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Abstract 

We study an example of infinitely repeated games in which symmetric duopolistic firms 

produce experience goods. After consuming the products, short-run consumers only observe 

imperfect public information about product quality. We characterize perfect public equilibrium 

payoff set  E(𝛿) of firms for each fixed discount factor  δ ∈ [0, 1) when each firm has two action 

choices, signals follow binomial distributions and the game has a product structure. The set 

E(𝛿) turns out a single point or symmetric pentagon for fixed δ. And δ ∈ [0, 1) can be divided 

into countable infinite subintervals in which E(𝛿) remains constant. The strategies to implement 

payoffs in boundaries of E(𝛿) are constructed in a recursive way, in which infinite repetition of 

Nash Equilibrium of stage game could be viewed as an absorbing state in a Markov Process where 

state transitions are controlled through public signals and optimal punishments in each period. 
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1 Introduction 

How to calculate payoff sets of perfect public equilibria for repeated games with long-run 

and short-run players and with imperfect public monitoring? Existing literature gives only the 

upper bound, or limit equilibrium payoff set as discount factor δ → 1, while remains silent on the 

exact equilibrium payoff sets for fixed δ < 1 when folk theorem fails, and without description 

on the optimal strategy to implement payoffs on the bound of equilibrium payoff set if signal 

space is finite (Fudenberg and Levine, 1994; Fudenberg, Levine and Takahashi, 2007). 

Characterization of the precise form of equilibrium payoff set is valuable not only in theory, but 

also in many applications. Because of inevitable existence of multiple equilibria in repeated 

games, the optimal equilibrium payoff is generally used for prediction in many practical contexts 

such as IO. And it is equivalent to solving equilibrium payoff sets in the case of finite signal space 

since characterize the Pareto boundary is usually equivalent to characterize equilibrium payoff 

sets1. Moreover, it is more meaningful in real applications to clarify the mechanism through a 

detailed description of strategies to achieve boundaries on equilibrium payoff sets. 

By a concrete example, we provide an idea to solve payoff sets of perfect public equilibria 

for fixed δ in repeated games with long-run and short-run players and with imperfect public 

monitoring. The idea is not a purely mathematical technique, equilibrium strategies constructed 

being also of empirical relevance. 

Consider the case of two symmetric long-term players each having two hidden action 

choices in each stage game, and signals of actions follow binomial distributions. For example, in 

some duopolistic experience goods2 market, firms may exert low effort or high effort level in the 

production. It is more likely to produce high quality products when a firm exerts high effort. 

However, high effort incurs higher costs. The firm's choice of effort level is hidden action. After 

consuming the products, consumers observe only product quality, which can be passed to other 

consumers, e.g., through consumer reports, word of mouth, etc. However, product quality is 

unverifiable, i.e., it is difficult to verified by courts and other third-party, thus consumers who buy 

low-quality products may find themselves difficult to resort to legal claims. Moral hazard problem 

naturally occurs. Should consumers believe that a firm choose high effort, the optimal response 

of the firm would be to choose low effort with lower costs and the expected quality of products 

would be low then. Rational consumers expect this and would not believe any firm. Thus the 

market is full of low quality products and may vanish.  

In a market economy, the reputation mechanism can overcome firms’ moral hazard problem. 

The basic idea is as follows. When firms are long-run players in repeated games, consumers can 

observe product quality of each firm in last period and make choices in accordance with it. 

Should the trusted firm deviate to low effort for saving costs in current period, the probability of 

losing reputation in next period will increase. If firms are patient enough, such a deviation will be 

not profitable. Thus patient firms will cherish their reputations and exert high efforts even if 

consumers are short-run participants. The reputation mechanism is an example of cooperation in 

                                                             
1
 If signals are continuous, then optimal equilibrium payoffs could be implemented by Bang-Bang strategy (Abreu, 

Pearce and Stacchetti, 1990). 
2
 The concept of “experience goods” follows Nelson (1970). 
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repeated games with imperfect public monitoring. But how to characterize firms’ equilibrium 

payoff sets in this repeated games? Note that conventional folk theorem fails here because of the 

existence of short-term participants. No matter how patient firms are (even δ → 1), equilibrium 

payoff set will strictly less than firms’ feasible payoff set (Fudenberg, Kreps and Maskin, 1990).  

Consider the following class of equilibria characterized by “states”. Even in repeated games, 

consumers may not trust any firm, and the result is repetition of static game equilibrium, in 

which both firms exert low effort, consumers do not buy and the market vanishes. We call this 

“state 0 equilibrium”. Consumers may also believe that only one of two firms, firm A, will exert 

high effort, while the other firm, firm B, is never trusted. If trusted firm A produces low quality 

products, with a certain probability it will be punished from the next period by consumers. 

Punishment here means repetition of static game equilibrium. We call the above situation “state 

1 equilibrium”. Consumers might also first trust firm B and try buying. If firm B produce high 

quality products, consumers will continue to purchase from B; otherwise, with a certain 

probability all consumers switch from B to A in the next period after low quality of B. Thereafter, 

if firm A also produce low quality products, all consumers will not trust any firm again. We call 

this “state 2 equilibrium”. In addition, consumers may also trust two firms respectively twice, S 

times and even infinite times. Such as in “state 3 equilibrium”, firm A is trusted twice, while firm 

B is only trusted one time. In “state ∞ equilibrium”, consumers just switch between the two firms, 

never out of the market. We call the trusted firm “incumbent firm”, and the other “waiting firm”. 

Note that due to the uncertainty in production, any firm could not be “incumbent firm” forever. 

We find that consumer beliefs described above could be defined and classified in a recursive 

way, so do accompanying equilibrium mechanisms. For instance, continuation equilibria of state 

s equilibrium include state s-1, state s-2 ... state 0 equilibrium. It also can be shown that the 

lowest discount factor  𝛿𝑠  to ensure existence of state s equilibrium is strictly increasing in s 

for s ≥ 2. We call all such state s equilibrium “Recursive Belief Equilibrium”, which is a special 

case of perfect public equilibrium. Under public randomization assumption, the convex hull of 

payoff set of Recursive Belief Equilibrium constitutes a complete characterization of payoff set of 

public perfect equilibrium for any fixed 𝛿. Specifically, for some parameter value of cost function, 

product function and consumers’ utility function, there exist  0 ≤ 𝛿𝑠 ≤ 1 , 0 ≤ 𝑠 < ∞,  𝛿0 = 0 

such that for any  δ ∈ [ 𝛿𝑠,  𝛿𝑠+1) , state s  equilibrium exists, so do state s − 1, s −

2…1,0 equilibrium. Define �̅�𝑠 as the convex hull of the set of payoff pairs (average discounted 

expected payoffs) of all possible state s, s − 1, s − 2…1,0  equilibrium. We demonstrate that 

�̅�𝑠  is equal to E(𝛿) , payoff set of perfect public equilibria. Depending on parameter values, it 

may be that  𝛿∞ = lim𝑠→∞ 𝛿𝑠 = 1, then δ ∈ [ 𝛿𝑠 ,  𝛿𝑠+1) , 𝑠 < ∞,  𝛿0 = 0 constitute a complete 

description of δ ∈ [0, 1)  ; it may also be that 𝛿∞ < 1, then state ∞ equilibrium exists. In the 

latter case, for any δ ∈ [ 𝛿∞, 1)  ,  �̅�∞ is equal to E(𝛿) . In addition, there will still be other 

parameter values such that only “state 0 equilibrium” exists for any δ ∈ [0, 1)  . Thus payoff set of 

public perfect equilibrium is trivially equal to a single point, “state 0 equilibrium” payoff. Note 

that due to symmetry of the game, any state s equilibrium payoffs include two symmetric points: 

Let (𝑣𝑖𝑠, 𝑣𝑗𝑠)  is state s equilibrium payoff pairs, so is (𝑣𝑗𝑠, 𝑣𝑖𝑠) , where the first component in 

brackets represents firm i's payoff and second component firm j (j ≠ i). It can also be shown that, 

for any  δ < 1  , if 𝑣𝑠  is the largest payoff of incumbent firm in all possible state 

s equilibria, 𝑣𝑠 ≡ v > 0  for all 𝑠 ≥ 1 . Thus E(𝛿) is a single point or symmetrical pentagon for 

fixed  δ , and five vertices of the pentagon are   (0,0), ( v, 0), (v,𝑤𝑠), (𝑤𝑠 , v), (0, v) , where 
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𝑤𝑠 > 0  is the payoff of “waiting firm” in state s equilibrium when incumbent’s payoff is v . 

The intuition is as follows. The game analyzed in this paper has the product structure, 

namely, the hidden action of each long-run player has a public signal and the signals are 

independent of each other. Each signal is a sufficient statistic of the player’s hidden action, thus 

for all equilibrium payoff pairs, strategies to implement them could be equivalently expressed as 

if each firm's continuation payoffs rely solely on its own signal (Holmstrom, 1982). The range to 

search for the optimal equilibrium strategy is then greatly reduced. For instance, performance 

comparison evaluation is unnecessary. In recursive belief equilibrium, continuation payoffs of the 

incumbent firm depend only on its own signal. Although continuation payoffs of the waiting firm 

depend on the signal of the incumbent, the waiting firm is just waiting, no incentive problem 

accompanied. In addition, although there are only two firms, two actions, binomial distribution 

of signals in the example, it could easily be extended to N firms, N actions and any type of signal 

distribution, as long as firms are symmetric and the game has product structure. 

The idea in this article is similar to Upwind Gauss-Seidel method in numerical computation 

of dynamic programming problem. The state transition between the incumbent and waiting firm 

from state s to s − 1 may be regarded as a Markov Process, where state transition probabilities 

are endogenous, depending on probabilities of consumers’ punishments after the incumbent 

firm producing low-quality products. And state 0 is the only absorbing state, the equilibrium 

payoffs of which is easy to calculate, equaling to infinitely repetitions of static game Nash 

equilibrium. State 1 equilibrium payoffs could be calculated according to state 0 equilibrium, 

while state 2 equilibrium payoffs could be calculated according to state 1 equilibrium, and so on. 

The following words in Judd (1998) provide a good description of the idea.  (See also Figure 1) 

 

"We see here that if the state flows in the directions of the solid arrows, the proper direction 

for us to construct the value function is in the opposite," upwind ", direction. Another way to 

express this is that information naturally flows in the upwind direction. For example, information 

about state 1 tells us much about states 2 ..., but we can evaluate state 1 without knowing 

anything about states 2 ... Again, a single pass through the states will determine the value of the 

indicated policy ... In general, once we ascertain the value of the problem at the stable steady 

states, we can determine the value at the remaining states. " 

---- Judd (1998, pp.420-421) 

 

(Insert Figure 1 Here) 

 

In addition, the dynamics of reputations on oligopolistic markets are revealed in this paper 

in a pure moral hazard context, which may be an interesting complement to reputation models 

introducing private information of firms, such as Kreps and Wilson (1982), Milgrom and Roberts 

(1982). While they concentrate on how reputation is built step by step, firms lose reputation 

one-off in their models. On the contrary, we concentrate on how reputation vanishes step by step. 

For instance, the optimal probability of punishment in equilibrium (the probability of losing 

consumers when the incumbent firm producing low-quality products) will becomes lower and 

lower as chances to be incumbent again reduces. Consumers are more and more "tolerant", or 

less and less sensitive to incumbent firm’s quality signal as from state s to s-1…2, 1. It is not 

some kind of "inertia" of consumers’ belief due to long-term success of firm (Crips, Mailath and 
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Samuelson, 2004), but because firms have less and less opportunities to be incumbent again, 

which itself constitutes a growing potential punishment. For the same reason, the critical 

discount factor to support state s equilibrium is increasing in s for s ≥ 2 . We quoted some 

empirical literature in part 6 of this article to verify the relevance of reputation dynamics. 

