ψ(S)

for some function Ψ(·) from the set of the 2 × 2 covariance matrices to [0,∞). The

function Ψ(·) can be a norm or, if the focus is on the estimation of the tail index α0,

it can be Ψ(S) = S(1, 1). Let W be a set of functions W (·) satisfying A3(0) and

A3(4), as requires in Theorems 3.3. Within this set, an optimal weight function is any

measurable solution of

(3.18) W ∗ = arg min
W∈W

Ψ {S(W, λ0)} .

13



As an illustration, let us consider the Gamma-type weight functions defined by

(3.19) W = {|u|p−1e−b|u| : p ≥ 1, b > 0}.

Consider also the case λ0 = (1.6, 0) with Ψ(S) = S(1, 1). The solution of (3.18) and

the classical Gaussian weight function Wφ(u) := e−u2

lead respectively to

S(W ∗, λ0) =



 3.57 0.00

0.00 6.72



 , S(Wφ, λ0) =



 4.37 0.00

0.00 7.02



 .

One can see that the optimal weight function W ∗ leads asymptotically to a more accu-

rate estimator of λ0 than the Gaussian weight function Wφ. Of course, one can expect

some efficiency gain by optimizing over a larger set W. Our numerical experiments

lead us to think that the potential gain is modest, even at the price of a much more

time-consuming optimization.

The optimal weight function W ∗ depends on the unknown parameter λ0. In the

spirit of the optimal generalized method of moments (GMM) proposed by Hansen

(1982), a standard solution consists in estimating λ0 in a first step by a suboptimal

weight function, for instance Wφ, and replacing λ0 by the first-step estimate to solve

(3.18) in a second step. Because we observed that the solution is not very sensitive to

λ0, and because on the financial series that we have considered the estimated values

of λ0 are often close to (1.6, 0), we decided to keep the same weight function for all

the forthcoming numerical illustrations. More precisely, we used the solution of (3.18)-

(3.19), which turned out to be

W ∗(u) = |u|p−1e−b|u| with p = 1.69 and b = 1.91.

4 Simulation results

The aim of our first simulation experiment is to illustrate that the ECF is consistent,

but has a non standard asymptotic distribution concentrated on a line (see Corol-

lary 3.5). We thus consider the following very simple version of the SP–PGARCH

model

(4.1) yt = ctεt, c2
t = µ0 + b0y

2
t−1

14
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Figure 1: Empirical distribution of the ECF estimator over 1, 000 independent simulations

of length T = 2, 000 of the SP-PARCH(1) model (4.1). The red line of the scatter plot

corresponds to the direction of the vector Ec−1∂ct(θ0)/∂θ.

where ϑ0 = (0.5, 0.2, 1.6, 0), i.e., we have a SP-PARCH(1) model with symmetric SP

innovations and tail index equal to 1.6. Moreover we assume that the value of ρ is

known to be equal to 2. The left panel of Figure 1 displays the box-plots of the ECF

estimates of the four parameters over N = 1, 000 independent simulations of length

T = 2, 000 of the process. As expected, for each parameter, the median of the estimated

values is very close to the true value (represented by a diamond symbol). The right

panel of Figure 1 displays the scatter plot of the 1, 000 values of (µ̂ − µ0, b̂ − b0). In

accordance with Corollary 3.5, the points are concentrated along the red line, carried

by the vector Ec−1∂ct(θ0)/∂θ.1 For comparison, we plotted the linear regression of

b̂ − b0 on µ̂ − µ0 as a dotted line. This line is almost confused with the full red line.

Figure 2 corresponds to simulations of length T = 20, 000. Of course, the estimates

are more accurate, and the points are more concentrated along the red line.

