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ABSTRACT

We provide a generalization of the Anderson-Rubin (AR) procedure for inference on parameters
which represent the dependence between possibly endogenous explanatory variables and distur-
bances in a linear structural equation (endogeneity parameters). We focus on second-order depen-
dence and stress the distinction betweenregressionandcovariance endogeneity parameters. Such
parameters have intrinsic interest (because they measure the effect of “common factors” which
induce simultaneity) and play a central role in selecting an estimation method (because they deter-
mine “simultaneity biases” associated with least-squares methods). We observe that endogeneity
parameters may not identifiable and we give the relevant identification conditions. We develop
identification-robust finite-sample tests for joint hypotheses involving structural and regression en-
dogeneity parameters, as well as marginal hypotheses on regression endogeneity parameters. For
Gaussian errors, we provide tests and confidence sets based on standard-type Fisher critical val-
ues. For a wide class of parametric non-Gaussian errors (possibly heavy-tailed), we also show that
exact Monte Carlo procedures can be applied using the statistics considered. As a special case,
this result also holds for usual AR-type tests on structural coefficients.For covariance endogeneity
parameters, we supply an asymptotic (identification-robust) distributional theory. Tests for partial
exogeneity hypotheses (for individual potentially endogenous explanatory variables) are covered as
instances of the class of proposed procedures. The proposed procedures are applied to two empiri-
cal examples: the relation between trade and economic growth, and the widelystudied problem of
returns to education.

Key words: Identification-robust confidence sets; endogeneity; AR-type statistic;projection-based
techniques; partial exogeneity test.

Journal of Economic Literature classification: C3; C12; C15; C52.
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1. Introduction

Instrumental variable (IV) regressions are typically motivated by the factthat “explanatory vari-
ables” may be correlated with the error term, so least-squares methods yield biased inconsistent
estimators of model coefficients. Such IV parameter estimates can be interpreted as measures of the
relationship between variables, once the “effect” of common “driving” (or “exogenous”) variables
has been eliminated. Even though coefficients estimated in this way may have interesting inter-
pretations from the viewpoint of economic theory, inference on such “structural parameters” raises
identification difficulties. Further, it is well known that IV estimators may be very imprecise, and
inference procedures (such as tests and confidence sets) can be highly unreliable, especially when
instruments are weakly associated with model variables (weak instruments). This has led to a large
literature aimed at producing reliable inference in the presence of weak instruments; see the reviews
of Stock, Wright and Yogo (2002) and Dufour (2003).

Research on weak instruments has focused on inference for the coefficients of endogenous vari-
ables in so-called “IV regressions”. This leaves out the parameters which specifically determine
simultaneity features, such as the covariances between endogenous explanatory variables and dis-
turbances. These parameters can be of interest for several reasons. First, they provide direct mea-
sures of the importance of “common factors” which induce simultaneity. Such factors are in a sense
“left out” from “structural equations”, but they remain “hidden” in “structural disturbances”. For
example, in a wide set of economic models, they may represent unobservedlatent variables, such
as “surprise variables” which play a role in models with expectations [see Barro (1977), Dufour
and Jasiak (2001)].Second, the simultaneity covariance (or regression) coefficients determine the
estimation bias of least-squares methods. Information on the size of such biases can be useful in
interpreting least-squares estimates and related statistics.Third, information on the parameters of
hidden variables (which induce simultaneity) may be important for selecting statistical procedures.
Even if instruments are “strong”, it is well known that IV estimators may be considerably less effi-
cient than least-squares estimators; see Kiviet and Niemczyk (2007) andDoko Tchatoka and Dufour
(2011). Indeed, this may be the case even when endogeneity is present.If a variable is not correlated
(or only weakly correlated) with the error term, instrumenting it can lead to sizable efficiency losses
in estimation. Assessing when and which variables should be instrumented is animportant issue for
the estimation of structural models.

In this paper, we stress the view that linear structural models (IV regressions) can be interpreted
as regressions with missing regressors. If the missing regressors wereincluded, there would be no
simultaneity bias, so no correction for simultaneity – such as IV methods – would be needed. This
feature allows one to define a model transformation that maps a linear structural equation (with
simultaneity) to a linear regression where all the explanatory variables are uncorrelated with the
error term. We call this transformed equation theorthogonalized structural equation. Interestingly,
the latter is not a reduced-form equation. Rather, the orthogonalized structural equation still involves
the structural parameters of interest, but also includesendogeneity parameterswhich are “hidden”
in the original structural equation. We focus here on this orthogonalized structural equation.

The problem stems from the fact that the missing regressors are unobserved. Despite this dif-
ficulty, we show that procedures similar to the one proposed by Andersonand Rubin (1949, AR)

1



can be applied to the orthogonalized equation. This allows one to make inference jointly on both
the parameters of the original structural equation and endogeneity parameters. Two types of endo-
geneity parameters are considered:regression endogeneity parametersandcovariance endogeneity
parameters. Under standard conditions, where instruments are strictly exogenous and errors are
Gaussian, the tests and confidence sets derived in this way are exact. The proposed methods do
not require identification assumptions, so they can be described asidentification-robust. For more
general inference on transformations of the parameters of the orthogonalized structural equation,
we propose projection methods, for such techniques allow for a simple finite-sample distributional
theory and preserve robustness to identification assumptions.

To be more specific, we consider a model of the form

y = Yβ +X1γ +u

wherey is an observed dependent variable,Y is a matrix of observed (possibly) endogenous re-
gressors, andX1 is a matrix of exogenous variables. We observe that AR-type procedures may
be applied to test hypotheses on the transformed parameterθ = β + a, wherea represents re-
gression coefficients ofu on the reduced-form errors ofY (regression endogeneity parameters).
Identification-robust inference ona itself is then derived by exploiting the possibility of making
identification-robust inference onβ . Then, inference on covariances (sayσVu) betweenu andY
(covariance endogeneity parameters) can be derived by considering appropriate linear transforma-
tions ofa.

We stress that regression and covariance endogeneity parameters – though theoretically related
– play distinct but complementary roles: regression endogeneity parameters represent the effect of
reduced-form innovations ony, while covariance endogeneity parameters determine the need to in-
strument different variables inY. WhenσVu = 0, Y can be treated as exogenous (so IV estimation
is not warranted). So-called exogeneity tests typically test the hypothesisσVu = 0. It is easy to see
that σVu = 0 if and only if a = 0 (provided the covariance matrix between reduced-form errors is
nonsingular), but the relationship is more complex in other cases. In this paper, we emphasize cases
wherea 6= 0. Due to the failure of the exogeneity hypothesis, the distributions of various test statis-
tics are much more complex. Interestingly, it is relatively easy to produce finite-sample inference
ona, but not onσVu. So, forσVu, we only propose asymptotically valid tests and confidence sets.

By allowing a 6= 0 (or σVu 6= 0), we extend earlier results on exogeneity tests, which focus on
the null hypothesisHa : a= 0. The literature on this topic, is considerable; see, for example, Durbin
(1954), Wu (1973, 1974, 1983a, 1983b), Revankar and Hartley (1973), Farebrother (1976), Haus-
man (1978), Revankar (1978), Dufour (1979, 1987), Hwang (1980), Kariya and Hodoshima (1980),
Hausman and Taylor (1981), Spencer and Berk (1981), Nakamura and Nakamura (1981), Engle
(1982), Holly (1982), Reynolds (1982), Smith (1984), Staiger and Stock (1997), Doko Tchatoka
and Dufour (2010, 2011). By contrast, we consider here the problemof testing any value ofa (or
σVu) and build confidence sets for these parameters. By allowing weak instruments, we extend the
results in Dufour (1987) where Wald-type tests and confidence sets areproposed for inference on
a andσVu, under assumptions which exclude weak instruments. Finally, by consideringinference
on a andσVu, we extend a procedure proposed in Dufour and Jasiak (2001) for inference on the
aggregate parameterθ = β +a (but nota or σVu) in the context of a somewhat different model.
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On exploiting results from Dufour and Taamouti (2005, 2007), we supplyanalytical forms for
the proposed confidence sets, and we give the necessary and sufficient conditions under which
they are bounded. These results can be used to assess partial exogeneity hypotheses even when
identification is deficient or weak.

