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Structural Identi�cation of Production Functions

Daniel A. Ackerberg, Kevin Caves, and Garth Frazer�

December 28, 2006

Abstract

This paper examines some of the recent literature on the identi�cation of production

functions. We focus on structural techniques suggested in two recent papers, Olley and

Pakes (1996), and Levinsohn and Petrin (2003). While there are some solid and intuitive

indenti�cation ideas in these papers, we argue that the techniques, particularly those of

Levinsohn and Petrin, su¤er from collinearity problems which we believe cast doubt on the

methodology. We then suggest alternative methodologies which make use of the ideas in

these papers, but do not su¤er from these collinearity problems.

1 Introduction

Production functions are a fundamental component of all economics. As such, estimation of

production functions has a long history in applied economics, starting in the early 1800�s. Un-

fortunately, this history cannot be deemed an unquali�ed success, as many of the econometric

problems that hampered early estimation are still an issue today.

Production functions relate productive inputs (e.g. capital, labor) to outputs. Perhaps the

major econometric issue confronting estimation of production functions is the possibility that there

are determinants of production that are unobserved to the econometrician but observed by the

�rm. If this is the case, and if the observed inputs are chosen as a function of these determinants

(as will typically be the case for a pro�t-maximizing or cost-minimizing �rm), then there is an

endogeneity problem and OLS estimates of the coe¢ cients on the observed inputs will be biased.

Much of the literature in the past half century has been devoted to solving this endogeneity

problem. Two of the earliest solutions to the problem are instrumental variables (IV) and �xed-

e¤ects estimation (Mundlak (1961)). IV estimation requires �nding variables that are correlated

�Dept. of Economics, UCLA, Los Angeles, CA, Deloitte and Touche, and Rotman School of Management,
Toronto respectively. Thanks to Ariel Pakes, Gautam Gowrisankaran, Jinyong Hahn, Lanier Benkard, Mike
Riordan and seminar participants at UCLA, USC, UCSD, NYU, Columbia, Iowa State, Toronto, ESWC-2005,
Yale, Northwestern, Colorado, Indiana, Oregon State and Stanford for helpful discussions. All errors are our own.
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with observed input choices, but uncorrelated with the unobservables determining production.

Fixed-e¤ects estimation requires the assumption that the unobservables are constant across time.

Unfortunately, for a variety of reasons, these methodologies have not been particularly successful

at solving these endogeneity problems. As such the search has continued for reliable methods for

identifying production function parameters.

The past �fteen years has seen the introduction of a couple of new techniques for identi�cation

of production functions. One set of techniques follows the dynamic panel data literature, e.g.

Chamberlain (1982), Arellano and Bover (1995), Blundell and Bond (2000). A second set of

techniques, advocated by Olley and Pakes (1996) and Levinsohn and Petrin (2003), are somewhat

more structural in nature - using observed input decisions to "control" for unobserved productivity

shocks. This second set of techniques has been applied in a large number of recent empirical papers,

including Pavcnik (2002), Sokolo¤ (2003), Sivadasan (2004), Fernandes (2003), Ozler and Yilmaz

(2001), Criscuola and Martin (2003), Topalova (2003), Blalock and Gertler (2004), and Alvarez

and Lopez (2005).1

This paper starts by analyzing this second set of techniques. We �rst argue that there are

potentially serious collinearity problems with these estimation methodologies.2 We show that,

particularly for the Levinsohn and Petrin approach, one needs to make what we feel are very

strong and unintuitive assumptions for the model to remain correctly identi�ed in the wake of

this collinearity problem. To address this problem, we then suggest an alternative estimation

approach. This approach builds upon the ideas in Olley and Pakes and Levinsohn and Petrin,

e.g. using investment or intermediate inputs to "proxy" for productivity shocks, but does not

su¤er from these collinearity problems. As well as solving the above collinearity problem, another

important bene�t of our estimator is that it makes comparison to the aforementioned dynamic

panel literature, e.g. Blundell and Bond, quite easy. This is important, as up to now, the two

literatures have evolved separately. In particular, our estimator makes it quite easy to see the

tradeo¤s in assumptions needed by the two distinct literatures. We feel that this should help

guide empirical researchers in choosing between the approaches. Lastly, using the same dataset

as Levinsohn and Petrin, we examine how our estimator works in practice. Estimates using our

methodology appear more stable across di¤erent potential proxy variables than the Levinsohn-

Petrin methodology, consistent with our theoretical arguments.

1This list is far from exhaustive. A recent search using Google Scholar shows 598 cites of Olley and Pakes (1996)
and 219 cites of Levinsohn and Petrin (2003).

2Susanto Basu made a less formal argument regarding this possible collinearity problem in 1999 as a discussant
of an earlier version of the Levinsohn-Petrin paper.
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2 Review of Olley/Pakes and Levinsohn/Petrin

We start with a brief review of the techniques of Olley/Pakes (henceforth OP) and Levinsohn/Petrin

(henceforth LP). Consider the following Cobb-Douglas production function in logs:

(1) yit = �kkit + �llit + !it + �it

yit is the log of output, kit is the log of capital input, and lit is the log of labor input.3 There

are two terms in this equation that are unobservable to the econometrician, !it and �it. The

distinction between the two is important. The �it are intended to represent shocks to production

or productivity that are not observable (or predictable) by �rms before making their input decisions

at t. In contrast, the !it represent shocks that are potentially observed or predictable by �rms

when they make input decisions. Intuitively, !it might represent variables such as the managerial

ability of a �rm, expected down-time due to machine breakdown, expected defect rates in a

manufacturing process, or the expected rainfall at a farm�s location. On the other hand, �it might

represent deviations from expected breakdown, defect, or rainfall amounts in a given year. �it

can also represent measurement error in the output variable. We will often refer to !it as the

"productivity shock" of �rm i in period t. Note that we have subsumed the constant term in the

production function into the productivity term !it.

The classic endogeneity problem estimating equation (1) is that the �rm�s optimal choice of

inputs kit and lit will generally be correlated with the observed or predictable productivity shock

!it. This renders OLS estimates of the ��s biased and inconsistent. As mentioned in the

introduction, perhaps the two most commonly used solutions to this endogeneity problem are

�xed e¤ects (Mundlak (1961), Hoch (1962)) and instrumental variables estimation techniques. In

our context, �xed-e¤ects estimation requires the additional assumption that !it = !it�18t. This
is a strong assumption and, perhaps as a result, the technique has not worked well in practice -

often generating unrealistically low estimates of �k. IV estimation requires instruments that are

correlated with input choices kit and lit and uncorrelated with !it. On one hand, there do exist

natural instrumental variables in this situation - input prices, as long as one is willing to assume

�rms operate in competitive input markets. On the other hand, this again has not worked well

in practice. Too often these input prices are not observed, do not vary or vary enough across

�rms, or are suspected to pick up variables, e.g. input quality, that would invalidate their use

as instruments. The review of this literature in Ackerberg, Benkard, Berry, and Pakes (2005)

(ABBP) contains more discussion of the limitations of the �xed e¤ects and IV approaches.

3These inputs and outputs are measured in various ways across studies depending on data availability. For
example, labor inputs could be measured in man-hours, or in money spent on labor. Output could also be measured
in either physical or monetary units, and in some cases is replaced with a value added measure.
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2.1 Olley and Pakes

The OP and LP methodologies take a more structural approach to identi�cation of production

functions. OP address the endogeneity problem as follows. They consider a �rm operating through

discrete time, making decisions to maximize the present discounted value of current and future

pro�ts. First, they assume that the productivity term !it evolves exogenously following an �rst-

order markov process, i.e.

