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Abstract:   

For decades, the academic literature has focused on three survey measures of expected inflation:  

the Livingston Survey, the Survey of Professional Forecasters, and the Michigan Survey.  While 

these measures have been useful in developing models of forecasting inflation, the data are low 

frequency measures which appear anachronistic in the modern era of high frequency and real-

time data.  I present a collection of 37 different measures of inflation expectations, including 

many previously unexploited monthly and real-time measures of inflation expectations.  These 

higher frequency measures tend to outperform the standard three low frequency survey measures 

in tests of accuracy, predictive power, and rationality, indicating that there are benefits to using 

higher frequency measures of inflation expectations.  Out of sample forecasts confirm the 

findings. 
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An Inflation Expectations Horserace 

 

 

I.  Introduction 

The importance of inflation expectations, for the real economy as well as for financial markets, 

cannot be overstated.  Inflation expectations play a critical role in the Federal Reserve’s 

determination of monetary policy and in establishing the Fed’s credibility among market 

participants.  Expectations of inflation are embedded in the investment and financing decisions 

of firms, the labor contract negotiations of managers and employees, and the consumption, 

investment, and savings decisions of individuals.  For decades, economists have relied on a 

standard set of three survey measures of expected inflation, namely the semiannual Livingston 

Survey, the quarterly Survey of Professional Forecasters, and the quarterly Michigan Surveys of 

Consumers.
2
  These three low frequency survey measures have been useful in developing models 

of inflation expectations formation, and in testing the rational expectations hypothesis.
3
  Given 

the importance of inflation expectations, and the considerable attention the subject has received 

in the academic literature, it is somewhat surprising that economists have not endeavored to look 

beyond the standard set of three surveys to develop a more comprehensive set of measures to 

gauge inflation expectations.  In particular, it seems odd that in a world driven by real-time 

information, economists are still relying on quarterly and semi-annual measures of inflation 

expectations, when higher frequency measures exist and are readily available.   

In this paper, I introduce a collection of monthly and real-time measures of inflation 

expectations, and compare the performance of these higher frequency measures with the standard 

three quarterly and semi-annual surveys.  I run a horserace between all the measures and 

compare their accuracy, predictive content, and rationality.  The paper follows the spirit and 

methodology set forth in Thomas (1999), Grant and Thomas (1999), and Mehra (2002).  I 

examine two types of measures – numerical forecasts of the inflation rate (survey-based and 

market-implied) and diffusion-style indexes (survey based) of the expected direction of inflation.  

The numerical forecasts are tested for accuracy by comparing summary statistics of the 

forecasting errors.  A test of equal forecast accuracy is performed to evaluate competing 

numerical forecasts.  The predictive content of both the numerical forecast and diffusion index 

inflation expectations measures are assessed with a test for Granger causality.  Rationality for all 

measures is evaluated with tests for unbiasedness and efficiency.  Out of sample tests of forecast 

accuracy are also conducted.  By performing this analysis, I seek to answer the following 

questions: 

                                                           
2
 Data were quarterly prior to 1976 and monthly thereafter, but most researchers use only the quarterly data. 

3
 Term-structure models, ARIMA time series models, and Phillips Curve motivated models of inflation expectations 

are important tools as well, but those are not emphasized here since the focus is mainly on survey expectations. 
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1) Are the higher frequency measures of inflation expectations accurate, predictive and 

rational compared to the standard three low-frequency surveys? 

2)    How does the out-of-sample forecasting performance of these higher frequency indicators 

compare to the low-frequency inflation expectations survey data?   

3)    Does it pay to venture beyond the status quo in terms of the economists’ data set, or are 

economists correct in sticking with data that are tried and true?   

The goal is to evaluate a set of unexploited measures of inflation expectations and determine if 

the academic literature has been correct in ignoring these measures, or if some of these measures 

could potentially replace or enhance the standard economists’ data set on inflation expectations.  

The paper is organized as follows:  Section II provides a brief review of related literature, 

Section III contains a description of the inflation expectations measures, Section IV describes the 

methodology, Section V presents the results, and Section VI concludes. 

 

II.  Literature Review 

For decades, the academic literature has devoted significant efforts to developing and evaluating 

methods of forecasting inflation.  In addition to other methods of forecasting inflation, a large 

body of literature has evolved on the subject of survey-based inflation expectations, with 

researchers debating and discussing the rationality, accuracy, and predictive power of these 

measures.  The vast majority of these studies focus on three surveys:  the Livingston Survey, the 

Michigan Survey, and the Survey of Professional Forecasters (SPF).  Thomas (1999) examines 

consensus forecasts of economists from the Livingston Survey and households from the 

Michigan Survey, and finds that these surveys outperform benchmark forecasts generated by a 

naïve model of lagged inflation and by the Fisher relation.  In addition, households outperform 

economists in tests of accuracy and unbiasedness.  Grant and Thomas (1999) provide evidence 

that the Livingston and Michigan survey measures of expected inflation are cointegrated with 

actual inflation realizations, supporting weak-form rationality of these survey respondents.  

Mehra (2002) examines the accuracy, predictive content, and rationality of the Livingston, 

Michigan, and SPF surveys, and reports that Michigan outperforms Livingston and SPF. 