We now compare the ECF and ML estimators on the SP–PGARCH(1,1) model

(4.2) yt = ctεt, c2
t = µ0 + b0y

2
t−1 + γ0c

2
t−1

1Because there exists no explicit form for this vector, it has been evaluated on the basis of a

simulation of length 50, 000.
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Figure 2: As Figure 1, but for the sample size T = 20, 000.

where ϑ0 = (0.5, 0.05, 0.7, 1.6, 0). Table 1 shows that, for estimating the SP parameters

α and β, the performance of ECF estimator seems similar to that of the MLE. For the

estimation of the GARCH parameters, the MLE outperforms the ECF estimator, as

expected from the asymptotic theory. Table 2 shows that, as expected, the ECF

estimator is however much more advantageous than the MLE in terms of amount of

computation time.

5 Multivariate extension

Consider now the problem of estimation of a multivariate SP–PGARCH model. We

first specify that we will consider i.i.d. replications εt, t = 1, 2, ..., of the innovation

vector ε of dimension m ≥ 1, following a multivariate symmetric SP distribution with

characteristic function

ϕε(u) = e−| 12u′u|α/2

, u ∈ R
m.(5.1)

Such vectors have the convenient stochastic representation

ε = A1/2X,(5.2)

with X distributed as multivariate standard normal, and A a totally skewed to the

right SP random variable with shape parameter equal to α/2, and independent of X
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Table 1: Comparison of the ECF and the MLE on 10 simulations of the

SP–PGARCH(1,1) model (4.2).

ECF estimator MLE estimator

Iter µ̂ b̂ γ̂ α̂ β̂ µ̂ b̂ γ̂ α̂ β̂

1 0.39 0.04 0.75 1.67 (0.04) 0.08 (0.06) 0.42 (0.03) 0.04 (0.01) 0.73 (0.02) 1.64 (0.03) 0.04 (0.06)

2 0.45 0.05 0.72 1.57 (0.04) -0.01 (0.06) 0.51 (0.07) 0.06 (0.01) 0.67 (0.03) 1.57 (0.03) -0.01 (0.05)

3 0.68 0.04 0.68 1.65 (0.04) 0.07 (0.06) 0.56 (0.06) 0.06 (0.01) 0.67 (0.02) 1.63 (0.03) 0.06 (0.06)

4 0.26 0.02 0.83 1.47 (0.04) 0.01 (0.06) 0.45 (0.07) 0.05 (0.01) 0.70 (0.03) 1.52 (0.03) 0.01 (0.04)

5 0.61 0.04 0.72 1.62 (0.04) 0.06 (0.06) 0.64 (0.07) 0.05 (0.01) 0.70 (0.03) 1.63 (0.04) 0.03 (0.06)

6 0.82 0.10 0.52 1.65 (0.04) 0.09 (0.06) 0.58 (0.06) 0.06 (0.01) 0.67 (0.03) 1.67 (0.03) 0.11 (0.07)

7 0.54 0.04 0.72 1.56 (0.04) 0.06 (0.06) 0.59 (0.07) 0.04 (0.00) 0.71 (0.02) 1.57 (0.03) 0.08 (0.05)

8 0.37 0.03 0.77 1.56 (0.04) -0.01 (0.06) 0.41 (0.04) 0.04 (0.00) 0.75 (0.02) 1.52 (0.02) 0.01 (0.04)

9 0.55 0.06 0.67 1.61 (0.04) 0.00 (0.06) 0.49 (0.06) 0.06 (0.00) 0.68 (0.02) 1.57 (0.03) -0.03 (0.05)

10 0.60 0.03 0.72 1.55 (0.04) 0.03 (0.06) 0.47 (0.05) 0.04 (0.00) 0.72 (0.02) 1.59 (0.03) 0.00 (0.05)

Table 2: Computation time of the ECF and ML estimators for 10 simulations of

length T = 200 and T = 2, 000 of the SP–PGARCH(1,1) model (4.2) (the empirical

standard deviations are given into brackets).

T = 200 T = 2, 000

ECF 7.9 (2.2) 9.4(4.9)

ML 123.7 (20.6) 1132.9 (126.2)

(Samorodnitsky and Taqqu, 1994, §2.5).