(2) p(!it+1jIit) = p(!it+1j!it)

where Iit is �rm i�s information set at t. Current and past realizations of !, i.e. (!it; :::; !i0) are

assumed to be part of Iit. Importantly, this is not just an econometric assumption on the statistical

properties of unobservables. It is also an economic assumption regarding what determines a �rm�s

expectations about future productivity !it+1, i.e. that these expectations depend only on !it.

OP assume that labor is a non-dynamic input. More speci�cally, a �rm�s choice of labor for

period t has no impact on the future pro�ts of the �rm. In contrast, capital is assumed to be a

dynamic input subject to an investment process. Speci�cally, in every period, the �rm decides

on an investment level iit. This investment adds to future capital stock deterministically, i.e.

kit = �(kit�1; iit�1)

Importantly, this formulation implies that the period t capital stock of the �rm was actually

determined at period t � 1. The economics behind this is that it may take a full period for
new capital to be ordered, delivered, and installed. Intuitively, one can see how this assumption

regarding timing helps solve the endogeneity problem with respect to capital. Since kit is actually

decided upon at t�1 (and thus is in Iit�1), the above informational assumptions imply that it must
be uncorrelated with the unexpected innovation in !it between t�1 and t, i.e. !it�E[!itjIit�1] =
!it � E[!itj!it�1; ]. This orthogonality will be used to form a moment to identify �k.

4 We

explicitly show how this is done in a moment.

More challenging is solving the endogeneity problem with respect to the assumed variable

input, lit. This is because unlike capital, lit is decided at t and thus potentially correlated with

even the innovation component of !it. To accomplish this, OP make use of the investment variable

iit. Considering the �rm�s dynamic decision of investment level iit, OP state conditions under

which a �rm�s optimal investment level is a strictly increasing function of their current productivity

!it, i.e.

(3) iit = ft(!it; kit)

4In the special case where !it is a random walk, i.e. !it = !it�1 + �it, one can easily see how this can be done
- if we �rst-di¤erence the production function, (kit � kit�1) is uncorrelated with the resulting unobserved term.
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Note that this investment function will in general contain all current state variables for the

optimizing �rm, e.g. its current level of capital and the current !it. Labor does not enter the state

because it is a non-dynamic input, and values of !it prior to t do not enter because of the �rst

order Markov assumption on the !it process. The reason f is indexed by t is that variables such

as input prices, demand, etc. also may be part of the state space. OP simply treat these as part

of ft. The assumption here is that these variables are allowed to vary across time, but not across

�rms (i.e. �rms operate in the same input markets).

Given that this investment function is strictly monotonic in !it, it can be inverted to obtain

(4) !it = f�1t (iit; kit)

The essence of OP is to use this inverse function to control for !it in the production function.

Substituting this into the production function, we get:

yit = �kkit + �llit + f�1t (iit; kit) + �it(5)

= �llit + �t(iit; kit) + �it(6)

The �rst stage of OP involves estimating this equation. Recall that f is the solution to a

complicated dynamic programming problem. As such, solving for f (and thus f�1) would not only

require assuming all the primitives of the �rm (e.g. demand conditions, evolution of environmental

state variables), but also be computationally demanding. To avoid these extra assumptions and

computations, OP simply treat f�1t non-parametrically. Given this non-parametric treatment,

direct estimation of (5) does not identify �k, as kit is collinear with the non-parametric function.

However, one does obtain an estimate of the labor coe¢ cient �l, b�l. One also obtains an estimate
of the composite term �t(iit; kit) = �1kit + f�1t (iit; kit), which we denote b�it.
The second stage of OP proceeds given these estimates of b�l and b�it. Given (2), we can write

!it = E[!itjIit�1] + �it = E[!itj!it�1] + �it

This simply decomposes !it into its conditional expectation at time t � 1, E[!itjIit�1], and a
deviation from that expectation, �it. The second equality follows from the �rst order markov

assumption on !it. We will often refer to �it as the "innovation" component of !it. By the

properties of a conditional expectation, this innovation component satis�es:

E[�itjIit�1] = 0

Thus, since the timing assumption regarding capital implies that kit 2 Iit�1 (since kit was decided
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at t� 1), this implies that �it is orthogonal to kit, i.e.

E[�itjkit] = 0

This mean independence in turn implies that �it and kit are uncorrelated, i.e.

E[�itkit] = 0

This is the moment which OP use to identify the capital coe¢ cient. Loosely speaking, vari-

ation in kit conditional on !it�1 is the exogenous variation being used for identi�cation here. To

operationalize this procedure in a GMM context, note that given a guess at the capital coe¢ cient

�k, one can "invert" out the !it�s in all periods, i.e.

!it(�k) = b�it � �kkit

Given these !it(�k)�s, one can compute �it�s in all periods by non-parametrically regressing

!it(�k)�s on !it�1(�k)�s (and a constant term) and forming the residual

�it(�k) = !it(�k)� b	(!it�1(�k))
where b	(!it�1(�k)) are predicted values from the non-parametric regression.5 This non-parametric
treatment of the regression of !it on !it�1 allows for !it to follow an arbitrary �rst-order Markov

process. These �it(�k)�s can then be used to form a sample analogue to the above moment, i.e.

1

T

1

N

X
t

X
i

�it(�k) � kit

In a GMM procedure, �k is estimated by setting this empirical analogue as close as possible to

zero.6 Quickly recapping the intuition behind identi�cation in OP, �l is identi�ed by using the

information in �rms� investment decisions iit to control for the productivity shock !it that is

correlated with lit. �k is identi�ed by the timing assumption that kit is decided before the full

realization of !it.7

5Note that both OP and LP use a slightly di¤erent moment condition than this. Instead of regressing implied
!it on implied !it�1, they regress yit � �kkit � �llit on implied !it�1. Their procedure corresponds to a moment
in the residual �it+ �it rather than our procedure, which corresponds to a moment in the residual �it. In our
experience, the moment in �it tends to produce lower variance and more stable estimates. This is probably because
the extra �it term adds variance to the moment, thus increasing the variance of the estimates.

6Wooldridge (2005) shows how one can perform both the �rst and second stages of OP (or LP) simultaneously.
Not only is this more e¢ cient, but it also makes it easier to compute standard errors. We discuss the Wooldridge
moments in more detail when we describe our suggested procedure. For details on standard errors for the OP 2-step
process, see Pakes and Olley (1995).

7Recall that the constant term in the production function is subsumed into the !it�s. Hence the above procedure
does not produce a direct estimate of the constant term. To form an estimate of the constant term ex-post, one
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2.2 Levinsohn and Petrin

LP take a related approach to solving the production function endogeneity problem. The key

di¤erence is that rather than using the investment demand equation, they use an intermediate

input demand function to "invert" out !it. Their motivation for this alternative inversion equation

is very reasonable. For the straightforward OP procedure to work, recall one needs the investment

function to be strictly monotonic in !it. However, in actual data, investment is often very lumpy,

and one often sees zeros. In the Chilean data studied by LP, for example, more than 50% of �rm-

year observations have zero investment. This casts doubt on this strict monotonicity assumption

regarding investment. While the OP procedure can actually work in this situation, it requires

discarding the data with zero investment (see ABBP for discussion), an obvious e¢ ciency loss.

LP avoid this e¢ ciency loss by considering the following production function:

yit = �kkit + �llit + �mmit + !it + �it

where mit is an intermediate input such as electricity, fuel, or materials. LP�s basic idea is

that since intermediate input demands are typically much less lumpy (and prone to zeros) than

investment, the strict monotonicity condition is more likely to hold and these may be superior

"proxies" to invert out the unobserved !it. LP assume the following intermediate input demand

function:

(7) mit = ft(!it; kit)

Again, f is indexed by t, implicitly allowing input prices (and/or market conditions) to

vary across time (but not across �rms). Note the timing assumptions implicit in this formulation.