The rest of the paper is structured as follows. In Section 2 we discuss related literature. 

Section 3 spells out the model setup. In Section 4 we characterize recursive belief equilibrium 

(state s equilibrium) payoff set and in Section 5 we prove that the set constitutes a complete 

characterization of perfect public equilibrium payoff set in the model. Relevant studies are cited 

in Section 6 to verify the empirical relevance of recursive belief equilibrium. Section 7 contains 

the conclusions and further questions. 

2 Related Literature 

Our paper is closely related to the literature on computation of payoff set of perfect public 

equilibrium. Abreu, Pearce and Stacchetti (1990) first present a general algorithm of set iteration, 

similar to value function iteration in dynamic programming with a single decision-maker. However, 

set iteration is generally not tractable in specific operations. The direct application of set iteration 

algorithm for solving equilibrium payoff set is now mainly in the framework of repeated games 

with perfect monitoring, and can only obtain upper and lower bounds of equilibrium payoff set 

through numerical computation (Judd, et al, 2003) 3. Abreu and Sannikov (2011) provide a new 

algorithm to calculate pure strategy SPE in 2-person repeated games with perfect monitoring and 

with public randomization. For repeated games with imperfect public monitoring, Fudenberg, 

Levine and Maskin (1994), Fudenberg and Levine (1994) give explicit methods to calculate 

equilibrium payoff set (upper bound) under limited signal space. Fudenberg and Levine (1994) 

presents a general algorithm for computing the upper bound of set of payoffs of perfect public 

equilibria of repeated games with long-run and short-run players; and shows that the upper 

bound is equal to limit equilibrium payoff set as δ → 1 if the game meets some condition of full 

rank. Fudenberg, Levine and Takahashi (2007) further solve the limit set of perfect public 

equilibrium payoff when full rank condition fails. Horner, Sugaya, Takahashi, and Vieille (2011) 

extends Fudenberg and Levine (1994)’s algorithm to general stochastic games. Horner, Takahashi 

and Vieille (2012) further provides a dual characterization of the limit set of perfect public 

equilibrium payoffs in stochastic games and shows that, in the context of repeated games, this 

limit set of payoffs is a polytope when attention is restricted to equilibria in pure strategies.  

A second strand of relevant literature is that on reputation mechanisms of experience goods 

markets. There are a lot of studies on reputation mechanisms in different market structure, such 

as Klein and Leffler (1981), Shapiro (1983), Horner (2002), Rob and Fishman(2005), Rob and 

Sekiguchi (2006), Cai and Obara (2009). In this strand, our paper is perhaps most closely related 

to Rob and Sekiguchi (2006), which studies "turnover equilibrium" in a duopoly market, similar to 

state ∞ equilibrium in our paper. In addition, Rob and Fishman (2005) also shows the dynamics 

of reputation in a pure moral hazard framework, but it is in the context of monopolistic 

competition market with infinite number of firms. And the concern of Rob and Fishman (2005) is 

the gradual accumulation of reputation, while firms lose reputation one-off. The focus of 

                                                             
3
 For other numerical methods, see also Wang(1995), Athey and Bagwell (2001). 
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reputation dynamics in our article is how reputation vanishes gradually. 

3 The Model 

There are two long-lived firms in the market. Time is discrete and the horizon is infinite. In 

each period, each firm and consumers play the following stage game. The consumers decide 

whether to purchase one unit of the firm’s products. If they do not buy from the firm, both the 

consumers and the firm get a payoff of zero. If they decide to buy from the firm, their payoffs 

decide on the firm’s product quality. The firm decides whether to exert high effort 𝑎ℎ (or, 

provide high quality) or exert low effort 𝑎𝑙 (or, provide low quality). The firm incurs an effort cost 

/quality cost of c for providing high effort/quality, 0 for providing low effort/quality, where c > 0 . 

The consumers’ expected benefit is u if the firm choose 𝑎ℎ, and is 0 if the firm choose 𝑎𝑙 , 

where u > 0. Market price is fixed at p = u 4. The stage game is depicted below in the normal 

form. 

 

  Firm 

  Low High 

Consumers Not Buy 0， 0 0， 0 

Buy −u,      u 0,      u − c 

 

We assume u − c > 0, hence high effort/quality is more efficient than no trade. However, 

Should consumers choose “Buy”, the optimal response of the firm would be “Low” 

(effort/quality). Thus the unique equilibrium outcome is (Not Buy, Low), resulting in payoffs (0, 0).  

We suppose that in each period there are identical consumers with measure 1, who 

purchase the products only once. So consumers will maximize their current period payoffs. If 

consumers are indifferent between “Buy” and “Not Buy”, they will choose “Buy”. 

If the firm’s effort in each period were publicly observable, it would be straightforward to 

show that the efficient outcome (Buy, High) can be supported when firms are patient enough. Let 

δ be the firms’ common discount factor. It can be easily checked that the efficient outcome is 

attainable in every period if and only if δ ≥ c/u. 

We consider an environment in which a firm’s effort is not public information, but rather its 

noisy public signal 𝑦𝑖 ∈ {𝑦ℎ , 𝑦𝑙}, 𝑖 = 1,2 becomes available at the end of each period. For each 

firm i, the probability of 𝑦 = 𝑦ℎ  is  μh and 𝑦 = 𝑦𝑙 is  1 − μh if firm i exerts high effort; the 

                                                             
4
 To get a simple expression, we abstract away the price factor in this illustrated example. The price is a 

continuous variable. The formulation of the game will become complicated if the price factor is introduced 
into the game as an endogenous variable, because this means that each firm’s action will be 
two-dimensional: price and effort level. However, it can be proven that ignoring price competition 
between firms has not a substantial impact on characterization of equilibrium payoff sets. If in each 
period there is only one firm being trusted, such as recursive beliefs equilibrium described in Section 4, 
price selection and the choice of effort level will be actually separate; the only trusted firm will optimally 
set price  p𝑖  to the highest:  p𝑖 = 𝑢. If in some period there are two firms being trusted to exert high effort, 
the occurrence of price wars and p𝑖 < 𝑢 will lead firms’ payoffs not in the boundary of equilibrium payoff 

set; if the two firms collude to p𝑖 = 𝑢, maintaining of collusions will require additional conditions on the 

discount factor, where joint payoffs of two firms will not be strictly higher than best recursive belief 
equilibrium payoffs. 
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probability of 𝑦 = 𝑦ℎ  is  μl and 𝑦 = 𝑦𝑙 is  1 − μl if firm i exerts low effort, where μh > μl > 0. 

Signals of different firm, 𝑦1 and 𝑦2 , are independent. We can interpret public signals 𝑦𝑖  as 

quality level of firm i’s products and there are uncertainties in production processes. Or we can 

interpret 𝑦𝑖  as some subjective signals on quality because communications between current 

period consumers and future consumers are imperfect.  

Following Fudenberg and Levine (1994), a rigorous description of the repeated games is as 

follows. Let number 1, 2 represent two long-run players, firms and SR represents short-run 

players, consumers. In each stage game, each player i = 1,2, SR simultaneously chooses a (pure) 

action  ai from a finite set  𝐴𝑖  . Ai = {ah, al} for  i = 1,2 , where ah represents High Effort, 

al represents Low Effort. Ai = {Buy,Not Buy} for i = SR . Note that aSR = {aSR,1, aSR,2} is a 

vector where aSR,i represents consumers action on firm  i ( i = 1,2) . Each action profile 

 a = (a1, a2, aSR) induces a probability distribution over public signals   y = (y1, y2) , 𝑦𝑖 ∈

{𝑦ℎ , 𝑦𝑙 , 𝑦𝑛𝑢𝑙𝑙}, i = 1,2 , where  𝑦ℎ  represents high quality, 𝑦𝑙 represents low quality and 

𝑦𝑛𝑢𝑙𝑙 represents no trade. For a given action profile   a , let  πy(a)  denote the probability 

of  y and πi(𝑎), i = 1,2  denote the marginal probability for the public signals. Obviously in our 

model we have  πy(a1, a2, aSR) = π1(a1, αSR,1)π2(a2, aSR,2) , π1(a1, aSR,1) = π2(a1, aSR,1). And 

for i = 1,2 

πi(aH, Not Buy) = πi(aL, Not Buy) = (0,0,1) 

      πi(aH, Buy) = (𝜇ℎ , 1 − 𝜇ℎ , 0) 

    πi(aL, Buy) = (𝜇𝑙 , 1 − 𝜇𝑙 , 0) 

To each action profile a，player i’s expected payoff ( 𝑖 = 1,2 ) is  gi(a) = ∑ πy(a)ri(y)y∈Y , 

where ri(y)  is player i’s payoff ( 𝑖 = 1,2 ) for signal y .  

Let αi be mixed actions for each player i. For each profile α = (αi, αj, αSR) of mixed actions, 

we can compute the induced distribution over public signals, πy(α) = ∑ πy(a)α(a)a∈A  ; and the 

expected payoffs, gi(α) = ∑ ∑ πy(a)α(a)ri(y) a∈Ay∈Y . Denote the profile where player i 

plays αi and all other players follow profile α by (αi, α−i). πy(αi, α−i) and  gi(αi, α−i) are defined 

in the similar way. 

The objective of each long-run player i = 1,2 is to maximize the average discounted value 

of per-period payoffs using the common discount factor δ . If {gi(t)}  is a sequence of payoffs for 

long-run player i , player i’s average discounted expected payoff will be:  (1 − δ)∑ δt−1gi(t) 
∞
t=1  . 

In the repeated game, in each period t = 1,2,…, the stage game is played, and the corresponding 

public outcome is then revealed. The public history at the end of period t 

is h(t) = {y1, y2, … , yt} . We also let h(0) denote the null public history in which nothing has 

happened. A public strategy for long-run player i ( i = 1,2) is a sequence of maps mapping public 

history to mixed actions. A public strategy for the period- t consumers is a map from the public 

information h(t − 1) to mixed actions. We define E(δ) ⊂ ℝ2 to be the set of average present 

values for the long-run player that can arise in perfect public equilibria when the discount factor 

is δ .  
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4 Recursive Belief Equilibrium 

Define "recursive beliefs” as follows. 

 

Definition 1: A recursive belief 𝐬  (𝟎 ≤ 𝐬 ≤ ∞) includes the following state 𝐬 to state 0. 

(i) state 𝐬 (𝒔 ≥ 𝟐) : all consumers believe that only one firm, say firm 1, exert high effort. If 

the public signal of firm 1 is 𝒚𝒉 at the end of current period, consumers’ beliefs will remain 

unchanged in next period; if the public signal of firm 1 is 𝒚𝒍 at the end of current period, next 

period consumers’ beliefs will transit into state s-1 with probability 𝛒𝐬 (𝟎 < 𝛒𝐬 ≤ 𝟏) and 

remain in state s with probability 𝟏 − 𝛒𝐬. Call the trusted firm “incumbent firm” in state 𝐬 , the 

other firm “waiting firm” in state 𝐬. Let 𝐯𝐬, 𝐰𝐬 be (per period) average discounted expected 

payoffs of “incumbent firm” and “waiting firm” from state 𝐬 to state 0, respectively. 

(ii) state s-1: all consumers believe that only the “waiting firm” in state 𝐬, firm2, will high 

effort. If the public signal of firm 2 is 𝒚𝒉 at the end of current period, consumers’ beliefs will 

remain unchanged in next period; if the public signal of firm 2 is 𝒚𝒍 at the end of current 

period, next period consumers’ beliefs will transit into state s-2 with probability 𝛒𝐬−𝟏 (𝟎 <

𝛒𝐬−𝟏 ≤ 𝟏) and remain in state s with probability 𝟏 − 𝛒𝐬−𝟏. Again, call the trusted firm, firm 2, 

“incumbent firm” in state 𝐬 − 𝟏; the other firm, firm 1, “waiting firm” in state 𝐬 − 𝟏. Let 

𝐯𝐬−𝟏, 𝐰𝐬−𝟏 be average discounted expected payoffs of “incumbent firm” and “waiting firm” 

from state 𝐬 − 𝟏 to state 0, respectively. 