In view of the above we define the multivariate SP–PGARCH with observation

vector yt = (y1t, ..., ymt)
′ as

yt = C
1/2
t εt,(5.3)

where C
1/2
t is a (m × m) scale matrix which is assumed to be symmetric and posi-

tive definite, while the vectors εt, (t = 1, ..., T ), have characteristic function given by

(5.1). Following the lines of Section 2 we suggest to estimate the parameters of the

multivariate SP–PGARCH model by minimizing the criterion

∆̃T (ϑ) =

∫

Rm

|ϕ̃T (u) − ϕε(u)|2 W (u)du,(5.4)
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where ϕε(·) is given by (5.1), ϕ̃T (u) := ϕT (u; ε̃1, ..., ε̃T ) is the multivariate ECF defined

by

ϕT (u; x1, ..., xT ) =
1

T

T∑

t=1

eiu′
xt ,(5.5)

and computed from the residuals ε̃t = C̃
−1/2
t yt, with C̃t being a scale matrix depending

on ϑ and on past observations in a way that it will be specified below.

One specific instance of a multivariate GARCH model is the so–called constant

conditional correlation (CCC)–GARCH specification whereby

Ct = DtRDt,(5.6)

where Dt and R are (m× m) matrices with R being a correlation matrix, while Dt is

related to the volatility vector ct = (c1t, ..., cmt)
′ by the equation D

2
t = diag(c1t, ..., cmt).

The aforementioned specification is adapted to the multivariate SP–PGARCH context

by advocating a power GARCH volatility specification as

(5.7) c
(ρ)
t = b0 +

p∑

j=1

Bjy
(ρ)
t−j +

q∑

j=1

Γjc
(ρ)
t−j ,

with

c
(ρ)
t = (cρ

1t, ..., c
ρ
mt)

′, y
(ρ)
t = (yρ

1t, ..., y
ρ
mt)

′,

where the vector b0 is of dimension m and has positive elements, while the (m × m)

matrices {Bj}p
j=1, and {Γj}q

j=1, are with non–negative elements. In this case the matrix

C̃t involved in (5.4) is computed recursively based on the equations (5.6) and (5.7) and

on initial values (y0, ..., y1−p) and (c̃0, ..., c̃1−q). We shall call this model CCC– SP–

PGARCH model

6 Applications to exchange rates

We now consider daily returns of 19 exchange rates with respect to the Euro. The

currencies that we have considered are the American Dollar (USD), the Japanese Yen

(JPY), the Czech Koruna (CZK), the Danish Krone (DKK), the British Pound (BGP),

18



Table 3: Log-GARCH(1,1) models fitted by ECF estimator on daily returns of

exchange rates. The estimated standard deviation are displayed into brackets.

µ̂ b̂ γ̂ α̂ β̂ µ̂ b̂ γ̂ α̂ β̂

USD 0.00 0.02 0.96 1.88 (0.03) -0.10 (0.04) CHF 0.00 0.06 0.86 1.66 (0.03) -0.16 (0.04)

JPY 0.02 0.01 0.89 1.72 (0.03) -0.23 (0.04) NOK 0.01 0.13 0.53 1.65 (0.03) 0.19 (0.04)

CZK 0.00 0.03 0.93 1.69 (0.03) 0.02 (0.04) AUD 0.00 0.01 0.98 1.75 (0.03) 0.25 (0.04)

DKK 0.00 0.07 0.81 1.55 (0.03) -0.02 (0.04) CAD 0.00 0.02 0.96 1.90 (0.03) 0.00 (0.04)

GBP 0.00 0.02 0.95 1.88 (0.03) 0.29 (0.04) HKD 0.00 0.02 0.96 1.86 (0.03) -0.10 (0.04)

HUF 0.00 0.04 0.89 1.66 (0.03) 0.18 (0.04) KRW 0.00 0.02 0.94 1.81 (0.03) 0.09 (0.04)