The Phillips curve has long been a standard tool for economists in forecasting inflation.  Stock 

and Watson (1999) present an authoritative study of Phillips curve models and find that inflation 

forecasts generated by the Phillips curve produce the most accurate and reliable forecasts over 

the 1970-1996 period, compared with inflation forecasts using other macroeconomic variables 

and economic indicators.  In addition, the authors find that the best-performing Phillips curve 

specification is one that uses a new composite index of aggregate economic activity comprising 

168 individual activity measures, including surveys.    
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Indeed, an extensive literature has evolved on empirical factor models that exploit information 

from large data sets to predict key economic quantities such as inflation.  Stock and Watson 

(2002) show that, when compared to standard benchmark models such as autoregressive, leading 

indicator, Phillips curve, and vector autoregressive models, the best forecast of inflation is 

obtained from a model employing lagged inflation and a single composite factor, constructed 

from a large set of indicators, including surveys.  Other researchers, such as Guzmán (2003) have 

demonstrated that composite factors extracted from large data sets that include surveys along 

with other macroeconomic indicators can be effectively used to forecast aggregate stock returns.  

Guzmán (2008) shows how a composite factor constructed from a collection of surveys can 

improve both nowcasts and forecasts of aggregate stock returns as well as GDP growth.  

Similarly, Giannone, Reichlin, and Small (2008) show that composite factors obtained from 

high-frequency macroeconomic indicators and soft information such as surveys can significantly 

improve both nowcasts and forecasts of GDP growth.  Surveys are gaining credibility as an 

important economic forecasting tool. 

Economists currently rely on four primary methods of forecasting inflation:  time series ARIMA 

models, forecasting regressions using variables motivated by the Phillips curve, term structure 

models, and inflation expectations derived from surveys of households and economists.  

Presumably, those economists participating as survey respondents are using some variation of 

the three non-survey methods to forecast inflation.  Ang, Bekaert, and Wei (2007) compare and 

contrast these four methods of inflation forecasting and find that surveys outperform the other 

three methods.  Adjustments to account for linear and non-linear bias in the survey data produce 

worse out-of-sample forecasting results than using the unadjusted survey median forecasts.  In 

addition, the authors investigate models of combined forecasts and find that surveys outperform 

other model combinations, and when combined with other forecasts, the data tend to overweight 

survey forecasts and underweight the other forecasting methods.   

However, Ang et. al. (2007), like others before them, examine only the three standard low 

frequency surveys – the quarterly Michigan Survey, the quarterly Survey of Professional 

Forecasters, and the semiannual Livingston Survey.  Because of the long tradition these surveys 

have in the academic literature, many researchers are mistakenly under the impression that these 

three surveys are the only available surveys containing data on inflation expectations.  In fact, 

there are at least 36 different survey measures of U.S. inflation expectations, available from a 

variety of sources, covering a wide range of respondent universes – households, businesses, 

economists, investors, manufacturers, retailers, and others.   I examine a total of 37 different 

measures of inflation expectations, subjecting these measures to a battery of tests for accuracy, 

predictive content, and rationality, following the methods set forth in Thomas (1999), Grant and 

Thomas (1999), and Mehra (2002).
4
   

                                                           
4
 I examine 37 different measures of inflation expectations in this paper, but only 36 are survey-based measures, 

as the TIPS spread is a market-implied measure. 
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III. Description of Inflation Expectations Measures 

In total, I examine 37 measures of inflation expectations from 14 sources.  There are 36 survey 

measures and one market-implied measure.  Table 1 contains the complete list and description of 

the indicators.  A brief description of each data source follows, with an indication of the 

respondent universe and whether the measure is a diffusion-style index (D) or a numerical 

forecast (N).   

[Insert Descriptions]
 

 

III. Methodology 

III.a. Accuracy 

In order to test the inflation expectations measures for accuracy, I calculate and compare forecast 

errors over the full sample period for each numerical forecast.  The forecast error ei is calculated 

as the forecast inflation rate minus the actual inflation rate that subsequently occurred.  One 

complication is that many of the surveys and other measures do not specify which rate of 

inflation is being forecast; they simply ask about changes in price levels, or about a general 

concept of inflation.  In addition, the respondents are consumers, investors, economists, 

businesses, retailers, or manufacturers, and the definition of inflation surely varies depending on 

the profile of the respondent.  Due to this vagueness, I calculate the errors comparing the 

forecasted rate with the actual rate of the Consumer Price Index (CPI), the Personal 

Consumption Expenditures deflator (PCE), and the Producer Price Index (PPI).  A description of 

the inflation measures and data sources is contained in Appendix A.  I use the forecast errors to 

identify the best actual rate of inflation that is being forecast by the inflation expectation 

measure, as well as the best horizon if no horizon is specified in the survey question.    

I calculate three summary statistics of the forecast errors for each indicator:  the mean error 

(ME), mean absolute error (MAE), and the root mean square error (RMSE).  The mean error can 

be interpreted as a basic measure of forecasting bias, and represents the average magnitude of the 

forecast error over the n periods being forecast.  A positive mean error indicates a propensity to 

overestimate inflation; whereas a negative mean error indicates a propensity to underestimate 

inflation.  The mean absolute error measures the accuracy of forecasts, as does the root mean 

square error.  However, the RMSE amplifies the effect of large forecast errors.   

