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Abstract

Cumulative Prospect Theory of Tversky and Kahneman (1992) is the

modern version of Prospect Theory (Kahneman and Tversky (1979)) and

is nowadays considered a valid alternative to the classical Expected Util-

ity Theory. Cumulative Prospect theory implies Gain-Loss Separability,

i.e. the separate evaluation of losses and gains within a mixed gamble.

Recently, some authors have questioned this assumption of the theory,

proposing new paradoxes where the Gain-Loss Separability is violated.

We present a generalization of Cumulative Prospect Theory which does

not imply Gain-Loss Separability and is able to explain the cited para-

doxes. On the other hand, the new model, which we call the bipolar

Cumulative Prospect Theory, genuinely generalizes the original Prospect

Theory of Kahneman and Tversky (1979), preserving the main features

of the theory. We present also a characterization of the bipolar Choquet

Integral with respect to a bi-capacity in a discrete setting.
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1 Introduction

Cumulative Prospect Theory (CPT) of Tversky and Kahneman (1992) is the

modern version of Prospect Theory (PT) (Kahneman and Tversky (1979)) and is

nowadays considered a valid alternative to the classical Expected Utility Theory

(EUT) of Von Neumann and Morgenstern (1944). CPT has generalized EUT,

preserving the descriptive power of the original PT and capturing the fundamen-

tal idea of Rank Dependent Utility (RDU) of Quiggin (1982) and of Choquet

Expected Utility (CEU) of Schmeidler (1986, 1989) and Gilboa (1987). In re-

cent years CPT has obtained increasing space in applications in several fields: in

business, finance, law, medicine, and political science (e.g.,Benartzi and Thaler

(1995); Barberis et al. (2001); Camerer (2000); Jolls et al. (1998); McNeil et al.

(1982); Quattrone and Tversky (1988)). Despite the increasing interest in CPT

- in the theory and in the practice - some critiques have been recently pro-

posed: Levy and Levy (2002); Blavatskyy (2005); Birnbaum (2005); Baltussen

et al. (2006); Birnbaum and Bahra (2007); Wu and Markle (2008); Schade et al.

(2010). In our opinion, the most relevant of these critique concerns the Gain-

Loss Separability (GLS), i.e. the separate evaluation of losses and gains. More

precisely, let P = (x1, p1; . . . ;xn, pn) be a prospect giving the outcome xi ∈ R
with probability pi, i = 1, . . . , n and let P +(P −) be the prospect obtained from P

by substituting all the losses (gains) with zero. GLS means that the evaluation

of P is obtained as sum of the value of P + and P − : V (P ) = V (P +) + V (P −).
Wu and Markle (2008) refer to the following experiment: 81 participants gave

their preferences as it is shown below (read H ≻ L “the prospect H is preferred

to the prospect L”)

H =

⎛
⎜⎜⎜⎜⎜
⎝

0.50 chance

at $4,200

0.50 chance

at $ − 3,000

⎞
⎟⎟⎟⎟⎟
⎠

≻

⎛
⎜⎜⎜⎜⎜
⎝

0.75 chance

at $3,000

0.25 chance

at $ − 4,500

⎞
⎟⎟⎟⎟⎟
⎠

= L

[52%] [48%]

H+ =

⎛⎜⎜⎜⎜⎜⎝

0.50 chance

at $4,200

0.50 chance

at $0

⎞⎟⎟⎟⎟⎟⎠
≺

⎛⎜⎜⎜⎜⎜⎝

0.75 chance

at $3,000

0.25 chance

at $0

⎞⎟⎟⎟⎟⎟⎠
= L+

[15%] [85%]

2



H− =

⎛⎜⎜⎜⎜⎜⎝

0.50 chance

at $0

0.50 chance

at $ − 3,000

⎞⎟⎟⎟⎟⎟⎠
≺

⎛⎜⎜⎜⎜⎜⎝

0.75 chance

at $0

0.25 chance

at $ − 4,500

⎞⎟⎟⎟⎟⎟⎠
= L−

[37%] [63%]
As can be seen, the majority of participants preferred H to L, but, when the

two prospects were split in their respective positive and negative parts, a rel-

evant majority prefers L+ to H+ and L− to H−. Thus, GLS is violated and

CPT cannot explain such a pattern of choice. In the sequel we will refer to this

experiment as the “Wu-Markle paradox”.

In the CPT model the GLS implies the separation of the domain of the gains

from that of the losses, with respect to a subjective reference point. This sepa-

ration, technically, depends on a characteristic S-shaped utility function, steeper

for losses than for gains, and on two different weighting functions, which distort,

in different way, probabilities relative to gains and losses. We aim to generalize

CPT, maintaining the S-shaped utility function, but replacing the two weighting

functions with a bi-weighting function. This is a function with two arguments,

the first corresponding to the probability of a gain and the second correspond-

ing to the probability of a loss of the same magnitude. We call this model the

bipolar Cumulative Prospect Theory (bCPT). The bCPT will allow gains and

losses within a mixed prospect to be evaluated conjointly. In the next we dis-

cuss our motivations. The basic one, stems from the data in Wu and Markle

(2008) and Birnbaum and Bahra (2007). Both of these papers, following a rig-

orous statistical procedure, reported systematic violations of GLS. Moreover,

if we look through the Wu-Markle paradox showed above, we understand that

the involved probabilities are very clear, since they are the three quartiles 25%,

50% and 75%. Similarly, the involved outcomes have the “right” size: neither

so small to give rise to indifference nor so great to generate unrealism. Now

suppose to look at the experiment in the other sense, from non mixed prospects

to mixed ones. The two preferences L+ ≻ H+ and L− ≻ H−, under the hypothesis
of GLS, should suggest that L should be strongly preferred to H. Surprisingly

enough, H ≻ L. What happened? Clearly, the two preferences L+ ≻ H+ and

L− ≻ H− did not interact positively and, on the contrary, the trade-off between

H+,H− and L+,L− was in favor of H. These data, systematically replicated,

seem to suggest that a sort of Gain Loss Hedging (GLH) appears in the passage

from prospects involving only gains or losses to mixed ones. When the GLH
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phenomenon is intense enough to reverse the preferences, i.e. (L+ ≻ H+ and

L− ≻ H−) and also H ≻ L, then GLS is violated. Thus, the first motivation

of the paper is to show how bCPT is able to capture, at least partially, these

erroneous predictions of CPT. A second motivation for proposing bCPT, stems

from the consideration that, in evaluating mixed prospects, it seems very natu-

ral to applicate a trade-off between possible gains and losses. This, corresponds

to assume that people are more willing to accept the risk of a loss having the

hope of a win and, on the converse, are more careful with respect to a possible

gain having the risk of a loss. Psychologically, the evaluation of a possible loss

could be mitigated if this risk comes together with a possible gain. For exam-

ple, the evaluation of the loss of $3,000 with a probability 0.5 in the prospect

H = (0 ,0.5;$ − 3,000, 0.5) could be different from the evaluation of the same

loss within the prospect L = ($4,200 ,0.5; $ − 3,000 ,0.5), where the presence

of the possible gain of $4,200 could have a mitigation role. Why should be the

overall evaluation of a prospects only be the sum of its positive and negative

part? The last motivation has historical roots and involves the revolution given

to the development of PT. Since when the theory has been developed (Kahne-

man and Tversky (1979)), a basic problem has been to distinguish gains from

losses. However, in the evolution of decisions under risk and uncertainty, the

majority of data, (e.g. Allais (1953); Ellsberg (1961); Kahneman and Tversky

(1979)) regarded non-mixed prospects. Many authors (e.g. Luce (1999, 2000);

Birnbaum and Bahra (2007); Wu and Markle (2008)) pointed that the mixed

case is still a little understood domain.

This paper is organized as follow. In section 2 we describe the bCPT, starting

from the CPT. In section 3 we present several bi-weighting functions, general-

izing well know weighting functions. Section 4 is devoted to the relationship

between CPT and bCPT. In section 5 we extend bCPT to uncertainty. Our

main result, the characterization of the bipolar Choquet integral, is developed

in section 6. We discuss some “coherence condition” in section 7 and we con-

cludes in section 8. The appendixes contain all the proofs and tests of bCPT

on the previous data reported in the literature about the GLS violation.
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Figure 1: CPT utility function

2 From CPT to bCPT

2.1 Two different approaches

The most important idea in CPT is the concept of gain-loss asymmetry: people

perceive possible outcomes as either gains or losses with respect to a reference

point, rather than as absolute wealth levels. The characteristic S-shaped utility

function1 is null at the reference point, concave for gains and convex for losses,

steeper for losses than for gains (see Figure 1).

The other important idea in CPT is the notion of probability distortion:

people overweight very small probabilities and underweight average and large

ones. This probability transformation is mathematically described by means

of a weighting function, that is a strictly increasing function π ∶ [0; 1] → [0; 1]
satisfying the conditions π(0) = 0, π(1) = 1. A typical inverse S-shape weighting

function graph is shown in Figure 2.