LTL 0.00 0.00 0.91 1.24 (0.03) -0.10 (0.04) NZD 0.00 0.02 0.94 1.76 (0.03) 0.33 (0.04)

LVL 0.00 0.06 0.81 1.47 (0.03) 0.07 (0.04) SGD 0.00 0.01 0.98 1.79 (0.03) 0.00 (0.04)

PLN 0.00 0.02 0.96 1.75 (0.03) 0.32 (0.04) ZAR 0.04 0.04 0.79 1.77 (0.03) 0.35 (0.04)

SEK 0.00 0.02 0.95 1.90 (0.03) -0.01 (0.04)

the Hungarian Forint (HUF), the Lithuanian Litas (LTL), the Latvian Lats (LVL), the

Polish Zloty (PLN), the Swedish Krona (SEK), the Swiss Franc (CHF), the Norwegian

Krone (NOK), the Australian Dollar (AUD), the Canadian Dollar (CAD), the Hong

Kong Dollar (HKD), the South Korean Won (KRW), the New Zealand Dollar (NZD),

the Singapore Dollar (SGD) and the South African Rand (ZAR). The observations

cover the period from January 5, 1999 to August 10, 2012, which corresponds to 3488

observations.2 Table 3 displays the estimated SP–PGARCH(1,1) models for each series.

We finally fitted a CCC–SP–PGARCH(1,1) model on the bivariate series yt =

(USAt, JPYt)
′ of the USA and JPY exchange rate returns. Using the ECF, the esti-

mated model is

εt = C
−1/2
t yt, Ct = DtRDt, D

2
t = diag(ct)

where

c
(2)
t =


 1.0 10−6

2.3 10−2


 +


 0.032 0.003

0.000 0.027


y

(2)
t−1 +


 0.957 0.000

0.000 0.894


 c

(2)
t−1,

R =



 1 0.413

0.413 1





2Data source: http://www.ecb.int/stats/exchange/eurofxref/html/index.en.html
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and εt follows the SP distribution defined by the CF (5.1) with tail index α = 1.496.

7 Conclusion

We propose an estimation method for the so–called power GARCH model with stable

Paretian (SP) innovations. The method is based on the integrated weighted squared

distance between the characteristic function of the SP distribution and an empirical

counterpart computed from the GARCH residuals. Under fairly standard conditions

the estimator was shown to be consistent. Its asymptotic distribution however proved

non–standard and in fact splits into two parts: One regular Gaussian distribution cor-

responding to the parameters of the SP law, while the other part of the distribution

corresponding to the GARCH parameters is singular and in particular it is concen-

trated on a hyperplane. For the regular Gaussian part it was possible to even optimize

the choice of the weight function so that the estimators of the SP parameters attain

minimum variance.

Although the simulations results show that the characteristic function–based es-

timator behaves reasonably and that it is by far less time–consuming than the MLE

(which might suggest its use at least as an initial value), more work is needed in order

to reveal the finite–sample properties of the proposed estimator. In this connection

the proposed method may be viewed as a general method, and given the fact that it

was shown to readily extend to multivariate GARCH, it could be considered for other

GARCH models for which, like in the present SP–PGARCH model, the innovation

distribution is more conveniently parametrized by the characteristic function, rather

than by the corresponding density.
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A Technical proofs

The first two results show that the choice of the unknown initial values is asymptotically

unimportant for the objective function and its derivatives.

Proof of (3.2). Using the elementary relation | cos x − cos y| ≤ |x − y|, we have

(A.1) |Re {ϕ̃T (u) − ϕT (u)}| ≤ 1

T

T∑

t=1

∣∣∣∣uyt

(
1

c̃t
− 1

ct

)∣∣∣∣ .

By the arguments used to show (5.3) in HZ, it is easily shown that

sup
θ∈Θ

|cρ
t − c̃ρ

t | ≤ K̺t, ∀t.