The ME, MAE, and RMSE are calculated in the standard fashion, as follows: 

[Insert Equation]
 

            

III.b. Forecast Comparison Tests 
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With measures of inflation expectations from so many different sources, it is inevitable that there 

will be apparent differences in forecast accuracy within the sample.  This raises the question as 

to whether the outcome is due to pure chance.  A test of equal predictive accuracy is performed 

to determine whether these observed differences are statistically significant or not.  

Since the information set is limited, i.e., available data only include a set of forecasts and actual 

values of the predictand, a model-free test is appropriate.  I employ a variant of the Morgan-

Granger-Newbold (1977) (MGN) test, proposed by Harvey, Leybourne, and Newbold (1997) 

(HLN).  The test will allow an objective evaluation of the forecast accuracy of each of the 

numerical forecasts and determine whether the observed differences are due to chance or due to 

superior forecasting ability.  The methodology is described as follows. 

[Insert Equation]
 

III.c. Predictive Power  

Predictive content is measured by a test of Granger Causality.  This test evaluates the possibility 

that inflation expectations and inflation realizations may be co-integrated, in the sense of Engle 

and Granger (1987).  One would expect that actual inflation rates may influence inflation 

expectations.  But, if inflation expectations influence actual future rates of inflation, this would 

be of significant interest to policymakers, as it implies a bilateral feedback effect between 

inflation and inflation expectations. 

The tests for Granger Causality are specified as follows: 

[Insert Equation]
 

where πt  is the actual rate of inflation and π
e
t  is the expected rate of inflation, and εit  is a white 

noise error.  The null hypothesis is λπ = 0  and λπe=0.  If both λπ and λπe  are significantly different 

from zero then forecasters respond to the behavior of inflation, and in addition, inflation 

responds to the behavior of forecasters.  This is a fundamental proposition of the rational 

expectations paradigm.
5
 

 

III.d. Rationality – Unbiasedness and Efficiency 

According to Thomas (1999), “If inflation expectations are fully rational, they should exhibit two 

fundamental characteristics.   First, they should be unbiased – that is, agents should forecast 

inflation correctly on average.  Second, forecasts should be efficient – that is, agents should 

employ all relevant information for which the marginal benefit of gathering and utilizing the 

information exceeds the marginal cost.”   

                                                           
5
 Grant and Thomas (1999).   
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The test for bias is estimated by OLS and specified as follows:
6
 

[Insert Equation]
 

The equation is estimated by regressing the actual inflation rate  πt  on the previously made 

forecast of inflation  π
e
t  and testing the joint null hypothesis that α=0  and  β=1.  Forecasts are 

considered unbiased if the null hypothesis cannot be rejected.  The joint null hypothesis is tested 

with a Chi-squared test.  The Chi-squared test only applies to the numerical forecasts, since the 

hypothesis that β=1 would be meaningless for a diffusion index. 

The test for efficiency is estimated by OLS and specified as follows:
7
 

[Insert Equation]
 

The equation is estimated by regressing the forecast error et on the information set It either 

individually or jointly.  The information set includes those variables that are pertinent to a 

comprehensive model of inflation.  The variables are tested for significance first individually, 

then jointly.  If any or all of the variables in the information set are significantly negatively 

correlated with the forecast error, this implies that agents failed to take all relevant information 

into account when forming their inflation expectations.  Weak-form efficiency implies that 

agents have taken into consideration only the information contained in past inflation rates, while 

strong-form efficiency implies that agents have considered information about all variables that 

are germane to forecasting inflation.   

Following Thomas (1999) and Mehra (2002), the variables employed in the information set It 

are:   the lagged 12-month rate of CPI inflation, a measure for the output gap, M1 and M2 

growth, and a measure for oil price inflation.  Since most of the data have a monthly frequency, 

the unemployment rate is used as a proxy for the output gap, with this substitution following 

Gramlich (1983).  The measure for oil price inflation is the lagged 12-month rate of change for 

the producer price index for fuels.  A description of the variables and data sources is contained in 

Appendix A. 

 

III.e. Out of Sample Forecasts 

Out of sample forecasts are performed using a basic predictive model for actual inflation 

regressed on expected inflation and past inflation.  Due to the high serial correlation in the rate of 

inflation, the model is specified to test whether the survey forecasts have any predictive power 

                                                           
6
 Model is estimated by OLS with Newey-West HAC standard errors with lag truncation parameter set to equal 

forecast horizon in order to avoid overlapping standard errors. 
7
 Model is estimated by OLS with Newey-West HAC standard errors with lag truncation parameter set to equal 

forecast horizon in order to avoid overlapping standard errors. 
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for the future rate of inflation beyond the information contained in past inflation data.  The 

model is estimated by OLS as follows:
8
 

[Insert Equation]
 

A static forecast is produced by estimating parameters using data available through December 

2005.  The estimated parameters are then used to fit the equation over the out-of-sample period, 

January 2006 to October 2008.  For the five-year inflation forecasts, parameters are estimated 

with data through September 2003 and the out-of-sample period is October 2003 to October 

2008.  The forecasts are then evaluated by comparing the Root Mean Squared Errors to 

determine the accuracy of the forecasts. 