(iii) state 0: all firms are not to be trusted. Payoff pair of two firms is (𝐯𝟎,𝐰𝟎) = (𝟎, 𝟎). 

  

The above definition means that consumers trust the same one of two firms in state s, s-2, ... 

and trust the other firm in state s-1 s-3, ... And v1, v2, v3, …  denote the average payoff of 

incumbent firm from state 1, 2, 3, ... to state 0 respectively, while w1, w2, w3, … denote the 

average payoff of waiting firm from state 1, 2, 3, ...to state 0 respectively. To facilitate the 

presentation, we call a perfect public equilibrium with recursive beliefs as “recursive belief 

equilibrium”. The formal definition is as follows. 

 

Definition 2: A recursive belief equilibrium is a perfect public equilibrium where 

consumers and firms take the following strategies: (i) the consumers' strategies are in line with 

recursive beliefs; (ii) each firm exerts high effort if it is a “incumbent firm”, and exerts low 

effort if it is a "waiting firm” or if it is in state 0. 

 

We also call a recursive belief equilibrium “state s equilibrium” if the consumers' initial 

belief is at state s. The critical discount factor of stats s equilibrium, the minimum discount factor 

to support state s equilibrium, is denoted by δs. According to the definition of recursive belief, it 

is obviously that if state s equilibrium exists, state s' equilibrium exists for any s′ < 𝑠. Thus the 

critical discount factor  δs is non-decreasing in s. 

Obviously, “state 0 equilibrium” always exists for any discount factor. It is just infinite 

repetition of static game Nash equilibrium. 

In any state s (s ≥  1), it is clearly rational for consumers taking recursive beliefs given 

firms’ strategies. The question is: is it optimal for the incumbent firm to choose high effort given 



9 
 

the consumers’ and waiting firm's strategy? Here we look at the trade-off faced by the incumbent. 

According to Abreu, Pearce and Stacchetti (1990), the average discounted payoff of the 

incumbent,  vs , can be decomposed into a weighted sum of current period payoff and 

continuation payoffs from next period, weighted by discount factor: 

                   𝑣𝑠 = (1 − 𝛿)(𝑢 − 𝑐) + 𝛿{[1 − (1 − μh)ρs]𝑣𝑠 + (1 − μh)ρs𝑤𝑠−1}                 (1) 

The first term on the right of (1) is the current period payoff of the incumbent firm when exerts 

high-effort, the second item is expected continuation payoffs from next period when exerts high 

effort, discounted to current period. (1 − μh)ρs is the probability to be punished in next period 

when the incumbent firm exerts high effort, i.e., the transition probability from state s to state 

s-1.  [1 − (1 − μh)ρs] is the probability of remaining in state s when the incumbent exerts high 

effort. Note that the incumbent firm in state s is just the waiting firm in state s-1. 

    Accordingly, to make optimal the incumbent choosing high effort, the following incentive 

compatibility conditions is necessary: 

                     𝑣𝑠 ≥ (1 − 𝛿)𝑢 + 𝛿{[1 − (1 − μl)ρs]𝑣𝑠 + (1 − μl)ρs𝑤𝑠−1}                           (2) 

Should the incumbent deviate to low effort, the cost savings in current period is c, but in the next 

period the transition probability from state  s  to state s-1 would increase from 

(1 − μh)ρs to (1 − μl)ρs . Inequality (2) means that such a deviation is not profitable. It is easy to 

prove that the incumbent's payoff is maximized when (IC) condition binds.  

    In addition, in state s the waiting firm has no incentive problem and is just waiting passively: 

waiting for the failure of the incumbent. The waiting firm’s average payoff is: 

                       𝑤𝑠 = 𝛿{[1 − (1 − μh)ρs]𝑤𝑠 + (1 − μh)ρs𝑣𝑠−1}                                              (3) 

According to (1), (2) and (3), there are multiple equilibria for state s since incentive 

compatibility condition need not bind. The following Proposition 3 gives closed solutions 

to vs , ws  and optimal probability of punishment ρs  when the incumbent firm’s payoff is 

maximized, (IC) binds, in all possible state s equilibria. 

 

Proposition 3: If state  𝐬  (𝒔 ≥ 𝟏) equilibrium exists，the following results hold when the 

incumbent firm’s equilibrium payoff is maximized,  

𝐯𝐬(𝜹) = 𝐯 ≡ 𝐮 − 𝐜 −
(𝟏 − 𝛍𝐡)𝐜

(𝛍𝐡 − 𝛍𝐥)
                                                              

                   𝛒𝐬(𝜹) =

{
  
 

  
 𝛈(𝜹) [𝟏 − (

𝟏 − 𝛍𝐡
𝐫

)
𝐬−𝟏

]，                𝐢𝐟  𝐬 ≥ 𝟐 𝐚𝐧𝐝 𝐫 ≠ 𝟏 − 𝛍𝐡

(𝑠 − 1)(1 − δ)

δr
 ,                           if  s ≥ 2 and r = 1 − μh

(𝟏 − 𝛅)

𝛅𝐫
 ,                                         𝐢𝐟  𝐬 = 𝟏                          

 

        

          𝐰𝐬(𝜹) = 𝒘𝒔
∗ ≡

{
 
 
 
 

 
 
 
 (𝟏− 𝛍𝐡) [𝟏 − (

𝟏 − 𝛍𝐡
𝐫 )

𝐬−𝟏

] 𝐯

[𝐫 − (𝟏 − 𝛍𝐡)] + (𝟏 − 𝛍𝐡) [𝟏 − (
𝟏 − 𝛍𝐡
𝐫 )

𝐬−𝟏

]

   , 𝐢𝐟 𝐬 ≥ 𝟐, 𝐫 ≠ 𝟏 − 𝛍𝐡

(1 − μh)(𝑠 − 1)v

𝑟 + (1 − μh)(𝑠 − 1)
    ,                                                if  𝐬 ≥ 𝟐, r = 1 − μh

(𝟏 − 𝛍𝐡)𝐯

𝒓 + (𝟏 − 𝛍𝐡)
 ,                                                                𝐢𝐟  𝐬 = 𝟏                      
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where 𝐫 ≡
𝐯(𝛍𝐡−𝛍𝐥)

𝐜
 , 𝛈(𝜹) ≡ {

(𝟏−𝛅)

𝛅
∙

𝟏

[𝐫−(𝟏−𝛍𝐡)]
} . 

 

Proof: 

Combine (1) and (2), we have 

(1 − δ)𝑐

δ
≤ (μh − μl)ρs(vs −ws−1)                                                           (4) 

It is equivalent to 

                                             ws−1 ≤ vs −
(1 − δ)𝑐

δ(μh − μl)ρs
                                                                                    

Substitute above inequality for ws−1 in equation (1), we can obtain 

vs ≤ (1 − δ)(𝑢 − c) + δ {[1 − (1 − μh)ρs]vs + (1 − μh)ρs [vs −
(1 − δ)c

δ(μh − μl)ρs
]} 

Rearrange it, 

                                     vs ≤ 𝑢 − c −
(1 − μh)𝑐

(μh − μl)
                                                                                         

Obviously vs is maximized when IC condition binds, 

          vs = 𝑢 − c −
(1 − μh)𝑐

(μh − μl)
≡ v                     (s ≥ 1)         

                         ws−1 = [𝑢 − c −
(1 − μh)𝑐

(μh − μl)
] −

(1 − δ)𝑐

δ(μh − μl)ρs
                                           (5) 

And by (3), we have 

ws =
δ(1 − μh)ρs ∙ v

[1 − δ + δ(1 − μh)ρs]
                                

Or equivalently, for s ≥ 2 

                   ws−1 =
δ(1 − μh)ρs−1 ∙ v

1 − δ + δ(1 − μh)ρs−1
                                                                  (6) 

Combine (5) and (6) , 

δ(1 − μh)ρs−1 ∙ v

1 − δ + δ(1 − μh)ρs−1
= v −

(1 − δ)𝑐

δ(μh − μl)ρs
 

Thus, 

                  ρs =
1

v(μh − μl)/c
∙ [(1 − μh)ρs−1 +

1− δ

δ
] ≡

1

r
 ∙ [(1 − μh)ρs−1 +

1 − δ

δ
]               (7)  

Moreover, when (IC) condition binds, (4) becomes 

(1 − δ)𝑐

δ
= (μh − μl) ρs(vs −ws−1)                                           (8) 

By initial conditions v1 = v,  w0 = 0 and (8), we have 

𝜌1
∗ =

(1 − δ)𝑐

δ(μh − μl)v
≡
(1 − δ)

δ𝑟
 

When s = 2 , v2 = v,  w1 = 0 , by (8) we obtain 

𝜌2
∗ = 𝜌1

∗    
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And from (3) we have 

𝑤2
∗ =

δ(1 − μh)𝜌2
∗ ∙ v

[1 − δ + δ(1 − μh)𝜌2
∗]
=

(1 − μh)v

𝑟 + (1 − μh)
 

When s = 3 , v3 = v,  w2 = 𝑤2
∗ , by (8) we obtain 

𝜌3
∗ =

(1 − δ)𝑐

δ(μh − μl)(v − 𝑤2
∗)
= {

(1 − δ)

δ
∙

1

[r − (1 − μh)]
} {1 − [

(1 − μh)

𝑟
]

2

} 

𝑤3
∗ =

δ(1 − μh)𝜌3
∗ ∙ v

[1 − δ + δ(1 − μh)𝜌3
∗]
=

(1 − μh)[𝑟 + (1 − μh)]v

r2 + (1 − μh)[𝑟 + (1 − μh)]
 

When s = 4 , v4 = v,  w3 = 𝑤3
∗ , by (8) we obtain 

𝜌4
∗ =

(1 − δ)𝑐

δ(μh − μl)(v − 𝑤3
∗)
=
(1 − δ)

δ

[r2 + (1 − μh)[𝑟 + (1 − μh)]]

r3
 

= {
(1 − δ)

δ
∙

1

[r − (1 − μh)]
} {1 − [

(1 − μh)

𝑟
]

3

}                           

Solving difference equation on ρs , (7), with initial condition 𝜌2
∗ =

(1−δ)

δ𝑟
 , we obtain, for s ≥ 2 

ρs = 𝜌𝑠
∗ ≡

{
 
 

 
 η(𝛿) [1 − (

1 − μh
r

)
s−1

]，      if  r ≠ 1 − μh

(𝑠 − 1)(1 − δ)

δr
 ,                          if  r = 1 − μh 

 

Where r ≡
v(μh−μl)

c
 , η(𝛿) ≡ {

(1−δ)

δ
∙

1

[r−(1−μh)]
} . 

    Therefore, for s ≥ 2 

 ws =
δ(1 − μh)ρs ∙ v

[1 − δ + δ(1 − μh)ρs]
                                                                       

                                 =

{
  
 

  
 (1 − μh) [1 − (

1 − μh
r )

s−1

] v

[r − (1 − μh)] + (1 − μh) [1 − (
1 − μh
r )

s−1

]

   ,       if  r ≠ 1 − μh

(1 − μh)(𝑠 − 1)v

𝑟 + (1 − μh)(𝑠 − 1)
    ,                                                    if  r = 1 − μh

                  

Q.E.D 

 

By Proposition 3, the maximal payoff that the incumbent firm can obtain in any recursive 

belief equilibrium is less than the maximal feasible payoff (v < 𝑢 − 𝑐) even δ → 1. Folk Theorem 

fails here because there are short-run players and uncertainty in production process, punishment 

is eventually unavoidable to maintain firm’s incentive to exert high effort although consumers 

know that on the equilibrium path bad signal comes only from bad luck. And 𝑤𝑠
∗  is a weighted 

sum of v and 0, where the weight depends on belief state 𝑠 . 