The mean-value theorem and the fact that infθ∈Θ min(ct, c̃t) ≥ µ1/ρ > 0, then imply

that for c∗∗t between cρ
t and c̃ρ

t ,

sup
θ∈Θ

|ct − c̃t| = sup
θ∈Θ

∣∣∣∣(c
ρ
t − c̃ρ

t )
1

ρ
(c∗∗t )1/ρ−1

∣∣∣∣ ≤ K̺t (max{ct, c̃t})1/ρ .

Noting that Re can be replaced by Im in (A.1), we thus have

(A.2) |ϕ̃T (u) − ϕT (u)| ≤ K

T
|u|

∞∑

t=1

̺t|yt| (max{ct, c̃t})1/ρ .

The strict stationarity condition in A2 entails that E|yt|2s < ∞ and E|ct|2s/ρ < ∞ for

some small s > 0 (see Proposition A.1 in HZ). By the same arguments, we also have

E|c̃t|2s/ρ < ∞. By the Cauchy-Schwarz inequality, the supremum over Θ of the sum of

the right-hand side of the inequality (A.2) admits a moment of order s. Therefore this

sum is almost surely finite, uniformly in Θ. It follows that

∣∣|ϕ̃T (u) − ϕε(u)|2 − |ϕT (u) − ϕε(u)|2
∣∣

=
∣∣∣(ϕ̃T (u) − ϕT (u))

(
ϕ̃T (u) − ϕε(u)

)
+
(
ϕ̃T (u) − ϕT (u)

)
(ϕT (u) − ϕε(u))

∣∣∣

≤ K

T
|u|.

We then obtain (3.2) by A3(1). 2

Proof of (3.12). In view of (3.6) and (3.7), we have

∥∥∥∥∥
1

T

T∑

s=1

∂gs(u, ϑ)

∂ϑ

∥∥∥∥∥ ≤ K +
|u|
T

T∑

s=1

|εt(θ0)|
ct(θ0)

ct(θ)

∥∥∥∥
1

ct(θ)

∂ct(θ)

∂ϑ

∥∥∥∥ .
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By (3.8), (3.9) and E |εt(θ0)| < ∞, the random variable of the right hand side of the

last inequality is uniformly integrable in a neighborhood of ϑ0. By the ergodic theorem,

it follows that, when ϑ is sufficiently close to ϑ0, the right hand side is a.s. bounded

by a constant or by u times a constant. Note also that
∣∣∣T−1

∑T
t=1 gt(u, ϑ)

∣∣∣ ≤ 2. The

dominated convergence theorem and A3(0)-A3(1) thus show that one can take the

derivative under the integral symbol to obtain

(A.3)
∂∆T (ϑ)

∂ϑ
= 2Re

∫ ∞

−∞

1

T

T∑

t=1

gt(u, ϑ)
1

T

T∑

s=1

∂gs(u, ϑ)

∂ϑ
W (u)du,

at least when ϑ is sufficiently close to ϑ0. A similar expression holds for ∂∆̃T (ϑ)/∂ϑ.

It follows that
√

T sup
ϑ∈V (ϑ0)

∥∥∥∥∥
∂∆T (ϑ)

∂ϑ
− ∂∆̃T (ϑ)

∂ϑ

∥∥∥∥∥ ≤ aT + bT

where, with the obvious notation g̃t(u, ϑ) = eiuε̃t − ϕ(u, λ),

aT =

∫ ∞

−∞

1√
T

∞∑

t=1

sup
ϑ∈V (ϑ0)

|gt(u, ϑ) − g̃t(u, ϑ)| 1

T

T∑

s=1

sup
ϑ∈V (ϑ0)

∥∥∥∥
∂gs(u, ϑ)

∂ϑ

∥∥∥∥W (u)du,

bT =

∫ ∞

−∞

1

T

T∑

t=1

sup
ϑ∈V (ϑ0)

|gt(u, ϑ)| 1√
T

∞∑

s=1

sup
ϑ∈V (ϑ0)

∥∥∥∥
∂gs(u, ϑ)

∂ϑ
− ∂g̃s(u, ϑ)

∂ϑ

∥∥∥∥W (u)du.