If in CPT two different weighting functions have the role to transform the

probabilities attached to gains and losses, in our model we have a two-variables

bi-weighting function. This has, in the first argument the probability of a gain

with a utility greater or equal than a given level L and in the second argument

the probability of a symmetric loss, which utility is not smaller than −L. The

1which the authors called value function
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Figure 2: CPT weighting function

final result is a number within the closed interval [−1; 1]. Formally, let us set

A = {(p, q) ∈ [0; 1] × [0; 1] such that p + q ≤ 1} ,
that is, in the p − q plane, the triangle which vertexes are O ≡ (0,0), P ≡ (1,0)
and Q ≡ (0,1).
Definition 1. We define bi-weighting function any function

ω(p, q) ∶ A → [−1; 1]
satisfying the following coherence conditions:

• ω(p, q) is increasing in p and decreasing in q (bi-monotonicity)

• ω(1,0) = 1, ω(0,1) = −1 and ω(0,0) = 0.
Let P = (x1, p1; ...;xn, pn) be a lottery assigning the outcome xj ∈ R with

probability pj , a utility function u(⋅) ∶ R → R, two weighting functions π− , π+

and a bi-weighting function ω. Using an integral representation we can represent

CPT and bCPT respectively as

VCPT(P) = ∫ +∞

0

π+
⎛
⎝ ∑
i∶u(xi)≥t

pi
⎞
⎠dt − ∫

+∞

0

π−
⎛
⎝ ∑

i∶u(xi)≤−t
pi
⎞
⎠dt (1)
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VbCPT(P) = ∫ +∞

0

ω
⎛
⎝ ∑
i∶u(xi)≥t

pi, ∑
i∶u(xi)≤−t

pi
⎞
⎠dt (2)

In our opinion, both these integrals genuinely generalize the original PT of

Kahneman and Tversky (1979), preserving the main features of the theory. The

only difference is that, in (1) we get a separate evaluation of gains and losses,

whereas in (2) we get a conjoint evaluation. As we will soon see, the two formulas

coincide in a non-mixed context, i.e. when the outcomes involved in the choice

process are only gains or only loss. However, in the mixed case the two formulas

can differ.

3 The bi-weighting function

In this section we propose some generalizations of well known weighting func-

tions. They coincide with the original gain weighting function, π+, if q = 0, and
with the opposite loss weighting function, −π−, if p = 0 .

3.1 The Kahneman-Tversky bi-weighting function

The first and most famous weighting function was proposed in Tversky and

Kahneman (1992):

π(p) = pγ

[pγ + (1 − p)γ] 1γ
The parameter γ can be chosen differently for gains and losses and the authors

estimated γ = 0.61 for gains and γ = 0.69 for losses. For this weighting function

we propose the following bipolar form

ω(p, q) = pγ − qδ

[pγ + (1 − p)γ] 1γ + [qδ + (1 − q)δ] 1δ − 1 (3)

As the original KT weighting function is non monotonic for γ too much near

to zero, - see Rieger and Wang (2006), Ingersoll (2008) - so it is the case of (3)

when γ and δ are near zero. Proposition 1 establishes the parameter limitations

preserving the bi-monotonicity of (3). The proof is presented in appendix.

Proposition 1. The Kahneman, Tversky bi-weighting function with parameters

1/2 < γ, δ < 1, is increasing in p and decreasing in q.
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authors α γ

Tversky and Fox (1995) 0.77 0.79
Wu and Gonzalez (1996) 0.84 0.68
Gonzalez and Wu (1999) 0.77 0.44
Abdellaoui (2000) (gains) 0.65 0.60
Abdellaoui (2000) (losses) 0.84 0.65
Bleichrodt and Pinto (2000) 0.816 0.550

Table 1: recent estimations of parameters for the (4)

3.2 The Latimore, Baker and Witte bi-weighting function

Lattimore et al. (1992) and Goldstein and Einhorn (1987) introduced the fol-

lowing weighting function (with γ,α > 0) :

π(p) = αpγ

αpγ + (1 − p)γ (4)

It is known as linear in log odd form, since Gonzalez and Wu (1999) proved this

property. We propose the following bipolar form:

ω(p, q) = α(pγ − qδ)
αpγ + (1 − p)γ + αqδ + (1 − q)δ − 1 (5)

Proposition 2 (proof in appendix) establishes the parameter limitations allowing

for the bi-monotonicity of (5). These limitations include many of previous

parameter estimations given for the (4) (see table 1, from Bleichrodt and Pinto

(2000)).

Proposition 2. The Latimore, Baker and Witte bi-weighting function with

α > 1/2 and 0 < γ, δ ≤ 1, is increasing in p and decreasing in q.

3.3 The Prelec bi-weighting function

One of the most famous alternative to the classical weighting function of Tversky

and Kahneman (1992) is the compound-invariant form of Prelec (1998):

π(p) = e−β(−Lnp)α (6)

where β ≈ 1 is variable for gains and for losses and 0 < α < 1. The Prelec

weighting function is undefined for p = 0 but it is extended by continuity to the
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value of zero. We propose the following bi-weighting form:

ω(p, q) = ⎧⎪⎪⎨⎪⎪⎩
pγ−qδ

∣pγ−qδ ∣e
−β(−ln∣pγ−qδ ∣)α ∀(p, q) ∈ A ∣ pγ − qδ ≠ 0

0 ∀(p, q) ∈ A ∣ pγ − qδ = 0 (7)

The term pγ−qδ

∣pγ−qδ ∣ gives ±1, respectively within the OBA or OBC “triangle” of

figure 4. The (7) is extended by continuity when pγ − qδ = 0. Moreover the

two parameters γ and δ have the obvious motivation that we do not wish that

ω(p, p) = 0 necessarily. Note that ∣pγ − qδ ∣ ∈ [0,1] and then the logarithm is non

positive. Proposition 3 establishes the parameters limitations allowing for the

bi-monotonicity of (7). Without loss of generality, in the proof (see appendix)

we choose β = 1.

Proposition 3. The Prelec bi-weighting function with β ≅ 1, γ, δ > 0 and

0 < α < 1 is increasing in p and decreasing in q.

3.4 The inverse S-shape of the bi-weighting function

A typical feature of the weighting function described in Tversky and Kahneman

(1992) is the inverse S-shape in the plane. Let us consider and plot the bi-

polarized form of the KT weighting function, preserving the original parameters

estimation γ = .61 and δ = .69

ω(p, q) = p0.61 − q0.69

[p0.61 + (1 − p)0.61] 1

0.61 + [q0.69 + (1 − q)0.69] 1

0.69 − 1
(8)

The typical inverse S-Shape is generalized from the plane to the space (see

Figure 3). Clearly we are interested to the part of this plot such that p + q ≤ 1.

3.5 Stochastic dominance and bCPT

The bi-monotonicity of the bi-weighting function, ensures the bCPT model sat-

isfies Stochastic Dominance Principle. This means that, if prospect P stochas-

tically dominates prospect Q, then VbCPT (P ) ≥ VbCPT (Q). The following the-

orem establishes this result.

Theorem 1. Let us suppose that prospects are evaluated with the bipolar CPT.

Then Stochastic Dominance Principle is satisfied.

Proof. Let us consider two lotteries P = (x1, p1;x2, p2; . . . ;xn, pn) and Q =
(y1, q1;y2, q2; . . . ;ym, qm) such that P stochastically dominates Q. This means
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Figure 3: bi-CPT weighting function

that for all t ∈R

∑
i∶xi≥t

pi ≥ ∑
i∶yi≥t

qi or equivalently ∑
i∶xi≤t

pi ≤ ∑
i∶yi≤t

qi (9)

By the stochastic dominance of P over Q, we have that for all t ∈R+

∑
i∶u(xi)≥t

pi ≥ ∑
i∶u(yi)≥t

qi and ∑
i∶u(xi)≤−t

pi ≤ ∑
i∶u(yi)≤t

qi (10)

From (10), considering the monotonicity of ω(⋅, ⋅), we have that for all t ∈R+

ω
⎛
⎝ ∑
i∶u(xi)≥t

pi, ∑
i∶u(xi)≤−t

pi
⎞
⎠ ≥ ω

⎛
⎝ ∑
i∶u(yi)≥t

qi, ∑
i∶u(yi)≤−t

qi
⎞
⎠ (11)

and by monotonicity of the integral we conclude that VbCPT (P ) ≤ VbCPT (Q).

On the other hand, in absence of the bi-monotonicity of the bi-weighting

function we are able to build preferences violating the stochastic dominance. In

fact, let us suppose the bi-weighting function ω(⋅, ⋅) is not-[increasing in p and
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decreasing in q], i.e. that there exist (p, q), (p̃, q̃) ∈ [0,1]2 such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p ≥ p̃
q ≤ q̃
(p − p̃)2 + (q − q̃)2 > 0
ω(p, q) < ω(p̃, q̃)

Let us consider x > 0 and y < 0 such that u(x) = −u(y) and the two lotteries

R = (x, p;y, q) and S = (x, p̃;y, q̃). Even if R stochastically dominates S, it

would results

VbCPT (R) = ω(p, q) ⋅ u(x) < ω(p̃, q̃) ⋅ u(x) = VbCPT (S).