Taking mixed strategy does not improve the incumbent firm’s payoff, because consumers’ 
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expected payoff will be negative when the incumbent firm exerts low effort with positive 

probability in the equilibrium path, “Buy” will not be an optimal response then. 

Note that r ≡
v(μh−μl)

c
 , so “r = 1 − μh " is equivalent to "u − c =

2(1−μh)c

(μh−μl)
 ". For s ≥ 2, let 

δs ≡

{
 
 
 
 

 
 
 
 

1

1 + r
 ,                                                 if  𝑠 = 1                                           

1

1 +
[r − (1 − μh)]

[1 − (
1 − μh
r )

s−1

]

 ,                    if  s ≥ 2 and  u − c ≠
2(1 − μh)c

(μh − μl)

𝑠 − 1

r + s − 1
 ,                                              if  s ≥ 2 and  u − c =

2(1 − μh)c

(μh − μl)

 

 

   Proposition 4: Necessary and sufficient conditions for the existence of state 𝐬 equilibria. 

(i) State 𝐬 (𝟏 ≤  𝐬 <  ∞ ) equilibrium exists if and only if 𝐮 − 𝐜 >
(𝟏−𝛍𝐡)𝐜

(𝛍𝐡−𝛍𝐥)
  and 𝛅 ≥ 𝜹𝒔 . 

(ii) State  ∞  equilibrium exists if and only if  𝐮 − 𝐜 >
𝟐(𝟏−𝛍𝐡)𝐜

(𝛍𝐡−𝛍𝐥)
 and 𝛅 ≥

𝟏

r+μh
  . 

(iii) Only state 𝟎  equilibrium exists if  𝐮 − 𝐜 <
(𝟏−𝛍𝐡)𝐜

(𝛍𝐡−𝛍𝐥)
  or 𝛅 < 𝜹𝟏 . 

     

Proof: 

By the proof of Proposition 3, a necessary condition for the existence of state s equilibrium is: 

v ≡ 𝑢 − c −
(1 − μh)𝑐

(μh − μl)
> 0 

It is equivalent to u >
(1−μl)c

(μh−μl)
  . 

    Moreover, when s = 1, the minimum δ satisfying inequality (4) could be obtained by letting 

ρ1 = 1 and (4) binds. Thus the critical discount factor for state 1 equilibrium is: 

𝛿1 =
1

1 +
v(μh − μl)

𝑐

≡
1

1 + r
 

When s ≥ 2 , the existence of state s equilibrium requires ρs ≤ 1. Hence for r ≠ 1 − μh , or 

equivalently for u − c ≠
2(1−μh)c

(μh−μl)
 , 

{
(1 − δ)

δ
∙

1

[r − (1 − μh)]
} [1 − (

1 − μh
r

)
s−1

] ≤ 1 

⇔          δ ≥
1

1 +
[r − (1 − μh)]

[1 − (
1 − μh
r )

s−1

]

= 𝛿𝑠                                               

Hence,  𝛿∞ =
1

r+μh
< 1 and state  ∞ equilibrium exists if  r > 1 − μh or equivalently   u − c >
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2(1−μh)c

(μh−μl)
 .  𝛿∞ = lim𝑠→∞ 𝛿𝑠 = 1 and state ∞ equilibrium does not exist for δ < 1 if r < 1 − μh . 

    For r = 1 − μh or equivalently  u − c =
2(1−μh)c

(μh−μl)
 , 

                𝜌𝑠
∗ =

(𝑠−1)(1−δ)

δr
≤ 1, 

⇔          δ ≥
𝑠 − 1

r + s − 1
= 𝛿𝑠 

Moreover, 𝛿∞ = lim𝑠→∞ 𝛿𝑠 = 1 and state ∞ equilibrium does not exist for δ < 1 if r = 1 − μh .  

The conclusions hold by the definition of δs . 

Q.E.D 

 

By Proposition 3 and 4, the critical discount factor  𝛿1 = 𝛿2  , optimal probability of 

punishment 𝜌2
∗ = 𝜌1

∗ . Because in “state 2 equilibrium”, the incumbent firm will become a 

waiting firm in “state 1 equilibrium” and its continuation payoff will be 0 after punished in state 2; 

while in state 1 equilibrium, the incumbent firm will never be trusted and its continuation payoff 

will also be 0 after punished in state 1. The incentives faced by them are the same, so are optimal 

punishment probabilities and the critical discount factors. However, 𝛿4 ≠ 𝛿3, 𝜌4
∗ ≠ 𝜌3

∗ . The 

incumbent firm in state 4 equilibrium has another chance, to be incumbent in state 2, and the 

incumbent firm in state 3 equilibrium has also another chance, to be incumbent in state 1; but 

continuation payoffs of the two after being punished are different, hence different for optimal 

probabilities of punishment and critical discount factors. In state 4 equilibrium the incumbent 

firm’s continuation payoff after being punished, 𝑤3
∗ , depends on the waiting time in state 3, 

which in turn depends on the optimal probability of punishment on the incumbent firm in state 3; 

while in state 3 equilibrium the incumbent firm’s continuation payoff after being punished, 𝑤2
∗ , 

depends on the waiting time in state 2, which in turn depends on the optimal probability of 

punishment on the incumbent firm in state 2. Nevertheless, the optimal probability of 

punishment on the incumbent firm in state 3 is different from that of state 2, for the incumbent 

firm in state 3 will have another chance, to be incumbent in state 1, while the incumbent in state 

2 will be no chance after being punished. 

More generally, by Proposition 3 and 4, we have the following corollary. 

 

Corollary 5: For all 𝐬 ≥ 𝟐 , 

(i) The critical discount factor 𝜹𝒔 is strictly increasing in s. 

    (ii) The optimal probability of punishment  𝝆𝒔
∗  is strictly increasing in s. 

    (iii) The equilibrium payoff of the waiting firm  𝒘𝒔
∗  is strictly increasing in s.. 

 

Proof: 

(i) If  s ≥ 2 and r > 1 − 𝜇ℎ ,   
𝑟−(1−μh)

1−(
1−μh
r
)
s−1  will be strictly decreasing in s, 

hence  by definition of 𝛿𝑠 , 𝛿𝑠 will be strictly increasing in s. If   s ≥ 2 and r < 1 − 𝜇ℎ  , 

 
𝑟−(1−μh)

1−(
1−μh
r
)
s−1  will also be strictly decreasing in s，hence 𝛿𝑠 strictly increasing in s. If  s ≥ 2 and r =
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1 − μh  , δs =
𝑠−1

r+s−1
  will obviously be strictly increasing in s. 

(ii) If s ≥ 2 and r = 1 − μh  , 𝜌𝑠
∗  =

(𝑠−1)(1−δ)

δr
 will obviously be strictly increasing in s. 

If s ≥ 2 and r ≠ 1 − μh , 

d𝜌𝑠
∗

ds
= −η(𝛿) (

1 − μh
r

)
s−1

ln (
1 − μh
r

) 

Thus when  1 − μh > 𝑟 , η(𝛿) ≡ {
(1−δ)

δ
∙

1

[r−(1−μh)]
} < 0 , ln (

1−μh

r
) > 0 , 

d𝜌𝑠
∗

ds
> 0 ; when  1 −

μh < 𝑟 , η > 0 ，ln (
1−μh

r
) < 0 ，

d𝜌𝑠
∗

ds
> 0 . 

(iii) If s ≥ 2 and r = 1 − μh , 𝑤𝑠
∗   =

(1−μh)(s−1)v

r+(1−μh)(s−1)
 will obviously be strictly increasing in s. 

If s ≥ 2 and r ≠ 1 − μh , 

 𝑤𝑠
∗  =

(1 − μh) [1 − (
1 − μh
r )

s−1

] v

[r − (1 − μh)] + (1 − μh) [1 − (
1 − μh
r )

s−1

]

 

                          =
v

[r − (1 − μh)]

(1 − μh) [1 − (
1 − μh
r )

s−1

]

+ 1
 

As in (i), 
[r−(1−μh)]

[1−(
1−μh
r
)
s−1

]
  is strictly decreasing in s, hence 𝑤𝑠

∗ is strictly increasing in s. 

Q.E.D 

 

Corollary 5 reveals interesting dynamics on firm’s reputation. When we consider the timing 

of the game in reality, then for any state s equilibrium, it must be first to experience the state s, 

then the state s-1, s-2... 1, 0 in turn. So the optimal probability of punishment will decrease in the 

process of equilibrium state. Consumers are more and more "tolerant", or less and less sensitive 

to incumbent firm’s quality signal as from state s to s-1…2, 1. It is not any kind of "inertia" of 

consumers’ belief due to long-term success of firm (such as in Crips, Mailath and Samuelson, 

2004), but because firms have less and less opportunities to be incumbent again, which itself 

constitutes a growing potential punishment. For the same reason, the critical discount factor to 

support state s equilibrium is strictly decreasing in the process of equilibrium state. 

Moreover, from state s to state 1, the payoff of waiting firm is decreasing in the process of 

equilibrium state. Because the payoff of waiting firm is just from waiting for the failure of the 

incumbent firm and substitute it. With the state proceeds from s to 2, this opportunity is getting 

smaller. 
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5 Perfect Public Equilibrium Payoff Set 

Consider a Euclidean Plane, where horizontal coordinate represents firm 1’s payoff, vertical 

coordinate represents firm 2’s payoff. Since consumers are short-run players and maximize 

current period payoff, the joint payoff of two firms in each period cannot be more than u − c. 

The feasible payoff set of two firms is therefore a triangle in this plane: {(v1, v2): 0 ≤ v1 ≤ u − c,

0 ≤ v2 ≤ u− c, 0 ≤ v1 + v2 ≤ u − c} . 

Define  V̅s  as the pentagon connected by following vertices: 

 (0,0), (v, 0), (0, v), (v,𝑤𝑠
∗), (𝑤𝑠

∗, v)  , where  (v, 𝑤𝑠
∗), (𝑤𝑠

∗, v) are payoff profiles for state s 

equilibrium when the incumbent firm’s payoff is maximized and firm 1 or 2 is the incumbent firm 

respectively; (v, 0), (0, v) are payoff profiles for state 1 equilibrium when firm 1 or 2 is the 

incumbent firm respectively and (0,0) is payoff profile for state 0 equilibrium. Note that points 

at the connected lines and inner regions could be supported as equilibrium payoffs through a 

public randomization on above five points.  

 �̅�𝑠  degenerates to a single point (0,0) when s = 0 . And when s = 1, V̅s  degenerates to a 

triangle since 𝑤1
∗ = 0 . However, by proposition 3 and 4, state 2 equilibrium exists whenever 

state 1 equilibrium exists. Thus we omit V̅1  

By proposition 3 and 4,  �̅�𝑠   are as following Figure 2 (shaded region) when state s → ∞. 

v∞ +w∞ = μh − c  if  v >
(1−μh)𝑐

(μh−μl)
 , so the boundary of feasible payoff set is reached. 

Otherwise, v ≤
(1−μh)𝑐

(μh−μl)
,  lim𝑠→∞𝑤𝑠

∗ = v , v + lim𝑠→∞𝑤𝑠
∗ = 2v < μh − c , thus the boundary of 

feasible payoff set may not be supported as recursive belief equilibrium. 

 

(Insert Figure 2 here) 

 

More generally, for 2 ≤ s < ∞ ,  V̅s are as following Figure 3. 

