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Abstract: 

 

This study sheds new light on the question of whether or not sentiment surveys, and the expectations 

derived from them, are relevant to forecasting economic growth and stock returns, and whether they 

contain information that is orthogonal to macroeconomic and financial data.  I examine 16 sentiment 

surveys of distinct respondent universes and employ the technique of principal components analysis to 

extract the common signals from the surveys.  I show that the ability of different population groups to 

anticipate correctly economic growth and excess stock returns is not identical, implying that not all 

sentiment is the same, although there exist some common components.  I demonstrate that sentiment 

surveys have significant predictive power for both GDP growth and excess stock returns, and that the 

results are robust to the inclusion of information pertaining to the macroeconomic environment and 

momentum. Furthermore, the findings reject the conventional wisdom that the effect of sentiment is 

apparent exclusively in small-capitalization stocks.   
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Section 1 Introduction 

 

The American Heritage Dictionary defines “sentiment” as “a thought, view, or attitude, especially one 

based mainly on emotion instead of reason.”  By the same token, it defines something that is “not 

endowed with reason” to be “irrational.”    Hence, “sentiment” is largely regarded as “emotional” and 

“irrational.”  Classical asset pricing theory makes no provision for such an irrational component in 

determining asset prices, particularly in long-run equilibrium.  Yet, it remains a favorite statistic for 

financial media and popular press and is the source of endless commentary by market pundits and 

economists alike.  Indeed, the financial press often credits or blames “sentiment” for a rising or falling 

stock market.  If markets do, in fact, react to reports of changes in sentiment, then this indicates that the 

reality of asset pricing contradicts the theory of asset pricing.  This suggests an oversight on the part of the 

academic literature in failing to give sentiment the importance it may warrant in the theory of asset 

pricing. 

 

Academics have only recently begun to examine what role, if any, sentiment may have in the theory of 

asset pricing.  However, consensus is lacking regarding its most basic characteristics.  The literature 

remains divided not only about whether or not sentiment matters for asset prices, but also about what 

sentiment actually is, and how best to measure and incorporate it in a theoretical framework.  I focus here 

on the empirical aspects of sentiment, its measurement, and its predictive power for the real economy as 

well as for financial markets.   
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Sentiment has no explicit role in traditional asset pricing models.  The omission of sentiment from 

classical finance is rather curious, considering the key role played by emotion in the theories of Bentham 

(1781), one of the most influential early utilitarian philosophers.  Bentham’s concept of utility “…meant 

that property in any object, whereby it tends to produce benefit, advantage, pleasure, good, or 

happiness…or … to prevent the happening of mischief, pain, evil, or unhappiness to the party whose 

interest is considered…”  As Lowenstein (2000) notes, neoclassical economists later rendered the utility 

construct devoid of its emotional content in a process that “…culminated in the development of ordinal 

utility and the theory of revealed preference which construed utility as an index of preference rather than 

of happiness.”  Classical finance has evolved around the mathematical concepts of mean-variance 

optimization, rational maximization of preferences, equilibrium analysis, and no-arbitrage arguments, but 

it has largely neglected a key ingredient of financial markets:  human emotion. 

 

The pioneering work of Katona (1951, 1957, 1975) seeks to address the confluence of emotions and 

economics.  His psychological approach to consumption prescribes that both capacity and willingness to 

buy are primary determinants of the consumption function.   From this treatment one can infer that 

sentiment, i.e., something generally regarded as irrational, should be considered a bona fide component of 

expectations formation.  Katona’s theories build upon the notion of “animal spirits” put forth by Keynes 

(1936).  Notable contributions to the theory of emotions in economics are made by Elster (1998), 

Lowenstein (2000), Thaler (2000), and Romer (2000).  Romer succinctly echoes Katona’s theories by 

stating that “…economists can usefully segregate decision mechanisms into two broad categories:  those 

based on thoughts and those based on feelings…,” and suggests that the profession should “…treat 

thoughts and feelings more symmetrically.”  

 

In this chapter, I aim to establish a definitive role for sentiment in macroeconomic forecasting and asset 

pricing by answering the following question:  do the attitudinal data obtained from sentiment surveys 
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contain any predictive power for economic growth and asset prices beyond the predictive information 

contained in macroeconomic and financial data?  To answer this question, I examine 16 popular sentiment 

surveys of businesses and households, and test their ability to predict GDP growth as well as aggregate 

excess stock returns.  I construct a composite sentiment factor using all of the sentiment survey indexes 

and then create separate factors for the sentiments of businesses and of households, for a total of three 

composite measures – All (APC), Business (BPC), and Household (HPC).  I use the technique of principal 

components analysis to extract the common elements from sentiment surveys and create the composite 

factors.  This signal-extraction technique allows a large collection of dynamic factors to be distilled into a 

few key measures that illustrate the joint effects of many popular surveys.   