In order to allow for alternative assumptions on error distributions, we show that the proposed
AR-type statistics are pivotal as long as the errors follow a completely specified distribution (up to
an unknown scale parameter), which may be non-Gaussian. Under suchconditions, exact Monte
Carlo tests can be performed without a Gaussian assumptions [as described in Dufour (2006)].
On allowing for more general error distributions and weakly exogenous instruments (along with
standard high-level asymptotic assumptions), we also show that the proposed procedures remain
asymptotically valid and identification-robust.

Finally, we apply the proposed methods to two empirical examples, previously considered in
Dufour and Taamouti (2007): a study of the relationship between trade and economic growth
[Frankel and Romer (1999)], and the widely considered example of returns to education [Bound,
Jaeger and Baker (1995)].

The paper is organized as follows. Section 2 formulates the model considered. Section 3
presents the finite-sample theory for inference on regression endogeneity parameters. Section 4
discusses asymptotic theory and inference for covariance endogeneityparameters. Section 5 illus-
trates the theoretical results through two empirical applications: a model of therelationship between
trade and growth model, and returns to schooling. We conclude in Section 6. Proofs are presented
in appendix.

Throughout the paper,Im stands for the identity matrix of orderm. For any full rankT ×m
matrix A, P(A) = A(A′A)−1A′ is the projection matrix on the space spanned by the columns ofA,
M(A) = IT −P(A), andvec(A) is the (Tm)× 1 dimensional column vectorization ofA. For any
squared matrixB, the notationB > 0 means thatB is positive definite (p.d.), whileB ≥ 0 means

it is positive semidefinite (p.s.d.). Finally, “
p→ ” stands for convergence in probability while “

L→
” is for convergence in distribution. Finally,‖A‖ is the Euclidian norm of a vector or matrix,i.e.,
‖A‖ = [tr(A′A)]

1
2 .

2. Framework: endogeneity parameters and their identification

We consider a standard linear structural equation of the form:

y = Yβ +X1γ +u (2.1)

wherey is aT×1 vector of observations on a dependent variable,Y is aT×Gmatrix of observations
on (possibly) endogenous explanatory variables(G≥ 1), X1 is aT ×k1 full-column-rank matrix of
strictly exogenous variables,u = [u1, . . . , uT ]′ is a vector of structural disturbances,β and γ are
G×1 andk1×1 unknown coefficient vectors. Further,Y satisfies the model:

Y = XΠ +V = X1Π1 +X2Π2 +V (2.2)
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whereX2 is a T × k2 matrix of observations on exogenous variables (instruments),X = [X1, X2]
has full-column rankk = k1 + k2, Π1and Π2 are k1 ×G and k2 ×G coefficient matrices,Π =
[Π1, Π2], andV = [V1, . . . , VT ]′ is aT ×G matrix of reduced-form disturbances. Equation (2.1) is
the “structural equation” of interest, while (2.2) represents the “reduced form” for Y. On substituting
(2.2) into (2.1) and reexpressingy in terms of exogenous variables, we get the reduced form fory:

y = X1π1 +X2π2 +v (2.3)

whereπ1 = γ +Π1β , π2 = Π2β , andv = Vβ +u = [v1, . . . ,vT ]′.
When the errorsu andV have finite zero means (although this assumption could easily be re-

placed by another “centering assumption”, such as zero medians), the usual necessary and sufficient
condition for identification ofβ in (2.1)-(2.2) is:

rank(Π2) = G. (2.4)

If Π2 = 0, the instrumentsX2 are irrelevant, andβ is completely unidentified. If 1≤ rank(Π2) < G,
β is not identifiable, but some linear combinations of the elements ofβ are identifiable [see Dufour
and Hsiao (2008)]. IfΠ2 is close not to have full rank [e.g., if some eigenvalues ofΠ ′

2Π2 are close to
zero], some linear combinations ofβ are ill-determined by the data, a situation often called “weak
identification” in this type of setup [see Dufour (2003)].

2.1. Identification of endogeneity parameters

We now wish to represent the fact thatu andV are not independent and may be correlated, taking
into account the fact that structural parameters (such asβ andγ) may not be identifiable. In this
context, it is important to note that the “structural error”ut is not uniquely determined by the data
when identification conditions forβ and γ do not hold. For that, it will be useful to consider
two alternative setups for the disturbance distribution: (A) in the first one,the disturbance vectors
(ut , V ′

t )
′ have common finite second moments (structural homoskedasticity); (A) in the second one,

we allow for a large amount of heterogeneity in the distributions of reduced-form errors (reduced-
form heterogeneity). The second setup is clearly more appropriate for practical work, andwe wish to
go as far as possible in that direction. But it will be illuminating to consider firstthe more restrictive
assumption.

In setup A, we suppose that:

the vectorsUt = (ut , V ′
t )

′, t = 1, . . . , T, all have mean zero and finite covariance matrix (2.5)

ΣU = E
[

UtU
′
t

]

=

[

σ2
u σ ′

Vu
σVu ΣV

]

(2.6)

whereΣV = E
[

VtV
′
t

]

is nonsingular. In this case, the reduced-form errorsWt = (vt ,V ′
t )

′, t = 1, . . . , T,
also have mean zero and covariance matrix

ΣW = E
[

WtW
′
t

]

=

[

σ2
v σ ′

Vv
σVv ΣV

]

(2.7)
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where
σVv = E[Vtvt ] = E[Vt(V

′
t β +ut ] = ΣVβ +σVu, σ2

v = σ2
u +β ′ΣVβ +2β ′σVu. (2.8)

The covariance vectorσVu indicates which variables inY are “correlated” withut , so it provides a
natural measure of the “endogeneity” of these variables. Note, however, thatσVu is not identifiable
whenβ is not (because, in this case, the “structural error”ut is not uniquely determined by the data).

In this context, it will be illuminating to look at the following two regressions: (1) the linear
regression ofut onVt ,

ut = V ′
t a+et , t = 1, . . . , T, (2.9)

wherea = Σ−1
V σVu andE[Vtet ] = 0 for all t; and (2) the linear regression ofvt onVt ,

vt = V ′
t b+η t , t = 1, . . . , T, (2.10)

whereb = Σ−1
V σVv andE[Vtη t ] = 0 for all t. It is easy to see that

σVu = ΣVa, σ2
u = σ2

e +a′ΣVa = σ2
e +σ ′

VuΣ−1
V σVu (2.11)

whereE[e2
t ] = σ2

e for all t.This entails that:a= 0 if and only ifσVu = 0, so the exogeneity ofY can
be assessed by testing whethera= 0.There is however no simple match between the components of
a andσVu (unlessΣV is a diagonal matrix). For example, ifa = (a′1, a′2)

′ andσVu = (σ ′
Vu1, σ ′

Vu2)
′

wherea1 andσVu1 have dimensionG1 < G, a1 = 0 is not equivalent toσVu1 = 0. In such a setup,
we calla the “regression endogeneity parameter” andσVuthe “covariance endogeneity parameter”.

As long as the identification condition (2.4) holds, bothσVu anda are identifiable. This is not
the case, however, when (2.4) does not hold. By contrast, the regression coefficientb is always
identifiable, because it is uniquely determined by the second moments of reduced-form errors. It is
then useful to observe the following identity:

b = Σ−1
V σVv = Σ−1

V (ΣVβ +σVu) = β +a. (2.12)

In other words, the sumβ +a is equal to the regression coefficient ofvt onVt . Even thoughβ and
a may not be identifiable, the sumβ +a is identifiable. Further, for any fixedG×1 vectorw, w′b is
identifiable, and the identities

w′a = w′b−w′β , σVu = ΣVa (2.13)

along with the invertibility ofΣV entail the following equivalences:

β is identifiable ⇔ a is identifiable⇔ σVu is identifiable ; (2.14)

w′β is identifiable ⇔ w′a is identifiable⇔ w′Σ−1
V σVu is identifiable . (2.15)

In particular, it is interesting to observe a simple identification correspondence between the compo-
nents ofβ anda:

ai is identifiable⇔ β i is identifiable (2.16)

for i = 1, . . . , G. In other words, the identification conditions forβ anda are identical. In con-
trast, the equivalences [w′σVu is identifiable⇔ w′β is identifiable] and [σVui is identifiable⇔ β i is
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identifiable]do not holdin general. Below, we will see that inference onb can be obtained through
standard linear regression methods, so that this can be combined with identification-robust inference
on β in order to obtain identification-robust inference on endogeneity parameters.