 

(Insert Figure 3 here) 

 

    Our purpose is to prove that,  V̅s = 𝐸(𝛿) for any δ and  0 ≤ s ≤ ∞, where 𝐸(𝛿) is the 

payoff set of perfect public equilibria of the game given δ . Thus any point similar to A in Figure 3 

could not be an PPE payoff profile, and any point similar to B, C in Figure 3 would not be PPE 

payoff profiles if they could not be supported by recursive equilibrium payoff profiles. We first 

prove an important lemma before providing the critical proposition and its proof. 

 

Lemma 6: for any   { 𝒗𝟏, 𝒗𝟐} ∈ 𝑬(𝜹) , there exist   { 𝒘𝟏(𝒚𝟏),𝒘𝟐(𝒚𝟐)} ∈ 𝑬(𝜹) and  𝐚 ∈ 𝐀 

such that, (𝐢, 𝐣 = 𝟏, 𝟐) 

  𝒗𝒊 = (𝟏 − 𝜹)𝒈𝒊(𝒂𝒊, 𝜶−𝒊) + 𝜹∑ 𝝅𝒊(𝒂𝒊, 𝜶𝑺𝑹,𝒊)𝒘𝒊(𝒚𝒊)
𝒚𝒊∈{𝑦ℎ,𝑦𝑙,𝑦𝑛𝑢𝑙𝑙}

   𝒇𝒐𝒓 𝒂𝒏𝒚 𝒂𝒊 𝒔. 𝒕. 𝜶𝒊(𝒂𝒊) > 𝟎 
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And if 𝒂𝒊 = 𝒂𝒉 , 𝒂𝒋 = 𝒂𝒍 , there will be 𝒗𝒋 = 𝜹∑ 𝝅𝒊(𝒂𝒊, 𝜶𝑺𝑹,𝒊)𝒘𝒋(𝒚𝒊)  𝒚𝒊 . 

 

Proof: 

According to APS (1990), for any   { 𝑣1, 𝑣2} ∈ 𝐸(𝛿) , there exist { 𝑤𝑖(𝑦𝑖 , 𝑦𝑗),𝑤𝑗(𝑦𝑖 , 𝑦𝑗)} ∈

𝐸(𝛿) and a ∈ A such that 

𝑣𝑖 = (1 − 𝛿)𝑔𝑖(𝑎𝑖 , 𝛼−𝑖) + 𝛿∑ 𝜋𝑦(𝑎𝑖, 𝑎𝑗 , 𝛼𝑆𝑅)𝑤𝑖(𝑦𝑖 , 𝑦𝑗)
𝑦

 

𝑓𝑜𝑟 𝑎𝑛𝑦 𝑎𝑖  𝑠. 𝑡. 𝛼𝑖(𝑎𝑖) > 0 

By assumption signals of two firms are independent, 𝜋𝑦(𝑎𝑖 , 𝑎𝑗 , 𝛼𝑆𝑅) = 𝜋𝑖(𝑎𝑖 , 𝛼𝑆𝑅,𝑖)𝜋𝑗(𝑎𝑗 , 𝛼𝑆𝑅,𝑗) , 

it follows that, 

                        𝑣𝑖  = (1 − 𝛿)𝑔𝑖(𝑎𝑖 , 𝛼−𝑖) + 𝛿∑ 𝜋𝑖(𝑎𝑖, 𝛼𝑆𝑅,𝑖)𝜋𝑗(𝑎𝑗 , 𝛼𝑆𝑅,𝑗)𝑤𝑖(𝑦𝑖 , 𝑦𝑗)
𝑦

      

                               = (1 − 𝛿)𝑔𝑖(𝑎𝑖, 𝛼−𝑖) + 𝛿∑ 𝜋𝑖(𝑎𝑖, 𝛼𝑆𝑅,𝑖)
𝑦𝑖

∑ 𝜋𝑗(𝑎𝑗 , 𝛼𝑆𝑅,𝑗)𝑤𝑖(𝑦𝑖 , 𝑦𝑗)
𝑦𝑗

 

≡ (1 − 𝛿)𝑔𝑖(𝑎𝑖 , 𝛼−𝑖) + 𝛿∑ 𝜋𝑖(𝑎𝑖 , 𝛼𝑆𝑅,𝑖)𝑤𝑖(𝑦𝑖)
𝑦𝑖

       

where 𝑤𝑖(𝑦𝑖) ≡ ∑ 𝜋𝑗(𝑎𝑗 , 𝛼𝑆𝑅,𝑗)𝑤𝑖(𝑦𝑖 , 𝑦𝑗)𝑦𝑗 . For j ≠ i , it can also be demonstrated that there 

exists 𝑤𝑗(𝑦𝑗) such that 

𝑣𝑗 = (1 − 𝛿)𝑔𝑗(𝑎𝑗 , 𝛼−𝑗) + 𝛿∑ 𝜋𝑗(𝑎𝑗 , 𝛼𝑆𝑅,𝑗)𝑤𝑗(𝑦𝑗)
𝑦𝑗

 

By Proposition 3 we know that  "ai = ah  and aj = al" could be supported as perfect public 

equilibrium. If ai = ah  and aj = al , πj(aj, αSR,j) = 1 for yj = ynull , gj(aj, α−j) = 0 , for it could 

not be on the equilibrium path that “Consumers choose Buy when Firm j exert Low Effort”, 

i.e., "aj = al , αSR,j > 0 for aSR,j = Buy" could not be on the equilibrium path. It follows that 

𝑣𝑗 = 𝛿𝑤𝑗(𝑦𝑛𝑢𝑙𝑙) 

𝑤𝑗(𝑦𝑛𝑢𝑙𝑙) should also be an equilibrium payoff by APS(1990), and firm j is just a waiting firm in 

current period, thus for each public signal of  i,  𝑦𝑖 ∈ {𝑦h, 𝑦𝑙} ， there exists  𝑤𝑗(𝑦𝑖) such 

that { 𝑤𝑖(𝑦𝑖), 𝑤𝑗(𝑦𝑖)} ∈ 𝐸(𝛿) and 

𝑤𝑗(𝑦𝑛𝑢𝑙𝑙) =∑ 𝜋𝑖(𝑎𝑖, 𝛼𝑆𝑅,𝑖)𝑤𝑗(𝑦𝑖)
𝑦𝑖

 

Thus when 𝑎𝑖 = 𝑎ℎ  , 𝑎𝑗 = 𝑎𝑙 , 

𝑣𝑗 = 𝛿∑ 𝜋𝑖(𝑎𝑖, 𝛼𝑆𝑅,𝑖)𝑤𝑗(𝑦𝑖)      
𝑦𝑖

 

  Q.E.D 

 

The intuition behind Lemma 6 is actually very simple. The continuation payoffs of firms after 

realization of public signals could be interpreted as implicit incentive contracts between firms and 

consumers. Public signals of two firms are independent of each other, only depending on their 

own actions (effort level), thus the signal of each firm is a sufficient statistics for its own action. It 

is unnecessary to make a firm’s continuation payoff depend on the other firm’s public signals, 

such as tournaments and other forms of comparative performance evaluation.  

Now we present the critical proposition. The following Proposition 7 constitutes a complete 

description of payoff sets of public perfect equilibria of the game. And it shows that each point 
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on the boundary of the PPE payoff set can be generated by a class of equilibria with recursive 

nature, recursive belief equilibrium, or their convex combinations. 

 

Proposition 7:  

(i) 𝐢𝐟 𝐮 − 𝐜 ≤
(𝟏−𝛍𝐡)𝐜

(𝛍𝐡−𝛍𝐥)
 , 𝑬(𝜹) =  �̅�𝟎 = {𝟎,𝟎} for any 𝛅 ∈ [𝟎, 𝟏) . 

(ii)  𝐢𝐟   𝐮 − 𝐜 >
(𝟏−𝛍𝐡)𝐜

(𝛍𝐡−𝛍𝐥)
 ,  𝑬(𝜹) = �̅�𝐬  for  𝛅 ∈ [𝜹𝒔, 𝜹𝒔+𝟏) , 𝟎 ≤  𝐬 < ∞ , where   𝛿0 = 0 . 

Moreover, 𝐢𝐟  𝐮 − 𝐜 >
𝟐(𝟏−𝛍𝐡)𝐜

(𝛍𝐡−𝛍𝐥)
 , 𝜹∞ =

𝟏

𝐫+𝛍𝐡
< 𝟏 𝐚𝐧𝐝 𝐄(𝜹) = �̅�∞  for 𝛅 ∈ [𝜹∞, 𝟏) ; if 

(𝟏−𝛍𝐡)𝐜

(𝛍𝐡−𝛍𝐥)
< 𝐮 − 𝐜 ≤

𝟐(𝟏−𝛍𝐡)𝐜

(𝛍𝐡−𝛍𝐥)
 , 𝜹∞ → 𝟏. 

 

The whole proof will be divided into four steps. Step 1: in all perfect public equilibria, the 

maximal payoff of firm 𝑖 (𝑖 = 1,2) given δ is equal to 0 or the incumbent firm’s maximal payoff 

in recursive belief equlibria,  max𝑣𝑖∈𝐸(𝛿) 𝑣𝑖 = v or max𝑣𝑖∈𝐸(𝛿) 𝑣𝑖 = 0. This means that any point 

similar to point A in Figure 3 cannot be a PPE payoff. Meanwhile, if state ∞ equilibrium exists, 

then the recursive belief equilibria constitute a complete description of perfect public equilibrium. 

Step 2: in all perfect public equilibria the maximal payoff of firm 𝑗 (𝑗 = 1,2), given  δ ∈

[𝛿𝑠, 𝛿𝑠+1) , 2 ≤  s < ∞ and the other firm i’s payoff equal to v, is equal to the waiting firm’s 

payoff in recursive belief equlibirum, i.e,  𝑤𝑠
∗ = max𝑣𝑗∈𝐸(𝛿) 𝑣𝑗  𝑠. 𝑡. 𝑣𝑖 = 𝑣, 𝑖 ≠ 𝑗 . Remember 

that 𝛿1 = 𝛿2 . This means that any point similar to point B in Figure 3 will not be a PPE payoff if it 

could not be supported as a recursive belief equilibrium payoff. Step 3: in all recursive belief 

equilibria, maximal joint payoff is equal to v + 𝑤𝑠
∗ or 0 for δ ∈ [𝛿𝑠, 𝛿𝑠+1) , 2 ≤  s < ∞, i.e., 

max(𝑣1,𝑣2)∈�̅�𝑠 𝑣1 + 𝑣2 = v + 𝑤𝑠
∗ or max(𝑣1,𝑣2)∈�̅�𝑠 𝑣1 + 𝑣2 = 0 . Step 4: in all perfect public 

equilibria, maximal joint payoff is equal to v + 𝑤𝑠
∗ or 0 for δ ∈ [𝛿𝑠, 𝛿𝑠+1) , 2 ≤  s < ∞, i.e., 

max(𝑣1,𝑣2)∈𝐸(𝛿) 𝑣1 + 𝑣2 = v +𝑤𝑠
∗ or 0. This means that any point similar to point C in Figure 3 

will not be a PPE payoff if it could not be supported as a recursive belief equilibrium payoff. 

The intuition for Step 4 is as follows. Due to Lemma 6 and step 1-3, to obtain a joint payoff 

over v + 𝑤𝑠
∗ , the only case needed to be considered is: at least in one period, two firms are both 

trusted and exert high efforts. Without loss of generality, we can regard that period as the first 

period of the repeated game. Again by Lemma 6, comparative performance evaluation would not 

generate higher payoff, therefore we need only consider the following situation. Proportion 

m (0 < 𝑚 < 1) consumers only trust firm 1 and buy from 1, and will punish firm 1 with a certain 

probability after a low-quality signal, namely exit the market. Proportion 1-m consumers only 

trust firm 2 and buy form 2, and will punish firm 2 in a similar way. It is not difficult to prove that 

the highest payoff of firm 1 in a PPE is mv, the highest payoff of firm 2 in a PPE is (1-m) v, and the 

highest joint payoff is only v. 