By the argument used to show that the series in (A.2) is bounded, we obtain

∞∑

t=1

sup
ϑ∈V (ϑ0)

|gt(u, ϑ) − g̃t(u, ϑ)| ≤ K|u| a.s.

for some neighborhood V (ϑ0). By already used arguments, we also have

1

T

T∑

s=1

sup
ϑ∈V (ϑ0)

∥∥∥∥
∂gs(u, ϑ)

∂ϑ

∥∥∥∥ ≤ K + K|u| a.s.

It follows that the integrand in aT is almost surely bounded KT−1/2(|u| + u2)W (u),

when V (ϑ0) is sufficiently small. By the dominated convergence theorem and A3(1),

A3(2), almost surely aT → 0 as T → ∞. Similar arguments show that bT → 0, and

(3.12) follows. 2
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Lemma A.1 Let ϕλ(u) = e−|u|α{1−iβsgn(u) tan(πα/2)} where λ = (α, β) ∈ (1, 2) × [−1, 1].

If for some probability measure ν on [0, +∞) admitting a moment of order 10
∫ ∞

0

ϕλ(xu)ν(dx) = ϕλ0
(u) ∀u ∈ R,

then λ = λ0 and ν is the Dirac measure at the point 1.

Proof. First order Taylor expansions lead to the following inequalities (see Equation

(26.4) in Billingsley, 1995)

∣∣e−|x| − 1 + |x|
∣∣ ≤ x2

2
,

∣∣eix − 1 − ix
∣∣ ≤ x2

2
.

It follows that

(A.4) ϕλ0
(u) = 1 − |u|α0{1 − iβ0sgn(u) tan(πα0/2)} + Rλ0

(u),

where |Rλ(u)| ≤ K(|u|2α + |u|3α) for some constant K. Moreover, as u → 0 we have

(A.5)

∫ ∞

0

ϕλ(xu)ν(dx) = 1−|u|α {1 − iβsgn(u) tan(πα/2)}
∫ ∞

0

|x|αν(dx)+O(|u|2α).

Identifying the right-hand sides of (A.4) and (A.5) as u → 0, we obtain α = α0 and

{1 − iβsgn(u) tan(πα0/2)}
∫ ∞

0

|x|α0ν(dx) = 1 − iβ0sgn(u) tan(πα0/2).

The real and imaginary parts of both sides being equal, it follows that

∫ +∞

0

|x|α0ν(dx) = 1 and β

∫ +∞

0

|x|α0ν(dx) = β0,

from which we deduce that β = β0. This is not sufficient to conclude concerning the

measure ν. Doing Taylor expansions of higher orders, we have

ϕλ0
(u) = 1 − |u|α0

{
1 − iβ0sgn(u) tan

(πα0

2

)}

+
|u|2α0

2

{
1 − β2

0 tan2
(πα0

2

)
− 2iβ0sgn(u)

(πα0

2

)}
+ R∗

λ0
(u).

where |R∗
λ
(u)| ≤ K(|u|3α+|u|4α+|u|5α) for some constant K. Note that

∫
R∗

λ
(xu)ν(dx) =

o(|u|2α) as u → 0 because
∫
|x|5αν(dx) < ∞. Identifying the approximations of ϕλ0

(u)

and
∫∞

0
ϕλ0

(xu)ν(dx) as u → 0, we obtain
∫ +∞

0
|x|2α0ν(dx) =

∫ +∞

0
|x|α0ν(dx) = 1. It

follows that ν is the Dirac measure at 1, which completes the proof. 2
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Remark A.2 The need of moment assumptions on the probability measure ν is al-

ready evident from representation (5.2) which suggests that a symmetric SP random

variable can be obtained as a scale mixture of normal distributions, with mixing dis-

tribution a SP distribution concentrated on [0,∞). A more general result involving

non–normal mixtures of SP distributions is proved by Samorodnitsky and Taqqu (1994,

§1.3). By way of example we consider the random variable W = X1/2Z, where Z is

standard normal with CF ϕλ(u) = e−(1/2)u2

and X follows the Lévy distribution (see

Section 1), which is a totally skewed to the right SP distribution with tail index α = 1/2

and density ν(dx) = 1/(
√

2π)x−3/2e−1/(2x)dx, x > 0. Denote by ϕW (u) the CF of W .

