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A FIRST INTRODUCTION TO S-TRANSITIONAL LOTTERIES

FRANCESCO STRATI

Abstract. In this paper I shall introduce a new method by which it is possible
to study the dynamical decision maker's behaviour. It can be tought of as an
application of the S-Linear Algebra of Professor David Carfì, thus this theory
it is assumed to be known. I shall focus on the Feynman's propagator and
thus the Feynman-Strati propagator. The latter stems form the former. It
will be of utmost importance so as to give a meaning to both the evolution
and the H-operator by which I shall derive the probability density of this kind
of tempered distribution γp. Then I shall de�ne the S-transitional lottery's
meaning as the γp's motion.

1. Introduction

In this section I shall introduce the concept of S-transitional lotteries, its meaning
and the tool we have to use so as to compute this kind of lottery, the Feynman

propagator. But the Feynman's transition amplitude theorem is intended to be a
tool which stems from the S-Linear Algebra rather than from Hilbert spaces, in
Carfì's words [1]:

Of this theorem there is no a rigorous proof, neither in the context

of Hilbert spaces, but this is not the worse problem; the very critical

point is that there is not a clear, univocal and unambiguous statement

of the result; this a�ect badly on the use of this indubitably good result,

�rstly because it is not clear what is the precise meaning of the symbols

and operations that Feynman presents, and secondly because the con-

text proposed (the Hilbert spaces) appears, at a deep view, inadequate

indeed for its application. Nevertheless, its e�ciency in the applications,

thanks to the good intuitions of physicists, made it a basic instrument in

many questions of experimental, computational and theoretical analysis

of dynamical systems.

The intresting point is that the S-Linear Algebra (SA, henceforth) is a brilliant
tool because of its ability to simpli�es the tedious framework that stems from the
�canonical� functional analysis without any loss of power. In this paper we have
a particular kind of transition amplitude, the tempered distribution and we shall
depict the passage from a pure state u to the family of eigenstates of an S-observable
ω. Surely we are acquainted with the Aω = λω, where λ are the eigenvalues, hence
we know the formulation

(1.1) A(u) = ∫
Rn
λ[u∣ω]ω.

We denote by ω the eigenbasis of an S-observable, the operator A(u) ∈ L (S′n)
and u is a tempered distribution. Given that we are able to compute the product
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Figure 1.1. decision paths

u with the family ω, the result is a tempered distribution, but in general not a
regular one [1].

In order to grasp transitional lotteries' (TS, henceforth) meaning we have to
de�ne what kind of lottery is and to what kind of time we are handle with. When
we are talking about TS, we are talking about dynamic objects, rather if we use
them we want to study all of the possible paths which can lead to a certain decision.
In a more precise fashion: a man called A, has to make a decision on something at
time t0. At that point in time A is going to make the decision a, and it is pretty
sure ([Fig.1.1] on the left hand side). We can accept this simpli�cation if and only
if we were living in a ceteris paribus-world, but it is not so. Since our world is
di�cult to be a priori -determined we have to use some methods which are able to
give us a probability that can depict a probable outcome. Thus, the a is no more
so sure, because the decision could be a b or a c and so forth ([Fig.1.1] on the right
hand side).

It is straightforward that we want to understand what happens inside the grey-
circle [Fig.1.1], and we can do that by the TS. We do not care about long span of
time, we want to dwell on a short span of time t0 → t1. Of course the choice of the
span's lenght is arbitrary, but the more the time goes by, the more is di�cult to be
aware of a future outcome. We have to study the possible mind-pahts throughout
[t0 ↭ t1], this means that we do observe the �ow of �information-time� (denoted
by ↭) which goes from t0 to t1. This time-span can be thought of as a closed
set, rather we could denote an in�mum t0 and a supremum t1 which belong to the
information-time set [t0 ↭ t1].

2. The Feynman-Strati S-propagators

In this section we shall study a particular kind of propagator which stems from
the Feynman one, the so called �Feynman-Strati S-propagators� (F-S or FS hence-
forth). We have to modify the concept of Feynman propagatos because of its strong
link with Quantum Mechanics, but when we are talking about mind-paths we can
not talk �quanta-like�. I shall use the Feynman propagators developed by Carfì [1]
[2], thus, let me recall some useful de�nitions.