The setup (2.5) - (2.6) requires that the reduced-form disturbancesVt , t = 1, . . . , T, have identical
second moments. In many practical situations, this may not be appropriate, especially in a limited-
information analysis that focuses on the structural equation of interest (2.1), rather than the marginal
distribution of the explanatory variablesY. To allow for more heterogeneity among the observations
in Y, we can however directly assume that:

u = Va+e, (2.17)

ehas mean zero and is uncorrelated withV andX , (2.18)

for some fixed vectora in R
G (setup B). Later on, however, we shall consider setups where this

assumption is modified, for example in order to allow for cases wheree does not have finite first or
second moments. There is no further restriction on the distribution ofV, such as identical covariance
matrices[E

(

VtV
′
t

)

= ΣV for all t]. An attractive feature of this assumption is that it remains “agnos-
tic” concerning the distribution ofV. In particular, the rows ofV need not be identically distributed
(for example, arbitrary heteroskedasticity is allowed) or independent. Infact, the assumption of
finite second moments fore, V andX – entailed by the orthogonality condition (2.18) – can be re-
laxed if it is replaced by a similar assumption that does not require the existence of moments [such
as independence betweene and(V, X)]. Clearly, (2.5) - (2.6) is a special case of (2.17). We will
see below that finite-sample inference on model parameters remains possible under the assumptions
(2.17) - (2.18).

In view of (2.17), equation (2.1) can be viewed as a regression model withmissing regressors.
On substituting (2.17) into (2.1), we get:

y = Yβ +X1γ +Va+e (2.19)

wheree is uncorrelated with all the regressors. Because of the latter property, we call (2.19) the
orthogonalized structural equationassociated with (2.2), ande the orthogonalized structural dis-
turbancevector. This equation contains the parameters of the original structural equation as regres-
sion coefficients, plus the regression endogeneity parametera. We see thata represents the effects
of the latent variableV. Even though (2.19) is a regression equation [in the sense that all regres-
sors(Y, X1,V) are orthogonal to the disturbance vectore], it is quite distinct from the reduced-form
equation (2.3) fory.

The identification ofa can be studied through the orthogonalized structural equation. Using the
reduced form (2.2), we see that

y = Yβ +X1γ +(Y−X1Π1−X2Π2)a+e

= Yθ +X1π∗
1 +X2π∗

2 +e (2.20)

whereθ = β +a, π∗
1 = γ −Π1a, π∗

2 =−Π2a, ande is uncorrelated with all the regressors(Y, X1 and
X2). Equation (2.20) is thus a regression equation obtained by addingX2 to the original structural
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equation or, equivalently, by addingY to the reduced form (2.3) fory. We will call equation (2.20)
the extended reduced formassociated with (2.2). As soon as the matrixZ = [Y, X1, X2] has full-
column rank with probability one, the parameters of equation (2.20) are identifiable. This is the
case in particular forθ = β +a (with probability one) whenZ has full-column rank with probability
one. This rank condition holds in particular when the matrixV has full column rank with probability
one (conditional onX), e.g. if its distribution is absolutely continuous. This entails again thata is
identifiable if and onlyβ is identifiable, and similarly betweenw′a andw′β for anyw∈ R

G.
This establishes the following identification lemma fora.

Lemma 2.1 IDENTIFICATION OF REGRESSION ENDOGENEITY PARAMETERS. Under the as-
sumptions(2.2), (2.3) and(2.17), suppose the matrix[Y, X1, X2] has full column rank with proba-
bility one. Then a+β is identifiable, and the following two equivalences hold:

a is identifiable⇔ β is identifiable ; (2.21)

for any w∈ R
G, w′a is identifiable⇔ w′β is identifiable. (2.22)

The decomposition assumption (2.17) can also be formulated in terms of the reduced-form
disturbancev [as in (2.10)] rather than the structural disturbanceu:

v = Vb+η (2.23)

for some fixed vectorb in R
G, where each element ofη has mean zero and is uncorrelated with

V andX, again without any other assumption on the distribution ofV. This means that the linear
regressionsvt = V ′

t b+ η t , t, , . . . , T, can all be written in terms of the same coefficient vectorb.
The latter is uniquely determined (identifiable) as soon as the matrixV has full column rank (with
probability one), so the identification ofβ is irrelevant. Even though conditions (2.17) and (2.23)
look quite different (because the dependent variable is not the same), they are in fact equivalent in
the context of the model we study here. This can be seen by rewriting the reduced form (2.3) as
follows:

y = X1π1 +X2π2 +v = X1(γ +Π1β )+X2(Π2β )+Vb+η
= (X1Π1 +X2Π2)β +X1γ +Vb+η
= Yβ +X1γ +V(b−β )+η . (2.24)

Through matching the latter equation with the structural form (2.1), we get

u = V(b−β )+η (2.25)

provided[Y, X1] has full-column rank. Sinceη andV are uncorrelated, this entails that (2.17) holds
with a= b−β ande= η . Conversely, under the assumption (2.17), we have from the reduced form
(2.3):

v = Vβ +u = V(β +a)+e (2.26)

which is equivalent to (2.23) withb = β +a andη = e. We can thus state the following lemma.
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Lemma 2.2 EQUIVALENCE BETWEEN STRUCTURAL AND REDUCED-FORM ERROR DECOMPO-
SITIONS. Under the assumptions(2.2) and (2.3), suppose the matrix[Y, X1, X2] has full column
rank with probability one. Then the assumptions(2.17) and (2.23) are equivalent with b= β + a
andη = e.

The identityη = e entails that the residual vector from the regression ofu on V is uniquely
determined (identifiable) even ifu itself may not be. The orthogonalized structural equation (2.19)
may thus be rewritten as

y = Yβ +X1γ +V(b−β )+η
= (XΠ)β +X1γ +Vb+η (2.27)

whereb is a regression vector between two reduced-form disturbances(v on V) andη the corre-
sponding error. This shows clearly that different regression endogeneity parametersa = b−β are
obtained by “sweeping”β over its identification set.

Under the general assumption (2.17), covariance endogeneity parameters may depend ont.
Indeed, it is easy to see that

E
[

Vtut
]

= E
[

VtV
′
t

]

a≡ σVut (2.28)

which may depend ont if E
[

VtV
′
t

]

does. However, identification of the parametersσVut remains de-
termined by the identification ofa, whenever the reduced-form covariance (which are parameters of
reduced forms) are identifiable. Of course, inference on covarianceendogeneity parameters requires
additional assumptions. Indeed, we will see below that finite-sample inference methods can be de-
rived for regression endogeneity parameters under the “weak assumptions” (2.17) - (2.18), while
only asymptotically justified methods will be proposed for covariance endogeneity parameters. In
particular for covariances we will focus on the case whereσVut does not depend ont (σVut = σVu

for all t).

2.2. Statistical problems

In this paper, we consider the problem of testing hypotheses and building confidence sets for regres-
sion endogeneity parameters(a) and covariance endogeneity parameters(σVu), allowing for the
possibility of identification failure (or weak identification). We develop inference procedures for
the full vectorsa andσVu, as well as linear transformations of these parametersw′a andw′σVu. In
view of the identification difficulties present here, we emphasize methods forwhich a finite-sample
distributional theory is possible [see Dufour (1997, 2003)], at least partially.

In line with the above discussion on identification of endogeneity parameters,we observe that
inference ona can be tackled more easily than inference onσVu, so we study this problem first. The
problem of testing hypotheses of the form

Ha(a0) : a = a0 (2.29)

can be viewed as an extension of the classical Anderson and Rubin (1949, AR) problem on testing
Hβ (β 0) : β = β 0. There is, however, an additional complication: the variableV is not observable.
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For this reason, substantial adjustments are required. To achieve our purpose, we propose a strategy
that builds on two-stage confidence procedures [Dufour (1990)], projection methods [Dufour (1990,
1987), Abdelkhalek and Dufour (1998), Dufour and Jasiak (2001), Dufour and Taamouti (2005)],
and Monte Carlo tests [Dufour (2006)].