 

Section 2 presents a review of the related literature.  Data and methodology are discussed in Section 3.  

The relation between sentiment indexes and macroeconomic factors is the focus of Section 4, as is the use 

of sentiment surveys in conjunction with the CQM model of Klein and Sojo (1989), a high-frequency 

model used to forecast GDP growth.
3
  Section 5 investigates the predictive power of sentiment for excess 

returns of aggregate stock indexes, controlling for macroeconomic factors and lagged stock returns, and 

section 6 concludes.   

 

Section 2 Literature Review 

Section 2.1 Sentiment Measures 

 

There are various purported measures of investor sentiment in the literature, but most of the measures are 

indirect, and no consensus has been reached regarding the appropriate measure.  Perhaps the most 

controversial of these hypothesized sentiment proxies has been the closed-end fund discount (CEFD), i.e., 

                                                 
3
 Please refer to the chapter “The Making of National Economic Forecasts – Introduction” by Lawrence R. Klein for more 

details regarding the CQM high frequency forecasting model for the United States. 
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the difference between the price of the fund and its net asset value.
4
  The closed-end fund discount is first 

noted by Wiesenberger (1946).  The concept is later refined by Zweig (1973), Malkiel (1977), and Lee, 

Shleifer, and Thaler (1991), and further investigated by Swaminathan (1996), with all of these authors 

claiming that the discount on closed-end funds is a measure of investor sentiment that has predictive 

power for stock returns.  Lee, et. al. (1991) contend that closed-end funds are held mainly by individual 

investors and the discount shows a relation to the performance of small stocks, which are also 

disproportionately held by individual investors; hence, the discount reflects the sentiments of individual 

investors.  However, other researchers, including Chen, Kan, and Miller (1993) and Elton, Gruber, and 

Busse (1998), dispute the validity of the CEFD as a measure of investor sentiment and its ability to predict 

returns.   

 

Other researchers construct sentiment measures from a variety of indicators, extracting purported 

sentiment factors from a collection of noisy proxies.  Brown and Cliff (2004) use the Kalman filter 

technique and principal components analysis to create a sentiment factor from a collection of indicators, 

including the number of advancing issues to declining issues on the NYSE, the Arms index, the percent 

change in margin borrowing, the percent change in short interest, the odd-lot ratio, the ratio of CBOE 

equity puts to calls, the number of IPOs, and net purchases of mutual funds.  They report that the 

sentiment proxies have little ability to predict short-run stock returns, but display a strong 

contemporaneous relationship with returns.  Baker and Wurgler (2006) use principal components analysis 

to construct a sentiment factor from the CEFD, NYSE share turnover, the number of IPOs, the average 

first-day returns on IPOs, the share of equity issues in total equity and debt issues, and the dividend 

premium.  The authors note an inverse relationship between their purported sentiment measure and 

subsequent returns.   

 

                                                 
4
 Alternatively measured as the fund premium divided by net asset value.   
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Evidence on the ability of the commonly cited indirect sentiment measures to forecast stock returns is 

mixed. The conventional wisdom seems to be that if these measures have any power to predict returns, 

they can do so only for small-capitalization stocks.   The problem with using market-based statistics as 

proxies for investor sentiment is that these indirect measures might be reflections of sentiment, but they 

might also be the result of other market forces.  For example, Chen, et. al. (1993) point out that the closed-

end fund discount may not be a proxy for market-wide investor sentiment, but only an indication of 

investor confidence in the closed-end funds themselves.  Manski (2004) emphasizes that “…observed 

choice behavior may be consistent with many alternative specifications of preferences and expectations.”  

Because market measures are indirect, their accuracy as measures of investor sentiment cannot be known 

with any degree of certainty, as they are merely by-products of market activity, and that activity need not 

necessarily be a result of sentiment.   Therefore, it is possible that the indirect measures, i.e., sentiment 

proxies, and the direct measures, i.e., sentiment surveys, may not measure the same thing. 

 

Section 2.2 Survey Data 

 

The most obvious way to measure investor sentiment is by directly polling market participants and 

soliciting their opinions.  Surveys ask respondents to report probabilistic expectations of significant 

personal financial or general economic events.  Financial market participants can be broadly categorized 

as either Households or Businesses.  Households participate in markets as both investors and consumers.  