4 The relationship between CPT and bCPT

Given a bi-weighting function, ω(p, q) ∶ A → [−1; 1], it is straightforward to note

that we can define two weighting functions by setting for all p, q ∈ [0,1]
π+(p) = ω(p,0) ∶ [0,1]→ [0,1]
π−(q) = −ω(0, q) ∶ [0,1]→ [0,1]

On the converse, given two weighting functions π+(p) and π−(q) we obtain a

separable bi-weighting function by setting for all (p, q) ∈ A
ω(p, q) = π+(p) − π−(q) ∶ A→ [−1; 1]

The next two propositions formalize the relationship between the two models.

Proposition 4. For non mixed prospects (containing only gains or losses) the

bCPT model coincides with the CPT model.

Proof. Let us suppose that prospects are evaluated with bCPT and let u(⋅) ∶
R→R be the utility function and ω(p, q) ∶ A→ [−1,1] the bi-weighting function.
Define the two weighting function π+(p) = ω(p,0) and π−(q) = −ω(0, q) for all

p, q ∈ [0,1]. Let P = (x1, p1; ...;xn, pn) be a prospect assigning the non-negative

outcome xj ∈R+ with probability pj, we get:

VbCPT(P ) = ∫ +∞

0

ω
⎛
⎝ ∑
i∶u(xi)≥t

pi , ∑
i∶u(xi)≤−t

pi
⎞
⎠dt =
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= ∫
+∞

0

ω
⎛
⎝ ∑
i∶u(xi)≥t

pi , 0
⎞
⎠dt = ∫

+∞

0

π+
⎛
⎝ ∑
i∶u(xi)≥t

pi
⎞
⎠dt = VCPT(P )

In the same manner, if P = (x1, p1; ...;xn, pn) is a prospect assigning the non-

positive outcome xj ∈ R− with probability pj, using ω(0, q) = −π−(q) we get

VbCPT(P ) = VCPT(P ). Now let us suppose that prospects are evaluated with

the CPT model and let us indicate with u(⋅) ∶ R → R the utility function

and with π+(p), π−(q) the two weighting functions. By using the bi-weighting

function ω(p, q) = π+(p) − π−(q) and replacing the steps in the above proof we

get VCPT(P ) = VbCPT(P ).
Proposition 4 states that CPT and bCPT are the same model for non-mixed

prospects. This fact is, for us, of great importance, since CPT has been widely

tested in situations involving only gains or only losses, as remembered for in-

stance in Wu and Markle (2008): “In the last 50 years, a large body of empiri-

cal research has investigated how decision makers choose among risky gambles.

Most of these findings can be accommodated by prospect theory... However, the

majority of the existing empirical evidence has involved single-domain gambles.

Proposition 5. If the prospects are evaluated with the bCPT model with a sepa-

rable bi-weighting function, then the representation coincides with that obtained

with the CPT model. On the converse, if the prospects are evaluated with the

CPT model, than the representation coincides with that obtained with the bCPT

model with a separable bi-weighting function.

Proof. Let us suppose that prospects are evaluated with the bCPT model, with

a separable bi-weighting function ω(p, q) = π+(p) − π−(q) ∶ A → [−1; 1]. We get

immediately:

VbCPT(P ) = ∫ +∞

0

ω
⎛
⎝ ∑
i∶u(xi)≥t

pi , ∑
i∶u(xi)≤−t

pi
⎞
⎠dt =

= ∫
+∞

0

π+
⎛
⎝ ∑
i∶u(xi)≥t

pi
⎞
⎠ − π−

⎛
⎝ ∑

i∶u(xi)≤−t
pi
⎞
⎠dt = VCPT(P )

The converse is trivially obtained reversing the above steps.

Proposition 5 establishes that CPT can be considered a special case of bCPT,

provided that we use a separable bi-weighting function. In other words there

exists a (separable) bi-weighting function ω(p, q) = π+(p) − π−(q) such that

VbCPT(P ) = VCPT(P ) for all prospects P . This fact is relevant in order to
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provide a preference foundation for the model, since bCPT will need a less

restrictive set of axioms with respect to CPT.

4.1 BCPT and the Wu-Markle paradox

Let us reconsider the Wu-Markle paradox described in the introduction. The

paradox consists in the GLS violation, contrary to the prediction of CPT. Wu

and Markle (2008) suggested to use the same model, CPT, with a different

parametrization for mixed prospects and those involving only gains or losses:

“Our study indicates that mixed gamble behavior is described well by an S-shaped

utility function and an inverse S-shaped probability weighting function. How-

ever, gain-loss separability fails, and hence different parameter values are needed

for mixed gambles than single-domain gambles... ”

Despite these conclusions, we are able to explain their paradox using bCPT,

without changing the parameters in the passage from non mixed prospects to

mixed ones. If we use the bCPT with the bi-polarized KT weighting functions:

ω(p, q) = p0.61 − q0.69

[p0.61 + (1 − p)0.61] 1

0.61 + [q0.69 + (1 − q)0.69] 1

0.69 − 1

and the classical KT power utility function2

u(x) = ⎧⎪⎪⎨⎪⎪⎩
x.88 if x ≥ 0
−2.25 ∣−x∣.88 if x < 0

we obtain

VbCPT (H) = −443.24 > VbCPT (L) = −453.76
VbCPT (H+) = 649.19 < VbCPT (L+) = 652.26

VbCPT (H−) = −1,172.45 < VbCPT (L−) = −1,083.04
These results agree with the preference relation ≿. Wu and Markle (2008) is

the most influential paper showing systematic violation of GLS. Similar results

are, for example, in Birnbaum and Bahra (2007). In the appendix 2 we show in

detail how bCPT seems to naturally capture the essence of the phenomenon.

2Both for ω(p, q) and u(x) we use the the original parameters, estimated in Tversky and
Kahneman (1992)
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5 Extension of bCPT to uncertainty

5.1 Bi-capacity and the bipolar Choquet integral

In order to extend bCPT to the field of uncertainty, we need to generalize

the concept of capacity and Choquet integral with respect to a capacity. Let

S be a non-empty set of states of the world and Σ an algebra of subsets of

S (the events). Let B denote the set of bounded real-valued Σ−measurable

functions on S and B0 the set of simple (i.e. finite valued) functions in B. A

function ν ∶ Σ → [0,1] is a normalized capacity on Σ if ν (∅) = 0, ν (S) = 1 and

ν (A) ≤ ν (B) whenever A ⊆ B. Choquet (1953) defined an integration operation

with respect to ν. Given a nonnegative valued function f ∈ B and a capacity

ν ∶ Σ→ [0,1], the Choquet integral of f with respect to ν is

∫
S
f(s) dν =∶ ∫ ∞

0

ν ({s ∈ S ∶ f(s) ≥ t}) dt
Successively Schmeidler (1986) extended this definition to all of B:

∫
S
f(s) dν =∶ ∫ 0

−∞
[ν ({s ∈ S ∶ f(s) ≥ t}) − 1]dt + ∫ ∞

0

ν ({s ∈ S ∶ f(s) ≥ t})dt
Let us consider the set of all the couples of disjoint events

Q = {(A,B) ∈ 2S × 2S ∶ A ∩B = ∅}
Definition 2. A function µb ∶ Q → [−1,1] is a bi-capacity on S if

• µb(∅,∅) = 0, µb(S,∅) = 1 and µb(∅, S) = −1
• µb(A,B) ≤ µb(C,D) for all (A,B), (C,D) ∈ Q such that A ⊆ C ∧B ⊇D

Grabisch and Labreuche (2005a,b); Greco et al. (2002)

Definition 3. The bipolar Choquet integral of a simple function f ∈ B0 with

respect to a bi-capacity µb is given by:

∫
S
f(s) dµb =∶ ∫

∞

0

µb({s ∈ S ∶ f(s) > t},{s ∈ S ∶ f(s) < −t})dt
Grabisch and Labreuche (2005a,b); Greco et al. (2002)
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5.2 Two different approaches

Since we are working with simple acts f ∈ B0, it follows that an uncertain act

can be expressed as a vector f = (x1, s1;⋯;xn, sn), where xi will be obtained

if the state si will occur. Let f+ be the positive part of f , i.e. f+(s) = f(s) if
f(s) ≥ 0 and f+(s) = 0 if f(s) < 0; similarly f− indicates the negative part of f .