Specifically, in order to build a confidence set with level 1−α for a, chooseα1 andα2 such
that 0< α = α1 +α2 < 1, 0 < α1 < 1 and 0< α2 < 1. We can then proceed as follows:

1. we build an identification-robust confidence set with level 1−α1 for β ; various procedures
are already available for that purpose; in view of the existence of a finite-sample distributional
theory (as well as computational simplicity), we focus on the Anderson and Rubin (1949, AR)
approach; but alternative procedures could be exploited for that purpose;1

2. we build an identification-robust confidence set for the sumθ = β +a, which happens to be
an identifiable parameter; we show this can be done easily though simple regression methods;

3. the confidence sets forβ and θ are combined to obtain a simultaneous confidence set for
the stacked parameter vectorϕ = (β ′, θ ′)′; by the Boole-Bonferroni inequality, this yields a
confidence set forϕ with level 1−α (at least), as in Dufour (1990);

4. confidence sets fora = θ − β and any linear transformationw′a may then be derived by
projection; these confidence sets have level 1−α ;

5. confidence sets forσVu andw′σVu can finally be built on exploiting the relationshipσVu =
ΣVa.

For inference ona, we develop a finite-sample approach which remains valid irrespective of as-
sumptions on the distribution ofV. In addition, we observe that the test statistics used for inference
onβ [the AR-type statistic] andθ enjoy invariance properties which allow the application of Monte
Carlo test methods: as long as the distribution of the errorsu is specified up to an unknown scale
parameter, exact tests can be performed onβ andθ through a small number of Monte Carlo simula-
tions [see Dufour (2006)]. For inference on both regression and covariance endogeneity parameters
(a andσVu), we also provide a large-sample distributional theory based on standard asymptotic as-
sumptions which relax various restrictions used in the finite-sample theory. Allproposed methods
do not make identification assumptions onβ , either in finite samples or asymptotically.

3. Finite-sample inference for regression endogeneity parameters

In this section, we study the problem of building identification-robust tests and confidence sets
for the regression endogeneity parametera from a finite-sample viewpoint. Along with the basic
model assumptions (2.2) - (2.3), we suppose that (2.17) and the following assumption on the error
distribution hold.

1Such procedures include, for example, the methods proposed by Kleibergen (2002) or Moreira (2003). No finite-
sample distributional theory is, however, available for these methods. Further, these are not robust to missing instruments;
see Dufour (2003) and Dufour and Taamouti (2007).

9



Assumption 3.1 CONDITIONAL SCALE MODEL FOR THE STRUCTURAL ERROR DISTRIBUTION.
The conditional distribution of u given X= [X1, X2] is completely specified up to an unknown scalar
factor,i.e.

u|X ∼ σ(X)υ (3.1)

whereσ(X) is a fixed function of X, andυ has a completely specified distribution(which may
depend on X).

Assumption 3.2 CONDITIONAL SCALE MODEL FOR STRUCTURAL ERROR DISTRIBUTION. The
conditional distribution of e= u−Va given X= [X1, X2] is completely specified up to unknown
scalar factor,i.e.

e|X ∼ σ1(X)ε (3.2)

whereσ1(X) is a fixed function of X, andυ has a completely specified distribution(which may
depend on X).

Assumption3.1means that the distribution ofu givenX only depends onX and a (typically un-
known) scale factorσ(X). Of course, this holds wheneveru is independent ofX with a distribution
of the formu ∼ σ υ , whereυ has a specified distribution andσ is an unknown positive constant. In
this context, the standard Gaussian assumption is obtained by taking

υ ∼ N[0, IT ] . (3.3)

But non-Gaussian distributions are covered, including heavy-tailed distributions which may lack
moments (such as the Cauchy distribution). Similarly, Assumption3.2 means that the distribution
of e givenX only depends onX and a (typically unknown) scale factorσ1(X), so again a standard
Gaussian model is obtained by assuming

ε ∼ N[0, IT ] . (3.4)

In general, assumptions3.1 and3.2 do not entail each other. However, it is easy to see that both
hold when the vectors[ut ,V

′
t ]

′
, t, , . . . , T, are i.i.d. (conditional onX) with finite second moments

and the decomposition assumption (2.17) - (2.18) holds. This will be the casea fortiori if the vectors
[ut ,V

′
t ]

′
, t, , . . . , T, are i.i.d. multinormal (conditional onX).

We will study in turn the following problems:

1. test and build confidence sets forβ ;

2. test and build confidence sets forθ = β +a;

3. test and build confidence sets fora;

4. test and build confidence sets for scalar linear transformationsw′a.
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3.1. AR-type tests forβ with possibly non-Gaussian errors

Since this will be a basic building block for inference on endogeneity parameters, we consider first
the problem of testing the hypothesis

Hβ (β 0) : β = β 0 (3.5)

whereβ 0 is any given possible value ofβ . Several procedures have been proposed for that purpose.
However, since we wish to use an identification-robust procedure for which a finite-sample theory
can easily be easily obtained and does not require assumptions on the distribution ofY, we focus on
the Anderson and Rubin (1949, AR) procedure. So we consider the transformed equation:

y−Yβ 0 = X1π0
1 +X2π0

2 +v0 (3.6)

whereπ0
1 = γ +Π1(β −β 0), π0

2 = Π2(β −β 0) andv0 = u+V(β −β 0). Sinceπ0
2 = 0 underHβ (β 0),

it is natural to consider the correspondingF-statistic in order to testHβ (β 0) :

AR(β 0) =
(y−Yβ 0)

′(M1−M)(y−Yβ 0)/k2

(y−Yβ 0)
′M(y−Yβ 0)/(T −k)

(3.7)

whereM1 ≡ M(X1) andM ≡ M(X); for any full-column rank matrixA, we setP(A) = A(A′A)−1A′

andM(A) = I −P(A). Under the usual assumption whereu ∼ N[0, σ2IT ] independently ofX, the
conditional distribution ofAR(β 0) underHβ (β 0) is F(k2, T −k). In the following proposition, we
characterize the null distribution ofAR(β 0) under the more general Assumption3.1.

Proposition 3.3 NULL DISTRIBUTION OF AR STATISTICS UNDER SCALE STRUCTURAL ERROR

MODEL. Suppose the assumptions(2.1), (2.2) and3.1hold. If β = β 0,we have:

AR(β 0) =
υ ′(M1−M)υ/k2

υ ′Mυ/(T −k)
(3.8)

and the conditional distribution of AR(β 0) given X only depends on X and the distribution ofυ .

The latter proposition means that the conditional null distribution ofAR(β 0), given X, only
depends on the distribution ofυ . Note the distribution ofV plays no role here, so no decomposition
assumption [such as (2.17) - (2.18) or (2.23)] is needed. If the distribution of υ |X can be simulated,
one can get exact tests based onAR(β 0) through the Monte Carlo test method [see Dufour (2006)],
even if this conditional distribution is non-Gaussian. Furthermore, the exact test obtained in this
way is robust to weak instruments as well as instrument exclusion even if the distribution of u|X
does not have moments (the Cauchy distribution, for example). This may be useful for example in
financial models with fat-tailed error distributions, such as the Studentt distribution.