Consumers influence stock prices not only by purchasing goods and services from publicly traded 

companies thereby affecting sales and reported earnings, but also because consumer spending represents 

approximately two-thirds of GDP in the U.S.  With the increased popularity of discount brokerages and 

online investing over the past couple of decades, many consumers are now also individual investors  

involved in direct trading, in addition to participating in the stock market via mutual funds and 401Ks.  
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Households, consisting of consumers and investors, have gained increased exposure to, and influence in, 

the stock market in recent years.  

 

Businesses are also important market participants.  They are the listed companies themselves, or the 

suppliers, customers, or strategic partners of the listed companies, and their economic health determines 

general economic growth as well as the discount rates used in asset valuation.  Thus, today’s stock market 

brings together Households and Businesses like never before, highlighting the need to identify a direct and 

sensible way to measure the perceptions, sentiments, and expectations of these market participants and 

determine whether or not they contain any predictive power for economic quantities of interest.  

 

 

Over the years, survey data has had its share of detractors who sought to discredit its use in economic 

forecasting.  Opponents argue that people do not always do as they say, and many economists dismiss the 

use of subjective data out of hand.  Nevertheless, there are some legitimate concerns about the quality of 

the data elicited from surveys.  Campbell (2004) points out that the most serious concern is whether 

respondents answer survey questions accurately.  Most surveys cannot be used to track expectations of 

particular individuals through time, since they are series of cross-sections and not complete panels.  

Additionally, surveys are always subject to sampling error and other measurement issues.  Additional 

concerns pertain to the manner in which questions are posed and responses elicited.  Dominitz and Manski 

(2003) point out that certain phrases in survey questions such as “better off” may be subject to 

interpretation.  Survey data are imprecise because they represent an attempt to construct a quantitative 

measure of human attitudes, which are inherently qualitative.   

 

But, it is clear that observed choice data alone are insufficient for empirical analysis of decisions made 

when the information set is imperfect, as in the sense of Grossman and Stiglitz (1980), or incomplete.   
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Manski (2004) contends that the assumption of rational expectations is implausible in decision-making 

with partial information.  He advocates measuring expectations with survey data using subjective 

probabilities rather than the standard practice of revealed preference analysis, i.e., inferring decision 

processes from data on observed choices.  The goal is to use self-reported data on expectations to relax or 

validate the assumptions regarding expectations that underlie economic models.   

 

It appears that survey data may indeed be on the verge of a renaissance, with many researchers now taking 

an interest in sentiment surveys, and exploring their ability to explain how investors form expectations 

and their usefulness in forecasting the economy and asset returns. 

 

Section 2.3 The Predictive Power of Survey Data – The Evidence So Far 

Section 2.3.1 Consumer Sentiment – Macroeconomic Literature 

 

Most of the early work on expectations derived from surveys examines the University of Michigan’s 

Surveys of Consumers and its ability to predict consumer spending.  Klein and Lansing (1955) find that 

survey questions on buying intentions, feelings of financial well-being and price expectations are 

predictive of consumer expenditures on durable goods.
5
  Mueller (1963) reports that lagged values of the 

University of Michigan surveys have predictive power for household expenditures on durable and non-

durable goods.   

 

Some researchers contend that surveys lose their predictive power once other financial and 

macroeconomic variables enter the specification.  Hymans, et. al. (1970) find that the University of 

Michigan Index of Consumer Sentiment (ICS) can forecast automotive spending, but that lagged values of 

income, consumer prices, and changes in stock prices can forecast the ICS.  Mishkin (1978) finds that the 

                                                 
5
 Klein and Lansing (1955) studied a “re-interview” sample of the 1953 Survey of Consumer Finances conducted by the Survey 

Research Center of the University of Michigan, a precursor to the University of Michigan’s Index of Consumer Sentiment. 
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University of Michigan ICS significantly predicts consumer expenditures on durable goods, but this 

relationship does not hold once financial variables are taken into account.  Leeper (1992) uses a vector 

autoregression (VAR) framework to examine the relationship between consumer sentiment, industrial 

production, and unemployment, and also finds that the relationship significantly weakens once stock 

prices and T-bill rates are included in the analysis.   