First, the intermediate input at t is chosen as a function of !it. This implies that the intermediate

input is essentially chosen at the time production takes place. We describe this as a "perfectly

variable" input. Secondly, note that lit does not enter (7). This implies that labor is also a

"perfectly variable" input, i.e. chosen simultaneously with mit.8 If lit was chosen at some point

in time before mit, then lit would impact the �rm�s optimal choice of mit.

Given this speci�cation, LP proceed similarly to OP. Under the assumption that intermediate

input demand (7) is monotonic in !it9, we can invert:

(8) !it = f�1t (mit; kit)

can simply compute the average of the implied !it(�k) evaluated at the estimate b�k (or, to allow the constant term
to vary across time, one would just use the average of !it(b�k) at each time period).

8Note the di¤erence between 1) the distinction of whether an input is variable or �xed, and 2) the distinction
of whether an input is dynamic or non-dynamic. 1) refers to the point in time in which the input is chosen. 2)
refers to whether the choice of the input currently has any implications on future pro�ts.

9LP provide conditions on primitives such that this is the case.
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Substituting this into the production function gives

(9) yit = �kkit + �llit + �mmit + f�1t (mit; kit) + �it

The �rst step of the LP estimation procedure estimates �l using the above equation, treating

f�1t non-parametrically. Again, �k and �m are not identi�ed as kit and mit are collinear with

the non-parametric term. One also obtains an estimate of the composite term, in this case

�kkit + �mmit + f�1t (mit; kit), which we again denote b�it.
The second stage of the LP procedure proceeds as OP, the only di¤erence being that there is

one more parameter to estimate, �m. LP use the same moment condition as OP to identify the

capital coe¢ cient, i.e. that the innovation component of �it, !it, is orthogonal to kit. �it(�k; �m)

can again be constructed as the residual from a non-parametric regression of (!it(�k; �m) = b�it�
�kkit � �mmit) on (!it�1(�k; �m) = b�it�1 � �kkit�1 � �mmit�1). They also add an additional

moment to identify �m, the condition that that �it(�k; �m) is orthogonal to mit�1. This results

in the following moment condition on which to base estimation:

E[�it(�k; �m)j
kit

mit�1
] = 0

Note that the innovation �it is clearly not orthogonal tomit. This is because !it is observed at the

time that mit is chosen. On the other hand, according to the model, �it should be uncorrelated

with mit�1, as mit�1 was decided at t� 1 and hence part of Iit�1.

2.3 Key Assumptions of OP and LP

Note that both the OP and LP procedures rely on a number of key structural assumptions in

addition to the �rst order markov assumption on the !it process. While these assumptions are

described in these papers (see also Griliches and Mairesse (1998) and ABBP), we summarize them

here. A �rst key assumption is the strict monotonicity assumption - for OP investment must be

strictly monotonic in !it (at least when it is non-zero), while for LP intermediate input demand

must be strictly monotonic in !it. Monotonicity is required for the non-parametric inversion

because otherwise, one cannot perfectly invert out !it and completely remove the endogeneity

problem in (5).

A second key assumption is that !it is the only unobservable entering the functions for invest-

ment (OP) or the intermediate input (LP). We refer to this as a "scalar unobservable" assumption.

This rules out, e.g. measurement error or optimization error in these variables, or a model in which

exogenous productivity is more than single dimensional. Again, the reason for this assumption is

that if either of these were the case, one would not be able to perfectly invert out !it.10

10ABBP discuss how this assumption can be relaxed in some very speci�c dimensions (e.g. allowing !it to
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A third key set of assumptions of the models regards the timing and dynamic implications of

input choices. By timing, we refer to the point in the !it process at which inputs are chosen.

First, kit is assumed to have been decided exactly at (OP) or exactly at/prior to (LP) time period

t � 1. Any later than this would violate the moment condition, as kit would likely no longer

be orthogonal to the innovation term �it. For OP, were iit�1 (and thus kit) to be decided any

earlier than t � 1, then one could not use iit�1 to invert out !it�1, making �rst-stage estimation
problematic.

Regarding the labor input, there are a couple of important assumptions. First, in OP, lit must

have no dynamic implications. Otherwise, lit would enter the investment demand function and

prevent identi�cation of the labor coe¢ cient in the �rst stage. In LP, labor can have dynamic

implications, but one would need to adjust the procedure suggested by LP by allowing lit�1 into

the intermediate input demand function. Note that in principle, this still allows one to identify the

coe¢ cient on labor in the �rst stage. Second, for LP it is important that lit and mit are assumed

to be perfectly variable inputs. By this we mean that they are decided when !it is observed by

the �rm. If mit were decided before learning !it, then mit could not be used to invert out !it and

control for it in the �rst stage. If lit were chosen before learning !it, then lit would also be chosen

before mit. In this case, a �rm�s choice of materials mit would directly depend on lit and lit would

enter the LP non-parametric function, preventing identi�cation of the labor coe¢ cient in the �rst

stage.

3 Collinearity Issues

This paper argues that even if the above assumptions hold, there are potentially serious identi-

�cation issues with these methodologies, particularly the LP approach. The problem is one of

collinearity arising in the �rst stage of the respective estimation procedures, respectively:

(10) yit = �llit + f�1t (iit; kit) + �it

and

(11) yit = �llit + f�1t (mit; kit) + �it

where the obviously non-identi�ed terms (�kkit in OP, �kkit and �mmit in LP) have been subsumed

into the non-parametric functions. Recall that in the �rst stage, the main goal in both methods

is to identify �l, the coe¢ cient on the labor input. What we now focus on is the question of

whether even �l can be identi�ed from these regressions under the above assumptions. There is

clearly no endogeneity problem - �it are either unanticipated shocks to production not known at t

follow a higher than �rst order Markov process), but all these cases require the econometrician to observe and use
additional control variables in the �rst stage.
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or purely measurement error in output, so they are by assumption are uncorrelated with all the

right hand variables. Thus, the only real identi�cation question here is whether lit is "collinear"

with the non-parametric terms in the respective regressions, i.e. whether lit varies independently

of the non-parametric function that is being estimated.

3.1 Levinsohn and Petrin

First, consider the LP technique. To think about whether lit varies independently of f�1t (mit; kit),

we need to think about the data generating process for lit, i.e. how the �rm choses lit. Given

that we have already assumed that lit and mit are chosen simultaneously and are both perfectly-

variable, non-dynamic inputs, a natural assumption might be that they are decided in similar

ways. Since mit has been assumed to be chosen according to

(12) mit = ft(!it; kit)

this suggests that lit might be chosen according to

(13) lit = gt(!it; kit)

While gt will typically be a di¤erent function than ft (e.g. because of di¤erent prices of the inputs),

they both will generally depend on the same state variables, !it and kit. Intuitively, this is just

saying that the choice of both variable inputs at t depends on the predetermined value of the �xed

input and the current productivity shock.

Substituting (8) into (13) results in

lit = gt(f
�1
t (mit; kit); kit) = ht(mit; kit)

which states that lit is some time-varying function ofmit and kit. While this is a very simple result,

it has some very strong implications on the LP �rst stage estimating equation (11). In particular,

it says that the coe¢ cient �l is not identi�ed. One simply cannot simultaneously estimate a fully

non-parametric (time-varying) function of (!it; kit) along with a coe¢ cient on a variable that is

only a (time-varying) function of those same variables (!it; kit). Given this perfect collinearity

between lit and the non-parametric function, �l should not be identi�ed.