When the normality assumption (3.3) holds andX is exogenous, we haveAR(β 0)∼F(k2,T−k),
so thatHβ (β 0) can be assessed by using a critical region of the form{AR(β 0) > f (α)} , where
f (α) = Fα(k2,T−k) is the 1−α quantile of theF-distribution with(k2,T−k) degrees of freedom.
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A confidence set with level 1−α for β is then given by

Cβ (α) = {β 0 : AR(β 0) ≤ Fα(k2,T −k)} = {β : Q(β ) ≤ 0} (3.9)

whereQ(β ) = β ′Aβ +b′β +c, A = Y′HY , b = −2Y′Hy, c = y′Hy, H = M1− [1+ f (α)( k2
T−k)]M,

and f (α) = Fα(k2,T −k); see Dufour and Taamouti (2005).
Suppose now that the conditional distribution ofυ (given X) is continuous, so that the condi-

tional distribution ofAR(β 0) under the null hypothesisHβ (β 0) is also continuous. We can then
proceed as follows to obtain an exact Monte Carlo test ofHβ (β 0) with level α (0 < α < 1):

1. chooseα∗ andN so that

α =
I [α∗N]+1

N+1
; (3.10)

2. for givenβ 0, compute the test statisticAR(0)(β 0) based on the observed data;

3. generateN i.i.d. error vectorsυ( j) = [υ( j)
1 , . . . , υ( j)

T ]′, j = 1, . . . , N , according to the spec-
ified distribution ofυ |X , and compute the corresponding statisticAR( j), j = 1, . . . , N, fol-
lowing (3.8); note the distribution ofAR(β 0) does not depend on the specific valueβ 0 tested,
so there is no need to make it depend onβ 0;

4. compute the empirical distribution function based onAR( j), j = 1, . . . , N,

F̂N(x) =
∑N

j=11[AR( j) ≤ x]

N+1
, (3.11)

or, equivalently, the simulatedp-value function

p̂N[x] =
1+∑N

j=11[AR( j) ≥ x]

N+1
(3.12)

where1[C] = 1 if conditionC holds, and1[C] = 0 otherwise;

5. reject the null hypothesisHβ (β 0) at level α when AR(0)(β 0) ≥ F̂−1
N (1−α∗) , where

F̂−1
N (q) = inf{x : F̂N (x) ≥ q} is the generalized inverse of̂FN(·), or (equivalently) when

p̂N[AR(0)(β 0)] ≤ α .

Under the null hypothesisHβ (β 0),

P
[

AR(0)(β 0) ≥ F̂−1
N (1−α∗)

]

= P
[

p̂N[AR(0)(β 0)] ≤ α
]

= α (3.13)

so that we have a test with levelα. If the distribution of the test statistic is not continuous, the MC
test procedure can easily be adapted by using “tie-breaking” method described in Dufour (2006).2

2It is also useful to note that, without correction for continuity, the algorithm proposed for statistics with continuous
distributions yields a conservative test,i.e. the probability of rejection under the null hypothesis is not larger the nominal
level (α1).
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Correspondingly, a confidence set with level 1−α for β is given by the set of all valuesβ 0 which
are not rejected by the above MC test. More precisely, the set

Cβ (α) =
{

β 0 : p̂N[AR(0)(β 0)] > α
}

(3.14)

is a confidence set with level 1−α for β . On noting that the distribution ofAR(β 0) does not depend
on β 0, we can use a single simulation for all valuesβ 0: setting f̂N(α∗) = F̂−1

N (1−α∗) , the set

Cβ (α; N) =
{

β 0 : AR(0) < f̂N(α∗)
}

(3.15)

is equivalent toCβ (α) – with probability one – and so has level 1−α. On replacing> and< by≥
and≤ in (3.14) - (3.15), it is also clear that the sets

{

β 0 : p̂N[AR(0)(β 0)] ≥ α
}

and

C̄β (α; N) = {β 0 : AR(0)(β 0) ≤ f̂N(α∗)} (3.16)

constitute confidence sets forβ with level 1−α (though possibly a little larger than 1−α). The
quadric form given in (3.9) also remains valid withf (α) = f̂N(α∗).

3.2. Inference onθ

Let us now consider the problem of testing the hypothesis

Hθ (θ 0) : θ = θ 0 (3.17)

whereθ 0 is a given vector of dimensionG, and Assumption3.2holds. This can be done by consid-
ering the extended reduced form in (2.20):

y = Yθ +X1π∗
1 +X2π∗

2 +e (3.18)

whereθ = β +a, π∗
1 = γ−Π1a, π∗

2 =−Π2a, ande is independent ofY, X1 andX2. Thus the extended
reduced form is a linear regression model. As soon as the matrix[Y, X1, X2] has full-column rank,
the parameters of equation (3.18) can be tested through standardF-tests.

We will now assume that[Y, X1, X2] has full-column rank with probability one. This property
holds as soon asX = [X1, X2] has full column rank andY has a continuous distribution (conditional
onX). TheF-statistic for testingHθ (θ 0) is

Fθ (θ 0) =
(θ̂ −θ 0)

′(Y′MY)(θ̂ −θ 0)/G
y′M(Z)y/(T −G−k)

(3.19)

whereθ̂ = (Y′MY)−1Y′My is the OLS estimate ofθ in (3.18),M = M(X), X = [X1, X2], andZ =
[Y , X1 , X2].Under the normality assumption (3.4), we have:

Fθ (θ 0) ∼ F(G, T −k−G) . (3.20)
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Under the more general assumption3.2, it is easy to see that

Fθ (θ 0) =
ε ′MY(Y′MY)−1Y′Mε/G

ε ′M(Z)ε/(T −G−k)
(3.21)

underHθ (θ 0). On observing that the conditional distribution ofFθ (θ 0), givenY andX, does not
involve any nuisance parameter, the critical value can be obtained by simulation. It is also important
to note that this distribution does not depend onθ 0, so the same critical value can be applied irre-
spective ofθ 0. The main difference with the Gaussian case is that the critical value may depend on
Y andX. Irrespective of the case considered [(3.20) or (3.21)], we shall denote byc(α2) the critical
value used forFθ (θ 0).

From (3.19), a confidence set with level 1−α for θ can be obtained by invertingFθ (θ 0) :

Cθ (α) =
{

θ 0 : Fθ (θ 0) ≤ f̄ (α)
}

=
{

θ 0 : Q̄(θ 0) ≤ 0
}

(3.22)

where
aQ̄(θ) = (θ̂ −θ)′(Y′MY)(θ̂ −θ)− c̄0 = θ ′Āθ + b̄′θ + c̄, (3.23)

wherec̄0 = f̄ (α)Gs2 , s2 = y′M(Z)y/(T −G−k) ,

Ā = Y′MY, b̄ = −2Āθ̂ = −2Y′My, c̄ = θ̂ ′
Āθ̂ − c̄0 = θ̂ ′

(Y′MY)θ̂ − c̄0 = y′H̃y, (3.24)

andH̄ = P(MY)− f̄ (α)[G/(T−G−k)]M1. Since the matrix̄A is positive definite (with probability
one), the quadric setCθ (α) is an ellipsoid (hence bounded); see Dufour and Taamouti (2005, 2007).
This reflects the fact thatθ is an identifiable parameter. As a result, the corresponding projection-
based confidence sets for scalar transformationsw′θ are also bounded intervals.

In view of the form of model (3.18) as a linear regression, we can test in the same way linear
restrictions of the form

Hw′θ (γ0) : w′θ = γ0 (3.25)

wherew is aG×1 vector andγ0 is known constant. We can then use the correspondingt statistic

tw′θ (γ0) =
w′θ̂ − γ0

s[w′(Z′Z)−1w]1/2
(3.26)

and rejectHw′θ (γ0) when
|tw′θ (γ0)| > cw(α) (3.27)

where cw(α) is the critical value for a test with levelα . In the Gaussian case,tw′θ (γ0) follows a
Student distribution withT −G−k degrees of freedom, so we can takecw(α) = t(α2; T −G−k).
Whenε follows a non-Gaussian distribution, we have

tw′θ (γ0) =
(T −G−k)1/2(Y′MY)−1Y′Mε
(

ε ′M(Z)ε
)1/2

[w′(Z′Z)−1w]1/2
(3.28)
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underHw(γ0), so that the distribution oft(γ0) can be simulated likeFθ (θ 0) in (3.21).

3.3. Joint inference onβ and regression endogeneity parameters

We can now derive confidence sets for the vectors(β ′, a′)′ and(β ′, θ ′)′. By the Boole-Bonferroni
inequality, we have:

P[β ∈ Cβ (α1)andθ ∈ Cθ (α2)] ≥ 1−P[β /∈ Cβ (α1)]−P[θ /∈ Cθ (α2)] ≥ 1−α1−α2 (3.29)

The set

C(β , θ)(α1, α2) = {(θ ′
0, β ′

0)
′ : β 0 ∈ Cβ (α1) , θ 0 ∈ Cθ (α2)}

= {(θ ′
0, β ′

0)
′ : Q(β 0) ≤ 0 , Q̄(θ 0) ≤ 0} (3.30)

is thus a confidence set with level 1−α whereα = α1 +α2.
In view of the identityθ = β +a, we can writeQ̄(θ) in (3.23) as a function ofβ anda:

Q̄(θ) = Q̄(β +a) = a′Āa+(b̄+2Āβ )′a+[c̄+ b̄′β +β ′Āβ ] .