 

Garner (1991) asserts that consumer confidence indexes aid in forecasting aggregate consumption only 

during major economic or political events.  Similarly, Throop (1992), using a five-variable vector-error-

correction model (VECM), finds that in times of turbulence such as the Gulf War and the 1987 stock 

market crash, consumer sentiment can move independent of economic fundamentals, thus providing 

unique insights about future consumer expenditures.  However, Throop noted that during normal periods, 

forecast results are slightly worse when sentiment is included in the specification than when it is omitted.  

The notion that sentiment is a particularly valuable forecasting tool during times of turmoil concurs with 

Katona’s (1975) suggestion that the University of Michigan Surveys of Consumers reflect psychological 

factors that become pronounced during extraordinary periods of social, political, or economic upheaval.   

 

Matsusaka and Sbordone (1995) find that fluctuations in consumer sentiment account for between 13 

percent and 26 percent of the variance of GNP innovations, even after controlling for a collection of 

economic indicators, demonstrating that expectations play a non-trivial role in forecasting output.  Bram 

and Ludvigson (1998) run a horserace of the University of Michigan ICS versus the Conference Board's 

Consumer Confidence Index (CCI) and compare their relative abilities to forecast five categories of 

household expenditures:  total, motor vehicles, all goods excluding motor vehicles, services, and durable 

goods excluding motor vehicles.  The authors report that sentiment can help predict consumption, even 

after including control variables, and also suggest that consumer attitudes may provoke economic 
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fluctuations.
6
  Howrey (2001) finds that the University of Michigan ICS is a statistically significant 

predictor of real GDP growth and provides an informative signal about the probability of recession.  Klein 

and Ozmucur (2002) and (2004) demonstrate that models incorporating sentiment surveys of consumers, 

producers, or managers to forecast economic quantities such as personal consumption expenditures, 

personal income, and industrial production perform significantly better than models that do not include 

the surveys. 

 

Section 2.3.2    Surveys and the Stock Market – Asset Pricing Literature 

 

Despite their potential methodological shortcomings, surveys uniquely provide a direct measure of 

investor expectations. Yet, most of the literature concerning the predictive power of surveys has focused 

on macroeconomic forecasting and limited use has been made of examining the predictive power of 

sentiment surveys in forecasting stock market returns.  De Bondt (1993) considers the American 

Association of Individual Investors (AAII) survey and finds that the sentiment of small investors displays 

a bias towards extrapolation of past market trends. Otoo (1999) examines the relation between stock 

returns and the University of Michigan ICS and Conference Board CCI surveys, and reports that returns 

share a strong contemporaneous relation with the surveys, but lagged changes in sentiment have no 

explanatory power for stock returns.  Fisher and Statman (2000) investigate the Merrill Lynch survey of 

sell-side strategists, the AAII survey of individual investors, and the Investors Intelligence (II) survey of 

investment newsletter writers, and conclude that the sentiments of these three groups of market 

participants are not identical.
7
   Lee, Jiang, and Indro (2002) employ a GARCH (Generalized 

                                                 
6
 Bram and Ludvigson (1998) estimate the relation between the difference of logs in consumption and the ICS and CCI 

sentiment indexes, and include a vector of control variables that contains the lagged dependent variable, lagged growth in real 

labor income, lagged log first difference in the real S&P500 index, and lagged first difference of the three-month T-bill rate. 
7
 These three surveys were omitted from this study because they are of questionable value.  The Merrill Lynch survey of sell-

side strategists is likely to have a pronounced optimistic bias towards over-weighting stocks in its recommended asset 

allocation.  The AAII survey suffers from self-selection bias (members can take the survey as often as they wish on the AAII 

website), while the II survey depends on a subjective classification of newsletter writers, which can be influenced by the 

personal opinions  or cognitive biases of the newsletter readers who determine the classification.     
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Autoregressive Conditional Heteroskedasticity) model to examine the relation between the II survey and 

stock returns and report that sentiment is a significant factor in explaining both excess returns and the 

conditional volatility of returns. 

 

Guzmán (2003) finds that the Union Bank of Switzerland/Gallup Index of Investor Optimism surveys 

have significantly more predictive power than either the University of Michigan ICS or the Conference 

Board CCI surveys.  Brown and Cliff (2005) study the relationship between the II survey and market-

implied pricing errors from an independent valuation model, and find that the relationship is positive.  

Additionally, they report that sentiment is negatively related to future returns over multi-year horizons.  