 

IV. Results 

IV.a. Accuracy 

Accuracy is evaluated for numerical forecasts only.  Table 2 presents the results for the accuracy 

test using the CPI as the actual inflation rate.  The inflation forecast with the lowest RMSE is the 

Michigan Median 5-year inflation forecast, with RMSE = 0.7939.   The inflation forecast with 

the highest RMSE is the Livingston Mean PPI forecast, with RMSE = 2.9680.    

Table 3 presents the results for the accuracy test using the PCE as the actual inflation rate.  The 

inflation forecast with the lowest RMSE is again the Michigan Median 5-year inflation forecast, 

with RMSE = 0.7668.   The inflation forecast with the highest RMSE is the Conference Board 

inflation forecast, with RMSE = 2.6679.  The PCE results are of particular interest given that the 

PCE deflator is frequently the preferred inflation indicator used by the Federal Reserve in 

conducting monetary policy. 

Table 4 presents the results for the accuracy test using the PPI as the actual inflation rate.  The 

inflation forecast with the lowest RMSE is once again the Michigan Median 5-year inflation 

forecast, with RMSE = 1.8169.  The inflation forecast with the highest RMSE is again the 

Conference Board inflation forecast, with RMSE = 3.4189.  Notice that the RMSE of the 

Livingston Survey forecasts for mean and median PPI are 3.1096 and 3.1110, respectively, when 

forecasting the PPI.  However, the same Livingston Survey forecasts for mean and median PPI 

have RMSEs of 2.9680 and 2.9566, respectively, when forecasting the CPI, and 2.0144 and 

2.0405, respectively, when used to forecast the PCE.  Thus, the Livingston Survey forecasts of 

the PPI are better predictors of the CPI and the PCE than they are for the PPI.  

 

                                                           
8
 Model is estimated by OLS with Newey-West HAC standard errors with lag truncation parameter set to equal 

forecast horizon in order to avoid overlapping standard errors. 
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IV.b. Forecast Comparison 

The HLN (1997) variation of the MGN (1977) test is performed to test for equal forecasting 

accuracy, i.e., equality of forecast error variances.  Table 5 presents results of the HLN test of 

numerical forecasts for the CPI over a 12-month horizon.  The benchmark selection rule 

indicates that the Michigan Survey’s 1-year median inflation forecast is the benchmark measure.  

The null hypothesis of β = 0 can be decisively rejected for all the measures of inflation 

expectations except for the Survey of Professional Forecasters.  This means that the null 

hypothesis of equal forecasting accuracy is rejected for the majority of the measures. 

Table 6 presents results of the HLN test of numerical forecasts for the PCE over a 12-month 

horizon.  The benchmark selection rule indicates that the Michigan Survey’s 1-year median 

inflation forecast is again the benchmark measure.  The null hypothesis of β = 0 is rejected for 

the Blue Chip GDP Deflator, the Blue Chip CPI, the TIPS Spread, Michigan 1-year mean, and 

the Conference Board 1-year inflation forecasts.  The null hypothesis fails to be rejected for the 

SPF 1-year CPI forecast and all of the Livingston forecasts. 

Table 7 presents results of the HLN test of numerical forecasts for the PPI over a 12-month 

horizon.  The benchmark selection rule indicates that the Blue Chip 1-year CPI inflation forecast 

is the benchmark measure.  The null hypothesis of β = 0 is rejected for the Blue Chip GDP 

Deflator, the Michigan 1-year median, Michigan 1-year mean, and the Conference Board 1-year 

inflation forecasts.  The null hypothesis fails to be rejected for the SPF 1-year CPI forecast, the 

TIPS Spread, and all of the Livingston forecasts. 

 

 

 

IV.c. Predictive Power 

It is natural to expect that inflation expectations would be influenced by the past actual inflation 

rate.  However, if inflation expectations influence the future actual inflation rate, then this would 

be of interest to policymakers and investors alike.  Tables 8 and 9 present results for the test of 

predictive power, using a Granger Causality test at 3 and 12 lags, respectively.  The null 

hypothesis for Equations (4) and (5) is that the actual inflation rate does not Granger Cause 

inflation expectations and inflation expectations do not Granger Cause the actual inflation rate.   

Table 8 shows that, at 3 lags, the actual inflation rate influences most of the measures of inflation 

expectations, and this is not a surprise, as one would expect agents to form expectations based in 

part on recent past experience.  What is intriguing is that several of the measures of inflation 

expectations influence the future actual inflation rate.  In this case the null hypothesis for the 

absence of Granger Causality is rejected.  Significant predictive power is demonstrated by the 
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following measures of inflation expectations:  Small Business 3-month Price Plans, Richmond 

Fed 6-month Retail Prices, Michigan Vehicles Price Conditions, Blue Chip 1-year CPI forecast, 

Survey of Professional Forecasters 1-year CPI forecast, Livingston 1-year Median CPI forecast 

and the Michigan 5-year mean inflation forecast.  Since many of these indicators are available at 

a monthly frequency, there is a clear advantage to using them instead of or in addition to the 

quarterly and semi-annual frequency measures. 