Then the set
C̄(β , a)(α) = {(β ′

0, a′0)
′ : Q(β 0) ≤ 0 andQ̄(β 0 +a0) ≤ 0} (3.31)

is in turn a joint confidence set with level 1−α for β anda. Thus, finite-sample inference on the
structural (possibly unidentifiable) parametera is possible. Of course, ifa is not identified, a valid
confidence set will cover the set of all possible values (or be unbounded) with probability 1−α [see
Dufour (1997)].

3.4. Confidence sets for regression endogeneity parameters

We can now build “marginal” confidence sets for the endogeneity coefficient vectora. In view of the
possibility of identification failure, this is most easily done by projection techniques. Letg(β , a) be
any function ofβ anda. Since the event(β , a) ∈ C̄(β , a)(α) entailsg(β , a) ∈ g[C̄(β , a)(α)], where
g[C̄(β , a)(α)] = {g(β , a) : (β , a) ∈ C̄(β , a)(α)}, we have:

P
[

g(β , a) ∈ g[C̄(β , a)(α)
]

≥ P[(β , a) ∈ C̄(β , a)(α)] ≥ 1−α . (3.32)

On takingg(β , a) = a,we see that

Ca(α) = {a∈ R
G : (β , a) ∈ C̄(β , a)(α) for someβ} (3.33)

= {a∈ R
G : Q̄(β +a) ≤ 0 andQ(β ) ≤ 0 for someβ}

is a confidence set with level 1−α for a.
When G = 1, the matricesA, Ā, b, b̄, c and c̄ in (3.23) reduce to scalars, and the different
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confidence sets take the following simple forms:

Cβ (α1) =
{

β : Aβ 2 +bβ +c≤ 0
}

, Cθ (α2) = {θ : Āθ 2 + b̄θ + c̄≤ 0} , (3.34)

Ca(α) = {a : Aβ 2 +bβ +c≤ 0, Āa2 +(b̄+2Āβ )a+[c̄+ b̄β + Āβ 2] ≤ 0} . (3.35)

Closed-form for the setsCβ (α1) andCθ (α2) are easily derived by finding the roots of the second-

order polynomial equationsAβ 2+bβ +c= 0 andĀθ 2+ b̄θ + c̄= 0 [as in Dufour and Jasiak (2001)],
while the setCa(α) can be obtained by finding the roots of the equation

Āa2 + b̄(β )a+ c̄(β ) = 0 whereb̄(β ) = b̄+2Āβ andc̄(β ) = c̄+ b̄β + Āβ 2 (3.36)

for eachβ ∈ Cβ (α1).
We shall now focus on building confidence sets for scalar linear transformationsg(a) = w′a =

w′θ −w′β , wherew is aG×1 vector. Conceptually, the simplest approach consists in applying the
projection method fromCa(α), which yields the confidence set:

Cw′a(α) = gw[Ca(α)] = {d : d = w′a for somea∈ Ca(α)}
= {d : d = w′a , Q̄(β +a) ≤ 0 andQ(β ) ≤ 0 for someβ} .

But it will more efficient to exploit the linear structure of model (3.18), whichallows one to build a
confidence interval forw′θ .

Following Dufour and Taamouti (2005, 2007), confidence sets forgw(β ) = w′β andgw(θ) =
gw = w′θ can be derived fromCβ (α1) andCθ (α2) as follows:

Cw′β (α1) ≡ gw[Cβ (α1)] = {x1 : x1 = w′β whereQ(β ) ≤ 0}
= {x1 : x1 = w′β whereβ ′Aβ +b′β +c≤ 0} (3.37)

whereA, b andc are defined as in (3.9). Forw′θ , we can use at−type confidence interval based on
t(γ0):

C̄w′θ (α2) ≡ ḡw[Cθ (α2)] = {γ0 : |tw′θ (γ0)| < cw(α2)}
= {γ0 : |w′θ̂ − γ0| < D̄(α2)} (3.38)

whereD̄(α2) = cw(α2) σ̂(w′θ̂), σ̂(w′θ̂) = s[w′(Z′Z)−1w]1/2 andcw(α2) is the critical value for a
test with levelα2 [determined as in (3.27)]. Setting

C(w′β , w′θ)(α1, α2) = {(x, y)′ : x∈ Cw′β (α1)andy∈ C̄w′θ (α2)} , (3.39)

we see thatC(w′β , w′θ)(α1, α2) is a confidence set for(w′β , w′θ) with level 1−α1−α2:

P[(w′β , w′θ) ∈ C(w′β , w′θ)(α1, α2)] = P[w′β ∈ Cw′β (α1)andw′θ ∈ C̄w′θ (α2)] ≥ 1−α (3.40)

whereα = α1+α2. For any pointx∈R and any subsetA⊆R, setx−A= {z∈R : z= x−yandy∈
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A}. Sincew′a = w′θ −w′β , it is clear that

(w′β , w′θ) ∈ C(w′β , w′θ)(α1, α2) ⇔ w′θ −w′a∈ Cw′β (α1)andw′θ ∈ C̄w′θ (α2)

⇔ w′a∈ w′θ −Cw′β (α1) andw′θ ∈ C̄w′θ (α2)
(3.41)

so that

P[w′a∈ w′θ −Cw′β (α1) andw′θ ∈ C̄w′θ (α2)] = P[w′β ∈ Cw′β (α1)andw′θ ∈ C̄w′θ (α2)]
≥ 1−α1−α2 .

(3.42)
Now, consider the set

Cw′a(α1, α2) = {z∈ R : z∈ y−Cw′β (α1) for somey∈ C̄w′θ (α2)}. (3.43)

Since the event{w′a∈ w′θ −Cw′β (α1) andw′θ ∈ C̄w′θ (α2)} entailsw′a∈ Cw′a(α1, α2), we have:

P[w′a∈ Cw′a(α1, α2)] ≥ P[w′β ∈ Cw′β (α1)andw′θ ∈ C̄w′θ (α2)] ≥ 1−α1−α2 (3.44)

andCw′a(α1, α2) is a confidence set with level 1−α1−α2 for w′a.
SinceC̄w′θ (α2) is a bounded interval, the shape ofCw′a(α1, α2) can be deduced easily by using

the results given in Dufour and Taamouti (2005, 2007). We focus on thecase whereA is nonsingular
[an event with probability one as soon as the distribution ofAR(β 0) is continuous] andw 6= 0. Then
the setCw′β (α1) may then rewritten as follows: ifA is positive definite,

Cw′β (α1) =
[

w′β̃ −D(α1), w′β̃ +D(α1)
]

, if d ≥ 0,

= /0, if d < 0,
(3.45)

whereβ̃ = −1
2A−1b, d = 1

4b′A−1b− c andD(α1) =
√

d(w′A−1w); if A has exactly one negative
eigenvalue,

Cw′β (α1) =
]

−∞ , w′β̃ −D(α1)
]

∪
[

w′β̃ +D(α1) , +∞
[

, if w′A−1w < 0 andd < 0,

= R\{w′β̃} , if w′A−1w = 0 andd < 0

= R , otherwise;
(3.46)

otherwise,Cw′β (α1) = R. Cw′β (α1) = /0 corresponds to a case where the model is not consistent
with the data [so thatCw′a(α1, α2) = /0 as well], whileCw′β (α1) = R andCw′β (α1) = R\{w′β̃}
indicate thatw′β is not identifiable and similarly forw′a [so thatCw′a(α1, α2) = R]. This yields the
following confidence sets forw′a : if A is positive definite,

Cw′a(α1, α2) =
[

w′(θ̂ − β̃ )−DU(α1, α2) , w′(θ̂ − β̃ )+DU(α1, α2)
]

, if d ≥ 0,

= /0, if d < 0,
(3.47)
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whereDU(α1, α2) = D(α1)+ D̄(α2); if A has exactly one negative eigenvalue,w′A−1w < 0 and
d < 0,

Cw′a(α1, α2) =
]

−∞ , w′(θ̂ − β̃ )−DL(α1, α2)
]

∪
[

w′(θ̂ − β̃ )+DL(α1, α2) , +∞
[

(3.48)

whereDL(α1, α2) = D(α1)− D̄(α2); otherwise,Cw′a(α1, α2) = R. These results may be extended
to cases whereA is singular, as done by Dufour and Taamouti (2007).

