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This paper generalizes a foundational quasi-variational inequality by relaxing the
(0-diagonal) concavity condition. The approach adopted in this paper is based on
continuous selection-type arguments and hence it is quite different from the
approach used in the literature. Thus it enables us to prove the existence of
equilibrium of the constrained noncooperative games without assuming the (quasi)
convexity of loss functions. ¢ 1993 Academic Press, Inc

1. INTRODUCTION AND PRILIMINARIES

Several recent results such as those in Aubin [3], Aubin and Ekeland
[4], Mosco [8], Shih and Tan [13], Zhou and Chen [18], and Tian and
Zhou [15] have studied the existence of equilibrium for quasi-variational
inequalities which have wide applications to problems in game theory,
impulsive control, and economics [2, 3,6, 8,12]. In those problems of
{quasi-)variational inequalities, a functional (x, y)— ¢(x, y) is involved.
However, all of the results mentioned above assume that ¢ is (0-diagonally)
concave in y, while in the problems of variational (minimax) inequalities
only (0-diagonal) quasi-concavity is needed to prove the existence. Indeed
(0-diagonal) concavity is a crucial assumption in the approach used, say in
[3, p- 2811, or [4, p. 349], to prove the existence of equilibrium for quasi-
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variational inequalities since it uses the Hahn-Banach theorem and needs
the sum of functionals to satisfy the (quasi-)concavity to apply the Ky-Fan
minimax inequality.

In this paper, we use a quite different approach to show the existence of
equilibrium for quasi-variational inequalities. The approach we adopt is
based on continuous selection-type arguments and thus enables us to
generalize the existing results by relaxing the (O-diagonal) concavity
condition.

We begin with some notation and definitions.

Let X and Y be two topological spaces, and let 27 be the collection of
all subsets of Y. A correspondence F: X =27 is said to be upper semi-
continuous (in short, u.s.c.) if the set {xe X: F(x)= V} is open in X for
every open subset V of Y. A correspondence F: X — 27" is said to be lower
semi-continuous (in short, Ls.c.) if the set {xe X: F(x)n V# J} is open in
X for every open subset V of Y. A correspondence F: X — 27 is said to be
continuous if it is both u.s.c. and Ls.c. A correspondence F: X — 27 is said
to have open lower sections if the set F '(y)= {xe X:ye F(x)} is open in
X for ever ye Y. A correspondence F: X — 2V is said to have open upper
sections if, for every xe X, F(x) is open in Y. A correspondence F: X —27
is said to be closed if the correspondence has a closed graph, ie., the set
f(x,y)eXx Y:yeF(x)} is closed in X x Y. A correspondence F: X — 2" is
said to have an open graph if the set {(x,y)e Xx Y:ye F(x)} is open in
X x Y. Denote by coB and B the convex hull and the closure of the set B.

Remark 1. It is known that if a correspondence F has an open graph
then F open upper and lower sections, and the converse statement may not
be true (cf. [5, pp. 265-266]). Also, Yannelis and Prabhakar [16, p. 237]
showed that if F has open lower sections, then it is ls.c., and the converse
statement may not be true.

Let X be a topological space. A function /- X - Ru { £ o} is said to be
lower semi-continuous (in short, 1.s.c.) on X if for each point x'€ X, we have
lim inf £(x) > f(x'),
or equivalently, its epigraph epi /= {(x,a)e X xR:f(x)<a} is a closed

subset of X x R.

Let X be a convex set of a topological vector space E and let
¢:XxX—->Ru{+ow} be a functional. The functional (x, y)+ ¢(x, y) is
said to be O-diagonally concave (in short, 0-DCV) in y (cf. [18]), if for any
finite subset {y;,..,y,}cXand any y,ecoly,, ., v, }ie, y,=2" Ay,
for 4,20 with 37, 4,=1), we have

Y Ay, ) <0, "

j=1
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A functional (x, y)r @(x, v) is said to be O-diagonally quasi-concave (in
short, 0-DQCYV) in y, if for any finite subset {y,, .., »,} <X and any
¥V €CO { Fa s Yo }’

min é(y;, y,) <0.
7

A functional (x, y)r— @(x, y) 1s said to be 0-diagonally {(quasi-)convex (in
short, 0-DQCX) in y if —¢ i1s 0-diagonally (quasi-)concave.