Charoenrook (2005) examines the University of Michigan ICS and finds a negative relation with future 

excess returns at horizons of one month and one year.  In addition, the author reports that the predictive 

power of consumer sentiment appears to be unrelated to economic cycles or time-varying expected 

returns.  Lemmon and Portniaguina (2006) investigate the relationship between returns and the University 

of Michigan ICS and Conference Board CCI, and determine that the surveys forecast returns of small 

stocks and stocks with low institutional ownership.  Finally, Verma and Verma (2007) use the II survey as 

a proxy for the sentiments of institutional investors and the AAII survey as a proxy for the sentiments of 

individual investors, and conclude that the former are more rational than the latter. 

 

To my knowledge, this chapter is the first to examine a large collection of sentiment surveys of distinct 

respondent universes, extract their common signal, and test its ability to predict GDP growth and excess 

stock returns. 

 

 

Section 3 Data and Methodology 

 

[Insert Section 3 here] 
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This study examines the changes in survey-derived expectations and their relation to GDP growth and 

excess stock returns.  Therefore, most of the survey data are transformed using the difference of logs.  The 

exceptions are The Philadelphia Federal Reserve Business Outlook Survey, which is transformed using 

the first difference, and Union Bank of Switzerland/Gallup Index of Investor Optimism - Personal 

Financial and Economic indexes, which are transformed using the first relative difference.
8
  Note that the 

Union Bank of Switzerland/Gallup survey was conducted sporadically from October 1996 through 

January 1999, and has been conducted monthly since February 1999.
9
  For the purposes of this study, data 

from October 1996 through January 1999 are interpolated to create a monthly series of comparable length 

to the other series.
10,

 
11

   

 

Table 1 provides summary statistics for the transformed series of sentiment survey changes, quarterly 

observations from February 1997 to May 2007.
12

   The time series properties are also presented.  

Autocorrelations for each series are provided at 1, 3, and 12 lags, and none display significant 

autocorrelation.  Augmented Dickey-Fuller tests reject at better than the 1% level the hypothesis that any 

of the series has a unit root.  Some of the data are highly correlated, hence it is intuitively appealing to 

extract the common elements from this group of surveys and test the predictive power of the shared 

components. 

 

[Insert Equations 1-4 here] 

 

Section 4 Sentiment and GDP Growth 

 

                                                 
8
 This is because these series contained negative values, hence it was not possible to use difference of logs. 

9
 As of January 2008, UBS and Gallup dissolved their partnership to conduct the surveys. 

10
 Regression results were virtually identical using the interpolated series beginning in October 1996 and the non-interpolated 

monthly series beginning in February 1999.   
11

 The sample period under study begins in February 1997 due to the availability of TIPS data, which are used to calculate the 

implied inflation expectation that is included among the indicators employed in constructing the macroeconomic factor. 
12

 Quarterly observations are calculated as quarterly averages. 
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I begin by testing the ability of the sentiment factors to explain future GDP growth.  The baseline 

regression measures the relation between GDP growth at time t, lagged GDP growth, and the lagged 

composite macroeconomic factor.  A fixed lag of one period and the PDL are each tested.   The baseline 

model is: 

[Insert Equation 5 here] 

 

The baseline results for the fixed lag are presented in Panel A of Table 3 and the results for the PDL are 

presented in Panel B.  The one-period lag specification results in an adjusted R-squared of 0.079, while 

the PDL specification gives an adjusted R-squared of 0.277.  The quarterly average macroeconomic 

factor, i.e., the first principal component of the macroeconomic indicators, is denoted MPC1 in Table 3, 

and it is significant at the 10% level for the one-period lag specification. 

 

Next, the model is augmented to test whether any of the three composite sentiment factors (All, Business, 

or Household) has predictive power for future GDP growth over the baseline equation.  The inclusion of a 

composite macroeconomic factor in a model that tests the ability of sentiment to forecast an economic 

variable such as GDP growth efficiently addresses the concerns of researchers such as Mishkin (1978), 

Leeper (1992), Carroll, et.al. (1994), and Bram and Ludvigson (1998), who hypothesized that sentiment 

may be made redundant by macroeconomic and financial information. If sentiment is merely a reflection 

of macroeconomic and financial information, then the sentiment-augmented regression should not have 

any incremental predictive power over the baseline equation.  The sentiment-augmented model is 

estimated as: 

 

[Insert Equation 6 here] 
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In the interest of parsimony, only the first principal component is utilized.  Panel C of Table 3 reveals that 

APC1, the composite factor for All sentiment, is significant at the 5% level for one lag. The sign of the 

coefficient is negative.  However, Table 2 indicates that the eigenvector for APC1 is negative since all of 

the elements have negative coefficients.  Thus, APC1 is positively predictive of future GDP growth at one 

lag, even after controlling for the persistence of GDP and a lagged composite macroeconomic factor.  