4. Asymptotic theory for inference on endogeneity parameters

In this section, we examine the validity of the procedures developed in Section3 under weaker
distributional assumptions, and we show how inference on covariance endogeneity parameters can
be made. On noting that equations (3.6) and (3.18) constitute standard linear regression models (at
least under the null hypothesisβ = β 0), it is straightforward to find high-level regularity conditions
under which the tests based onAR(β 0) andFθ (θ 0) are asymptotically valid.

ForAR(β 0), we can consider the following general assumptions:

1
T

X′u
p→ 0, (4.1)

1
T

u′u
p→ σ2

u > 0, (4.2)

1
T

X′X
p→ ΣX with det(X) 6= 0, (4.3)

1√
T

X′u
L→ ψXu, ψXu ∼ N

[

0, σ2
uΣX

]

, (4.4)

whereX = [X1, X2] . The above conditions are easy to interpret: (4.1) represents the asymptotic
orthogonality betweenu and the instruments inX, (4.2) and (4.3) may be viewed as laws of large
numbers foru andX, while (4.4) is a central limit property. Then, it is simple exercise to see that

AR(β 0)
L→ 1

k2
χ2(k2) whenβ = β 0. (4.5)

Similarly, for Fθ (θ 0), suppose:

1
T

Z′e
p→ 0, (4.6)

1
T

e′e
p→ σ2

e , (4.7)

1
T

Z′Z
p→ ΣZ with det(Z) 6= 0, (4.8)

1√
T

Z′e
L→ ψXe, ψXe∼ N

[

0, σ2
eΣZ

]

, (4.9)
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whereZ = [Y , X1 , X2]. Then

Fθ (θ 0)
L→ 1

G
χ2(G) whenθ = θ 0 . (4.10)

The asymptotic distributions in (4.5) and (4.10) hold irrespective whether theinstrumentsX are
weak or strong. Further, as soon as (4.1) - (4.1) and (4.6) - (4.9) hold, the confidence procedures
described in Section 3 remain “asymptotically valid” withf (α1) = χ2(α1; k2)/k2 and f̄ (α2) =
χ2(α2; G)/G, whereχ2(α1; k2) andχ2(α2; G) are respectively the 1−α1 and 1−α2 quantiles of
the correspondingχ2 distributions. Of course, the Gaussian-based Fisher critical values may also
be used (for they converge to the chi-square critical values asT → ∞).

We can now consider inference for covariance endogeneity parameters σVu. The problem of
building confidence sets forσVu is especially important for assessing partial exogeneity hypotheses.
Sincea j = 0, j = 1, . . . ,G does not entailσuV j = 0(where 1≤ j ≤ G), confidence sets on the
components ofa cannot directly be used to assess for example, the exogeneity of each regressor
Yj = 0, j = 1, . . . ,G.

Confidence sets and tests forσuV can be deduced from those ona through the relationship
σVu = ΣVa given in (2.11). On replacinga by Σ−1

V σVu in Ca(α), we see that the set

CσVu(α; ΣV) = {σVu ∈ R
G : σVu = ΣVa anda∈ Ca(α)}

= {σVu ∈ R
G : Q̄(β +Σ−1

V σVu) ≤ 0 andQ(β ) ≤ 0 for someβ} (4.11)

is a confidence set with levela for σVu. This set is simply the image ofCa(α) by the linear trans-
formationg(x) = ΣVx. The difficulty here comes from the fact thatΣV is unknown. Let

Σ̂V = V̂ ′V̂/(T −k) (4.12)

whereV̂ = M(X)Y is the matrix of least-squares residuals from the first-step regression (2.2). Under
standard regularity conditions, we have:

Σ̂V
p→ ΣV (4.13)

where det(ΣV) > 0. If β 0 anda0 are the true values ofβ anda, the relationsθ 0 = β 0 + a0 and
σVu0 = ΣVa0 entail thatFθ (θ 0) can be rewritten as follows:

Fθ (β 0 +Σ−1
V σVu0) =

(θ̂ −β 0−Σ−1
V σVu0)

′(Y′MY)(θ̂ −β 0−Σ−1
V σVu0)/G

y′M(Z)y/(T −G−k)
. (4.14)

ReplacingΣV by Σ̂V , we get the approximate pivotal function:

Fθ (β 0 + Σ̂−1
V σVu0) =

(θ̂ −β 0− Σ̂−1
V σVu0)

′(Y′MY)(θ̂ −β 0− Σ̂−1
V σVu0)/G

y′M(Z)y/(T −G−k)
(4.15)

If (4.13) holds, it is easy to see (by continuity) thatFθ (β 0 + Σ̂−1
V σVu0) and Fθ (β 0 + Σ−1

V σVu0)
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are asymptotically equivalent with a nondegenerate distribution, whenβ 0 and σVu0 are the true
parameter values. Consequently, the confidence set of typeCσVu(α) based onFθ (β 0 + Σ̂−1

V σVu0)
as opposed toFθ (β 0 + Σ−1

V σVu0) has level 1−α asymptotically. This set is simply the image of
Ca(α) by the linear transformation ˆg(x) = Σ̂Vx, i.e.

CσVu(α; Σ̂V) = {σVu ∈ R
G : σVu = Σ̂Va anda∈ Ca(α)}

= {σVu ∈ R
G : Q̄(β + Σ̂−1

V σVu) ≤ 0 andQ(β ) ≤ 0 for someβ} . (4.16)

Finally, confidence sets for the components ofσVu, and more generally for linear combinations
w′σVu, can be derived from those onw′a as described in Section 3.4. ForΣV given, the relation
σVu = ΣVa entails that a confidence set forw′σVu (with level 1−α) can be obtained by computing
a confidence set (at level 1−α) for w′

1a with w1 = ΣVw. WhenΣV is estimated bŷΣV , takingw1 =
Σ̂Vw yields a confidence set forσVu with level 1−α asymptotically.

5. Empirical applications

We will now apply the methods proposed above to two empirical examples: the relation between
trade and growth [Dufour and Taamouti (2007), Irwin and Tervio (2002), Frankel and Romer (1999),
Harrison (1996), Mankiw, Romer and Weil (1992)] and the well known problem of returns to school-
ing [Doko Tchatoka and Dufour (2009), Dufour and Taamouti (2007), Angrist and Krueger (1991),
Angrist and Krueger (1995), Mankiw et al. (1992)].

5.1. Trade and growth

The trade and growth model studies the relationship between standards of living and openness.
Frankel and Romer (1999) argued that trade share (ratio of imports or exports to GDP) which is the
commonly used indicator of openness should be viewed as endogenous. The authors then suggest
to estimate the income-trade relationship using an IV method. The equation studiedis given by:

ln(Incomei) = β 0 +β 1Tradei + γ1ln(Popi)+ γ2ln(Areai)+ui , i = 1, . . . , N (5.1)

where Incomei is the income per capita in countryi, Tradei is the trade share (measured as a ratio
of imports and exports to GDP), Popi is the logarithm of population of countryi, and Areai is the
logarithm of countryi, area. The instrument suggested by Frankel and Romer (1999) is constructed
on the basis of geographic characteristics. The first stage equation is given by:

Tradei = b0 +b1Zi +c1Popi +c2Areai +Vi , i = 1, . . . , N (5.2)

whereZi is a constructed instrument. We use the sample of 150 countries and the data include for
each country the trade share in 1985, the area and population (1985), per capita income (1985),
and the fitted trade share (instrument). As showed in Dufour and Taamouti (2005), it is not clear
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how“weak ”the instruments are for this sample.3

We follow the methodology developed in this paper to build projection-based confidence sets for
regression endogeneity “a ” and covariance endogeneity “σVu ” . We have also reported IV-based
confidence intervals for the identified parameter “θ = β +a ” .