Table 9 shows that, at 12 lags, the actual inflation rate once again influences many of the 

measures of inflation expectations.  In addition, several measures of inflation expectations 

demonstrate predictive power over the actual future inflation rate.  The Livingston 6-month mean 

PPI forecast, the Blue Chip 1-year CPI forecast, the Survey of Professional Forecasters 1-year 

CPI forecast and the Michigan median 1-year inflation forecast all demonstrate a statistically 

significant ability to anticipate the future actual inflation rate.   

The results of the Granger Causality tests lend support to some alternative theoretical 

macroeconomic models.  For instance, the finding that inflation expectations of businesses and 

retailers Granger cause future inflation rates makes sense to the extent that there may exist 

strategic complementarities between the price-setting decisions of manufacturers or suppliers of 

different goods, in the sense suggested by Calvo (1983).  This theory of pricing can justify an 

aggregate supply relation that takes the form of an expectations-augmented Phillips curve 

relation, where the location of the short-run Phillips curve is determined by expectations 

regarding future inflation.  Indeed, in many macroeconomic models of the New Keynesian 

variety, current inflation is mainly determined by current expectations of future inflation.  This is 

because price-setters will optimally adjust their prices such that current prices reflect a mark-up 

above their expected average nominal marginal costs for the duration that prices are expected to 

remain fixed.  Therefore, expected future inflation will affect current inflation because current 

prices are aligned with average expected future nominal marginal costs.  Thus, inflation 

expectations can lead to self-fulfilling deflations or inflations, i.e., there is convergence to a 

rational-expectations equilibrium as a result of adaptive learning dynamics.
9
   

Alternatively, the results could be explained by a sticky information model as proposed by 

Mankiw and Reis (2002), rather than the sticky prices underlying the New Keynesian models.  In 

the sticky information model, current inflation is determined by past expectations of current 

inflation.
10

  Some researchers, most notably Carroll (2003) and Lanne, Luoma, and Luoto 

(2009), argue that the inflation expectations data from the Michigan Survey is consistent with a 

sticky information model and that agents are slow to update their beliefs, thus providing the 

microfoundations for the model proposed by Mankiw and Reis.   

                                                           
9
 Woodford (2003) 

10
 In a sense, the sticky information model is like a Phillips curve with backward-looking expectations instead or 

forward-looking expectations. 
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Finally, another alternative for the Granger Causality results could be that the apparent 

cointegration could be explained by a common shock affecting both current and future inflation.  

For example, even if actual inflation and expected inflation are unrelated, a commodity price 

shock could induce a revision of today’s expectations of inflation one year from now, and also 

affect inflation every month from now on.  While this explanation is possible, it is not probable 

due to the fact that many of the sample periods occur over a time span during which there was no 

major commodity price shock. 

 

IV.d. Rationality – Unbiasedness and Efficiency 

Table 10 contains the results of the test for unbiasedness, where the joint null hypothesis α=0 and 

β=1 is tested for Equation (6), for the 17 numerical forecasts of inflation expectations.
11

  The 

results of the Chi-squared tests indicate that the null hypothesis is decisively rejected for 16 of 

the 17 numerical forecasts.  This means that each of these 16 indicators systematically either 

overestimate or underestimate the actual inflation rate.  The only measure of inflation 

expectations where the null hypothesis fails to be rejected is the Blue Chip Indicators Survey 

one-year forecast for CPI inflation.  In this case, the Chi-squared p-value is 0.3093, and we fail 

to reject the joint null hypothesis α=0 and β=1. 

Tables 11 through 16 present results for the tests for efficiency, to find out if agents employed 

relevant information in forming inflation expectations.  In this test, forecast errors are regressed 

on inflation-related variables to determine if there is a correlation.  The variables are first tested 

separately and then together in a joint specification.  Testing whether agents used knowledge of 

lagged inflation in forming expectations is a test of weak-form efficiency.  To test for strong-

form efficiency, four variables were tested:  the unemployment rate (a substitute measure for the 

output gap), the lagged 12-month growth rate of the narrow (M1) and broad (M2) monetary 

aggregates, and a measure for energy price inflation (the 12-month rate of change of the producer 

price index for fuels).  In each case, the independent variable is defined so that failure of agents 

to take account of the variable in the manner suggested by conventional economic theory would 

result in a negative and statistically significant coefficient on the variable.
12

  That is, if agents fail 

to account for past inflation, money growth, etc., they would underestimate inflation and have a 

negative forecasting error, resulting in a negative sign on the coefficient for the variable.  

Conversely, if agents take too much account for past inflation, money growth, etc., they would 

overestimate inflation and have a positive forecasting error, resulting in a positive sign on the 

coefficient for the variable. 

Table 11 contains the results for the efficiency test with respect to the most recent 12-month rate 

of CPI inflation known to agents at the time the inflation expectations are measured.  The table 

                                                           
11

 The Chi-squared test is not applicable to the 20 diffusion indexes of inflation expectations. 
12

 Thomas (1999) 
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indicates that most agents adequately took into account the past rate of CPI inflation, but 

respondents to some surveys did not.  Specifically, the Small Business Price Plans, the 

Philadelphia Fed’s, Dallas Fed’s, New York Fed’s, and Kansas City Fed’s expectations for 

Prices Paid, and the Livingston Mean and Median CPI forecasts all failed to consider adequately 

the lagged inflation rate in forming inflation expectations.  Due to the insufficient use of 

information concerning the past inflation rate, weak-form efficiency can be rejected for these 

measures of inflation expectations.   