Then it readily follows that

ϕW (u) =

∫ ∞

0

ϕλ(x1/2u)ν(dx) =
1√
2π

∫ ∞

0

1

x3/2
e−

1

2
(xu2+ 1

x)dx = e−|u|,

which shows that W follows the Cauchy distribution, and consequently that this dis-

tribution has a stochastic representation as a mixture of normal distributions with

variance following the Lévy distribution.

The following lemma is similar to Lemma 1 in Tauchen (1985) and Lemma 2.4 in

Newey and McFadden (1994), except that the assumption of iid observations is relaxed.

Lemma A.3 Let (zt) be a stationary and ergodic process. Assume that Θ is compact,

that θ 7→ a(z, θ) is continuous on Θ for all z ∈ Ω1 such that P (z1 ∈ Ω1) = 1, and

that there exists d(z) such that ‖a(z, θ)‖ ≤ d(z) for all θ ∈ Θ and Ed(z1) < ∞. Then

θ 7→ Ea(z1, θ) is continuous and

sup
θ∈Θ

∥∥∥∥∥
1

T

T∑

t=1

a(zt, θ) − Ea(z1, θ)

∥∥∥∥∥→ 0 a.s. as T → ∞.

Proof. Let Vm(θ) be the open ball of center θ and radius 1/m. The dominated

convergence theorem entails that for all θk ∈ Θ and all ǫ > 0 there exists m such that

the neighborhood V (θk) = Vm(θk) satisfies

(A.6) E sup
θ∈V (θk)∩Θ

‖a(z1, θ) − a(z1, θk)‖ ≤ ǫ.

By a compactness argument, there exist θ1, . . . , θK such that ∪K
k=1V (θk) ⊆ Θ where
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V (θk) satisfies (A.6). Now note that

sup
θ∈V (θk)∩Θ

∥∥∥∥∥
1

T

T∑

t=1

a(zt, θ) − Ea(z1, θ)

∥∥∥∥∥ ≤ 1

T

T∑

t=1

sup
θ∈V (θk)∩Θ

‖a(zt, θ) − a(zt, θk)‖

+

∥∥∥∥∥
1

T

T∑

t=1

a(zt, θk) − Ea(z1, θk)

∥∥∥∥∥+ sup
θ∈V (θk)∩Θ

‖Ea(z1, θk) − Ea(z1, θ)‖ .

The ergodic theorem and (A.6) entail that, as T → ∞, the almost sure limit of

the first term of the right-hand side of the inequality is bounded by ǫ. The ergodic

theorem also shows that the limit of the second term is zero. By (A.6), the last term

is bounded by ǫ. Since ǫ is arbitrarily small, the conclusion follows. 2

Lemma A.4 Let ε be a random variable with the SP distribution of parameter λ =

(α, β) ∈ (1, 2) × [−1, 1]. For all ν ∈ (−3, α − 1), there exists a constant K such that

for all c > 0
∣∣E|ε|2+νeicε

∣∣ ≤ K +
K

c
.

Proof. The density fλ(x) of ε is bounded and satisfies

fλ(x) ∼ K

xα+1
as |x| → ∞,

for some constant K = Kλ (see e.g. Theorem 1.12 in Nolan, 2012). To show the

existence of E|ε|2+νeicε, it is thus sufficient to show the existence of

∫ ∞

1

cos(cx)
x2+ν

xα+1
dx and

∫ ∞

1

sin(cx)
x2+ν

xα+1
dx.