The dual capacity of a capacity ν ∶ Σ → [0,1] is defined as ν̂(A) = 1 − ν(Ac) for
all A ∈ Σ. Let be given an utility function u(⋅) ∶ R→R, two capacities (one for

gains, one for losses) ν+ ∶ S → [0,1] and ν− ∶ S → [0,1] and and a bi-capacity

µb ∶ Q→ [−1,1]. The evaluation of f = (x1, s1;⋯;xn, sn) in CPT and bCPT is

VCPT (f) = ∫
S

u [f+(s)]dν+ + ∫
S

u [f−(s)]dν̂− =

= ∫
∞

0

ν+ ({sj ∶ u(xj) ≥ t})dt −∫ 0

−∞
ν− ({si ∶ u((xi) ≤ t})dt (12)

VbCPT(P) = ∫
S

u [f(s)]dµb = ∫
+∞

0

µb ({si ∶ u(xi) > t} ,{si ∶ u(xi) < −t})dt
(13)

In CPT we sum the Choquet integral of u(f+) with respect to ν+ with the

Choquet integral of u(f−) with respect to ν̂−, by getting a separate evaluation

of gains and losses. In bCPT we calculate the bipolar Choquet integral of u(f)
with respect to µb getting a conjointly evaluation of gains and losses.

5.3 Link between CPT and bCPT

As in a risk-context, the two situations where the two model coincide will occur

for non mixed acts or by using a separable bi-capacity. If µb ∶ Q → [−1,1] is a

bi-capacity, then we can define two capacities ν+ and ν− as follows: for all E ∈ Σ

ν+ (E) = µb (E,∅)
ν− (E) = −µb (∅,E)

If f ∈ B0 is such that f(s) ≥ 0 for all s ∈ S, then

∫
S
f(s) dµb = ∫

∞

0

µb({s ∈ S ∶ f(s) > t}, ∅ ) dt =

= ∫
∞

0

ν+({s ∈ S ∶ f(s) > t}) dt = ∫
S
f(s) dν+
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If f ∈ B0 is such that f(s) ≤ 0 for all s ∈ S, then

∫
S
f(s) dµb = ∫

∞

0

µb( ∅, {s ∈ S ∶ f(s) < −t}) dt =

= −∫
∞

0

ν−({s ∈ S ∶ f(s) < −t}) dt = ∫
S

(f(s) )dν̂−
We have established the following important relationship between CPT and

bCPT:

Proposition 6. For non-mixed acts, the bCPT model coincides with the CPT

model.

On the other hand, let us consider two capacities ν+ ∶ S → [0,1] and ν− ∶ S →
[0,1]. A separable bi-capacity is defined by setting for all (A,B) ∈Q

µb(A,B) = ν+(A) − ν−(B)
Proposition 7. The bCPT model with a separable bi-weighting function coin-

cides with the CPT model.

In fact, the bipolar Choquet integral with respect to a separable bi-capacity

is the sum of two Choquet integrals. Let f ∈ B0 be a simple function and

µb(A,B) = ν+(A) − ν−(B) a separable bi-weighting function, we get

∫
S
f(s) dµb =∶ ∫

∞

0

µb({s ∈ S ∶ f(s) > t},{s ∈ S ∶ f(s) < −t})dt =

= ∫
∞

0

[ν+({s ∈ S ∶ f(s) > t}) − ν−({s ∈ S ∶ f(s) < −t}) dt] =
= ∫

∞

0

ν+({s ∈ S ∶ f(s) > t})dt − ∫ ∞

0

ν−({s ∈ S ∶ f(s) < −t})dt =
∫
S
f+(s) dν+ + ∫

S
f−(s) dν̂−

In the remaining part of this paper we will face the problem of the preference

foundation of bCPT. As we have just seen, the main concept to extend bCPT

from the field of risk to that of uncertainty is the bipolar Choquet integral with

respect to a bi-capacity. We will present a fairly simple characterization of the

bipolar Choquet integral
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6 The characterization theorem

In this section, we first remark that the bipolar Choquet integral can be regarded

as an extension of the bi-capacity. Next, we give the concept of absolutely co-

monotonic and co-signed acts, which are the special acts for which the functional

is additive. Finally, we will state our main result, i.e. the characterization

theorem.

Let us identify (A,B) ∈ Q with the bipolar-indicator function (A,B)∗ ∈ B0

(A,B)∗(s) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if s ∈ A
−1 if s ∈ B
0 if s ∉ A ∪B

Since

∫
S

(A,B)∗µb = ∫
1

0

µb(A,B)dt = µb(A,B)
then, the functional ∫S µb, i.e. the bipolar Choquet integral, can be considered

as an extension of the bi-capacity µb from Q to B0.

Definition 4. f, g ∶ S →R are absolutely co-monotonic and cosigned (a.c.c.) if

• their absolute values are co-monotonic, i.e.

( ∣f(s)∣ − ∣f(t)∣ ) ⋅ ( ∣g(s)∣ − ∣g(t)∣ ) ≥ 0 ∀s, t ∈ S

• they are co-signed, i.e.

f(s) ⋅ g(s) ≥ 0 ∀s ∈ S

Let us suppose that µb is a bi-capacity and let us indicate with I(f) =
∫S f(s)µb the bipolar Choquet integral of f with respect to µb. The next

proposition lists the properties of I, and the following Theorem 2 character-

izes I. Given to the importance of this section, the proofs are presented in the

main text.

Proposition 8. The functional I satisfies the following properties

• (P1) Monotonicity.

f(s) ≥ g(s) ∀s ∈ S ⇒ I(f) ≥ I(g);
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• (P2) Positive homogeneity. For all a > 0, and f, a ⋅ f ∈ B0

I(a ⋅ f) = a ⋅ I(f);

• (P3) Bipolar-idem-potency. For all λ > 0

I(λ(S,∅)∗) = λ and I(λ(∅,S)∗) = −λ;

• (P4) Additivity for acts a.c.c. If f, g ∈ B0 are a.c.c., then

I(f + g) = I(f) + I(g).

Proof. Supposing f(s) ≥ g(s) for all s ∈ S, then {s ∶ f(s) > t} ⊇ {s ∶ g(s) > t} and
{s ∈ S ∶ f(s) < −t} ⊆ {s ∈ S ∶ g(s) < −t} such that (P1) follows from monotonicity

of bicapacity and integral.

For all a > 0 and for all f ∈ B0, af ∈ B0, taking t = az, by definition we get

I(af) = ∫ ∞

0

µb({s ∈ S ∶ f(s) > t

a
},{s ∈ S ∶ f(s) < − t

a
})dt =

∫
∞

0

µb({s ∈ S ∶ f(s) > z},{s ∈ S ∶ f(s) < −z}) adz = aI(f).
which is (P2).

For γ > 0, by homogeneity, I (γ (S,∅)∗) = γI (S,∅)∗ = γµb (S,∅) = γ.
If γ < 0, then I (γ (S,∅)∗) = −γI (∅, S)∗ = −γµb (∅, S) = γ. Note also that

I (0 (S,∅)∗) = I ((∅,∅)∗) = µb (∅,∅) = 0. Since I(λ(∅, S)∗) = −λ can be

obtained analogously, thus (P3) is proved.

Let f, g ∈ B0 be two acts a.c.c., then, generalizing remark 4 in Schmeidler (1986),

there exist

• a partition of S into k pairwise disjoint subsets of S, (Ei)ki=1, such that

for each Ei there exist E+i and E−i with E+i ∪E
−
i = Ei and E+i ∩E

−
i = ∅

• two k-list of numbers 0 ≤ α1 ≤ α2 ≤ ⋅ ⋅ ⋅ ≤ αk and 0 ≤ β1 ≤ β2 ≤ ⋅ ⋅ ⋅ ≤ βk

such that

f =
k

∑
i=1

αi (E+i ,E−i )∗ , g =
k

∑
i=1

βi (E+i ,E−i )∗

It follows that

f + g =
k

∑
i=1
(αi + βi) (E+i ,E−i )∗
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By the definition of bipolar Choquet integral,

I(f + g) = I(f) + I(g)

Theorem 2. Let J ∶ B0 →R satisfy

• J ((S,∅)∗) = 1 and J ((∅, S)∗) = −1;
• (P1) Monotonicity;

• (P4) Additivity for acts a.c.c.;

then, by assuming µb(A,B) = J [(A,B)∗] ∀(A,B) ∈Q, we have

J (f) = I(f) = ∫
S
f(s) dµb ∀f ∈ B0.

Proof. Let f ∈ B0 be a simple function with image f(S) = {x1, x2, . . . , xn}.
Let (⋅) ∶ N → N be a permutation of indexes in N = {1,2, . . . , n} such that

∣x(1)∣ ≤ ∣x(2)∣ ≤ ⋅ ⋅ ⋅ ≤ ∣x(n)∣. f can be written as sum of double-indicator functions,

i.e.

f =
n

∑
i=1
(∣x(i)∣ − ∣x(i−1)∣) (A(f)(i),B(f)(i))∗

where A(f)(i) = {s ∈ S ∶ f(s) ≥ ∣x(i)∣} , B(f)(i) = {s ∈ S ∶ f(s) ≤ − ∣x(i)∣} and

∣x(0)∣ = 0.
Observe that the simple functions (A(f)(i),B(f)(i))∗ for i = 1,2, . . . , n are

a.c.c., as well as the simple functions (∣x(i)∣ − ∣x(i−1)∣) (A(f)(i),B(f)(i))∗ for

i = 1,2, . . . , n. On the basis of this observation, applying (P4), homogeneity and

the definition of µb(A,B) we get the thesis as follows:

J(f) = J [ n

∑
i=1
(∣x(i)∣ − ∣x(i−1)∣) (A(f)(i),B(f)(i))∗] =

=
n

∑
i=1

J [(∣x(i)∣ − ∣x(i−1)∣) (A(f)(i),B(f)(i))∗] =

=
n

∑
i=1
(∣x(i)∣ − ∣x(i−1)∣)J [(A(f)(i),B(f)(i))∗] =

=
n

∑
i=1
(∣x(i)∣ − ∣x(i−1)∣)µb (A(f)(i),B(f)(i)) = ∫

S
fdµb
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Remark 1. The properties (P2), i.e. the positive homogeneity, (P3) the bipo-

lar idem-potency, are not among the hypothesis of Theorem 2 since they are

implied by additivity for absolutely co-monotonic and cosigned acts (P4) and

monotonicity (P1).