Conversely, Table 11 indicates that some measures of inflation expectations attributed too much 

influence to the past CPI inflation rate, resulting in a positive forecasting error.  The Richmond 

Fed’s survey expectations for 6-month prices paid, prices received, retail prices, non-retail 

prices, and services prices all have a positive and statistically significant coefficient on lagged 

CPI.  Similarly, the Blue Chip 1-year GDP deflator and 1-year CPI forecasts, the Michigan 1-

year median and 5-year mean and median inflation forecasts, the Survey of Professional 

Forecasters 1-year CPI, and the Livingston survey’s 6-month mean and median CPI and PPI 

forecasts all have forecast errors that are positively correlated with the lagged inflation rate.  This 

indicates that respondents to these surveys overestimated the impact of past inflation when 

forming their expectations for future inflation.   

Table 11 indicates that weak-form efficiency is supported for the majority of the inflation 

expectations measures.  The Philadelphia Fed 6-month prices received, Richmond Fed 6-month 

wages, Kansas City Fed 6-months prices received, New York Fed 6-months prices received, 

Dallas Fed 6-months prices received, and Dallas Fed 6-month wages, are all measures of 

inflation expectations that adequately took account of the lagged CPI inflation rate.  The same is 

true for the Michigan Survey’s price conditions for durable goods, vehicles, and housing.  In 

addition, the UBS/Gallup 1-year inflation forecast, the Michigan 1-year mean inflation forecasts, 

the TIPS spread, the Conference Board 1-year inflation forecast, and the Livingston survey’s 1-

year mean and median PPI forecasts are also weak-form efficient measures of inflation 

expectations. 

Table 12 presents the results of the efficiency test with respect to the lagged 12-month growth 

rate of the narrow monetary aggregate (M1).  Expectations for the Blue Chip 1-year GDP 

deflator, Michigan 1-year median inflation and Livingston 1-year mean and median CPI 

forecasts all have negative and statistically significant coefficients, meaning that they fail to take 

sufficient account of M1 growth.   Because these survey measures failed to take adequate 

account of M1 growth, strong-form efficiency can be rejected for these measures of inflation 

expectations.  Conversely, the Kansas City Fed’s 6-month prices received, New York Fed’s 6-

month prices paid, and the Michigan 5-year mean and median inflation forecasts all have 

forecast errors that are positively correlated with lagged M1 growth, indicating that respondents 

to these surveys overestimated the influence of lagged M1 growth when forming their inflation 

expectations. 
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Strong-form efficiency with respect to lagged M1 growth is supported for several measures of 

inflation expectations.  The Small Business 3-month price plans, the Philadelphia Fed’s 6-month 

prices paid and prices received, the Richmond Fed’s 6-month prices paid, prices received, retail 

prices, non-retail prices, services prices, and wages all take into account the lagged growth rate 

of the narrow monetary aggregate.  The Kansas City Fed’s 6-month prices paid, the New York 

Fed’s 6-month prices received, the Dallas Fed’s 6-month prices paid, prices received, and wages, 

and the Livingston Survey’s 6-month mean and median CPI and PPI also efficiently incorporate 

information about lagged M1 growth, as do the Michigan Survey’s price conditions for durable 

goods, vehicles, and housing.  The UBS/Gallup 1-year inflation forecast, the Michigan 1-year 

mean inflation, the Blue Chip 1-year CPI forecast, the TIPS spread, the Conference Board 1-year 

inflation forecast, the SPF 1-year CPI forecast, and the Livingston survey mean and median 1-

year PPI forecasts adequately take M1 growth into account as well.  Strong-form efficiency is 

supported for all these measures of inflation expectations.  

Table 13 contains the results of the efficiency test with respect to the lagged 12-month growth 

rate of the broad monetary aggregate (M2).  The Richmond Fed Survey’s expectations for 6-

month prices paid and prices received, the Livingston Survey’s 1-year mean and median CPI 

expectations, and the Michigan 5-year mean and median inflation forecasts all fail to take proper 

account of the lagged 12-month growth rate of the broad monetary aggregate, as indicated by the 

significant negative correlation between the forecasting error and lagged M2 growth.  Because 

these survey measures failed to take adequate account of M2 growth, strong-form efficiency can 

be rejected for these measures of inflation expectations.  Conversely, the Philadelphia Federal 

Reserve’s 6-month prices received and the Richmond Fed’s 6-month Retail prices, as well as the 

Michigan Survey’s durable goods and housing price conditions, and the UBS/Gallup 1-year 

inflation forecast are measures of inflation expectations with forecast errors that are positively 

significantly correlated with M2 growth, suggesting that forecasters attributed too much 

influence of M2 growth on the future inflation rate.   