When sentiment is high, future GDP growth is high.  The addition of APC1 to the model increases the 

adjusted R-squared by 5.8%.  This result is driven mainly by the sentiment of Households rather than 

Businesses, since the specification with HPC1 is incrementally predictive, but the specification with 

BPC1 is not.  The Household sentiment factor, HPC1, is statistically significant at the one percent level, 

and increases the adjusted R-squared by 6.2% for the one-period fixed lag.  Note again that the 

eigenvector of HPC1 is negative, hence the factor is positively predictive of future GDP growth.  The 

reverse is true for the PDL specification, displayed  in Panel D:  BPC1 is statistically significant at the one 

percent level and adds 2% to the adjusted R-squared, while HPC1 and APC1 are not statistically 

significant.   

 

Next, I examine the predictive power of the composite sentiment factors when used in conjunction with 

the Current Quarter Model (CQM) of Klein and Sojo (1989), for forecasting GDP growth in the United 

States.    The baseline relationship is estimated as: 

[Insert Equation 7 here] 

 

 

Panel A of Table 4 presents the results of the baseline model of GDP growth regressed on the average of 

the CQM high frequency forecasts made throughout the quarter.  The relevant null hypothesis for the 

baseline regression is 1 = 1.  If the CQM is a good forecasting model, it should almost perfectly explain 
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GDP growth.  Indeed, the coefficient on the CQM model forecasts is statistically significant at better than 

the 1% level, with 1 = 1.045. The adjusted R-squared is 0.107.   

 

The equation is then augmented with the composite sentiment factors to determine whether sentiment can 

improve the performance of the CQM model.  In this specification, only the first principal component of 

the sentiment surveys is utilized.  The macroeconomic factor is not included since this information would 

already be reflected in the CQM forecast.  The sentiment-augmented model is estimated as: 

 

 

[Insert Equation 8 here] 

 

 

A fixed lag of zero (contemporaneous relation), one period, and the PDL are each tested.  Panel B of 

Table 4 reveals that the composite factor for All sentiment, APC1, is significant in all specifications, 

adding as much as 10.7% to the adjusted R-squared.  Once again, the coefficients for APC1 are negative, 

but the negative eigenvector indicates a positive relationship.  The result appears to be driven in the short- 

run by the sentiments of Households, as HPC1 is significant contemporaneously, at one lag, and with the 

PDL specification, increasing the adjusted R-squared by as much as 11.4%.  The sentiment of Businesses 

appears to have more effect at longer lags since only the PDL of BPC1 is significant, adding 5.7% to the 

adjusted R-squared.  Both now-casting and forecasting of GDP growth are aided by the addition of 

sentiment data to the CQM model, since both the contemporaneous and lagged sentiment factors are 

statistically significant. The results suggest that macroeconomic forecasters should not hesitate to 

incorporate sentiment measures in their efforts to predict future GDP growth. 

 

Section 5 Sentiment and Stock Returns 
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Do the sentiment factors have any predictive power for aggregate excess stock returns?  In order to 

investigate this question, a baseline model is presented that controls for the composite macroeconomic 

factor and momentum, i.e., lagged stock returns.  If sentiment is nothing more than a reflection of recent 

stock returns and macroeconomic information, then the sentiment-augmented model should not have any 

incremental predictive power over the baseline model.   The baseline equation is estimated as: 

 

[Insert Equation 9 here] 

 

 

The results of the baseline model are presented in Panel A of Table 5.  Cumulative three-month (one 

quarter), six-month (two-quarters), and nine-month (three quarters) excess returns (i.e., the gross return 

minus the risk-free rate, Rft) are examined for the S&P500 index (SPQ), the Russell 1000 Growth index 

(R1GQ), the Russell 1000 Value index (R1VQ), the Russell 2000 Growth index (R2GQ), and the Russell 

2000 Value index (R2VQ), for a total of 15 test portfolios (five stock indexes and three time horizons, Q1, 

Q2, and Q3.)  The Russell 1000 indexes contain large-capitalization stocks, whereas the Russell 2000 

indexes contain small-capitalization stocks.   