That said, while (13) might be the most natural speci�cation for the data generation process

(DGP) for lit, it is not the only possibility. Our goal now is to search for an alternative DGP for

lit (and possibly for mit) that will allow the LP �rst stage procedure to work. Not only must this

alternative DGP move lit around independently of the non-parametric function f�1t (mit; kit), but

it must simultaneously be consistent with the basic assumptions of the LP procedure detailed in

the last section.
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First, consider adding �rm-speci�c input prices to the above model of input choice, e.g. prices

of labor (pil) and materials (pim). Obviously these �rm-speci�c input prices will generally a¤ect

a �rm�s choices of lit and mit. A �rst note is that these input prices would have to be observed

by the econometrician. Unobserved �rm-speci�c input prices would enter (7) and violate the

scalar unobservable assumption necessary for the �rst stage LP inversion. In other words, with

unobserved �rm-speci�c input prices, one can no longer invert out the �rm�s productivity shock

as a function of the observables mit and kit and perform the �rst stage.

If the �rm-speci�c input prices are observed, the inversion is not a problem - one simply can

include the observed input prices in the non-parametric function. However, for the same reason,

observed �rm-speci�c input prices also do not solve the collinearity problem. Given that lit and

mit are set at the same points in time, they will generally both be a function of both pl and pm.

As such, we have the same problem as before - there are no variables that a¤ect lit but that do

not a¤ect mit (and thus enter the non-parametric function). Our conclusion is that �rm-speci�c

input prices do not generally help matters. A related possibility is to allow labor to have dynamic

e¤ects. As discussed above, this is consistent with the LP assumptions as long as one adds lit�1
to the �rst stage non-parametric term. However, for the same reason, dynamic labor does not

break the collinearity problem. As both lit and mit will generally depend on lit�1, the term will

not move lit around independently of f�1t
In the basic model described above, lit and mit are chosen simultaneously at period t, i.e. after

observing !it. A second alternative to try to break the collinearity problem is to perturb the

model by changing these points in time at which lit and mit are set, i.e. allow lit to be set before

or after mit. To formally analyze these situations, consider a point in time, t� b, between period
t� 1 and t (i.e. 0 < b < 1). Assume that ! evolves through these "subperiods" t� 1, t� b, and t
according to a �rst order Markov process, i.e.

(14) p(!it�bjIit�1) = p(!it�bj!it�1)

and

(15) p(!itjIit�b) = p(!itj!it�b)

Note that we continue to assume that production occurs "on the period", i.e. at periods t �
1 and t. The main point of introducing the subperiod t � b is to allow the �rm to have a

di¤erent information set when chosing lit than when choosingmit. The hope is that these di¤erent

information sets might generate independent variation in the two variables that could break the

collinearity problem.

Given this setup, we can now consider perturbing the points in time at which lit and mit are

set. First consider the situation where mit is chosen at t � b and lit is chosen at t. Now a �rm�s

optimal choice of mit will depend on !it�b, while the choice of lit will depend on !it. In this setup,

11



lit does have variance that is independent of mit, because of the innovation in !it between !it�b
and !it. However, this setup is also problematic for the �rst stage of the LP procedure. Since

mit is a function of !it�b, not !it, it cannot completely inform us regarding !it. In other words,

the �rst stage non-parametric function will not be able to capture the entire productivity shock

!it. Unfortunately, the part of !it that is not captured and left in the residual (which amounts

to the unexpected innovation in !it given !it�b, i.e. !it � E[!itj!it�b]) will be highly correlated
with any independent variation in lit. This creates an endogeneity problem whereby �rst stage

estimates of �l will be biased.
11

Alternatively, consider the situation where where lit is chosen at t � b and mit is chosen at t.

Again, in this case, the fact that mit and lit are chosen with di¤erent information sets generates

independent variation. However, in this case, there is another problem. Since lit is chosen before

mit, a pro�t maximizing (or cost-minimizing) �rm�s optimal choice of mit will generally directly

depend on lit, i.e.

mit = ft(lit; !it; kit)

Given this, lit should directly enter the �rst-stage non-parametric function and an LP �rst stage

estimate of �l is obviously not identi�ed. In summary, neither of these timing stories appears to

be able to justify the LP �rst stage procedure.

We next consider stories based on measurement error or optimization error on the part of �rms.

The di¤erence between the two can be illustrated in the following model

mit = m�
it + �mit = ft(!it; kit) + �mit

where, as above, mit is the value of the material input choice observed by the econometrician.

When �mit represents measurement error, m
�
it is the variable that actually enters the production

function. When �mit represents optimization error, mit is the variable entering the production

function. With optimization error, a �rm should optimally be choosing input level ft(!it; kit),

but for some reason chooses ft(!it; kit) + �mit instead.

A �rst observation is that neither measurement error or optimization error in mit is a workable

solution to the collinearity problem. Either measurement error or optimization error in mit adds

another unobservable to the mit equation, which violates the scalar unobservable assumption. In

either case, we can not write !it as a function of observables, making the �rst stage inversion

impossible.

What if there is measurement error in lit? In this case, lit will vary independently of the non-

11Note that there is de�nitely not a sense in which one will "almost" get a correct estimate of estimate of �l
because mit "almost" inverts out the correct !it. The reason is that all the variation in lit that is independent of
the non-parametric function is due to the innovation in !it between t� b and t (e.g. if !it does not vary between
t � b and t we are back to the original collinearity problem). This innovation in !it between t � b and t is also
exactly what remains in the residual because of the incorrect inversion. Hence, any independent variation in lit
will be highly correlated with the residual, likely creating a large endogeneity problem.
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parametric function, as the measurement error moves lit around independently of mit. However,

while there is independent variation in lit, this independent variation is just noise that does not

a¤ect output. All the meaningful variation in lit is still collinear with the non-parametric function.

Because the only independent variation in lit is noise, the LP �rst stage estimate of �l will converge

to zero - certainly not a consistent estimate of the labor coe¢ cient.

Lastly, consider optimization error in lit. Like measurement error, this optimization error will

move lit around independently of the non-parametric function. However, unlike the measurement

error situation, this independent variance does end up a¤ecting output through �l. Hence, LP

�rst stage estimates should correctly identify the coe¢ cient. While this does �nally give us a

DGP that validates the LP �rst stage procedure, we feel that it is not an identi�cation argument

that empirical researchers will generally feel comfortable applying. First, in this situation, the

extent of identi�cation is completely tied to the extent of optimization error. In many situations

one might feel uncomfortable basing identi�cation entirely on the existance of optimization error.

Second, note that while one needs to assume that there is enough optimization error in lit to

identify �l, one simultaneously needs to assume exactly no optimization error in mit. Recall,

that if there were optimization error in mit, the inversion would not be valid. This sort of DGP

assumption, i.e. that there is simultaneously lots of optimization error in one variable input yet

no optimization error in the other variable input, strikes us as one that would be very hard to

motivate or maintain in practice.12

In addition to this optimization error story, there is one other DGP that can at least in theory

rationalize the LP �rst stage procedure. Let us go back to moving around the points in time when

inputs are chosen. Speci�cally, suppose that at time t � b, intermediate input mit is chosen by

the �rm. Subsequently, at time t, labor input lit is chosen. Recall from the above that this is

problematic if ! varies between these two points in time. Therefore, consider a DGP where ! does

not evolve between the points t� b and t. What we do want to happen between the choice of mit

at t � b and the choice of lit at t is some other unanticipated shock that a¤ects a �rm�s choice

of lit. Consider, e.g., an unobserved and unanticipated shock to the price of labor that occurs

between these two points in time. Call this shock {it. Since {it is unanticipated and realized after
the �rm�s choice of mit, the �rm�s choice of mit will not depend on the shock. Hence, the �rst

stage inversion is still valid. Because the shock occurs before the choice of lit, it does in�uence the

�rm�s choice of lit and hence moves lit around independently from the non-parametric function.