De�nition 1 (Feynman propagator). We call a function

(2.1) P ∶ R2
→ S(Rn,S ′n)

a Feynman S-propagator if:

F1 P (t, t) = δ ∀t ∈ R ;
F2 P (t0, t) is invertible and P (t0, t) = P (t, t0)

−1
∀t0, t ∈ R ;

F3 P (t0, t2) = P (t0, t1) × P (t1, t2).
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Figure 2.1. simple F-S propagator

De�nition 2 (Propagator of a process). Let u ∶ R→ S ′n be a dynamic process. We
say that a propagator (2.1) is an S-Green function for the process u if

(2.2) u(t) = ∫
R
u(t0)P (t0, t) ∀t0, t ∈ T.

In [DEF2] we used the concept of superposition [2], in particular the state of
u at time t is the superposition (2.2) of the family P (t0, t) w.r.t. the system of
coe�cients coinciding with the state of u at t0. Thus, the S-propagator can be
thought of as a ground upon which a state can walk. Now we can look at another
important de�nition:

De�nition 3 (F-S propagator). Given (2.1) we de�ne an S-propagator the Feynman-
Strati propagator i� for every P (t0,L , t) ∃L ∶ (t0,L )→ (L , t) gives probabilistic
paths c(t)Ω.

It is obvious that [DEF3] plays an important role in [t0 ↭ t1], but what does
[DEF3] mean?

In few words, we say that when we move from an abstract place j at t0 toward
another abstract place j1, in which we shall come along at time t1, �something
happens�. This is an intuitive way to think about FS propagator, albeit it is not so
precise, and we have to notice that we should focus on the L operator. In [Fig.2.1]
it is straightforward that we face �something� while we are walking on the path
[t0 → t1] and this �something� is called probabilistic box and we denote it by L . In
[Fig.2.1] I stressed the role of L , rather we have only one path-outcome and three
c(t)Ω; this kind of FS propagator is called simple. When we have to face a decision-
matter it would be very strange to solve it by quanta-like methods because there is
no link from the mental-paths and particles-paths. In order to depict mental-paths
we have to use something that permits to observe an abstract situation given an
information bundle. Now that we have tasted the FS propagator, we need to de�ne
its tools:

FS1 P (t0, t) is the time which goes from a point t0 to a point t ,
FS2 L is the probability box wherein we compute some possible paths given an

information bundle Iα where the α's are the information sets with α ∈ N,
FS3 c(t)Ω are the probable paths which belong to Ω-type of distribution.
FS4 Ω is a set of distribution de�ned in S(Rn,S ′n) which has a compact support

K in L . It is importat to notice that ∫Rn c(t)Ω <∞

Now we have to de�ne in a deeper fashion the probabilistic box.
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3. The F-S propagator and the L -spaces

In [�2] I de�ned the FS in an intuitive way, and I listed some useful concepts
which do need a further study. In this section we focus on a particular kind of
space that is the core of the FS propagator, without it FS was simply the Feynman
propagator. Thus, as you know, we call it L -space. It is worth to notice that from
the FS2-FS4 follow Ω ⊂ L ⊂ S

′
n ⊂ Sn.

In L -space we have a distribution h(x, t), where x = x1, . . . , xn and t = t0, . . . , tm
with m ≤ n − 1. The h(x, t) ∈ Iα1 and h(x, t)2 ∈ Iα2 and so forth; thus the h's are
the information bundles. They are Hausdor� topological spaces and inner regular
in a σ-algerbra de�ned on Borel sets B, that is to say the h's are of Radon measure.
But what does it mean in a mind-path study? The �rst step is to compute the
Feynman-propagator of a process (2.2) we want to study an we shall obtain u(t).
We call this �rst result the benchmark path, it is important because it tells us
information about the most probable path that a �state� can pursue. One has to
keep in mind that �state� is a mental path in a certain (x, t). In order to answer
the question it is needed an example:

Example 1. (�rst part) John needs to go out of his home, the sky is cloudy and
weather forecast is not so comforting. Thus he has two macro-information boundles
Iα1 (clouds) and Iα2 (metheorology). It is important to notice who John is and what
John has to do. If he has to go to his university for i.e. an examination it was quite
sure that he is going to go out, whereas if he has to buy i.e. a newspaper it is
not so sure that he would goes out. Thus L -spaces are strongly related to what
John has to do, we can say that if John could do two di�erent things there will be
two di�erent L -spaces. Thus, we have to compute the Feynman propagator to the
process �John goes out� [u0] and given �John has to buy a newspaper� [f(x, t)] ∈ L
and it has not started raining yet [f(x0, t0)] we infer that John is just went out
and will be buy a newspaper given that at ∫Rn f(t0, t)u(t0) his clothes were dry.
This is the benchmark path.