 

Next, the baseline model is augmented with the composite sentiment factors to determine whether or not 

sentiment has any incremental predictive power.  In this specification, the first three  principal 

components of the sentiment surveys are utilized, relying on the arguments of Stone (1947).  The 

augmented model controls for lagged excess returns of the relevant portfolio and the lagged composite 

macroeconomic factor.  The inclusion of a composite macroeconomic factor in a model that tests the 

ability of sentiment to forecast stock returns efficiently addresses the concerns of researchers such as 

Brown and Cliff (2005), Lemmon and Portniaguina (2006), and Verma and Verma (2007), who 

hypothesized that sentiment may be made redundant by macroeconomic and financial information.   If the 
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lagged sentiment factors have any incremental ability to predict stock returns, then the increment to the 

adjusted R-squared should be positive.  The sentiment-augmented model is estimated as: 

 

[Insert Equation 10 here] 

     

 

The results are presented in Panels B, C, and D of Table 5 for the sentiment of the All, Business, and 

Household groups, respectively.  A fixed lag of one period and the polynomial distributed lag are both 

tested, and both specifications have predictive power, but the results for the polynomial distributed lag are 

more robust.  The robustness of the PDL specification indicates that the sentiment factor possesses non-

linearity.  Due to space limitations, only the results of the PDL are reported.   

 

Panel B of the Table 5 reveals that the sentiment factors of All respondent groups have some modest 

predictive power, mostly, but not exclusively, for small-capitalization  stocks.  Large-capitalization value 

stocks have some limited predictability.  The sentiment factors of All survey respondents show significant 

predictive power for small-capitalization stocks.  The increments to the adjusted R-squared for the Russell 

2000 Growth and Value indexes range from 3.6% for the cumulative two-quarter return on the Russell 

2000 Growth index to 23.3% for the cumulative three-quarter return on the Russell 2000 Value index.   

 

Panel C of Table 5 presents the results for the sentiment factors of the Business group.  The Business 

sentiment factors show predictive power for all five of the major stock market averages.  The sentiment-

augmented equation for the cumulative three-quarter return on the S&P500 index is improved by 4.8% 

relative to the baseline equation.  The increments to the adjusted R-squared for the Russell indexes range 

from an improvement of 1.4% for the cumulative three-quarter return of large-capitalization growth stocks 

to 14.5% for the cumulative three-quarter return of large-capitalization value stocks.  Note that the 

significant coefficients in Panel C are positive.  Table 2 reveals that the eigenvector of the third principal 
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component of Business sentiment is mostly negative, and loads heavily on FED, the Philadelphia Federal 

Reserve Business Outlook Survey, which has a negative coefficient.  This suggests that Business 

sentiment inversely anticipates the excess return on large-capitalization value and small-capitalization 

growth stocks.  One possible interpretation is that business managers have a keen sense of the pulse of the 

economy.  If managers detect improved business conditions, they may become more optimistic about 

future economic growth and respond  to survey questions accordingly.  As their optimism rises, their level 

of risk aversion declines, and thus they demand lower returns on their investments, creating a negative 

relation between changes in Business sentiment and future aggregate excess stock returns.    

 

The results for the sentiment of Households are presented in Panel D of Table 5.  The Household 

sentiment factors display significant predictive power for all portfolios except the large-capitalization 

growth stocks.  The improvements to the adjusted R-squared  range from 0.6% for the one-quarter return 

on the S&P500 to as much as 36.5% for the cumulative three-quarter return on small-capitalization value 

stocks.  Note that the significant coefficients in Panel D are negative, and occur mostly for HPC2.  Table 2  

reveals that HPC2, the second principal component of Household sentiment, has mostly positive elements 

on the eigenvector, with the positive elements loading most heavily on the University of Michigan Index 

of Consumer Sentiment - Current Conditions Preliminary (MCP) and the Conference Board Consumer 

Confidence Index - Present Situation (CBP).  The combination of the positive loadings on the principal 

component with the negative coefficient in the regression suggests a negative relation between changes in 

these surveys and subsequent excess returns.  However, note that HPC2 also loads negatively (and 

heavily) on all three of the Union Bank of Switzerland/Gallup Indexes of Investor Optimism – Headline, 

Personal Financial, and Economic (UBS, UBP, and UBE).  The combination of the negative loadings on 

the principal component with the negative coefficient in the regression suggests a positive relation 

between changes in the Union Bank of Switzerland/Gallup surveys and subsequent excess returns.   
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One interpretation could be that this dichotomy is consistent with systematic overreaction by naïve 

investors such as that postulated by De Bondt and Thaler (1989), with an associated subsequent return 

reversal.  This explanation  is plausible given that the respondent groups of the University of Michigan 

and Conference Board surveys are households of ordinary consumers, who may not be particularly adept 

at interpreting economic data or anticipating stock market trends.  Conversely, the respondents to the 

Union Bank of Switzerland/Gallup surveys are investor households, with a minimum of $10,000 in 

investable assets.  The minimum  asset  requirement of the Union Bank of Switzerland/Gallup surveys 

may act as a filtering mechanism, creating a strategic universe of respondents who are sophisticated in 

financial matters, pay attention to economic trends, and correctly anticipate the direction of the stock 

market.   