An integration by parts shows that the first integral is equal to

−sin c

c
+

α − ν − 1

c

∫ ∞

1

sin(cx)

xα−ν
dx.

Similarly, is can be seen that the second integral is also bounded by K/c. The conclu-

sion follows. 2

Proof of (3.14). First note that, similarly to (3.10), we have

(A.7) E sup
θ∈Θ

∥∥∥∥
1

ct

∂2ct(θ)

∂θ∂θ′

∥∥∥∥
r

< ∞ for all r > 0.
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We now consider the second order derivatives of gs(u, ϑ). Note that ∂2gs(u, ϑ)/∂θ∂λ′ =

0, that ∂2gs(u, ϑ)/∂λ∂λ′ is a non random bounded function of u uniformly in ϑ, and

∂2gs(u, ϑ)

∂θ∂θ′ = ueiuεtεt

{
−uεt

1

c2
t

∂ct

∂θ

∂ct

∂θ′ + 2i
1

c2
t

∂ct

∂θ

∂ct

∂θ′ − i
1

ct

∂2ct

∂θ∂θ′

}
.

Conditioning by the past, using Lemma A.4 with c = |u|ct(θ0)/ct(θ) and ν = 0,−1,−2,

and using (3.8), (3.9) and (A.7), it can be shown that there exist a neighborhood V (ϑ0)

of ϑ0 and a constant K independent of u such that

E sup
ϑ∈V (ϑ0)

∥∥∥∥
∂2gs(u, ϑ)

∂ϑ∂ϑ′

∥∥∥∥ ≤ K(1 + |u| + u2).

Using this result, a Taylor expansion and the ergodic theorem, we obtain

∥∥∥∥∥
1

T

T∑

s=1

∂gs(u, ϑ̂T )

∂ϑ
− 1

T

T∑

s=1

∂gs(u, ϑ0)

∂ϑ

∥∥∥∥∥ ≤ K(1 + |u| + u2)
∥∥∥ϑ̂T − ϑ0

∥∥∥ .

Now, note that

1

T

T∑

s=1

∂gs(u, ϑ0)

∂θ
− E

∂g1(u, ϑ0)

∂θ
=

1

T

T∑

t=1

(X t − EX1),

where, in view of Lemma A.3 and (3.9),

X t = −iueiuεt(θ0)εt(θ0)
1

ct

∂ct(θ0)

∂θ

is such that E‖X t‖ ≤ K(1 + |u|). Note also that

1

T

T∑

s=1

∂gs(u, ϑ0)

∂λ
− E

∂g1(u, ϑ0)

∂λ
= 0.

We thus have shown that

(A.8)

∥∥∥∥∥
1

T

T∑

s=1

∂gs(u, ϑ̂T )

∂ϑ
− E

∂g1(u, ϑ0)

∂ϑ

∥∥∥∥∥ ≤ K(1 + |u| + u2)
{∥∥∥ϑ̂T − ϑ0

∥∥∥+ oP (1)
}

.

A Taylor expansion shows that

1√
T

T∑

t=1

Re gt(u, ϑ̂T ) =
1√
T

T∑

t=1

Re gt(u, ϑ0) +
1

T

T∑

t=1

∂Re gt(u, ϑ∗
T )

∂ϑ′

√
T (ϑ̂T − ϑ0)
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for some ϑ∗
T between ϑ̂T and ϑ0. A similar expansion holds for the imaginary part.

We thus have

1√
T

T∑

t=1

gt(u, ϑ̂T ) =
1√
T

T∑

t=1

gt(u, ϑ0) +

{
E

∂g1(u, ϑ0)

∂ϑ
+ RT (u)

}
√

T (ϑ̂T − ϑ0)

where, in view of (A.8), ‖RT (u)‖ ≤ K(1 + |u| + u2)
{∥∥∥ϑ̂T − ϑ0

∥∥∥+ oP (1)
}

. By the

previous result, (A.8), A3(0) and A3(4), Equation (3.13) yields (3.14). 2
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