It is natural to ask how we could measure proposition like [�it is cloudy� then �it
is going to rain�]. In the case of L -space we de�ne an Iα in this way:

De�nition 4 (Information basis). Given A ∶ S
′
n → S

′
n indexed by Rn, for a given

distribution f and an orthonormal eigenbasis B = o1, . . . , on we de�ne "Information
base" the integral:

(3.1) An(fn) = ∫
Rn
λn[f ∣o]o

Given that (in a tempered space) we could de�ne a direction in a stable fashion.
Now we have to choose some �drift� operator which might de�ne more paths. The
drift is a particular evolution operators de�ned as

(3.2) e([∫Rn A
n
(fn)u(t)]○H).

The (3.2) embedded H which is an operator de�ned in this way:

H = (I−α), (I−α2
), . . . , (I−αm

).

There are negative information bundles, but the sign �−� is an abuse of notation,
rather it does not mean that it is embedded with negative numbers, but that this
kind of bundle could trigger o� a drif to the banchmark.
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De�nition 5 (H-operator). Given H ∈ S(Rn,S ′n) we de�ne a drift operator

H(I−α) ∶ S(Rn,S ′n)→L

an H-operator.

At �rst glance [DEF5] could seem pretty obscure, but let me show you some
intuitions. From the Rn tempered distribution space we map given functional into
the L -space. Accordingly, we mapH(I−α) ∶ ∫Rn g(x, t)ψ(x)→ (∫Rn λn[f ∣o]o)×u(t).
The eigenbasis of g(x, t) could arrange a di�erent path which might drift from the
banchmark. It is important the following example.

Example 2. (second part [EX1]) We have already computed the benchmark path
and we are ready to study the drifts which can occur. Thus, it could happen �rain�
and so g(x, t) may be a functional by which (like [EX1]) John decides to stay home.
Thus, by superposition ∫Rn g(t0, t)u0 = u(t)1 it is going to rain. But we have to
compare this result to what we have computed in [EX1], rather in one case John
comes out whereas in the other one John stay home.

It is obvious that given (3.2) we can de�ne several paths, as much as information
bundle one wants to include, and if we call E the integral in (3.2) we say

eEH = [ϕ(xn, tn)](3.3a)

[ϕ(xn, tn)]
2
= γp(3.3b)

The (3.3b) is the probability density γp of all the possible paths c(t)Ω. We have
to notice that the H-operator is crucial in γp changing and thus for the de�nition
of the following section.

4. S-transitional lotteries

I have de�ned a way ad hoc so as to study the decisional path in a more practical
fashion. The formulæ are thought of as everyday events in order to understand the
importance of concrete studies. In this section I shall talk about the S-transitional
lotteries (STL, henceforth), and why we should use them.

As I have said, we need a more concrete fashion so as to study the real world,
therefore, the aim of the STL is that of studies a dynamical mind-path process
when one faces decision-matter. The term dynamical it is intended much as the
above de�nitions and the reader should be aware of this term at this point, still I
have to clarify something. The dynamic is given by eEH which embedded A(f), the
latter integral is of utmost importance, rather I can say that in (3.2) the information
basis �climbs� (through E) the u(t) process by a given homogeneous direction. This
is a dynamical motion [Fig.4.1] of the information bundle which de�nes a path
(benchmark) in a more precise way. We could interpret that �climb� as something
gives a certain swell along the u(t). For each of λ's there is a de�nite direction.

The STL is a motion of a particular S-family made of all the tools in [�3].

De�nition 6 (S-transitional lotteries). We de�ne a motion of S-family through a
path P (t0, t) given by ∆γp an S-transitional lottery and we denote it by

(4.1) STL = [(t0, x0)↭ (t, x(s))]

where (s) denotes the possible di�erent paths-arrivals.
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Figure 4.1. The A(f)'s climb

Hence, the [↭] means the evolution between the two time spans. Thus ∆γp is a
motion in probability density so as to observe what could happen if. . . and the role
of H-operator becomes crucial.

By H-operator we can foresee a possible drift in u(t), I say �possible� because the
H-operator's existence depends on the acquaintance of information bundles which
could occur. Of course the choice in using a bundle or not is a subjective one. If it
was not so, we would put our trust in a wintry algorithm.