Before proceeding to the main theorems, we state some technical lemmas
which are needed in the discussions below. The first two lemmas are due
to Yannelis [17, p.103]. The third lemma is due to Michael [7,
Theorem 3.1"] and the last three lemmas (Lemmas 4-6) are due to
Yannelis and Prabhakar [16].

LEMMA 1. Let X and Y be two topological spaces, and let G: X — 27,
K: X —2Y be correspondences such that

(1) the graph of G is open,
() Kisls.c.

Then the correspondence F: X — 2V defined by F(x)=G(x)n K(x) is Ls.c.

LemMMa 2. Let X be a topological space and Y be a convex set of a
topological vector space, and let P: X — 2Y be a correspondence which has an
open graph. Then the correspondence F: X — 27 defined by F(x)=co G(x)
has open graph as well.

LeEMMAS 3. Let X be a perfectly normal T -topological space and Y be a
separable Banach space. Let 2(Y) be the set of all nonempty and convex
subsets of Y which are either finite-dimensional or closed or have an interior
point. Suppose F: X — 2(Y) is a ls.c. correspondence. Then there exisis a
continuous function f: X - Y such that f(x)e F(x) Vxe X.

LemMa 4. Let X and Y be two topological spaces, and let G: X — 2 and
K: X - 27" be correspondences having open lower sections. Then the corre-
spondence 0: X — 2V defined by, for all xe X, 8(x)= G(x)n K(x), has open
lower sections.

LEMMA 5. Let X be a topological space and let Y be a convex set of a
topological vector space. Suppose a correspondence G:X — 2" has open
lower sections. Then the correspondence F:X —2% defined by F(x)=
co G{x) for all xe X has open lower sections.
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LEMMA 6. Let X be a paracompact Hausdorff space and Y be topological
vector space. Suppose F: X — 2" is a correspondence with nonempty convex
values and has open lower sections. Then there exists a continuous functions
X = Y such that f(x)e F(x) for all xe X.

2. MaIN RESULTS

We now extend the results of Aubin [3, Theorem 9.3.27 and Aubin and
Ekeland [4, Corollary 6.4.227 by relaxing the concavity condition. We also
extend a result of Zhou and Chen [18, Theorem 3.1] by relaxing the
0-DCV condition. Their results can be stated in the following theorem.

THEOREM 1. Let Z be a compact convex set in a locally convex
Hausdorff ropological vector space. Suppaose that

(i) K:Z—2" is a continuous correspondence with nonempty closed
convex values,

(i) Py, y):ZxZ—-Ru{+aoc} is lower semi-continuous and is
0-diagonally concave in y.

Then there exists x* € K(x*) such that sup, . g+, #(x*, y)<0.

By relaxing the (0-diagonal) concavity condition, we have the following
theorem. Note that the method of the proof in the following is different
from those given in the references mentioned above. Also, for simplicity, we
state the theorem with the weak topology even though it holds for any
Hausdorff vector space topology t which is between the weak topology and
the norm topology.

THEOREM 2. Let Z, be a nonempty weakly compact convex set in a
separable Banach space X with the weak-topology w and Z denote the same
set Z,, with the norm topology. Suppose that

(i) K:Z,-—2% is continuous correspondence with nonempty closed
and convex values such that K(x) is either finite dimensional or has an
{norm) interior point for each xe€ Z,

(i) ¢:Z.xZ->Ru{+o0}islsc and is O-diagonally quasi-concave
in the second variable.

Then there exists x* € K(x*) such that sup, . g+ #(x*, ) <0.
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Proof. Define a correspondence P:Z, —2” by, for each xeZ,,
P(x)={yeZ:¢(x,y)>0}. Thus, to show the conclusion of the theorem,
it is equivalent to showing that there exists x*e K(x*) such that
K(x*)n P(x*)=(.

By the 0-diagonal quasi-concavity, x ¢ co P(x) for all xe Z. To see this,
suppose, by way of contradiction, that there exists some points x; € Z such
that x, € co P(x;). Then there exist finite points, x,, .., x,, in Z, and 4,>0
with 37 | 4;=1 such that x; =37, 4,x; and x;€ P(x;) forall i=1,..,m.
That is, ¢(x;, x;) > 0 for all i, which contradicts the hypothesis that ¢(x, )
15 0-DQCV in y.