By Proposition 7 and the definition of  V̅s , δ ∈ [0, 1)  can be divided into countable infinite 

number of sub-intervals δ ∈ [𝛿𝑠 , 𝛿𝑠+1), such that in each subinterval the maximal possible PPE 

payoff  𝑣𝑠 = v,𝑤𝑠 = 𝑤𝑠
∗ is independent of δ, so  V̅s is unchanged in each subinterval, and thus 

𝐸(𝛿) . Discontinuity occurs only on the boundaries among subintervals, 𝛿 = 𝛿𝑠 , s = 2,3,4…  

Note that 𝛿1 = 𝛿2. Therefore the following corollary is obvious. 
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Corollary 8：if 𝐮 − 𝐜 >
(𝟏−𝛍𝐡)𝐜

(𝛍𝐡−𝛍𝐥)
  , 𝑬(𝜹) is upper hemicontinuous for all 𝛅 ∈ [𝟎, 𝟏) , and 

𝑬(𝜹) is lower hemicontinuous on 𝛅 ∈ [𝟎, 𝟏) except on countable infinite number of 

points, {𝜹: 𝜹 = 𝜹𝒔,   𝒔 = 𝟐, 𝟑,… } . 

 

In the remaining part of this section, we will give the complete proof of Proposition7. 

 

Proof of Proposition 7. 

Step 1:  𝐦𝐚𝐱 𝒗𝒊 = 𝐯 , 𝐨𝐫  𝐦𝐚𝐱 𝒗𝒊 = 𝟎, 𝐢 = 𝟏, 𝟐  for any   {𝒗𝟏, 𝒗𝟐} ∈ 𝑬(𝜹), 𝜹 ∈ [𝟎,𝟏) . 

 �̅�∞ = 𝐄(𝜹)  for (i) 𝐮 − 𝐜 >
𝟐(𝟏−𝛍𝐡)𝐜

(𝛍𝐡−𝛍𝐥)
, 𝛅 ≥

𝟏

𝐫+𝛍𝐡
  , or (ii)  

(𝟏−𝛍𝐡)𝐜

(𝛍𝐡−𝛍𝐥)
<  𝐮 − 𝐜 <

𝟐(𝟏−𝛍𝐡)𝐜

(𝛍𝐡−𝛍𝐥)
 , 𝜹 → 𝟏 . 

Assume 𝑣𝑖
∗ =  max

 {𝒗𝟏,𝒗𝟐}∈𝑬(𝜹)
𝑣𝑖 > 0, 𝑖 = 1,2 , it follows that firm i will exert High effort in 

current period and consumers will buy from firm i with some positive probability 0 < 𝑚𝑖 ≤ 1 .  

Let   𝛼𝑆𝑅,𝑖 = 𝜌𝑖,ℎ  𝑓𝑜𝑟 𝑎𝑆𝑅,𝑖 = 𝑁𝑜𝑡 𝐵𝑢𝑦 𝑎𝑛𝑑 𝑦𝑖 = 𝑦ℎ ,   𝛼𝑆𝑅,𝑖 = 1 − 𝜌𝑖,ℎ  𝑓𝑜𝑟 𝑎𝑆𝑅,𝑖 =

𝐵𝑢𝑦 𝑎𝑛𝑑 𝑦𝑖 = 𝑦ℎ ,  𝛼𝑆𝑅,𝑖 = 𝜌𝑖,𝑙 𝑓𝑜𝑟 𝑎𝑆𝑅,𝑖 = 𝑁𝑜𝑡 𝐵𝑢𝑦 𝑎𝑛𝑑 𝑦𝑖 = 𝑦𝑙 ,   𝛼𝑆𝑅,𝑖 = 1 − 𝜌𝑖,𝑙 𝑓𝑜𝑟 𝑎𝑆𝑅,𝑖 =

𝐵𝑢𝑦 𝑎𝑛𝑑 𝑦𝑖 = 𝑦𝑙（0 ≤ 𝜌𝑖ℎ, 𝜌𝑖𝑙 ≤ 1）. 

In our model, i’s current period payoff when exert High Effort,  𝑔𝑖ℎ  , could be represented 

as  𝑔𝑖𝐻 = 𝑚𝑖(𝑢 − 𝑐),  and i’s current period payoff when is trusted but exert Low Effort, 

is 𝑔𝑖𝑙 = 𝑚𝑖𝑢 . By Lemma 6, it follows that, for any  𝑣𝑖 ∈ 𝐸(𝛿), there exists 𝑤𝑖ℎ, 𝑤𝑖𝑙 ∈ 𝐸(𝛿) such 

that 

𝑣𝑖 = (1 − 𝛿)𝑚𝑖(𝑢 − 𝑐)

+ 𝛿{[𝜇ℎ(1 − 𝜌𝑖,ℎ)𝑤𝑖ℎ + 𝜇ℎ𝜌𝑖,ℎ𝑤𝑖𝑙]

+ [(1 − 𝜇ℎ)(1 − 𝜌𝑖,𝑙)𝑤𝑖ℎ + (1 − 𝜇ℎ)𝜌𝑖𝑙𝑤𝑖𝑙]}       (9) 

𝑣𝑖 ≥ (1 − 𝛿)𝑚𝑖𝑢

+ 𝛿{[𝜇𝑙(1 − 𝜌𝑖,ℎ)𝑤𝑖ℎ + 𝜇𝑙𝜌𝑖,ℎ𝑤𝑖𝑙]

+ [(1 − 𝜇𝑙)(1 − 𝜌𝑖,𝑙)𝑤𝑖ℎ + (1 − 𝜇𝑙)𝜌𝑖,𝑙𝑤𝑖𝑙]}       (10) 

Combine (9), (10) we have 

(1 − δ)𝑚𝑖𝑐

δ
≤ (μh − μl)(𝜌𝑖,𝑙 − 𝜌𝑖,ℎ)(𝑤𝑖ℎ −𝑤𝑖𝑙) 

It is equivalent to 

                                             wil ≤ wih −
(1 − δ)𝑚𝑖𝑐

δ(μh − μl)(𝜌𝑖,𝑙 − 𝜌𝑖,ℎ)
                     (11)                         

Similar to proof of Proposition 3 we obtain, 

𝑣𝑖 ≤ (1 − δ)𝑚𝑖(𝑢 − c)

+ δ{[𝜇ℎ(1 − 𝜌𝑖,ℎ) + (1 − 𝜇ℎ)(1 − 𝜌𝑖,𝑙)]𝑤𝑖ℎ

+ [𝜇ℎ𝜌𝑖,ℎ + (1 − 𝜇ℎ)𝜌𝑖𝑙] [wih −
(1 − δ)𝑚𝑖𝑐

δ(μh − μl)(𝜌𝑖,𝑙 − 𝜌𝑖,ℎ)
]} 

 = (1 − δ)𝑚𝑖(𝑢 − c) + δ𝑤𝑖ℎ − {
𝑚𝑖[𝜇ℎ𝜌𝑖,ℎ + (1 − 𝜇ℎ)𝜌𝑖𝑙]

(𝜌𝑖,𝑙 − 𝜌𝑖,ℎ)

(1 − δ)𝑐

(μh − μl)
} 

                          ≤ (1 − δ)𝑚𝑖(𝑢 − c) + δmax𝑣𝑖 − {
𝑚𝑖[𝜇ℎ𝜌𝑖,ℎ + (1 − 𝜇ℎ)𝜌𝑖𝑙]

(𝜌𝑖,𝑙 − 𝜌𝑖,ℎ)

(1 − δ)𝑐

(μh − μl)
}         (12) 

(12) hold for all 𝑣𝑖  , Hence 
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max
𝑚𝑖,𝜌𝑖,𝑙,𝜌𝑖,ℎ

𝑣𝑖 ≤ 𝑚𝑖(𝑢 − c) − {
𝑚𝑖[𝜇ℎ𝜌𝑖,ℎ + (1 − 𝜇ℎ)𝜌𝑖𝑙]

(𝜌𝑖,𝑙 − 𝜌𝑖,ℎ)

𝑐

(μh − μl)
} 

If 𝑢 − 𝑐 >
(1−𝜇𝐻)𝑐

(𝜇𝐻−𝜇𝐿)
  , it follows that 𝑚𝑖 = 1 and 𝜌𝑖,ℎ = 0 when 𝑣𝑖  is maximized. 

max
𝑚𝑖,𝜌𝑖,𝑙,𝜌𝑖,ℎ

𝑣𝑖 = (𝑢 − 𝑐) − (1 − 𝜇𝐻) (
𝑐

(𝜇𝐻 − 𝜇𝐿)
) ≡ v 

If 𝑢 − 𝑐 <
(1−𝜇𝐻)𝑐

(𝜇𝐻−𝜇𝐿)
 , 𝑚𝑖 = 0 , max𝑚𝑖,𝜌𝑖,𝑙,𝜌𝑖,ℎ 𝑣𝑖 = 0。 

     Moreover, by Proposition 4, when v >
(1−μh)𝑐

(μh−μl)
, δ >

1

r+μh
 , state ∞ equilibrium exists and 

𝑤∞ =
(1−𝜇ℎ)𝑐

(𝜇ℎ−𝜇𝑙)
 , 𝑣∞ +𝑤∞ = 𝑢 − 𝑐 . When   0 < v <

(1−μh)𝑐

(μh−μl)
  and 𝛿 → 1 ,  lim𝑠→∞𝑤𝑠 → v . In 

both cases the only differences between payoff set of recursive belief equilibrium, �̅�∞ , and 

feasible payoff set, {(𝑣1, 𝑣2): 0 ≤ 𝑣1 + 𝑣2 ≤ μh − c} , lie in regions of 𝑣1 > 𝑣 and 𝑣2 > 𝑣 . (See 

Figure 2.) However, 𝑣1 > 𝑣 or 𝑣2 > 𝑣 could not be supported as PPE payoffs by above proof. 

Thus �̅�∞ = 𝐸(𝛿) under these conditions. 

                             ∥ 

Step 2: for any 𝛅 ∈ [𝜹𝒔, 𝜹𝒔+𝟏) , 𝟐 ≤  𝐬 < ∞ , 𝐦𝐚𝐱 𝒋≠𝒊 𝒗𝒋 = 𝒘𝒔
∗  if  𝒗𝒊 = 𝐯, 𝐢 = 𝟏, 𝟐 . 