 

Section 6 Conclusion  

 

The economic magnitude of the predictability demonstrated in this chapter is significant.  Consider the 

GDP growth regressions in Table 3.  Panel C shows that the one-period lag specification for the All 

sentiment factor, APC1, has a coefficient of -0.232.  From Table 1, note that the standard deviation of 

APC1 is 2.634.  Multiplication of the coefficient and the standard deviation indicates that a one-standard 

deviation rise (decline) in APC1 predicts a decline (rise) of -0.611% in the following quarter's GDP 

growth.  Similarly, from Panel D, a one-standard deviation rise (decline) in the Business sentiment factor, 

BPC1, predicts a decline (rise) of -0.205% in GDP growth over the following quarter. 

 

Next, consider the excess stock returns regressions presented in Table 5.  Panel B shows the results for the 

All sentiment factor, APC2.  In the regression for R1VQ1, the one-quarter excess return on the Russell 

1000 Value index, APC2 has a coefficient of -0.444.  The standard deviation of APC2, given in Table 1, is 

1.746.  Multiplication of the regression coefficient and the standard deviation indicates that a one-standard 
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deviation rise  (decline) in APC2  predicts  a  decline  (rise)   of -0.775% in the following quarter's excess 

return on a broad portfolio of large-capitalization value stocks from its unconditional mean.   In the 

regression for R2GQ3, the cumulative three-quarter excess return on the Russell 2000 Growth index, 

APC3 has a coefficient of -3.620.  Table 1 shows that the standard deviation of APC3 is 1.386.  This 

implies that a one-standard deviation rise (decline) in APC3  predicts  a  decline  (rise)   of -5.017% in the 

following nine-month's excess return on a broad portfolio of small-capitalization growth stocks from its 

unconditional mean.   Conversely, in the same regression for R2GQ3, Panel C shows that the Business 

sentiment factor, BPC3, has a regression coefficient of 4.575.  Multiplication of the coefficient for BPC3 

with its standard deviation of 1.017 obtained from Table 1 indicates that one-standard deviation rise  

(decline) in BPC3  predicts  a rise  (decline)  4.653% in the following three-quarter's excess return on a 

broad portfolio of small-capitalization growth stocks from its unconditional mean.   

 

Turning to the Household sentiment factors in Panel D, one can observe that in the regression for the 

cumulative three-quarter excess return on the Russell 1000 Value index, HPC2 has a coefficient of -2.378.   

The standard deviation of HPC2, given in Table 1, is 1.218.  Multiplication of the regression coefficient 

with the standard deviation indicates that a one-standard deviation rise (decline) in HPC2 predicts a 

decline (rise) of -2.896% in the following nine-month's excess return on a broad portfolio of large-

capitalization  value stocks from its unconditional mean.  In the regression for the cumulative three-

quarter excess return on the Russell 2000 Value index, HPC2 has a coefficient of -4.590.  Multiplying by 

the standard deviation of HPC2 implies that a one-standard deviation rise (decline) in HPC2 predicts a 

decline  (rise) of -5.591% in the following three-quarter's excess return on a broad portfolio of small-

capitalization value stocks from its unconditional mean.   

 

The results presented herein shed new light on the question of whether or not sentiment surveys are 

relevant to forecasting economic growth and stock returns, and whether they contain information that is 
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orthogonal to macroeconomic and financial data.  One important benefit of survey data is that they are 

readily available on a high-frequency basis.  Thus, researchers have at their disposal an important and 

relatively under-exploited  tool for forecasting economic quantities and asset prices, as well as measuring 

expectations of different population groups.  I have shown that sentiment surveys have significant 

predictive power for both GDP growth and excess stock returns, and that the result is robust to the 

inclusion of information pertaining to the macroeconomic environment and momentum.  Additionally, 

while the sentiment surveys share some common predictive signals, the sentiments of different respondent 

universes can be distinguished, and have non-identical predictive power.  Furthermore, the findings reject  

the conventional wisdom that sentiment affects only small-capitalization stocks.  The results suggest that 

it would behoove researchers to incorporate sentiment in their forecasting models of economic growth and 

stock returns.   
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