Define another correspondence F:Z, — 27 by F(x)=K(x)nco P(x).
Let U, ={xeZ F(x)#} If U, =, this implies K(x)n P(x)= for
every x€ Z,, we only need to show K(x) has a fixed point. And this is
guaranteed by Kakutani’s fixed point theorem. So the theorem is proved.
Now we assume U, # J. Since @(x, ¥) is ls.c, the set {(x,y)eZ, xZ:
veP(x)}={{x,y)eZ, xZ:¢(x,y)>0} is open and thus P has a relative
open graph in Z,. Then it follows from Lemma 2 that the correspondence
co P(x) also has a relative open graph in Z,. Therefore, by Lemma 1 and
the lower semi-continuity of K, F is ls.c. and thus the correspondence
FIU,:U,—2%is lsc. in U, and for all. xe U,, F(x) is nonempty and
convex. Now we claim that F(x) either contains an interior point or is
finite dimensional. This is clearly true if K(x) is finite dimensional. So we
only need to show that F(x) has an interior point if X(x) contains an
interior point y,. To see this, let xe U, and ye F(x)= K(x)nco P(x).
Since K(x) is convex, y,= y+ A(y,— y) is an interior point for any
0< 4 < 1. Thus any neighborhood .#:(y) of y contains an interior point of
K{(x). Since co P(x) has a relative open graph, co P(x) is open relative to
Z that contains K(x) and P{x). There should be a neighborhood A5(y) of
» such that A5(y)nZcco P(x). So 45(y) contains an interior point of
F(x)=K(x)nco P(x).

Next we show that Z,, is a perfectly normal T,-topological vector space.
It is clear that Z, is a normal T,-topological space, since the dual X* of
a Banach space X separates points in X and Z, is weakly compact.
To show Z, is perfectly normal, we have to show that any closed set C
of Z, can be written as an intersection of countable open sets. Thanks
to the assumption that X is separable. It means X, is also separable,
since the norm-convergence implies the weak-convergence. Let 2 be a
countable dense set in X .. For each closed set C in Z,, the set Q\( is also
countable and dense in X \C. For each xe (Q\C), there are neighbor-
hoods .#°(x) and AL(C) such that 4 (x)n A4(C)=. It is clear that
C = Nicigay AAC) since (Neeige) VAC) N (Ui A (x) =
and (X,\C)= (U . .0 A (x)).

Hence, we can apply Lemma 3 to assure that there exists a continuous
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function f: U, — Z such that f(x)e F(x) for all xe U,. Note that U, is
open relative to Z,, since F is l.s.c. Define the correspondece G: Z,, — 27 by

£ £{ )] T
G(x)z{l.f(-\)l ifxelU

K(x) otherwise.

(2)

Then G is us.c. as for each open set V< Z, the set

{xeZ:Gx)cVi={xeZ: K(x)c Viu{xeU:f(x)e V}

is w-open in Z, , because K: Z, — 2" is u.s.c. Since each w-open set is also
an open set, the above set is w-open for each w-open set V< Z,.. For each
xeZ,, G(x) is a closed convex set, and therefore G(x) is also a w-closed
convex set. Now Z,_ is w-compact and convex, G:Z, —27 is a w-us.c.
correspondence with nonempty, w-closed, and convex values. By
Kakutani’s fixed point theorem, there exists a point x*e€Z such that
x*e G(x*). Note that, if x*e U,, then x* = f(x*)e F(x*)cco P(x*), a
contradiction to x*¢co P(x*). Hence, x*¢ U, and thus x*e K(x*) and
K(x*)nco P(x*)=¢J which implies K(x*)n P(x*)=. |

In the above theorem, compactness of Z, can be relaxed. We first give
a theorem for the finite dimensional topological space. A result for an
infinite dimensional topological space will be given after we give Theorems
4 and S.

THEOREM 3. Let X be a nonempty convex subset of R'. Suppose that
(1) K is a continuous correspondence with nonempty, compact, and
convex values,
(i) ¢: X x X - RoU [+a} is lower semi-continuous and is
O-diagonally quasi-concave in y,
(1ii) there exists a nonempty compact set Cc X such that
(iil.ka) K(x)nZ#F for all xe Z, where Z=co{K(C)u C};
(iii.b) for each xeZ\C there exists yeK(x)nZ such that
#(x, y)>0.
Then there exists x* € K(x*) such that sup,  x,+ #(x*, y)<0.

Proof. Since C is compact and K is a us.c. correspondence with
compact values by Proposition 3.11 in Aubin and Ekeland [4,p. 113],
K(C) is compact and thus Z is compact convex.