Remark 2. The fact that the functional, I, is additive for a.c.c. functions,

means that in the bCPT model the weakened version of independence axiom will

be true for a.c.c. acts.

7 Separating tastes from beliefs

7.1 Coherence conditions.

The bipolar Choquet integral should represent preference under uncertainty. In

this case it is reasonable to expect that there is some belief about plausibility of

events A ⊆ S that should not depend on what is gained or lost in other events.

In this context it is reasonable to imagine that the value given by a bi-capacity

µb to (A,B) ∈ Q is not decreasing with the plausibility of A and non-increasing

with the plausibility of B. If this is true, then one has to expect that should

not be possible to have µb(A,C) > µb(B,C) and µb(A,D) < µb(B,D). In fact,

this would mean that act (A,C)∗ would be preferred to act (B,C)∗, revealing
a greater credibility of A over B, and act (A,D)∗ would be preferred to act

(B,D)∗, revealing a greater credibility of B over A. Similar situations arise

when µb(C,A) > µb(C,B) and µb(D,A) < µb(D,B), or µb(A,C) > µb(B,C)
and µb(D,A) > µb(D,B). Taking into account such situations, we shall analyze

in detail the following coherence conditions:

(A1) (A,C)∗ ≻ (B,C)∗ ⇒ (A,D)∗ ≻ (B,D)∗,
for all (A,C), (B,C), (A,D), (B,D) ∈ Q,

(A2) (C,A)∗ ≻ (C,B)∗ ⇒ (D,A)∗ ≻ (D,B)∗,
for all (C,A), (C,B), (D,A), (D,B) ∈ Q,

(A3) for any A,B ⊆ S there exist one C ⊆ S ∖ (A ∪B) such that

(A,C)∗ ≻ (B,C)∗⇔ (C,A)∗ ≺ (C,B)∗
(A4) (A,C)∗ ≻ (B,C)∗⇔ (C,A)∗ ≺ (C,B)∗,

for all (A,C), (B,C), (C,A), (C,B) ∈ Q,

(A5) (A,C)∗ ≻ (B,C)∗⇔ (D,A)∗ ≺ (D,B)∗,
for all (A,C), (B,C), (D,A), (D,B) ∈ Q.
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Theorem 3. The following proposition hold

1) If (A1) holds, then there exists a capacity ν1 on S and a function

ω1 ∶ {(v,B) ∶ v = ν1(A), (A,B) ∈ Q}→ [−1,1],
such that µb(A,B) = ω1(ν1(A),B) for all (A,B) ∈ Q, with function ω1 in-

creasing in the first argument and non increasing with respect to inclusion

in the second argument;

2) If (A2) holds, then there exists a capacity ν2 on S and a function

ω2 ∶ {(A,v) ∶ v = ν2(B), (A,B) ∈ Q}→ [−1,1],
such that µb(A,B) = ω2(A,ν2(B)) for all (A,B) ∈ Q, with function ω2 non

decreasing with respect to inclusion in the first argument and decreasing

in the second argument;

3) If (A1) and (A2) hold, then there exist two capacities ν1 and ν2 on S and

a function

ω3 ∶ {(u, v) ∶ u = ν1(A), v = ν2(B), (A,B) ∈ Q}→ [−1,1],
such that µb(A,B) = ω3(ν1(A), ν2(B)) for all (A,B) ∈ Q, with function

ω3 increasing in the first argument and decreasing in the second argument;

4) If (A1), (A2) and (A3) hold, then there exists a capacity ν on S and a

function

ω ∶ {(u, v) ∶ u = ν(A), v = ν(B), (A,B) ∈ Q}→ [−1,1],
such that µb(A,B) = ω(ν(A), ν(B)) for all (A,B) ∈ Q, with function ω

increasing in the first argument and decreasing in the second argument;

5) If (A1) and (A4) hold, then there exists a capacity ν on S and a function

ω ∶ {(u, v) ∶ u = ν(A), v = ν(B), (A,B) ∈ Q}→ [−1,1],
such that µb(A,B) = ω(ν(A), ν(B)) for all (A,B) ∈ Q, with function ω

increasing in the first argument and decreasing in the second argument;
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6) If (A2) and (A4) hold, then there exists a capacity ν on S and a function

ω ∶ {(u, v) ∶ u = ν(A), v = ν(B), (A,B) ∈ Q}→ [−1,1]
such that µb(A,B) = ω(ν(A), ν(B)) for all (A,B) ∈ Q, with function ω

increasing in the first argument and decreasing in the second argument;

7) If (A5) holds, then there exists a capacity ν on S and a function

ω ∶ {(u, v) ∶ u = ν(A), v = ν(B), (A,B) ∈ Q}→ [−1,1],
such that µb(A,B) = ω(ν(A), ν(B)) for all (A,B) ∈ Q, with function ω

increasing in the first argument and decreasing in the second argument.

The proof is presented in appendix 3.

8 Concluding Remarks

In bCPT, gains and losses within a mixed prospect are evaluated conjointly

and not separately, as in CPT. This permits to account for situations in which

CPT fails, due to gain-loss separability, such as the “Wu-Markle paradox”. In

this paper we propose a natural generalization of CPT, which, fundamentally:

a) totally preserve CPT in non-mixed cases; b) allows for GLS violation in

mixed case. The main concept to get an axiomatic foundation of bCPT, in

decision under uncertainty, is the bipolar Choquet integral, about which, we

have presented a fairly simple characterization. A full axiomatization of the

model, in terms of preferences foundation, will be the aim for future researches.
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9 Appendix 1

Proof of proposition 1.

For x ∈ [0,1] and δ ∈ [0,1] it results f(x) = [xδ + (1 − x)δ] 1δ ≥ 1 since this

function is continuous in the closed interval [0,1], with f(0) = f(1) = 1, while
f ′(x) is positive in ]0,1/2[ and negative in ]1/2,1[. In fact:

f ′(x) = [xδ
+ (1 − x)δ] 1δ −1 [xδ−1

− (1 − x)δ−1] ≥ 0

⇔ [xδ−1
− (1 − x)δ−1] ≥ 0 ⇔ 1 ≥ ( x

1 − x
)1−δ ⇔ x ≤ 1

2

It follows that in (3) the denominator is positive and the sign depends on pγ−qδ.

If we start from the zero curve ω(p, q) = 0 ⇔ pγ − qδ = 0, that is the ÔB curve

in figure 4 , it is clear that an increase in p will bring us in the domain in which

the function (3) is positive (OAB ”triangle”) while an increase in q will bring

us in the domain in which the function is negative (OBC ”triangle”) and then,

in this case, the function (3) is increasing in p and decreasing in q. Now it is

sufficient to prove that ω(p, q) is increasing in p and decreasing in q within the

two triangles, i.e. where ω(p, q) > 0 (< 0) and p, q > 0. If ω(p, q) > 0, and then

if pγ − qδ > 0 and since the function ln(x) is strictly increasing, it is sufficient to

prove that ln [ω(p, q)] is increasing in p and decreasing in q. By differentiating

w. r. t. the first variable:

∂ ln [ω(p, q)]
∂p

= γpγ−1

pγ − qδ
− [(1

p
)1−γ − ( 1

1 − p
)1−γ] ⋅

⋅
[pγ + (1 − p)γ] 1

γ
−1

[pγ + (1 − p)γ] 1γ + [qδ + (1 − q)δ] 1δ − 1
(14)

If 1/2 ≤ p < 1 → [( 1
p
)1−γ − ( 1

1−p)1−γ] ≤ 0 and (14) is positive. Suppose

0 < p < 1/2, then the first summand in (14) is positive and the second is negative.