Strong-form efficiency with respect to M2 growth is supported for several of the measures of 

inflation expectations.  The Small Business price plans, Philadelphia Fed’s 6-month prices paid, 

Richmond Fed’s 6-month non-retail prices, services prices, and wages, Kansas City Fed’s 6-

month prices paid and prices received, New York Fed’s 6-month prices paid and prices received, 

and the Dallas Fed’s 6-month prices paid, prices received, and wages all efficiently incorporate 

information about M2 growth,, thus exhibiting strong-form efficiency.  Similarly, the Michigan 

Survey’s price conditions for vehicles, the Blue Chip Survey’s 1-year forecast for the GDP 

deflator and CPI, the Michigan Survey 1-year mean and median inflation forecast, the TIPS 

spread, the Conference Board Survey’s 1-year inflation forecast, the Survey of Professional 

Forecasters 1-year CPI forecast, and the Livingston Survey’s mean and median 6-month CPI and 

PPI, and mean and median 1-year PPI forecasts are also strong-form efficient with respect to M2 

growth. 



15 
 

The results for the efficiency test with respect to oil price inflation are displayed in Table 14.  

Survey expectations for 6-month prices paid from neither the Philadelphia Fed, nor the Kansas 

City Fed, nor the Dallas Fed adequately took into account the lagged oil price inflation, as 

indicated by the negative and statistically significant coefficient.  Due to the inadequate use of 

information concerning energy price inflation, strong-form efficiency can be rejected for these 

survey measures of inflation expectations.  Conversely, a positive correlation between oil price 

inflation and the forecast error is noted for the Richmond Fed’s 6-month prices paid, prices 

received, retail, non-retail, and services prices, the New York Fed’s 6-month prices received, and 

the Livingston Survey’s 6-month mean and median CPI forecasts, indicating that these measures 

of inflation expectations attributed too much importance to oil price inflation in forming 

expectations for future inflation.   

Several of the measures demonstrate strong-form efficiency with respect to oil price inflation.  

The Small Business price plans, Philadelphia Fed’s 6-month prices received, Richmond Fed’s 6-

month wage expectations, Kansas City Fed’s 6-month prices received, New York Fed’s 6-month 

prices paid, and the Dallas Fed’s 6-month prices received and wage expectations all adequately 

took account of oil price inflation in forming expectations for future inflation.  The Michigan 

Survey’s price conditions for durable goods, vehicles, and housing prices, as well as the mean 

and median 1-year and 5-year inflation forecasts, also sufficiently incorporate information 

regarding oil price inflation, thereby exhibiting strong-form efficiency.  The Blue Chip 1-year 

GDP deflator and CPI forecasts, the UBS/Gallup 1-year inflation forecast, the TIPS spread, the 

Conference Board 1-year inflation forecast, the SPF 1-year CPI forecast, and the Livingston 

Survey’s mean and median 6-month PPI, and 1-year PPI and CPI forecasts are also strong-form 

efficient with respect to oil price inflation. 

Table 15 presents the results for the efficiency test with respect to the lagged unemployment rate, 

a proxy for the output gap.  The table indicates that none of the Richmond Fed’s measures of 

inflation expectations for the services sector effectively incorporates information about the 

unemployment rate.  The Richmond Federal Reserve Surveys of expectations for retail prices, 

non-retail prices, and service sector prices all have a negative and statistically significant 

coefficient on the lagged unemployment rate.   Due to the inadequate use of information 

concerning the unemployment rate, strong-form efficiency can be rejected for the Richmond 

Fed’s service sector surveys.  Conversely, Small Business price plans, the Blue Chip 1-year CPI 

forecast, the Survey of Professional Forecasters 1-year CPI forecast, and the Michigan 5-year 

mean and median inflation forecasts, all have forecast errors that are positively correlated with 

the unemployment rate, suggesting that forecasters attributed too much influence from the 

unemployment rate on their forecasts of future inflation.   

Strong-form efficiency with respect to the unemployment rate is indicated for several of the 

measures.  The Philadelphia, Kansas City, and New York Fed’s 6-month prices paid and prices 

received, and the Dallas and Richmond Fed’s 6-month prices paid, prices received, and wages all 

efficiently incorporated information about the unemployment rate in forming inflation 
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expectations.  Additionally, the Michigan survey’s price conditions for durable goods, vehicles, 

housing, 1-year mean and median inflation forecasts, the Blue Chip 1-year GDP deflator 

forecast, the UBS/Gallup 1-year inflation forecast, the TIPS spread, the Conference Board 1-year 

inflation forecast, and the Livingston Survey’s mean and median 6-month and 1-year CPI and 

PPI forecasts also display strong-form efficiency with respect to the lagged unemployment rate. 

Table 16 presents the results for the efficiency test using the joint specification, with the lagged 

CPI, M1 and M2 growth, oil price inflation, and unemployment rate tested together.  The table 

indicates that most of the measures do not efficiently incorporate information from all of these 

variables simultaneously, refuting strong-form efficiency.  Note that only the Conference Board 

Survey 1-year inflation expectations and the Michigan Survey median 1-year inflation 

expectations pass the joint specification test with statistical significance, indicating strong-form 

efficiency for these two survey measures.   