Define a correspondence G: Z — 2% by, for each xe Z,

Gx)=K(x)nZ. (3)
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Then, by Conditions (ii) and (iii.a), G(x) is nonempty and convex for all
xe Z. Since Z is compact and K is closed by Proposition 3.7 in Aubin and
Ekeland [4, p.111], then G is closed and therefore is us.c. on Z by
Theorem 3.8 in Aubin and Ekeland [4, p. 111]. Also, note that

K(x) ifxeC
Glx)= {K(x) nZ  otherwise. @)
Then, by Theorem2 there is x*eZ such that x*eG(x*) and
SUP, c gavy P(X*, ¥) <0. Now x* e C, for otherwise Hypothesis (ii.b) would
be violated, and hence G(x*)= K(x*). Therefore, we have x* € K(x*) and
SUP, ¢ xiev) B(X*, 1) <0. 1

Theorem 3 extends the results of Tian and Zhou [15] be relaxing the
0-diagonal concavity condition. Observe that in the case of a compact set
X, Assumptions (iii.a)-(iii.b) in Theorem 3 are satisfied by taking C=X
and thus Theorem 3 reduces to Theorem 2. Assumption (iii.a) is the
necessary and sufficient condition for the correspondence K to have a fixed
point when X is not compact (cf. Tian [14]). Assumption (iii.b) is similar
to the condition imposed by Allen [1] for variational inequalities with a
non-compact set.

We now extend the above theorems to the infinite dimensional topologi-
cal space. It may be remarked that in Theorems 4 and 5 below the
conditions on ¢ are weaker than those in Theorem 2 but we need to
strengthen K to have open lower sections.

THEOREM 4. Let Z be a nonempty, compacl, convex, and metrizable set
in a locally convex Hausdorff topological vector space. Suppose that

(a) K:Z 27 is correspondence with nonempty convex values and has
open lower sections such that K: Z — 27 is us.c.,

(b) ¢:ZxZ—->Ru{+ow} is lower semi-continuous in x and is
0-diagonally quasi-concave in y.

Then there exists x* € K(x*) such that sup, . g+, #(x*, ») <0.

Proof. The proof of this theorem is very similar to that of Theorem 2.
Define the correspondence P:Z - 27 as before. Again we only need to
show that there exists x* € K(x*) such that K(x*)n P(x*)= .

Since ¢ is Ls.c. in x, then for each xe Z, P "'(y)={xe Z: ¢(x,y)>0} is
open. Thus P has open lower sections. Also, x ¢ co P(x) for all xe Z by the
0-DQCYV condition.

Also define the correspondence F: Z — 27 and U as before. Since K and
P have open lower sections in Z, so do they in U. Then, by Lemma 53, co P
has open lower sections in U. Hence, by Lemma 4, the correspondence
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F{U: U— 27 has lower open sections in U and for all xe U, F{x) is non-
empty and convex. Also, since X is a metrizable space, it is paracompact
(cf. Michael [7, p.831]). Hence, by Lemma 6, there exists a continuous
function f: U — Z such that f(x)e F(x) for all xe U. Since F has open
lower sections and thus is ls.c. (cf. Remark 1), U is open. Define the
correspondence G: Z — 2% by

1f(x)} ifxelU

G(x)=4 " . 5

(x) {K(x) otherwise. (3)

Then the remaining arguments are the same as those in the proof of
Theorem 2. |

As a special case of Theorem 4, if the correspondence K is closed-valued
on Z, we have the following result.

THEOREM 5. Let Z be a nonempty, compact, convex, and metrizable set
in a locally convex Hausdorff topological vector space. Suppose that

(a) K:Z— 27 is an upper semi-continuous correspondence with non-
empty closed convex values and has open lower sections,

(b) ¢:ZxZ->Rui{toc} is lower semi-continuous in x and is
0-diagonally quasi-concave in y.

Then there exists x* € K(x*) such that sup, . .-, ¢(x*, y)<0.

When K(x)= Z for all xe Z, the quasi-variational inequality reduces to
the conventional (minimax) inequality, and consequently Theorems 4 and
5 conclude Theorem 2.11 of Zhou and Chen [18] as a special case which
is stated here as a corollary.

COROLLARY 1. Let Z be a nonempty compact convex metrizable set in
a locally convex Hausdorff topological vector space E. Suppose that
$:ZxZ->Ru{tw} is lower semi-continuous in x and is 0-diagonally
quasi-convex in y. Then there exists x* € Z such that ¢(x*, y)<O0 for all
yeZ.