We have the following decreasing sequence:

∂ ln [ω(p, q)]
∂p

= γpγ−1

pγ − qδ
− [(1

p
)1−γ − ( 1

1 − p
)1−γ] ⋅
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⋅
[pγ + (1 − p)γ] 1γ −1

[pγ + (1 − p)γ] 1γ + [qδ + (1 − q)δ] 1δ − 1
≥ 3

≥ γpγ−1

pγ
− [(1

p
)1−γ − ( 1

1 − p
)1−γ] ⋅ [pγ + (1 − p)γ] 1γ −1

[pγ + (1 − p)γ] 1

γ + [qδ + (1 − q)δ] 1δ − 1
≥ 4

≥ γpγ−1

pγ
− [(1

p
)1−γ − ( 1

1 − p
)1−γ] ⋅ [pγ + (1 − p)

γ] 1γ −1
[pγ + (1 − p)γ] 1γ =

= γpγ−1

pγ
− [(1

p
)1−γ − ( 1

1 − p
)1−γ] ⋅ 1

pγ + (1 − p)γ ≥ 5

≥
γ ( 1

p
)1−γ

pγ
−

( 1
p
)1−γ

pγ + (1 − p)γ = (
1

p
)1−γ ⋅ [ γ

pγ
−

1

pγ + (1 − p)γ ]
Now, in order to prove that the (14) is non negative, it is sufficient to show that

the quantity in the last square bracket is non negative, i.e.

γ

pγ
−

1

pγ + (1 − p)γ =
γ [pγ + (1 − p)γ] − pγ
pγ [pγ + (1 − p)γ] ≥ 0 ⇔ γ [pγ + (1 − p)γ] − pγ ≥ 0

⇔ γ(1 − p)γ ≥ (γ)pγ ⇔ (1 − p
p
)γ ≥ 1 − γ

γ
⇔ 1 − p

p
≥ (1 − γ

γ
)

1

γ

Remembering that we are under the limitation 0 < p < 1/2 the first term is

3since
γpγ−1

pγ − qδ >
γpγ−1

pγ

4since from

[qδ + (1 − q)δ]
1

δ − 1 ≥ 0→ [pγ + (1 − p)γ] 1γ −1
[pγ + (1 − p)γ] 1γ + [qδ + (1 − q)δ] 1δ − 1

≤ [pγ + (1 − p)γ]
1

γ
−1

[pγ + (1 − p)γ] 1γ →

−
⎡⎢⎢⎢⎢⎣
(1
p
)1−γ − ( 1

1 − p)
1−γ⎤⎥⎥⎥⎥⎦

[pγ + (1 − p)γ] 1γ −1
[pγ + (1 − p)γ] 1γ + [qδ + (1 − q)δ] 1δ − 1

≥

−
⎡⎢⎢⎢⎢⎣
(1
p
)1−γ − ( 1

1 − p)
1−γ⎤⎥⎥⎥⎥⎦

[pγ + (1 − p)γ] 1γ −1
[pγ + (1 − p)γ] 1γ

5since

−(1
p
)1−γ ≤ −

⎡⎢⎢⎢⎢⎣
(1
p
)1−γ − ( 1

1 − p)
1−γ⎤⎥⎥⎥⎥⎦

≤ 0
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greater than 1 and the last inequality is true if

(1 − γ
γ
)

1

γ

≤ 1 ⇔ γ ≥ 1

2

and this is ensured by the hypothesis of proposition 1.

Thus we have proved that if ω(p, q) > 0 then the function ω(p, q) is increasing in

p. An analogous proof gives that, if ω(p, q) < 0, then the function is decreasing

in q, i.e. the function −ω(p, q) is increasing in q. For this it is sufficient to

exchange p with q and γ with δ and to repeat the previous passages. Now, in

the case ω(p, q) > 0 we turn out our attention to the first derivative of ln [ω(p, q)]
with respect to q

∂ ln [ω(p, q)]
∂q

= −δq
δ−1

pγ − qδ
− [(1

q
)1−δ − ( 1

1 − q
)1−δ] ⋅

⋅
[qδ + (1 − q)δ] 1δ −1

[pγ + (1 − p)γ] 1γ + [qδ + (1 − q)δ] 1δ − 1
(15)

If [( 1
q
)1−δ − ( 1

1−q )1−δ] ≥ 0 ⇔ q ≤ 1/2 then the (15) is negative. Supposing

q > 1/2, the first summand in (15) is negative and the second is positive. Note

that if γ ≥ δ, the curve which equation is pγ − qδ = 0 coincides with the graph of

the function q = p γ
δ that is convex, like in figure 4, and within the domain

A+ = {(p, q) ∈ [0; 1] × [0; 1] such that p + q ≥ 1 and pγ − qδ}
it is impossible that q > 1/2 and so we have finished the proof. On the other

hand, if γ < δ the graph of the function q = p γ
δ is concave and within the domain

A+ there are points such that q > 1/2. For these reasons, from here we will

suppose q > 1/2 and γ < δ and we will refer to figure 5.

From a sequence of increases it results:

∂ ln [ω(p, q)]
∂q

≤ 6 ≤ −δq
δ−1

pγ − qδ
− [(1

q
)1−δ − ( 1

1 − q
)1−δ] =

6since from

1/2 < γ, δ ≤ 1 → [pγ + (1 − p)γ] 1γ − 1 ≥ 0 and [qδ + (1 − q)δ] 1δ ≥ 1 →

[qδ + (1 − q)δ] 1δ −1

[pγ + (1 − p)γ] 1γ + [qδ + (1 − q)δ] 1δ − 1
≤
[qδ + (1 − q)δ] 1δ −1

[qδ + (1 − q)δ] 1δ
=

1

qδ + (1 − q)δ ≤ 1
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= qδ−1 [ −δ

pγ − qδ
+ ( q

1 − q
)1−δ − 1]

Then it is sufficient to prove that

−δ

pγ − qδ
+ ( q

1 − q
)1−δ − 1 ≤ 0 ⇔ ( q

1 − q
)1−δ ≤ 1 +

−δ

pγ − qδ

and this will follow from:

q

1 − q
≤ 1 +

−δ

pγ − qδ

since

q > 1

2
⇒ q

1 − q
> 1 ⇒ ( q

1 − q
)1−δ ⇒ q

1 − q

For our scope we must prove that

q

1 − q
≤ 1 +

−δ

pγ − qδ
(16)

Under the restrictions we are working with, it is possible to elicit some limita-

tions of the variables p, q, γ and δ. We have supposed pγ − qδ > 0 , q > 1/2 and

δ > γ, that in figure 5 delimit the area ABC. Since the curvature of pγ − qδ = 0
is more accentuate when larger is the difference between γ and δ, a limit is, for

us, the curve p0.5 − q1 = 0, i.e. q =√p, which delimits the area ADE containing

the area ABC. This consideration allows us to elicit some sure limitations for p

and q: the “highest” point is the intersection between q =√p and p+q = 1, that
is D(0.38; 0.62); the most “left-placed” point is the intersection between q =√p
and q = 0.5, that is E(0.25; 0.5); we elicit 0.25 < p < 0.5 and 0.5 < q < 0.62. Con-
sider the function pγ − qδ, by differentiating, we can prove that it is increasing

in p and δ and decreasing in q and γ, and then, using the elicited parameter

limitations we have

pγ − qδ ≤ (1
2
)0.5 − (1

2
)1

which in turn implies

1 +
−δ

pγ − qδ
≥ 1 +

δ

(1
2
)0.5 − (1

2
)1 (17)

Finally, the quantity q/(1 − q) is increasing in q and then by using the sup
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limitation of q it follows that

q

1 − q
≤ 0.62

1 − 0.62
(18)

Using (17) and (18) the (16) is true if it is true the:

0.62

1 − 0.62
≤ 1 +

δ

(1
2
)0.5 − (1

2
)1

which gives δ > 0.131 that is within our limitations. Similarly, by exchanging p

with q and γ with δ it follows that ω(p, q) is increasing in p when ω(p, q) < 0.
Q.E.D.

Proof of proposition 2.

For x ∈ [0,1], α > 1/2 and γ ∈]0,1] it results f(x) = αxγ +(1 − x)γ ≥min{1, α} >
1/2. Since this function is continuous in the closed interval [0,1], with f(0) = 1,
f(1) = α and the second derivative is non-positive from zero to one:

f ′′(x) = γ(γ − 1)αxδ−2
+ γ(γ − 1)(1 − x)δ−2 ≤ 0

It follows that, in (5), the denominator is positive under the limitation α > 1/2.
Within its domain the first derivative of the (5) with respect to p is :

∂ω(p, q)
∂p

= αγ
(1 − p)γ−1 (pγ−1 − qδ) + pγ−1 [2αqδ + (1 − q)δ − 1]

[αpγ + (1 − p)γ + αqδ + (1 − q)δ − 1]2 (19)

Having chosen γ ≤ 1 the term pγ−1 ≥ 1 for all p ∈]0,1] and since qδ ≤ 1 then

pγ−1 − qδ ≥ 0 . On the other hand (2αqδ + 1 − q)δ − 1 ≥ 0 since for x ∈ [0,1],
α > 1/2 and 0 < δ ≤ 1 the function f(x) = 2αxδ + (1− x)δ ≥min{1,2α} ≥ 1 since

it is continuous in the closed interval [0,1], with f(0) = 1, f(1) = 2α and the

second derivative is non-positive from zero to one:

f ′′(x) = γ(γ − 1)2αxδ−2
+ γ(γ − 1)(1 − x)δ−2 ≤ 0

Then (19) is non-negative and the (5) is increasing in p.