As such, the existence of {it will break the collinearity problem and in theory will allow �rst stage
identi�cation of the labor coe¢ cient. However, we again believe that this DGP is one that would

be very hard to motivate in real world examples. One needs to assume that 1) �rms choose mit

before choosing lit, 2) in the period of time between these choices, !it does not evolve, and 3) in

the period of time between these choices, {it does evolve (i.e. is realized). One additionally needs
12Note that it is hard to motivate such an assumption by appealing to unions restricting the hiring and �ring of

labor. Such restrictions will generally a¤ect choice of mit as well as lit, invalidating the �rst stage inversion.
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to assume that 4) {it is i.i.d. over time - otherwise, a �rm�s optimal mit would depend on the

unobserved {it�1, violating the �rst stage inversion, and 5) that the unobserved {it varies across
�rms - because the non-parametric function is indexed by t, variation in {it across time is not
helpful at moving around lit independently. This strikes us as a very particular and unintuitive

set of assumptions. Not only are they untuitive, but the assumptions also seem asymmetric in

somewhat arbitrary ways - one unobservable is allowed to be correlated across time while the

other is not, there must exist a period of time during which one unobservable evolves but the

other doesn�t, and some input prices must be constant across �rms, while others must not be. It

is hard for us to imagine a dataset or situation where this set of identi�cation assumptions would

hold, even to an approximation.

To summarize, there appears to be only two potential DGPs that save the LP procedure

from collinearity problems. One requires a signi�cant amount of optimization error in lit, yet

no optimization error in mit. The second requires a seemingly unintuitive set of assumptions

on timing and unobservables. Neither of these DGPs appear to us like particularly reasonable

arguments on which to base identi�cation. An important note is that, in practice, one probably

would not observe this collinearity problem. It is very likely that estimation of (9) would produce

an actual numerical estimate. Our point is that unless one believes that one or both of the above

two DGPs holds (and additionally that these are the only reasons why the �rst stage equation

is not collinear), this is simply not a consistent estimator of �l.
13 Another way to describe this

result is that unless one believes in one of the above two DGPs, the extent to which the LP �rst

stage is identi�ed is also the extent to which is misspeci�ed.

3.2 Olley and Pakes

Now consider the OP model. Given the above results regarding the LP procedure, a reasonable

question is whether the OP model also su¤ers from a similar collinearity problem. While we

show there are similar collinearity issues with the OP model, we argue that this collinearity can

be "broken" under what may be more reasonable assumptions than in LP.

In OP, the question is whether lit is collinear with the non-parametric function f�1t (iit; kit).

Again, the most obvious formulation of labor input demand is that lit is just a function of !it and

kit, i.e. lit = gt(!it; kit). If this is the case, it is easy to show that we again have a collinearity

problem. To obtain identi�cation, one again needs a DGP in which something moves lit around

independently of f�1t (iit; kit). Two possibilities are analagous to the two DGPs we just described

in the LP model - i.e. either optimization error in lit (with no optimization error in iit), or i.i.d.,

�rm-speci�c, shocks to the price of labor (or other relevant variables) that are realized between

the points in time at which iit�1 is chosen and lit is chosen. However, as we have just argued, these

13Analagously, one might regress lit on kit and mit and not �nd a perfect �t. In the context, our point would be
that according to the LP assumptions, there is no really believable DGP why one wouldn�t get a perfect �t in such
a regession.
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DGPs seem to rely on very strong and unintuitive assumptions.

Fortunately, in the OP context, there is an alternative DGP which breaks the collinearity

problem and is simultaneously consistent with the assumptions of the model. In contrast to the

prior two DGPs, we feel that this DGPmight be a reasonable approximation to the true underlying

process in many datasets. Consider the case where lit is actually not a perfectly variable input,

and is chosen at some point in time between periods t � 1 and t. Similar to above, denote this

point in time as t � b, where 0 < b < 1. Suppose that ! evolves between the subperiods t � 1,
t� b, and t according to a �rst-order markov process, as in eqs (14) and (15).

In this case, a �rm�s optimal labor input will not be a function of !it, but of !it�b, i.e.

lit = ft (!it�b; kit)

Since !it�b cannot generally be written as a function of kit, and iit, lit will not generally be collinear

with the non-parametric term in (5), allowing the equation to be identi�ed. Note the intution

behind this - the fact that labor is set before production means that labor is determined by !it�b
rather than !it. The movement of ! between t� b and t is what breaks the collinearity problem

between lit and the non-parametric function. Put another way, the idea here is that labor is chosen

without perfect information about what !it is, and this incomplete information is what moves lit
independently of the non-parametric function.

To us, this DGP seems like something that could be motivated in some empirical situations.

One would need to argue that labor is not a perfectly variable input, and hence is set as function of

a di¤erent information set than is iit. However, note that this DGP does need to rule out a �rm�s

choice of lit having dynamic implications. If labor did have dynamic e¤ects, then lit would directly

impact a �rm�s choice of iit. As a result, lit would directly enter the �rst stage non-parametric

function and prevent identi�cation of �l.

Lastly, note why this DGP does not solve the collinearity problem in the context of the LP

model. In the LP model, if lit is chosen before mit, then mit will directly depend on lit, making �l
unidenti�ed in the �rst stage. In OP, even if lit is chosen before iit, iit does not depend on lit (as

long as one maintains the assumption that labor has no dynamic implications). This is because iit,

unlike mit, is not directly linked to period t outcomes, and thus lit will not a¤ect a �rm�s optimal

choice of iit. The fact that this type of DGP does work in the OP context but does not work in

the LP context is the reason that we describe the collinearity problem as being worse for the LP

methodology.
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4 Parametric Versions of LP?

The collinearity problem in LP is that in the �rst stage equation,

(16) yit = �kkit + �llit + �mmit + f�1t (mit; kit) + �it

the non-parametric function f�1t (mit; kit) will generally be collinear with lit under the maintained

assumptions of the model. One approach to solving this collinearity problem might be to treat

f�1t (mit; kit) parametrically. Note that even though lit might again just be a function of mit and

kit, if it is a di¤erent function of mit and kit than f�1t is, this parametric version is potentially

identi�ed. While using a parametric version makes more assumptions than the non-parametric

approach, one might be willing to make such assumptions with relatively uncomplicated input

choices such as materials.

Unfortunately, this parametric approach does not work, at least for some popular production

functions. In the case of Cobb-Douglas, the �rst order condition for mit (conditional on kit, lit,

and !it) is:

�mK
�k
it L

�l
itM

�m�1
it e!it =

pm
py

assuming �rms are price takers in both input and output markets. Recall that capital letters

represent levels (rather than logs) of the inputs. Inverting this out for !it gives:

e!it =
1

�m

pm
py
K
��k
it L

��l
it M

1��m
it

!it = ln(
1

�m
) + ln(

pm
py
)� �1kit � �2lit + (1� �m)mit

and plugging this inversion into the production function results in:

(17) yit = ln(
1

�m
) + ln(

pm
py
) +mit + �it

The key point here is that �l has dropped out of the estimating equation, making a moment

condition in �it unhelpful in identifying �l. As such, with a Cobb-Douglas production function, a

parametric approach cannot generally be used as a �rst stage to identify �l.
14

One gets a similar result with a production function that is Leontief in the material inputs.

Consider, for example:

Yit = min
h

0 + 
1Mit; K

�k
it L

�l
it e

!it
i
+ �it

14The above analysis uses the choice of mit conditional on levels of kit; lit, and !it. This is most naturally
interpreted in the case where lit is chosen before mit. One obtains the same result if one solves for simultaneous
mit and lit choices conditional on levels of kit and !it.
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With this production function, the �rst order condition for Mit satis�es


0 + 
1Mit = K
�k
it L

�l
it e

!it

as long as 
1py > pm. At this optimum, note that:

(18) yit = �kkit + �llit + !it + �it

which could form an estimating equation if not for endogeneity problems. Inverting out !it results

in:

e!it =

0 + 
1Mit

K
�k
it L

�l
it

!it = ln(
0 + 
1Mit)� �kkit � �llit

and substituting into (18) results in

(19) yit = ln(
0 + 
1Mit) + �it

so again, this procedure is not helpful for identifying �l.