The estimate of the regression endogeneity parameter “a ” in the transformed equation

ln(Incomei) = β 0 +β 1Tradei + γ1ln(Popi)+ γ2ln(Areai)+V̂ia+ei (5.3)

is around ˆa=−1.817, while the estimate ofΣV from the first-step regression iŝΣV = 0.209. Hence,
the estimate of of the covariance endogeneity parameterσVu is about ˆσuV = Σ̂V â=−0.3805. Table
1 presents the confidence sets at levels 97.5%and 95% forβ 1 andθ = β 1+a, and at levels 95%and
90% fora andσVu. The results show clearly that bothCa(α) andCσVu(α) are bounded in all cases.
However, the confidence interval that result from projection are largecompare with alternative IV-
based confidence intervals. This suggests that the instruments may not be very strong in this model.
Moreover, we observe that bothCa(α) andCσVu(α) contain 0, so the exogeneity of the trade share
variable cannot be rejected at levelsα = 5% orα = 10%.

5.2. Education and earnings

We now consider the problem of estimating the returns to schooling. The modelstudies a relation-
ship between log weekly earning and the number of years of education andseveral other covariates
(age, squared age, year of birth, ... ). Several authors including Angrist and Krueger (1991) ar-
gued that schooling may be endogenous in this model and proposed to use the birth quarter as an
instrument to estimate the returns to schooling consistently. The reason is individuals born in the
first quarter of the year start school at an older age, and can therefore drop out after completing less
schooling than individuals born near the end of the year. Hence, individuals born at the beginning
of the year are likely to earn less than those born during the rest of the year. Bound et al. (1995)
however, showed that the quarter of birth instruments are very weak. Doko Tchatoka and Dufour
(2010, 2011) showed that DWH-tests cannot detect the endogeneity ofschooling in this model,
since the instruments have poor quality [see Dufour and Taamouti (2007)].

Here, we assess whether schooling is exogenous by using the projectionmethod developed in
this paper. The model is specified by:

y = β 0 +β 1E +
k1

∑
i=1

γ iXi +u, (5.4)

E = π0 +
k2

∑
i=1

π iZi +
k1

∑
i=1

φ iXi +V (5.5)

wherey is log-weekly earnings,E is the number of years of education (possibly endogenous),X
contains the exogenous covariates (age, age squared, 10 dummies for birth of year). Z contains

3The F-statistic in the first stage is about 13 as indicated in Frankel and Romer (1999, Table 2, p.385), which is not to
high compared to the rule of thumb of 10 suggested by Staiger and Stock (1997) in the weak instruments case.
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Table 1. Projection-based confidence sets for different parameters ingrowth model

AR-type CS’s 97.5% 95%

Cβ 1
(α) {β 1 : 0.2306β 2

1−4.757β 1 +0.043≤ 0} {β 1 : 0.478β 2
1−4.86β 1 +1.271≤ 0}

= [0.009, 20.623] = [0.2685, 9.896]

Cθ (α) {θ : 0.305θ 2−0.127θ −0.039≤ 0} {θ : 0.306θ 2−0.127θ −0.027≤ 0}
= [−0.205, 0.621] = [−0.153, 0.569]

Cθ (α) based ontw′θ (γ0) [−0.051, 0.466] [−0.018, 0.433]

Scheffé-type CS’s 95% 90%

Ca(α) [−20.828, 0.612] [−10.049, 0.300]

Ca(α) based ontw′θ (γ0) [−20.674, 0.457] [−9.9140.165]

CσVu(α) [−4.361, 0.128] [−2.104, 0.063]

CσVu(α) based ontw′θ (γ0) [−4.329, 0.096] [−2.076, 0.035]

-
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40 dummies obtained by interacting the quarter of birth with the year of birth. In this model,β 1
measures the return to education. The data set consists of the 5% public-use sample of the 1980 US
census for men born between 1930 and 1939. The sample size is 329 509 observations.

Table 2 presents the results. We observe thatCβ (α) is unbounded indicating thatβ is not
identified. However,Cθ (α) is bounded The latter result confirms the factθ is always identified
even if identification is weak (weak instrument). As a result,Ca(α) andCσVu(α) are unbounded in
all cases. That indicates clearly that identification is an issue in this model.

6. Conclusion

In this paper, we have studied the problem of testing hypotheses and building confidence sets on
endogeneity parameters. Such parameters have both intrinsic and statisticalinterest, because they
represent the effect of “common factors” which induce simultaneity and determine simultaneity bi-
ases (along with other features of the data). We stressed the usefulnessof distinguishing betweenre-
gression endogeneity parameters(a) andcovariance endogeneity parameters(σVu): regression en-
dogeneity parameters measure the effect of “missing variables” in linear structural equations, while
covariance endogeneity parameters directly indicate which variables may betreated as “exogenous”
in statistical inference. Further, regression endogeneity parameters maybe tested relatively easily,
and we proposed finite-sample inference methods for these. Inferenceon covariance endogeneity
parameters involves additional nuisance parameters (e.g., the unknown covariance matrixΣV), so
only asymptotically justified methods were given forσVu.

The identification of endogeneity parameters was also discussed. After formulating necessary
and sufficient conditions for the identification of such parameters, we observed a simple equivalence
between the identification of individual regression endogeneity parameters (ai) and the identifica-
tion of the corresponding structural parameters(β i), while this feature does not hold for covariance
endogeneity parameters. In view of the possibility of identification failure, identification-robust
inference procedures were proposed for endogeneity parameters.For joint hypotheses involving
structural and regression endogeneity parameters, as well as marginalhypotheses on regression en-
dogeneity parameters, finite-sample procedures were proposed. Under Gaussian errors, the tests
and confidence sets are based on standard Fisher critical values. Fora wide class of parametric non-
Gaussian errors (possibly heavy-tailed), exact Monte Carlo procedures can be applied using the
statistics considered. As a special case, this result also holds for usualAR-type tests and confidence
sets on structural coefficients.

We showed that the proposed finite-sample procedures (e.g., those based on a Gaussian as-
sumption on the errors) remain asymptotically valid under weaker distributionalassumptions. Tests
of partial exogeneity hypotheses (for individual potentially endogenous explanatory variables) are
covered as instances of the class of proposed procedures. The asymptotic theory also yields infer-
ence for covariance endogeneity. Even though the asymptotic theory is only approximate in finite
samples, it is robust to identification assumptions. Finally, the proposed procedures were applied to
two empirical examples: the relation between trade and economic growth, and the widely studied
problem of returns to education.
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Table 2. Projection-based confidence sets for different parameters inearning equation

AR-type CS’s 97.5% 95%

Cβ 1
(α) {β 1 : −2.382β 2

1 +0.332β 1−0.107≤ 0} {β 1 : −2.229β 2
1 +0.31β 1−0.1≤ 0}

= R = R

Cθ (α) {θ : 3.527θ 2−0.5θ +0.018≤ 0} {θ : 3.527θ 2− .5θ +0.018≤ 0}
= [0.0701, 0.0716] = [.0702, .0715]

Cθ (α) based ontw′θ (γ0) [.0707, .0710] [.0707, .0710]

Scheffé-type CS’s 95% 90%

Ca(α) R R

CσVu(α) R R
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APPENDIX

A. Proofs

PROOF OFLEMMA 3.3 On multiplying the two sides of (3.6) byM andM1−M, we see that:

M(y−Yβ 0) = Mu+MV(β −β 0) ,

(M1−M)(y−Yβ 0) = M1X2Π2(β −β 0)+(M1−M)u+(M1−M)V(β −β 0) . (A.1)

When Assumption3.1holds andβ = β 0, this entails:

M(y−Yβ 0) = σ(X)Mυ, (M1−M)(y−Yβ 0) = σ(X)(M1−M)υ.

Thus, theAR-statistic in (3.7) can be rewritten as:

AR(β 0) =
σ(X)2υ ′(M1−M)υ/k2

σ(X)2υ ′Mυ/(T −k)
=

υ ′(M1−M)υ/k2

υ ′Mυ/(T −k)
.

Hence, the null conditional distribution ofAR(β 0), given X, only depends onυ and X. If the
normality assumption (3.3) also holds andυ is independent ofX, then

υ ′Mυ ∼ χ2(T −k), υ ′(M1−M)υ ∼ χ2(k2) ;

further, sinceM(M1−M) = 0, υ ′Mυ andυ ′(M1−M)υ are independent conditional onX. Conse-
quently,AR(β 0) ∼ F(k2,T −k).
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