The first derivative with respect to q is

∂ω(p, q)
∂q

= αδ
(1 − q)δ−1 (pγ − qδ−1) − qδ−1 [2αpγ + (1 − p)γ − 1]

[αpγ + (1 − p)γ + αqδ + (1 − q)δ − 1]2 (20)
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By the same argumentations, it is easy to see that it is non-positive and then

the (5) is decreasing in q.

Q.E.D.

Proof of proposition 3.

If we start from the zero curve ω(p, q) = 0 ⇔ pγ − qδ = 0 that is the ÔB

curve in figure 4, it is clear that an increasing in p will bring them in the

domain in which the function is positive (OAB “triangle”) while an increasing

in q will bring them in the domain in which the function is negative (OBC

“triangle”) and, in this case, the function (7) is increasing in p and decreasing

in q. Now it is sufficient to prove that ω(p, q) is increasing in p and decreasing

in q within the two triangle, i.e. where ω(p, q) > 0 or ω(p, q) < 0 and p, q > 0. If
w(p, q) > 0 and then if pγ −qδ > 0 the (7) becomes: ω(p, q) = e−[−Ln(pγ−qδ)]α and

by differentiating w. r. t. the two variables:

∂ω(p, q)
∂p

= e−[−Ln(pγ−qδ)]αα [−Ln (pγ − qδ)]α−1 γpγ−1

pγ − qδ
> 0

∂ω(p, q)
∂p

= e−[−Ln(pγ−qδ)]αα [−Ln (pγ − qδ)]α−1 −δqδ−1
pγ − qδ

< 0

This proves the property within the triangle OBA, where ω(p, q) > 0. Similarly

if pγ − qδ < 0 the (7) becomes: ω(p, q) = −e−[−Ln(−pγ+qδ)]α and by differentiating

w. r. t. the two variables:

∂ω(p, q)
∂p

= −e−[−Ln(−pγ+qδ)]αα [−Ln (pγ − qδ)]α−1 −γpγ−1
−pγ + qδ

> 0

∂ω(p, q)
∂p

= −e−[−Ln(−pγ+qδ)]αα [−Ln (pγ − qδ)]α−1 δqδ−1

−pγ + qδ
< 0

We conclude that the Prelec bi-weighting function is increasing in its first argu-

ment and decreasing in the second, for all the parameter values.

Q.E.D.
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Figure 4: the KT bi-weighting function domain; in the case γ > δ, the curve
q = pγ/δ is convex.

10 Appendix 2

10.1 Recent literature denouncing GLS

As discussed in the paper, this study aims to generalize CPT, allowing gains and

losses within a mixed prospect to be evaluated conjointly, rather than separately.

In the following we shall focus our attention on two recent papers: Wu and

Markle (2008) and Birnbaum and Bahra (2007). Both of them report systematic

violations of GLS. CPT and all the model it generalizes, such as EUT, cannot

account for such a pattern of choice. We show how bCPT is able to capture, at

least partially, these errata predictions.

10.2 Wu and Markle (2008)

In table 2 we reproduce Table 1 of page 1326 in Wu and Markle (2008), with

the preferences elicited from the reported percentages found by the authors.

In many cases (tests 6,7, 10-18) the respondents preferred (in percentage) H

to L while, splitting the prospects into their respective positive and negative
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part, the preferences were reversed. To test our model we have used the bCPT

functional

VbCPT (P ) = ∫ ∞

0

ω
⎛
⎝ ∑
i∶u(xi)≥t

pi, ∑
i∶u(xi)≤−t

pi
⎞
⎠dt (21)

based on the KT bi-weighting function

ω(p, q) = pγ − qδ

[pγ + (1 − p)γ] 1γ + [qδ + (1 − q)δ] 1δ − 1 (22)

with parameters γ = 0.9 and δ = 0.89 and the classical KT power utility function

u(x) =
⎧⎪⎪⎨⎪⎪⎩

xα
+ if x ≥ 0
−λ(−x)α− if x < 0

(23)

with parameters λ = 1.77 , α+ = 0.68, and α− = 0.79.
As can be seen in table 2, our data are in the same directions of the preferences

in all the pure positive choices except that in tests 13, 23 and 25, in all the

pure negative choices except in tests 9, 12-15, 17 and 19 and in all the mixed

choices except in tests 3, 5 and 20. But, what we think is very interesting, is

that bCPT is able explain the reversed preferences, totally in tests 6, 7, 10, 11,

16 and 18 and partially in test 12, 14, 15, and 17. The model seems able to

naturally capture, totally or partially, the GLH.

10.3 Birnbaum-Bahra

Birnbaum and Bahra (2007) reported systematic violations of two behavioral

properties implied by CPT. One, is the just discussed GLS and the other, is

the property known as coalescing: “coalescing is the assumption that if there

are two probability-consequences branches in a gamble leading to the same con-

sequence, they can be combined by adding their probabilities.” For example, the

three-branch gamble A = ($100,25%;$100,25%;$0,50%) should be equivalent

to the two-branch gamble A′ = ($100,50%;$0,50%). Our model is not able to

accommodate for violation of coalescing, but we want some questions. Birn-

baum and Bahra tested violation of coalescing presenting to the participants

the gambles in terms of a container holding exactly 100 marbles of different

colors. So, according to coalescing, B′ = (25 red $100; 75 white $0) should be

considered equivalent to B = (25 red $100; 25 white $0; 50 white $0). We are not

sure that to present the gambles in this form, is the same that to present the
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Table 2: application of bCPT to the data of Wu and Markle (2008)

Test H gamble L gamble choice % preferences bCPT
g p l 1-p g′ p′ l′ 1-p′ H H+ H-

1 150 0,3 -25 0,7 75 0,8 -60 0,2 22 10 17 G+ G- G G+ G- G
2 1800 0,05 -200 0,95 600 0,3 -250 0,7 21 17 15 G+ G- G G+ G- G
3 1000 0,25 -500 0,75 600 0,5 -700 0,5 28 12 20 G+ G- G G+ G- H
4 200 0,3 -25 0,7 75 0,8 -100 0,2 33 18 22 G+ G- G G+ G- G
5 1200 0,25 -500 0,75 600 0,5 -800 0,5 43 21 25 G+ G- G G+ G- H
6 750 0,4 -1000 0,6 500 0,6 -1500 0,4 51 26 25 G+ G- HG G+ G- H
7 4200 0,5 -3000 0,5 3000 0,75 -6000 0,25 52 15 37 G+ G- HG G+ G- H
8 4500 0,5 -1500 0,5 3000 0,75 -3000 0,25 48 17 47 G+ G- GH G+ G- H
9 4500 0,5 -3000 0,5 3000 0,75 -6000 0,25 58 17 55 G+ H- H G+ G- H
10 1000 0,3 -200 0,7 400 0,7 -500 0,3 51 48 28 G+ G- HG G+ G- H
11 4800 0,5 -1500 0,5 3000 0,75 -3000 0,25 54 33 44 G+ G- H G+ G- H
12 3000 0,01 -490 0,99 2000 0,02 -500 0,98 59 42 36 G+ G- H G+ H- H
13 2200 0,4 -600 0,6 850 0,75 -1700 0,25 52 38 42 G+ G- HG H+ H- H
14 2000 0,2 -1000 0,8 1700 0,25 -1100 0,75 58 34 48 G+ G- H G+ H- H
15 1500 0,25 -500 0,75 600 0,5 -900 0,5 51 51 33 GH+ G- HG H+ H- H
16 5000 0,5 -3000 0,5 3000 0,75 -6000 0,25 65 43 43 G+ G- H G+ G- H
17 1500 0,4 -1000 0,6 600 0,8 -3500 0,2 59 48 41 G+ G- H G+ H- H
18 2025 0,5 -875 0,5 1800 0,6 -1000 0,4 72 52 42 G+ G- H G+ G- H
19 600 0,25 -100 0,75 125 0,75 -500 0,25 58 55 44 H+ G- H H+ H- H
20 5000 0,1 -900 0,9 1400 0,3 -1700 0,7 40 47 53 G+ HG- G G+ G- H
21 700 0,25 -100 0,75 125 0,75 -600 0,25 71 59 48 H+ H- H H+ G- H
22 700 0,5 -150 0,5 350 0,75 -400 0,25 63 58 48 H+ GH- H H+ H- H
23 1200 0,3 -200 0,7 400 0,7 -800 0,3 70 59 50 H+ H- H G+ H- H
24 5000 0,5 -2500 0,5 2500 0,75 -6000 0,25 79 54 54 H+ H- H H+ H- H
25 800 0,4 -1000 0,6 500 0,6 -1600 0,4 58 64 51 H+ H- H G+ H- H
26 5000 0,5 -3000 0,5 2500 0,75 -6500 0,25 71 61 59 H+ H- H H+ H- H
27 700 0,25 -100 0,75 100 0,75 -800 0,25 73 58 64 H+ H- H H+ H- H
28 1500 0,3 -200 0,7 400 0,7 -1000 0,3 75 59 63 H+ H- H H+ G- H
29 1600 0,25 -500 0,75 600 0,5 -1100 0,5 73 60 69 H+ H- H H+ H- H
30 2000 0,4 -800 0,6 600 0,8 -3500 0,2 65 66 63 H+ H- H H+ H- H
31 2000 0,25 -400 0,75 600 0,5 -1100 0,5 80 63 69 H+ H- H H+ H- H
32 1500 0,4 -700 0,6 300 0,8 -3500 0,2 78 64 68 H+ H- H H+ H- H
33 900 0,4 -1000 0,6 500 0,6 -1800 0,4 70 74 61 H+ H- H H+ H- H
34 1000 0,4 -1000 0,6 500 0,6 -2000 0,4 78 71 70 H+ H- H H+ H- H