5. Appendix

5.1. H-operator and the eigenspectrum. Given that

H ∶ S(Rn,S ′n)→L

∶ ∫
Rn
g(x, t)ψ(x)→ (∫

Rn
λn([f ∣o]o) × u(t)

(5.1)

it is worth to notice that g(x, t) ∈ S(Rn,S ′n) and ψ(x) ∈ OM , thus the hullS

span g(x, t) contains the hullS span (g(x, t)ψ(x)), from this follows that g(x, t) is
S-linearly indipendent and it is so for (g(x, t)ψ(x)) as well.

We have to stress the importance of eigenvalues and eigenvectors. Given an
A ∈ L(S

′
n) an S-linear endomorphism, λ ∈ OM and o ∈ S(Rn,S ′n) an S-linearly

indipendent eigenfamily of A w.r.t. the system of eigenvales λ. We have seen
[DEF4] the spectral S-expansion

A(f) = ∫
Rn
λ[f ∣o]o.

We know that

A(op) = A(op)

= λ(p)op

= (λo)(p),

thus
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A(f) = A(∫
Rn

[f ∣o]o)

= ∫
Rn

[f ∣o]A(o)

= ∫
Rn

[f ∣o](λo)

= ∫
Rn

(λ[f ∣o])o.

(5.2)

As we have noticed, the eigenspectrum is of outmost importance in studying the
STL, therefore we state what it is in a more precise fashion. The eigenspectrum
of an S-diagonalizable operator i.e. A is the imλ of the function λ, that is to say
imλ = σe(A) = (λRn) (where σe is the eigenspectrum). Hence σe, being an image,
it is straightforward the meaning of projections. This is a very important tool so
as to de�ne the di�erent decision-pahts, rather in the H-operator we have to de�ne
the eigenspectrum of the left hand side and that of the right hand side. Given that
we shall obtain a locus wherein the decisions are formed.

5.2. The u(t)'s dynamics. We know (from [DEF2]) that u ∶ R→ S ′n is a dynamical

process, we say that it is a σ(S
′

n)-di�erentiable curve and P (⋅, ⋅) ∈ S(Rn,S ′n). We
de�ne the curve t

(5.3) ∫
Rn
u(⋅)P (⋅, ⋅) ∶ R→ S ′n ∶ t→ ∫Rn

u(⋅)(t)P (⋅, ⋅)

and we have that

(∫
Rn
u(⋅)P (⋅, ⋅))

′

σ(S′n)
= ∫

Rn
u(⋅)′σ(S′n)P (⋅, ⋅).

The (5.3) ensures a dynamics of u, these curves are very important in the STL's
framework because of the property of build the S-propagator and thus the banch-
mark path. If u was unde�ned we could not be able to have rigorous decision
paths.

5.3. The c(t)Ω's dynamics. The c(t)Ω's have been only mentioned so far, we
have already used them but maybe we did not know that. The Iα is an Hausdor�
topological vector space ∈ Ω ⊂ L . The evolution of them are the �c(t)Ω's dynamics�.
Therefore, given the restriction Ω we can de�ne a curve in it t ∶ R → Ω, thus the
curve t is said to be di�erentiable at the point x ∈ R i� the map

wx ∶ R≠ → Ω ∶ h→
t(x + h) − t(x)

h
,

thus we de�ne the di�erential

(t)′τ(x) ∶= lim
h→0

t(x + h) − t(x)

h
.

Where R≠ = R Ó 0 and τ is intended to stress the topology of the space. And
(t)′τ(x) is the derivative of the curve t at x. The curves are di�erent for every
di�erent Iα, they are of utmost importance so as to de�ne possible di�erences of
these paths from the benchmark one.
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5.4. The ○H mystery. This mystery has to be solved because of its importance.
The ○H is the operative way by which the H-operator triggers o� a drift to the
benchmark. We have seen it in (3.2) but I have not clari�ed the reasons behind
this operation. The �○� is a way to say that there is an operation there, not a
de�ned one, that is for the nature of the H-opeartor. We cannot say that this
operator enters into the E ((3.3)) by a simple multiplication. We say that the
H-operator de�nes some drifts without annihilates the banchmark �paths�1, but it
de�nes a divergence, with a particular meaning of the term �divergence�. We do
not have to de�ne a measure from the banchmark to the H-states in a strict way,
because of the H-operator is built on a di�erent L -space, although very close to it.
Given that H ∈ L ⊂ S

′
n we have to �nd the answers to our mystery in the S ′n-space

which contains each of L -space. The square of the sum of the exponential of our
tempered distributions will be the probability density of this bunch of S-functionals.
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1we say path(s) because, given the A(f)′s climber there could be the possibility to have more
than one banchmark.