    By Step 1, 𝑚𝑖 = 1 , 𝜌𝑖,ℎ = 0 if 𝑣𝑖 = v. And there exists 𝑤𝑖𝐿 ∈ 𝐸(𝛿) s.t. (let ρ ≡ 𝜌𝑖𝑙) 

v = (1 − 𝛿)(𝑢 − 𝑐) + 𝛿{𝜇ℎv + (1 − 𝜇ℎ)[(1 − 𝜌)v + 𝜌𝑤𝑖𝑙]}  

v = (1 − 𝛿)𝑢 + 𝛿{𝜇𝑙v + (1 − 𝜇𝑙)[(1 − 𝜌)v + 𝜌𝑤𝑖𝑙]}           

There are three unknown variables, v , 𝜌, 𝑤𝑖𝑙 , for two equations5. Let 𝑤𝑖𝑙 be undetermined, we 

have 

v = 𝑢 − 𝑐 −
𝑐(1 − 𝜇𝐻)

(𝜇𝐻 − 𝜇𝐿)
 

𝜌 =
(1 − 𝛿)𝑐

𝛿(1 − 𝜇ℎ)(v − 𝑤𝑖𝑙)
 

The latter is equivalent to 

𝑤𝑖𝑙 = v −
(1 − 𝛿)𝑐

𝜌𝛿(1 − 𝜇ℎ)
                                         (13) 

Moreover, 𝑚𝑗 = 0 if 𝑣𝑖 = v. Hence  𝑎𝑗 = 𝑎𝑙 . By Lemma 6 there exists 𝑤𝑗𝐿 ≥ 0 s.t. {𝑤𝑖𝐿 , 𝑤𝑗𝐿} ∈

𝐸(𝛿) and, 

𝑣𝑗 = 𝛿{𝜇𝐻𝑣𝑗 + (1 − 𝜇𝐻)[(1 − 𝜌)𝑣𝑗 + 𝜌𝑤𝑗𝑙]} 

Therefore 

max
𝜌,𝑤𝑗𝑙

𝑣𝑗 = max
𝜌,𝑤𝑗𝑙

𝛿(1 − 𝜇𝐻)𝜌𝑤𝑗𝑙

1 − 𝛿 + 𝛿(1 − 𝜇𝐻)𝜌
                   (14) 

Obviously at the optimum  𝑤𝑗𝑙 = v > 𝑣𝑗  and  𝜌  should be maximized under the following 

constraints  

𝑤𝑖𝑙 = v −
(1 − 𝛿)𝑐

𝜌𝛿(𝜇𝐻 − 𝜇𝐿)
≤ max 𝑣𝑗 

It follows that, the larger 𝑤𝑖𝑙 , the larger 𝜌 given  𝑤𝑖𝑙 ≤ max 𝑣𝑗  . Thus the premise to 

                                                             
5
 Here we cannot say that there are two unknown variables,  𝜌,𝑤𝑖𝑙 , for two equations and given    𝑣𝑖 = 𝑣 =
max 𝑣𝑖  . Because the exact value of 𝑣 = max 𝑣𝑖  is just determined by the following two equations which 
mean that (IC) binds. 
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solve max 𝑣𝑗    𝑠. 𝑡. 𝑣𝑖 = v is to solve max 𝑤𝑖𝑙   𝑠. 𝑡.  𝑤𝑗𝑙 = 𝑣 . It means that we can repeat the 

previous step by swapping letters i and j.  

It may be an infinite loop, then 𝑤𝑖𝑙 = max vj . Let vj
∗ = max vj , then 

v −
(1 − 𝛿)𝑐

𝜌𝛿(𝜇𝐻 − 𝜇𝐿)
= 𝑣𝑗

∗ =
𝛿(1 − 𝜇𝐻)𝜌v

1 − 𝛿 + 𝛿(1 − 𝜇𝐻)𝜌
 

We know from the proof of Proposition 3 and 4, the above equation requires u − c >

2(1−μh)c

(μh−μl)
 and δ ≥ 𝛿∞, namely, state ∞ equilibrium exists. And it is easily to prove that 𝑣𝑗

∗ = 𝑤∞ . 

    Otherwise, the solution will be obtained by finite iteration. Suppose it needs s times of 

iteration to solve max 𝑣𝑗  , then we can define: 

qs = max
ρ
vj           

 s. t.    vi = v 

                                  qs−1 = max
ρ

𝑤𝑖𝑙       

                                             s. t.  𝑤𝑗𝑙 = v 

                                                …… 

And so on. Note that constraint conditions of above maximization problem have nested forms, 

namely constraint conditions of solving 𝑞𝑠 is solving 𝑞𝑠−1 , constraint conditions of solving 𝑞𝑠−1 is 

solving 𝑞𝑠−2 ,… Let the solution to  𝑞𝑠 = max ρ 𝑣𝑗    𝑠. 𝑡. … is ρ = 𝜌𝑠
′  , then by (14) 

qs = vj
∗ =

δ(1 − μH)ρs
′v

1 − δ + δ(1 − μH)ρs′
 

And by (13) 

qs−1 = wil
∗ = v −

(1 − δ)c

ρs′δ(μH − μL)
 

Thus we get differential equations about ρs
′ . Remaining steps are similar to the proof of 

Proposition 3, easy to prove that  ρs
′ = ρs, where ρs is the optimal probability of punishment in 

recursive belief equilibria (Proposition 3). It also shows that the solution for above nested 

maximization problems is just the solution for optimal recursive belief equilibrium. 

    In a word, given a firm obtaining the maximal possible equilibrium payoff, recursive belief 

equilibrium is the best equilibrium in all PPE, that is, payoff of the other firm has also reached the 

maximal point of PPE payoff set. 

    ∥ 

 

In a recursive belief equilibrium, if the incumbent's payoff reduces slightly, can joint payoffs of 

two firms be increased? For instance, when punishment probability is greater than optimal, so 

expected waiting time of the waiting firm is reduced and payoff improved, thus the overall effect 

is not clear. Step 3 provides an answer for this question. 

 

    Step 3: for any 𝛅 ∈ [𝜹𝒔, 𝜹𝒔+𝟏)  , 𝟎 ≤  𝐬 < ∞ ,  𝒗𝒔 +𝒘𝒔  ≤ 𝐯 + 𝒘𝒔
∗   for any {𝒗𝒔,𝒘𝒔} ∈ �̅�𝒔 . 

    In any recursive belief equilibrium,   

𝑣𝑠 +𝑤𝑠 =
(1 − 𝛿)(𝜇ℎ − 𝑐) + 𝛿(1 − 𝜇ℎ)𝜌𝑠(𝑣𝑠−1 +𝑤𝑠−1)

1 − 𝛿[1 − (1 − 𝜇ℎ)𝜌𝑠]
 

Given incentive compatibility constraints, the only variable is 𝜌𝑠 . Consider a change of 𝜌𝑠  in the 
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margin when {𝑣𝑠, 𝑤𝑠} =  {𝑣, 𝑤𝑠
∗} , then incentive compatibility condition will not bind, 𝑣𝑠 <

v and 

𝜕(𝑣𝑠 +𝑤𝑠)

𝜕𝜌𝑠
=

𝛿(1 − 𝛿)(1 − 𝜇ℎ)

{1 − 𝛿[1 − (1 − 𝜇ℎ)𝜌𝑠]}2
[(𝑣𝑠−1 +𝑤𝑠−1) − (𝜇ℎ − 𝑐)] < 0 

Thus total payoff of two firms reduces. 

  ∥ 

     Step 4: for any 𝛅 ∈ [𝜹𝒔, 𝜹𝒔+𝟏)  , 𝟎 ≤  𝐬 < ∞ , 𝒗𝒊 + 𝒗𝒋 ≤ 𝐯 +𝒘𝒔
∗  for any {𝒗𝒊, 𝒗𝒋} ∈ 𝑬(𝜹) .  

Proof of Step 4 is equivalent to solve (15) 

 max
𝑖≠𝑗

 𝑣𝑖 + 𝑣𝑗  

s. t.  𝑣𝑖 = (1 − 𝛿)𝑔𝑖(𝑎𝑖 , 𝛼−𝑖) + 𝛿∑ 𝜋𝑖(𝑎𝑖 , 𝛼𝑆𝑅,𝑖)𝑤𝑖(𝑦𝑖)
𝑦𝑖

 

        𝑣𝑖 ≥ (1 − 𝛿)𝑔𝑖(𝑎𝑖′, 𝛼−𝑖) + 𝛿∑ 𝜋𝑖(𝑎𝑖
′, 𝛼𝑆𝑅,𝑖)𝑤𝑖(𝑦𝑖)

𝑦𝑖

 

        𝑣𝑗 = (1 − 𝛿)𝑔𝑗(𝑎𝑗 , 𝛼−𝑗) + 𝛿∑ 𝜋𝑗(𝑎𝑗 , 𝛼𝑆𝑅,𝑗)𝑤𝑗(𝑦𝑗)
𝑦𝑗

 

         𝑣𝑗 ≥ (1 − 𝛿)𝑔𝑗(𝑎𝑗′, 𝛼−𝑗) + 𝛿∑ 𝜋𝑗(𝑎𝑗′, 𝛼𝑆𝑅,𝑗)𝑤𝑖(𝑦𝑗)
𝑦𝑗

 

 {𝑤𝑖 , 𝑤𝑗} ∈ 𝐸(𝛿) 

Therefore, 

𝑣𝑖 + 𝑣𝑗 

= (1 − 𝛿)[𝑔𝑖(𝑎𝑖, 𝛼−𝑖) + 𝑔𝑗(𝑎𝑗 , 𝛼−𝑗)] + 𝛿 [∑ 𝜋𝑖(𝑎𝑖, 𝛼𝑆𝑅,𝑖)𝑤𝑖(𝑦𝑖)
𝑦𝑖

+∑ 𝜋𝑗(𝑎𝑗 , 𝛼𝑆𝑅,𝑗)𝑤𝑗(𝑦𝑗)
𝑦𝑗

] 

Note constraints imposed by consumers seeking short-term optimization, "𝑎𝑖 = 𝑎𝐿  and 

consumers buy from i with positive probability” cannot be on the equilibrium path. All 

possibilities are following three cases. 

 (i) 𝒂𝒊 = 𝒂𝒉, 𝒂𝒋 = 𝒂𝒉  

Let   𝛼𝑆𝑅,𝑖 = 𝜌𝑖,ℎ  𝑓𝑜𝑟 𝑎𝑆𝑅,𝑖 = 𝑁𝑜𝑡 𝐵𝑢𝑦 𝑎𝑛𝑑 𝑦𝑖 = 𝑦ℎ   ,  𝛼𝑆𝑅,𝑖 = 1 − 𝜌𝑖,ℎ  for  𝑎𝑆𝑅,𝑖 =

𝐵𝑢𝑦 𝑎𝑛𝑑 𝑦𝑖 = 𝑦ℎ  ,   𝛼𝑆𝑅,𝑖 = 𝜌𝑖,𝑙 𝑓or 𝑎𝑆𝑅,𝑖 = 𝑁𝑜𝑡 𝐵𝑢𝑦 𝑎𝑛𝑑 𝑦𝑖 = 𝑦𝑙 ,  𝛼𝑆𝑅,𝑖 = 1 − 𝜌𝑖,𝑙 𝑓𝑜𝑟 𝑎𝑆𝑅,𝑖 =

𝐵𝑢𝑦 𝑎𝑛𝑑 𝑦𝑖 = 𝑦𝑙 (0 <  𝜌𝑖ℎ, 𝜌𝑖𝑙 ≤ 1). Then by (12) in Step 1, 

 𝑣𝑖 ≤ (1 − δ)𝑚𝑖(𝑢 − c) + δ𝑤𝑖ℎ − {
𝑚𝑖[𝜇ℎ𝜌𝑖,ℎ + (1 − 𝜇ℎ)𝜌𝑖𝑙]

(𝜌𝑖,𝑙 − 𝜌𝑖,ℎ)

(1 − δ)𝑐

(μh − μl)
} 

Similarly we have 

𝑣𝑗 ≤ (1 − δ)𝑚𝑗(𝑢 − c) + δ𝑤𝑗ℎ − {
𝑚𝑗[𝜇ℎ𝜌𝑗,ℎ + (1 − 𝜇ℎ)𝜌𝑗𝑙]

(𝜌𝑗,𝑙 − 𝜌𝑗,ℎ)

(1 − δ)𝑐

(μh − μl)
} 

Therefore 

𝑣𝑖 + 𝑣𝑗 ≤ (1 − δ)(𝑚𝑖 +𝑚𝑗)(𝑢 − c) + δ(𝑤𝑖ℎ +𝑤𝑗ℎ)

−
(1 − δ)𝑐

(μh − μl)
{
𝑚𝑖[𝜇ℎ𝜌𝑖,ℎ + (1 − 𝜇ℎ)𝜌𝑖𝑙]

(𝜌𝑖,𝑙 − 𝜌𝑖,ℎ)
+
𝑚𝑗[𝜇ℎ𝜌𝑗,ℎ + (1 − 𝜇ℎ)𝜌𝑗𝑙]

(𝜌𝑗,𝑙 − 𝜌𝑗,ℎ)
} 

≤ (1 − δ)(𝑢 − c) + δmax(𝑣𝑖 + 𝑣𝑗)