 

IV.e. Out of Sample Forecasts 

Table 17 presents results for out-of-sample forecasts using a basic predictive model for actual 

inflation regressed on expected inflation and past inflation.
13

  The table reveals that the most 

accurate out of sample forecast is given by the Philadelphia Fed’s 6-month Prices Received 

index, with RMSE = 1.1989.  The standard economists’ data set does not perform as well, with 

the SPF 1-year CPI forecast registering a RMSE of 1.5430, the Michigan Mean 1-year inflation 

forecast registering a RMSE of 2.5405 and the Livingston mean 1-year CPI forecast registering a 

RMSE of 3.4935.  Most of the monthly measures of inflation expectations outperform the 

standard quarterly and semiannual survey measures, indicating that there are benefits to using 

higher frequency data. 

 

V. Conclusion 

I have shown that the higher frequency survey measures of inflation expectations tend to 

outperform the standard three low frequency surveys – the quarterly Michigan Survey, the 

quarterly Surveys of Professional Forecasters, and the semiannual Livingston Survey – in terms 

of accuracy, predictive power, rationality, and out-of-sample forecasts.  While there is no single 

winner that consistently outperforms all of the other measures on the complete battery of tests, 

the results indicate that several of the surveys conducted by the regional Federal Reserve banks 

perform well, as do the Small Business Survey, the Conference Board Survey, the Blue Chip 

Survey and the TIPS spread.  It is worth noting that the Blue Chip survey is the only indicator 

that passes the test for unbiasedness. 

                                                           
13

 Out-of-sample tests for the Michigan 5-year forecasts cannot be analyzed due to insufficient data. 
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What is interesting is that many of the surveys that are not typically used in the academic 

literature perform better relative to those that are typically used.  In particular, given that other 

authors have found that inflation forecasts from the standard three low frequency surveys 

outperform inflation forecasts generated by time series ARIMA models, regression models using 

Phillips curve-derived real activity measures, and term-structure models, then by the transitive 

property, since the higher frequency surveys examined in this paper outperform the standard 

three low frequency surveys, we can surmise that the higher frequency surveys would likely 

outperform inflation forecasts generated from the aforementioned other methods as well. 

More research is needed to understand better the efficacy of these higher frequency measures of 

inflation expectations to determine if they should replace or enhance the standard three low 

frequency survey measures.  There are many obvious benefits to using monthly or real-time 

measures versus quarterly or semiannual data for forecasters who wish to have their models 

reflect the most up-to-date information possible.  The academic literature has been myopic in 

ignoring the availability of these higher frequency measures of inflation expectations.   
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Appendix A.   Data List 

 

Series ID:  CPIAUCSL 

Title:  Consumer Price Index For All Urban Consumers: All Items 

Source:  U.S. Department of Labor: Bureau of Labor Statistics 

Release:  Consumer Price Index 

Units:  Index 1982-84=100 

Frequency:  Monthly 

Seasonal Adjustment:  Seasonally Adjusted 

 

Series ID:  PCEPI 

Title:  Personal Consumption Expenditures: Chain-type Price Index 

Source:  U.S. Department of Commerce: Bureau of Economic Analysis 

Release:  Personal Income and Outlays 

Units:  Index 2005=100 

Frequency:  Monthly 

Seasonal Adjustment:  Seasonally Adjusted 

 

Series ID:  PPIFGS 

Title:  Producer Price Index: Finished Goods 

Source:  U.S. Department of Labor: Bureau of Labor Statistics 

Release:  Producer Price Index 

Units:  Index 1982=100 

Frequency:  Monthly 

Seasonal Adjustment:  Seasonally Adjusted 

 

Series ID:  PPIENG 

Title:  Producer Price Index: Fuels & Related Products & Power 

Source:  U.S. Department of Labor: Bureau of Labor Statistics 

Release:  Producer Price Index 

Units:  Index 1982=100 

Frequency:  Monthly 

Seasonal Adjustment:  Not Seasonally Adjusted 

 

Title: Money Supply M1 

Release:  M1 - MONEY SUPPLY - CURRENCY, DEMAND DEPOSITS, OTHER 

CHECKABLE DEPOSITS (H6),US  MONEY STOCK MEASURES, LIQUID ASSETS AND 

THEIR COMPONENTS M1  

SOURCE: FR H.6 Money Stock Measures NOTE:  Currency, Travelers Checks, Demand 

Deposits, Other Checkable Deposits.  Federal Reserve Board of Governors 

UNITS:   Billions of Dollars       

Frequency:  Monthly 

Seasonal Adjustment:  Not Seasonally Adjusted 
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Title: Money Supply M2 

Release:  MONEY STOCK MEASURES, LIQUID ASSETS AND THEIR COMPONENTS 

Non-M1 M2 Component (Total Non-M1 M2)  

SOURCE: FR H.6 Money Stock Measures.  Federal Reserve Board of Governors 

UNITS:   Billions of Dollars       

Frequency:  Monthly 

Seasonal Adjustment:  Not Seasonally Adjusted 

 

Title:  Unemployment Rate 

Release:  The Current Population Survey (CPS) 

Source:  Bureau of Census for the Bureau of Labor Statistics 

Units:  Percent 

Frequency:  Monthly 

Seasonal Adjustment:  Not Seasonally Adjusted 

Age:  16 years and over    
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