In summary, even with parametric assumptions, there may be an identi�cation problem in

the �rst stage of the LP technique using intermediate inputs to control for unobserved factors

of production. However, it is possible that as one moves away from Cobb-Douglas production

functions (or Hicks neutral unobservables or perfectly competitive output and input markets), a

parametric approach might be identi�ed (see Van Biesebroeck (2003) for a related example).

5 Our Alternative Procedure

We now suggest an alternative estimation procedure that avoids the collinearity problems discussed

above. This procedure draws on aspects of both the OP and LP procedures and is able to use

either the �intermediate input as proxy� idea of LP, or the �investment as proxy� idea of OP.

The main di¤erence between this new approach and OP and LP is that in the new approach, no

coe¢ cients will be estimated in the �rst stage of estimation. Instead, the input coe¢ cients are

all estimated in the second stage. However, as we shall see, the �rst stage will still be important

to net out the untransmitted error �it from the production function. We exhibit our approaches

using value added production functions. They could also be used in the case of gross output

production functions, although in this case one might need to consider issues brought up by Bond
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and Söderbom (2005).15 We start by showing how our method works with the LP intermediate

input proxy. We then show how our method is consistent if labor has dynamic implications

and illustrate how our procedure works using the OP investment proxy. Lastly, we compare our

procedure to methods used in the dynamic panel data literature, e.g. Arellano and Bover (1995),

and Blundell and Bond (1998, 2000). We feel that this is important because up to now, these

two literatures (OP, LP vs. dynamic panel methods) have evolved somewhat separately. Our

estimation procedure makes it quite easy to see the tradeo¤s and di¤erent assumptions behind

the two approaches.

5.1 The Basic Procedure

Consider the following value added production function,

(20) yit = �kkit + �llit + !it + �it

Our basic idea is quite simple - to give up on trying to estimate �l in the �rst stage. However, we

will still estimate a �rst stage - the goal of this �rst stage will be to separate !it from �it. As we will

see momentarily, this will be a key step in allowing us to treat the !it process non-parametrically.

Perhaps the most intuitive way to "give up" estimation of �l in the �rst stage is to allow for

labor inputs to be chosen before material inputs. More precisely, suppose that lit is chosen by

�rms at time t � b (0 < b < 1), after kit was chosen at (or before) t � 1 but prior to mit being

chosen at t. Suppose that !it evolves according to a �rst order markov process between these

subperiods t� 1, t� b, and t, i.e.

p(!itjIit�b) = p(!itj!it�b)

and

p(!it�bjIit�1) = p(!it�bj!it�1)

Our feeling is that this assumption that labor is "less variable" than materials may make sense

in many industries. For example, it is consistent with �rms needing time to train new workers,

or needing to give workers some period of notice before �ring. Given these timing assumptions,

a �rm�s material input demand at t will now directly depend on the lit chosen prior to it, i.e.

(21) mit = ft (!it; kit; lit)

15Bond and Söderbom (2005) argue that it may be hard (if not impossible) to identify coe¢ cients on perfectly
variable (and non-dynamic) inputs in a Cobb-Douglas framework. Note that this is also an critique of the original
LP procedure�s identi�cation of the materials coe¢ cient. On the other hand, value-added production functions
have their own issues, see, e.g. Basu and Fernald (1997).
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Inverting this function for !it and substituting into the production function results in a �rst stage

equation of the form:

(22) yit = �kkit + �llit + f�1t (mit; kit; lit) + �it

�l is clearly not identi�ed in this �rst stage. However, one does obtain an estimate, b�it, of
the composite term,

�t(mit; kit; lit) = �kkit + �llit + f�1t (mit; kit; lit)

which represents output net of the untransmitted shock �it. Intuitively, by conditioning on a

�rm�s choice of material inputs (or analagously in this case conditioning on the information set

at t), this procedure allows us to isolate and eliminate the portion of output determined by either

shocks unanticipated at t (e.g. unanticipated weather shocks, defect rates, or machine breakdown)

or by measurement error.

However, with no coe¢ cients obtained in the �rst stage, we still need to identify �k and

�l. This now requires two independent moment conditions for identi�cation in the second stage.

Given the �rst-order Markov assumption on !it, we have

!it = E[!itjIit�1] + �it = E[!itj!it�1] + �it

where �it is mean independent of all information known at t � 1. Given the OP/LP timing

assumption that kit was decided at t � 1 (and hence kit 2 Iit�1), this leads to the second stage

moment condition used by both OP and LP, namely that:

(23) E[�itjkit] = 0

Of course, this moment would not hold if one replaced kit with lit. Since lit is chosen after t,

at time t � b, lit will generally be correlated with at least part of �it. On the other hand, lagged

labor, lit�1, was chosen at time t � b � 1. Hence, it is in the information set Iit�1 and will be

uncorrelated with �it. This implies

(24) E[�itj
kit

lit�1
] = 0

which in turn implies that

E[�it �
 

kit

lit�1

!
] = 0

These are the two moments we suggest using in estimation to identify �k and �l.

Operationalizing this moment is analagous to the second stage of the OP and LP procedures.
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We can recover the implied �it�s for any value of the parameters (�k; �l) as follows. First, given a

candidate value of (�k; �l), compute the implied !it(�k; �l)�s 8t using the formula:

!it(�k; �l) = b�it � �kkit � �llit

Second, non-parametrically regress !it(�k; �l) on !it�1(�k; �l) (and a constant term) - the

residuals from this regression are the implied �it(�k; �l)�s. Given these implied �it(�k; �l)�s, one

can form a sample analogue to the above moment, i.e.

(25)
1

T

1

N

X
t

X
i

�it(�k; �l) �
 

kit

lit�1

!

and estimate (�k; �l) by minimizing this sample analogue.

We end this section with several important observations regarding our suggested procedure.

First, the moment condition we use to identify the labor coe¢ cient, i.e. E[�it � lit�1] = 0 is actually
used by LP (and OP in a more informal way) as an overidentifying restriction on the model in

their second stage procedure. However, there is a fundamental di¤erence between what we are

doing and what OP/LP do - in OP/LP, the labor coe¢ cient is estimated in the �rst stage without

using any of the information from the second element of (25).16 In our procedure, the information

in (25) is crucial in identifying the labor coe¢ cient. Given the problems with the LP �rst stage

identi�cation of �l described above, we prefer our method of identi�cation.