−
(1 − δ)𝑐

(μh − μl)
{
𝑚𝑖[𝜇ℎ𝜌𝑖,ℎ + (1 − 𝜇ℎ)𝜌𝑖𝑙]

(𝜌𝑖,𝑙 − 𝜌𝑖,ℎ)
+
𝑚𝑗[𝜇ℎ𝜌𝑗,ℎ + (1 − 𝜇ℎ)𝜌𝑗𝑙]

(𝜌𝑗,𝑙 − 𝜌𝑗,ℎ)
} 
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The above inequality holds for all 𝑣𝑖 + 𝑣𝑗  , hence 

max(𝑣𝑖 + 𝑣𝑗) ≤ (1 − δ)(𝑢 − c) + δmax(𝑣𝑖 + 𝑣𝑗)

−
(1 − δ)𝑐

(μh − μl)
{
𝑚𝑖[𝜇ℎ𝜌𝑖,ℎ + (1 − 𝜇ℎ)𝜌𝑖𝑙]

(𝜌𝑖,𝑙 − 𝜌𝑖,ℎ)
+
𝑚𝑗[𝜇ℎ𝜌𝑗,ℎ + (1 − 𝜇ℎ)𝜌𝑗𝑙]

(𝜌𝑗,𝑙 − 𝜌𝑗,ℎ)
} 

Rearranging terms and noting that the inequality binds at max (𝑣𝑖 + 𝑣𝑗), we have, 

max
𝑚𝑖,𝑚𝑗,𝜌𝑖,ℎ,𝜌𝑖,𝑙,𝜌𝑗,ℎ,𝜌𝑗,𝑙

(𝑣𝑖 + 𝑣𝑗)

= max
𝑚𝑖,𝑚𝑗,𝜌𝑖,ℎ,𝜌𝑖,𝑙,𝜌𝑗,ℎ,𝜌𝑗,𝑙

{(𝑢 − c)

−
𝑐

(μh − μl)
{
𝑚𝑖[𝜇ℎ𝜌𝑖,ℎ + (1 − 𝜇ℎ)𝜌𝑖𝑙]

(𝜌𝑖,𝑙 − 𝜌𝑖,ℎ)
+
𝑚𝑗[𝜇ℎ𝜌𝑗,ℎ + (1 − 𝜇ℎ)𝜌𝑗𝑙]

(𝜌𝑗,𝑙 − 𝜌𝑗,ℎ)
}} 

Obviously at the optimum 𝜌𝑖,ℎ = 𝜌𝑗,ℎ = 0, the above problem reduces to  

max(𝑣𝑖 + 𝑣𝑗) = max
𝑚𝑖,𝑚𝑗

{(𝑢 − c) −
𝑐(1 − 𝜇ℎ)

(μh − μl)
(𝑚𝑖+𝑚𝑗)} 

𝑠. 𝑡.         𝑚𝑖+𝑚𝑗 ≤ 1 

Hence 

max(𝑣𝑖 + 𝑣𝑗) = (𝑢 − c) −
𝑐(1 − 𝜇ℎ)

(μh − μl)
≡ v < v + 𝑤2

∗ 

Similar to the proof of Proposition 3, max (𝑣𝑖 + 𝑣𝑗) > 0  requires  (𝑢 − c) >
𝑐(1−𝜇ℎ)

(μh−μl)
  

and δ > 𝛿2 . It means that, given that both firms have positive sales (both exert high effort), the 

sum of equilibrium payoffs of two firms is strictly less than that in state 2 equilibrium. 

 (ii) 𝒂𝒊 = 𝒂𝒉, 𝒂𝒋 = 𝒂𝒍 , 𝐢, 𝐣 = 𝟏, 𝟐, 𝐢 ≠ 𝐣  

Since 𝑎𝑗 = 𝑎𝑙 , firm j has no sale in current period. Let 𝑚𝑖  be firm i’s sale in current period. 

Let  𝛼𝑆𝑅,𝑖 = 𝜌𝑖,ℎ  𝑓𝑜𝑟 𝑎𝑆𝑅,𝑖 = 𝑁𝑜𝑡 𝐵𝑢𝑦 𝑎𝑛𝑑 𝑦𝑖 = 𝑦ℎ   ,  𝛼𝑆𝑅,𝑖 = 1 − 𝜌𝑖,ℎ  for  𝑎𝑆𝑅,𝑖 = 𝐵𝑢𝑦 𝑎𝑛𝑑 𝑦𝑖 =

𝑦ℎ  ,   𝛼𝑆𝑅,𝑖 = 𝜌𝑖,𝑙 𝑓or 𝑎𝑆𝑅,𝑖 = 𝑁𝑜𝑡 𝐵𝑢𝑦 𝑎𝑛𝑑 𝑦𝑖 = 𝑦𝑙 ,  𝛼𝑆𝑅,𝑖 = 1− 𝜌𝑖,𝑙 𝑓𝑜𝑟 𝑎𝑆𝑅,𝑖 = 𝐵𝑢𝑦 𝑎𝑛𝑑 𝑦𝑖 =

𝑦𝑙 (0 <  𝜌𝑖ℎ, 𝜌𝑖𝑙 ≤ 1). By Lemma 6 we have 

𝑣𝑖 = (1 − 𝛿)𝑚𝑖(𝑢 − 𝑐)

+ 𝛿{[𝜇ℎ(1 − 𝜌𝑖,ℎ)𝑤𝑖ℎ + 𝜇ℎ𝜌𝑖,ℎ𝑤𝑖𝑙]

+ [(1 − 𝜇ℎ)(1 − 𝜌𝑖,𝑙)𝑤𝑖ℎ + (1 − 𝜇ℎ)𝜌𝑖𝑙𝑤𝑖𝑙]} 

𝑣𝑗 = 𝛿{[𝜇ℎ(1 − 𝜌𝑖,ℎ)𝑤𝑗ℎ + 𝜇ℎ𝜌𝑖,ℎ𝑤𝑗𝑙] + [(1 − 𝜇ℎ)(1 − 𝜌𝑖,𝑙)𝑤𝑗ℎ + (1 − 𝜇ℎ)𝜌𝑖𝑙𝑤𝑗𝑙]} 

Thus the maximization problem (15) reduces to 

max
𝑚𝑖,𝜌𝑖,ℎ,𝜌𝑖,𝑙,𝑤

(𝑣𝑖 + 𝑣𝑗)

= (1 − δ)𝑚𝑖(𝑢 − c)

+ 𝛿{[𝜇ℎ(1 − 𝜌𝑖,ℎ) + (1 − 𝜇ℎ)(1 − 𝜌𝑖,𝑙)][𝑤𝑖ℎ +𝑤𝑗ℎ]

+ [𝜇ℎ𝜌𝑖,ℎ + (1 − 𝜇ℎ)𝜌𝑖𝑙][𝑤𝑖𝑙 +𝑤𝑗𝑙]} 

             s. t.         wil ≤ wih −
(1 − δ)𝑚𝑖𝑐

δ(μh − μl)(𝜌𝑖,𝑙 − 𝜌𝑖,ℎ)
                     (11)                  

𝑤𝑖ℎ +𝑤𝑗ℎ ≤ 𝑣𝑖 + 𝑣𝑗                                              
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𝑤𝑖𝑙 +𝑤𝑗𝑙 ≤ 𝑣𝑖 + 𝑣𝑗                                              

𝑤𝑖𝑙 +𝑤𝑗𝑙 ≤ 𝑤𝑖ℎ +𝑤𝑗ℎ                                         

The objective function is linear in 𝜌𝑖,ℎ  , and the coefficient is δ𝜇ℎ[(𝑤𝑖𝑙 +𝑤𝑗𝑙) − (𝑤𝑖ℎ +𝑤𝑗ℎ)] ≤

0 . Thus the smaller 𝜌𝑖,ℎ  , the larger the objective function. And according to the constraint 

condition (11), the smaller 𝜌𝑖,ℎ  , the larger RHS of (11). So 𝜌𝑖,ℎ = 0 when (𝑣𝑖 + 𝑣𝑗) is maximized. 

Moreover, the objective function is linear in 𝜌𝑖,𝑙 , and the coefficient is δ(1 − 𝜇ℎ)[(𝑤𝑖𝑙 +𝑤𝑗𝑙) −

(𝑤𝑖ℎ +𝑤𝑗ℎ)] ≤ 0 , thus the smaller 𝜌𝑖,𝑙 , the larger the objective function. But according to the 

constraint condition (11), the smaller 𝜌𝑖,𝑙 , the smaller RHS of (11), and RHS = −∞ if 𝜌𝑖,𝑙 =

0 (since 𝜌𝑖,ℎ = 0). So inequality (11) must be binding to get an optimal 𝜌𝑖,𝑙 . Binding of (11) 

means that 𝑣𝑖  is maximized. Therefore,  max𝑚𝑖,,𝜌𝑖,ℎ,𝜌𝑖,𝑙,𝑤 (𝑣𝑖 + 𝑣𝑗) is equivalent to 

max𝑚𝑖,,𝜌𝑖,ℎ,𝜌𝑖,𝑙 𝑣𝑖  first, and then  max 𝑣𝑗   𝑠. 𝑡.  𝑣𝑖  𝑖𝑠 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒𝑑. Combine Step 1, 2 and 3, we 

know that max (𝑣𝑖 + 𝑣𝑗) = v + 𝑤𝑠
∗ . 

(iii) 𝑎𝑖 = 𝑎𝑙 , 𝑎𝑗 = 𝑎𝑙 .trivial. max (𝑣𝑖 + 𝑣𝑗) = 0. 

Q.E.D 

 

6 Empirical Relevance 

    A typical example of experience goods is civil air transport services. Air transport service is 

clearly experience goods, because consumers could not know whether flight problems occur 

when buying the ticket. After travel, flight problems such as delays are signals easily known to the 

public: there are many internet sites of aviation and transport in the United States to provide 

such signals as average "on time" performance, namely ratio of delays less than 15 minutes over 

a period of time. It also provides detailed information on price, voyage arrangements. Each 

month, the Department of Transportation of U.S. government published the "Air Travel 

Consumer Report", including comprehensive statistics of flight delays, luggage misplaced, 

consumers complaints, and so on. All such information can be openly and freely available from its 

official website. 

Empirical studies have shown that reputation mechanism works in air transport services 

markets, and the revealed mechanism is similar to recursive belief equilibrium descripted in our 

paper. For example, (i) sometimes it is effective to implement the punishment by consumers’ 

switch between airlines. Suzuki (2000), using data on Atlanta- O'Hare route in the United States, 

found that market share fluctuations of major airlines in that route from 1990 to 1997 can be 

explained by the "on time" performance; On average, passengers are more inclined to switching 

to another air company after experienced flight delays. (ii) Sometimes it is necessary to make air 

companies lose reputation completely and be driven out of the market. Foreman and Shea (1999) 

analyzed 14 major U.S. airlines in 1988 – 1995, found that the market achieved better 

performance and improved qualities after publication of performance information; Four of 14 air 

companies exited U.S. market in 1988-1995. 

7 Conclusions 

   In this paper, we build a simple model of duopolistic experience goods markets, and then 

use the model as an example to solve payoff sets of perfect public equilibria for repeated games 

with imperfect public monitoring and short-run players. Although there are only two firms, two 

actions, binomial distribution of signals in the example, intuitively it could easily be extended to 
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N firms, N actions and any type of signal distribution, as long as firms are symmetric and the 

game has product structure. It will be possible in the future to obtain a general algorithm to 

compute payoff sets of perfect public equilibria for such kind of repeated games based on the 

idea of this paper. 
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Figure 1: State 𝐬 as a Markov Process 
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Figure 3: Payoff Sets of State 𝐬 (𝟐 ≤ 𝒔 < ∞) equilibra (shaded regions) 
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