Remark 2. Even if topological spaces in Theorems 2,4, and 5 are
infinite dimensional, the compactness condition of X can be relaxed if we
make the following additional assumptions:

(c) there exist a non-empty compact convex set Z< X and a non-
empty subset C < Z such that
(c.l) K(C)cZ;
(c2) K(x)nZ# for all xe Z;
(c.3) for each xe Z\C there exists ye K(x)~ Z with ¢(x, y)>0.
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The proof of this generalization is very similar to that of Theorem 3 and
thus omitted here.

3. AN APPLICATION TO THE EXISTENCE OF CONSTRAINED GAMES

Aubin [3, pp. 282-283] and Aubin and Ekeland [4, pp. 350-351] used
Theorem 1 to prove the existence of equilibrium for the constrained games.
However, they need to assume the aggregate loss functions defined in (6)
below is concave in y which is equivalent to saying that individual loss
functions are convex in their own strategies. In this section, we use
our results on quasi-variational inequalities to generalize the results in
[3, Theorem 9.3.3] by relaxing the convexity.

Let 7 be the set of agents which is any (finite or infinite) countable set.
Each agent has a choice set X, a constraint correspondence S;: X, — 2%,
and a loss function u,: [[;., X, > Ru { £ o}, where X=T],., X, and X,=
Il,.; X;. Denote by S the product [],.,S,. Denote by x and x_; an
element of X and an element of X _,, respectively.

A constrained game I'=(X,, S;, u;);., is defined as a family of ordered
triples (X, S;, #;). An equilibrium for I" is an x* € X such that x*e S(x*)
and uw,(x*)<u(x*,, x;) for all x;e S(x*,) and all iel

If S;(x_;)=X,, Viel, the constrained game reduces to the conventional
game "= (X,, u;) and the equilibrium is called a Nash equilibrium.

Accordingly, we introduce an aggregrate loss function U: Xx X >Ry
{ + o'} defined by

1
Ux, y)= 3. 7 () —ui(x i )] (6)

i=1

THEOREM 6. Let Z, be a nonempty weakly compact convex set in a
separable Banach space X with the weak-topology w and Z denote the same
set Z,, with the norm topology. Suppose that

(i) A:Z,-2% is a continuous correspondence with nonempty closed
and convex values such that A(x) is either finite dimensional or has an
(norm) interior point for each xe Z,

(i) U:Z,xZ->Ru{too} isls.c and in 0-diagonally quasi-concave
iny.

Then I has an equilibrium.

Proof. By Theorem2, we know there is x*eS(x*) such that
Sup, . scxsy Ulx*, y) <0. Now let y=(x*;, y;). We then have

“21'7 Lo (x*) —u,(x*,,y)]1<0
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for any y,eS,(x*,) and all jel Hence x* is an equilibrium of the
constrained game. ||

Remark 3. A sufficient condition for U{x,y) to be lower semi-
continuous is that u, is continuous. Note that by applying Theorem 4 or
Theorem 5, we can have similar existence theorems on equilibria of
constrained games.

When S = Z, the constrained game reduces to the conventional game, as
a corollary of the above theorem, we have an existence theorem on Nash
equilibrium for games which generalizes the results of Nash [9, 10] and
Nikaido and Isoda [11] by relaxing the convexity condition.

COROLLARY 2. Let Z be a nonempty compact convex metrizable set in a
locally convex Hausdorff topological vector space E. Suppose that
U:ZxZ->Ru{to} is upper semi-continuous in x and is O-diagonally
quasi-concave in v. Then I' has an Nash equilibrium.

ExampLE 1. In order to see that our theorems indeed are generaliza-
tions of the existing theorems in the literature, consider a two person
noncooperative game with some “nice” constraints and the loss functions of
player 1 and player 2 given by

u(xg, x2)=x; x3

and ,
wy(x), X3) = —X7 X5

respectively. One can see that the loss function u, of player 2 is not convex
in x,. Furthermore it can be shown that the aggregate loss function

Ulx, y)=u(x) —u,(y, X3) +uy(x) —us(xy, ¥,)
=—yix— X103

is neither quasi-concave in x nor quasi-concave in y, but O-diagonally
quasi-concave, so with some “nice” constraints we can still show the
existence of equilibrium.

As a final remark, by using Theorem 3, we can generalize Theorem 6 by
relaxing the compactness of the strategy space.
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