Second, it is important to note that our procedure is completely consistent with labor choices

having dynamic implications. This would probably be the case if, e.g. there were �ring, hiring

or training costs of labor. Note that in this case, �rms�optimal choices of lit and kit will depend

on lit�1, but the intermediate input demand function mit will not. This is because choice of mit

already depends on lit (since lit was chosen before mit), and because mit is only relevant for period

t production.17 We feel that this is important not only for robustness reasons, but also because

the additional variation in lit generated by dynamic issues will likely improve identi�cation (see

Bond and Söderbom (2005)).18

Third, our procedure is also consistent with other unobservables, e.g. input price shocks or

dynamic adjustment costs a¤ecting �rm�s choices of lit and kit. Importantly, these other unob-

servables can be correlated across time - this is because 1) mit depends directly on lit and kit and

16It is possible that such an overidentifying restriction test might alert one to a spuriously identi�ed �rst stage
labor coe¢ cient. However, it seems presumptuous to rely on such a test given that it is not clear how much power
it has. It may in fact be a very weak test.
17If one wanted to assume that b = 0, i.e. that lit is chosen at the same time as mit, then one would want to

replace lit with lit�1 in the �rst stage non-parametric function.
18While it may not be as empirically relevant, our procedure can also be extended to allow dynamics in mit -

this could be accomplished by adding mit�1 into the �rst stage non-parametric function. However, in this case,
one would probably need to rule out the possible additional unobservables discussed in the next paragraph.
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2) because mit only a¤ects current production. Point 2) implies that even serially correlated such

unobservables will not in�uence a �rm�s optimal choice of mit. Again, such unobservables would

likely actually be helpful for identi�cation by generating extra exogenous variation in kit and lit.19

Note that one cannot allow other unobservables to directly a¤ect a �rm�s optimal choice of mit -

this would violate the scalar unobservable assumption necessary for the inversion.20

Fourth, in some situations one might feel comfortable assuming that lit was chosen at or prior

to t� 1. This might be the case if the time period in a particular dataset is short, or if, e.g. there
is a signi�cant amount of training required before workers can enter production. If this is the

case, one can alternatively use the moment conditions

(26) E[�itj
kit

lit
] = 0

This is likely to generate more e¢ cient estimates than the moment condition using lit�1, as lit is

more directly linked to current output. Note that one could add additional lags of capital and

labor to either set of moments (24) or (26) to generate overidentifying restricitions, although it is

unclear how much extra identifying power these additional moments add.

Fifth, as is the case with OP and LP, the above can be generalized to production functions

other than Cobb-Douglas. What is necessary is that it can be written as yit = h(kit; lit; !it+�it; �)

where h is strictly monotonic in the combined unobservable term !it + �it. In this case, the �rst

stage involves a moment in the term �it = h�1(kit; lit; yit; �)� f�1t (mit; kit; lit). As above, the

non-parametric treatment of f�1t will tend to make the production function parameters � not

identi�ed by this moment. However, one will get estimates of the unobservables �it - denote themb�it. Then the second stage can proceed using the inversion !it = h�1(kit; lit; yit; �)� b�it. This
allows, conditional on parameters �, one to regress !it(�) on !it�1(�) and form a moment in the

residual �it analagous to (26). This permits one to be as �exible as one wishes in terms of the

production function or value added production function h, although one also needs to be sure

that, given an h, the strict monotonicity condition holds on ft, the input demand function that is

being inverted.

Lastly, note that with the above two-stage procedure, it is probably most straightforward

19An interesting case occurs when there are no dynamic e¤ects of labor and no other unobservables a¤ecting
labor and/or capital. Suppose also that �rms are price takers, are risk-neutral and choose labor optimally given
a Cobb-Douglas production function (given the risk neutrality, �rms choose labor as a function of the expectation
of !it at t � b; i.e. E[!itj!it�b]). In this case, one can show that (�k; �l) are in fact not globally identi�ed. In
particular, there is a point at the boundary of parameter space, �̂k = 0; �̂l = �k + �l, that necessarily sets the
expectation of our moment condition equal to zero. This result is related to, but distinctly di¤erent from, the
complete non-identi�cation result in Bond and Söderbom (2005), which assumes that b = 0. Monte-carlo results
when b > 0 are at least suggestive that the model is identi�ed away from the above boundary point. However,
identi�cation based on dynamic e¤ects of labor or other unobservables seems preferable.
20If one had multiple intermediate inputs and conditioned on all these inputs along with making an appropriate

multivariate invertibility assumption, one might be able to allow a limited number of such unobservables. The key
is whether one can still recover !it as a function of the intermediate inputs, lit, and kit.

21



to derive asymptotic standard errors as done in LP, by bootstrapping. As mentioned above,

Wooldridge (2005) suggests an alternative implementation of OP/LP that involves estimating the

�rst and second stages simultaneously. This can easily be extended to our methodology by simply

adding lit to the �rst stage non-parametric function. This leads to the following two moments:

(27)

E

"
�it j Iit
�it j Iit�1

#
= E

"
yit � �kkit � �llit � f�1

�
mit; kit; lit; �f;t

�
j Iit

f�1
�
mit; kit; lit; �f;t

�
� g(f�1

�
mit�1; kit�1; lit�1; �f;t�1

�
; �g)jIit�1

#
= 0

where f and g are, e.g., polynomial functions with parameters �f;t and �g. The two moments

correspond, respectively, to our �rst and second stages. Note the di¤erent conditioning sets, as

�it will generally be correlated with Iit. In practice, one would likely want to use kit, lit and a

set of appropriate (e.g. polynomial) basis functions of the arguments of f�1 interacted with time

dummies as instruments for the �rst moment (�it), and kit, lit�1 (or lit depending on one�s timing

assumptions) and basis functions of the scalar f�1
�
mit�1; kit�1; lit�1; �f;t

�
as instruments for the

second moment (�it). Note that the polynomial basis functions of f
�1 �mit�1; kit�1; lit�1; �f;t�1

�
will

depend on the parameters �f;t�1. The sample analogue of this set of moments can be minimized

w.r.t. (�k; �l; �f;t; �g) to generate consistent estimates of these parameters.
21

An important advantage of applying the Wooldridge one-step approach to our estimating

equations is that standard errors can be computed using standard GMM formulas. Another

potential advantage is e¢ ciency. One limitation is that it requires a non-analytic search over

a much larger set of parameters, (�k; �l; �f;t; �g). The dimension of �g is the dimension of the

polynomial used to represent g, and the dimension of �f;t is the dimension of the polynomial used

to represent f times the number of time periods. In the two-stage approach, one only has to search

over the two production function parameters �k and �l - the parameters of the polynomials are

all analytically computable. To avoid optimization problems, we suggest using parameters from

the two-step procedure as starting values if using the one-step approach. An even more reliable

alternative might be to take one Newton-Raphson step with the one-step objective function using

two-step estimates as starting parameters. This requires no additional optimization, and based

on a result by Pagan (1986) produces estimates asymptotically equivalent to maximizing the

one-stage objective function. As such, one can use the simpler method to compute asymptotic

standard errors from the one stage approach. That said, bootstrapping standard errors is fairly

straightforward if one prefers the simpler 2-step approach.

21Given our arguments questioning the LP �rst stage identi�cation, Wooldridge (2005) (pg. 12) suggests the
alternative possibility of dropping the �rst moment condition (i.e. the moment E[�itjIit]) and only using a moment
in �it+ �it, i.e. E

�
yit � �kkit � �llit � g(f�1

�
mit�1; kit�1; lit�1;�f;t�1

�
;�g)jIit�1

�
to identify the parameters.

However, it is hard to see how just using this one equation could well identify the non-parametric function f�1 and
�l simultaneously (since if one uses all functions of lit�1 as instruments to identify the non-parametric f

�1, one
cannot use lit�1 as an instrument for lit). It also would not separately identify g and f�1 (nor the productivity
shocks !it), which are often objects of interest. In our opinion, the E[�itjIit] = 0 moment should de�nitely be used,
as it should provide a great deal of information on the f�1 function.
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5.2 Investment Proxy

One can also use our methodology with the investment proxy variable of OP. Interestingly, moving

all identi�cation to the second stage simultaneously makes the procedure robust to dynamic e¤ects

of labor.22 Suppose that, as in OP, iit�1 (and thus kit) is chosen exactly at t�1 (unlike when using
an intermediate input proxy, where kit can be chosen at or before t, this assumption is necessary

for iit to "invert out" the correct !it). As above, suppose that lit is chosen at time t� b, and allow
there to be possible dynamic e¤ects of labor. In this case, a �rms optimal investment decision will

generally take the form

(28) iit = ft (!it; kit; lit)

since lit is chosen before iit and because lit has possible dynamic implications. Inverting this

function and substituting into the production function results in:

(29) yit = �kkit + �llit + f�1t (iit; kit; lit) + �it

which again clearly does not identify any coe¢ cients in the �rst stage. However, one can again

use the �rst stage to estimate the composite term

�t(iit; kit; lit) = �kkit + �llit + f�1t (iit; kit; lit)

and proceed exactly as above, using the estimated b�it�s to infer !it(�k; �l)�s, �it(�k; �l)�s, and form
the moment (25).