α+ = 0.68, α− = 0.79, δ = 0.89 λ = 1.77, γ = 0.9
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gambles with the numerical probabilities. In fact, a person facing B could ask

himself what is the reason that the first 25 white marbles were not summed to

the second 50 white marbles. It is admissible that she could think if they differ

in some way, e.g. in size. In any case, she will have an additional information,

or doubt to process and this could generate errors. As focused from Wu and

Markle (2008), the examples of Birnbaum and Bahra (2007) to underline the

GLS violation, are less simple than theirs, but our model is able to accommodate

for these violations too. The only we need is to modify the parameter γ from

the value of 0.9, used to accommodate the majority of data in Wu and Markle

(2008), to the value of 0.74. Next, we report the part of the table 5 at page 1022

in Birnbaum and Bahra (2007) that, in the words of the same authors, form

a test for the GLS. Each gamble “is described in terms of a container holding

exactly 100 marbles of different colors, from which one marble would be drawn

at random, and the color of that marble would determine the prize.”. In the

brackets are shown the percentages of each choose.

F =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

25 black

to win $100

25 white

to win $0

50 pink

to lose $50

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≻

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

50 blue

to win $50

25 white

to lose $0

25 red

to lose $100

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= G

[76%] [24%]

F
+ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

25 black

to win $100

25 white

to win $0

50 white

to win $0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≺

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

25 blue

to win $50

25 blue

to win $50

50 white

to win $0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= G+

[29%] [71%]

35



F
− =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

50 white

to lose $0

25 pink

to lose $50

25 pink

to lose $50

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≺

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

50 white

to lose $0

25 white

to lose $0

25 red

to lose $100

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= G−

[35%] [65%]
As can be seen, F is preferred to G, but when the two prospects are split in

their respective positive and negative parts (according to coalescing) a relevant

majority prefers G+ to F+ and G− to F−. In order to evaluate these prospects,

we substitute the respective probabilities to the colors, as the authors did, by

dividing for 100 any number of color. Using the bipolar CPT with the bi-

polarized KT weighting functions with parameters γ = 0.74, δ = 0.89

ω(p, q) = p0.74 − q0.89

[p0.74 + (1 − p)0.74] 1

0.74 + [q0.89 + (1 − q)0.89] 1

0.89 − 1

and the classical KT power utility function with parameters λ = 1.77, α = 0.68

and β = 0.79

u(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x0.68 if x ≥ 0

−1.77(−x)0.79 if x < 0

we obtain

VbCPT (F) = −11.07 ≥ VbCPT (G) = −11.11
VbCPT (F+) = 6.67 ≤ VbCPT (G+) = 6.71

VbCPT (F−) = −19.28 ≤ VbCPT (G−) = −18.25
These results agree with the preference relation ≿.

11 Appendix 3

Proof of Theorem 3.

1) Let us define ν1(A) = µb(A,∅). For all (A,C), (B,C), (A,D), (B,D) ∈ Q, it
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Figure 5: if γ < δ the curve ÔB ∶ q = pγ/δ is concave and its most accentuate
curvature is that of ÔD ∶ q =√p. The point A(.5, .5) is the intersection between
the lines p = q and p + q = 1; the point B is the intersection between pγ − qδ = 0
and p + q = 1; the point C is the intersection between pγ − qδ = 0 and q = .5;
the point D(.38, .62) is the intersection between q =√p and p+ q = 1; the point
E(.25, .5) is the intersection between q =√p and q = .5.

is not possible to have µb(A,C) = µb(B,C) and µb(A,D) > µb(B,D), because,
for (A1), µb(A,D) > µb(B,D) would imply µb(A,C) > µb(B,C), too. Thus,

µb(A,C) = µb(B,C)⇒ µb(A,D) = µb(B,D),

for all (A,C), (B,C), (A,D), (B,D) ∈ Q. Consequently,

µb(A,∅) = µb(B,∅)⇒ µb(A,C) = µb(B,C),

from which we get

ν1(A) = ν1(B)⇒ µb(A,C) = µb(B,C),
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for all (A,C), (B,C) ∈ Q. We can therefore define function ω1 as follows:

ω1(ν1(A),B) = µb(A,B), for all (A,B) ∈ Q.

For (A1) we have

µb(A,∅) > µb(B,∅)⇒ µb(A,C) > µb(B,C)

for all (A,C), (B,C) ∈ Q, i.e.

ν1(A) > ν1(B)⇒ µb(A,C) > µb(B,C),

and consequently

ν1(A) > ν1(B)⇒ ω1(ν1(A),C) > ω1(ν1(B),C),

which means that ω1 is increasing in the first argument. Monotonicity of bipo-

lar capacity gives the monotonicity of function ω1 with respect to the second

argument.

2) It can be proved analogously to 1), by defining ν2(A) = −µb(∅,A).
3) By 1) and 2).

4) Condition (A3) ensures that capacities ν1 and ν2 agree in the sense that

for all A,B ⊆ S

ν1(A) > ν1(B)⇔ ν2(A) > ν2(B). (i)
Indeed, applying the definition of ν1, (A1), (A3), (A2) and the definition of ν2,

we get

ν1(A) > ν1(B)⇒ µb(A,∅) > µb(B,∅)⇒
µb(A,C) > µb(B,C)⇔ µb(C,A) < µb(C,B)
⇒ µb(∅,A) < µb(∅,B)⇒ ν2(A) > ν2(B),

i.e.

ν1(A) > ν1(B)⇒ ν2(A) > ν2(B). (ii)
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Analogously, applying the definition of ν2, (A2), (A3), (A1) and the definition

of ν1, we get

ν2(A) > ν2(B)⇒ µb(∅,B) > µb(∅,A)⇒
µb(C,A) > µb(C,B)⇔ µb(A,C) < µb(B,C)
⇒ µb(A,∅) < µb(B,∅)⇒ ν1(A) > ν1(B),

i.e.

ν2(A) > ν2(B)⇒ ν1(A) > ν1(B). (iii)
By (i) and (ii) we get (iii). (iii) implies also that for all A,B ⊆ S

ν1(A) = ν1(B)⇔ ν2(A) = ν2(B). (iv)

By (i) and (iv), there exists an increasing function g ∶ {v ∈ [0,1] ∶ ∃A ⊆
S for which ν2(A) = v} → [0,1] such that ν2(A) = g(ν1(A)). Thus we can

define a function ω ∶ {(u, v) ∶ u = ν1(A), v = ν1(B), (A,B) ∈ Q}→ [−1,1] defined
as follows: for all A,B) ∈ Q

ω(ν1(A), ν1(B)) = ω3(ν1(A), g(ν1(B)))

where ω3 is the function defined in point 3). For the monotonicity of function

ω3 and g, ω is increasing in the first argument and decreasing in the second

argument.

5) Observe that (A3) is a particular case of (A4), which, given A,B ⊆ S

holds for any C ⊆ S such that (A,C), (B,C), (C,A), (C,B) ∈ Q (observe that if

(A,C), (B,C) ∈ Q, then also (C,A), (C,B) ∈ Q). Using (A4), (A1) and again

(A4) we get (A2) as follows: for all (C,A), (C,B), (A,D), (B,D) ∈ Q

µb(C,A) > µb(C,B)⇔ µb(A,C) < µb(B,C)⇒

⇒ µb(A,D) < µb(B,D)⇔ µb(D,A) > µb(D,B)
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With (A1), (A2) and (A3) we can apply 4) and obtain the result we looked for.

6) Analogously to 5), using (A4), (A2) and again (A4) we get (A1) as follows:

for all (C,A), (C,B), (A,D), (B,D) ∈ Q

µb(A,C) > µb(B,C)⇔ µb(C,A) < µb(C,B)⇒

µb(D,A) < µb(D,B)⇔ µb(A,D) > µb(B,D)
With (A1), (A2) and (A3) we can apply 4) and obtain the result we looked for.

7) (A4) is a specific case of (A5), which, givenA,B ⊆ S holds for any C,D ⊆ S
such that (A,C), (B,C), (D,A), (D,B) ∈ Q. Using (A4), (A1) can obtained as

follows:

µb(A,C) > µb(B,C)⇔ µb(D,A) < µb(D,B)⇔ µb(A,D) > µb(B,D).

With (A1) and (A4) we can apply 5) and we get the thesis.

Q.E.D.
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