Like our procedure using the intermediate input proxy, this procedure is consistent with labor

having dynamic e¤ects. However, unlike the above, it is not generally consistent with other,

serially correlated unobservables entering either the iit or lit decisions. Another unobservable

a¤ecting the iit equation is clearly problematic for the inversion. Less obviously, another serially

correlated unobservable that a¤ects the lit decision will generally also a¤ect the iit decision directly

since iit is a dynamic decision variable. As a result, the inversion is problematic. The reason the

intermediate input proxy is more robust to these additional serially correlated unobservables is

because intermediate inputs are only relevant for current output.

5.3 Relation to Dynamic Panel Models

Interestingly, the form of our suggested estimators make them fairly easy to compare to estimators

used in an alternative literature, the dynamic panel literature. This is important because up to

now, researchers interested in estimating production functions have essentially been choosing be-

tween the OP/LP general approach versus the dynamic panel approach without a clear description

22Buettner (2005) also makes this suggestion for extending OP to allow dynamic e¤ects of labor.
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of the similarities and di¤erences of the identifying assumptions used in the two methods. We

start with a brief discussion of dynamic panel methods before comparing them to our estimator.

To brie�y summarize, there are distinct advantages and disadvantages of both approaches.

As developed by work such as Chamberlain (1982), Anderson and Hsiao (1982), Arellano

and Bond (1991), Arellano and Bover (1995), and Blundell and Bond (1998, 2000), the dynamic

panel literature essentially extends the �xed e¤ects literature to allow for more sophisticated error

structures. Consider the following production function model:

(30) yit = �1kit + �2lit + �it + �it

Whereas the standard �xed e¤ects estimator necessarily assumes that �it is constant over time,

the dynamic panel literature can allow more complex error structures. For example, suppose that

�it is composed of both a �xed e¤ect (�i) and a serially correlated unobservable (!it), i.e.

yit = �1kit + �2lit + �i + !it + �it(31)

= �1kit + �2lit +  it(32)

Notationally, the composite error term  it represents the sum of all three error term components.

The dynamic panel literature proceeds by �rst making assumptions on 1) the evolution of the

error components �i, !it, and �it, and 2) possible correlations between these error components and

the explanatory variables kit and lit. Given these assumptions, the key is then to �nd functions

of the aggregate error terms  it (often these functions involve di¤erencing the  it�s) that are

uncorrelated with past, present, or future values of the explanatory variables. Since the  it�s are

"observable" given particular values of the parameters (unlike the individual components of  it),

one can easily set up sample analogues of these moment conditions.

Continuing with the above production function example, a reasonable set of assumptions on

the error components might be as follows. First, one might allow for potential correlation between

the time-invariant error component �i and kit and lit. Second, one could assume that �it is i.i.d.

over time and uncorrelated with kit and lit for all t (e.g. �it might represent measurement error

or unanticipated shocks to yit). Lastly, one could assume that !it follows an AR(1) process, i.e.

!it = �!it�1 + �it. Regarding correlation between !it and the inputs, one might allow that !it is

correlated with kit and lit 8t but assume that the innovation in !it between t � 1 and t, i.e. �it,
is uncorrelated with all input choices prior to t. Note that the intuition behind this assumption

is similar to that behind the second stage moments in our procedure (and OP/LP). This idea is

that since the innovation in !it, �it occurs after time t� 1, it may not be correlated with inputs
dated t� 1 and earlier.23
23As with the analagous assumption in the OP/LP/ACF models, this assumption is not just an assumption on

the time series properties of �it - it is also an assumption on the information sets of �rms (i.e. that �rms do not
observe �it�s until they occur).
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Given these particular assumptions, estimation can proceed as follows. Consider the following

function of  it,

( it � � it�1)� ( it�1 � � it�2) = �it � �it�1 + (�it � ��it�1)� (�it�1 � ��it�2)

The equality follows from the de�nitions of  it and !it. Note that only �it�s and innovations in

the AR(1) process enter this expression - all terms containing �i have been di¤erenced out. Now,

since the innovations �it and �it�1 have been assumed uncorrelated with all input choices prior to

t�1 (and �it have been assumed uncorrelated with all input choices), we can easily form a method
of moments estimator for � and �. By assumption the moment

(33) E

24( it � � it�1)� ( it�1 � � it�2) j
(
ki�

li�

)t�2
�=1

35
is equal to zero. A sample analogue of this moment is trivial to construct, since given values of

the parameters, all  it�s (and thus all ( it � � it�1)� ( it�1 � � it�2)�s) are "observed".

Before continuing, note that this estimation procedure can be adapted in various dimensions.

For example, suppose one is unwilling to assume that the �it are uncorrelated with all inputs in

all time periods, but prefers making the weaker assumption that �it is sequentially exogenous, i.e.

uncorrelated with all input choices dated prior to t. In this case, the above moment is not equal

to zero, as there is potentially correlation between �it�2 and (kit�2, lit�2). However, the moment

still holds for lagged inputs prior to t� 2, so the alternative moment

E

24( it � � it�1)� ( it�1 � � it�2) j
(
ki�

li�

)t�3
�=1

35
could be used for estimation.

As another example, suppose we remove the �xed e¤ect from the model, i.e.

(34) yit = �1kit + �2lit + !it + �it = �1kit + �2lit +  it

but keep the same assumptions on !it and �it. In this case, one only needs to di¤erence once to

form a usable moment. More speci�cally, since

 it � � it�1 = �it + (�it � ��it�1)
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we can use

(35) E

24 it � � it�1 j
(
ki�

li�

)t�1
�=1

35
as a moment for estimation if the �it are strictly exogenous (kit�1 and lit�1 could not be used as

instruments if the �it were assumed sequentially exogneous).

This last example is particularly relevant for our current goals since the model (34) is very

similar to our OP/LP style model and makes comparison quite easy. Note the di¤erences in the

construction of the second stage moments in the dynamic panel model versus those used in the

second stage of our suggested procedure. In our procedure, the �rst stage serves to net out the

�it. After this is done, we can compute !it 8t (conditional on parameters) and form moments

in the innovations in !it. This contrasts with the dynamic panel approach, where conditional

on the parameters, one cannot compute the individual !it�s, but can instead only compute the

sums  it = !it + �it 8t. While in both these cases one can form moments for estimation to

consistently estimate the parameters, the di¤erence between being able to "observe" !it versus

being able to only "observe" the sum !it + �it (conditional on parameters) has a number of

important implications.

First, recall that in our model, !it can follow an arbitrary �rst order Markov process. This

is not the case in the dynamic panel model. Not only must the Markov process generating !it
be parametric, but it must also have a linear form. In the above example, it is the linearity of

the AR(1) process that allows us to construct a useable moment using the sums !it + �it. To see

this, suppose that instead of the Markov process being !it = �!it�1 + �it, it is !it = �!3it�1 + �it.

The problem here is that it is not clear how one can manipulate the sums  it to form a useable

moment. One can construct the di¤erence  it� � 3it�1, i.e.

 it � � 3it�1 = !it + �it � �(!it�1 + �it�1)
3

= !it + �it � �(!3it�1 + �it�1
3 + 2!it�1�it�1

2 + 2!2it�1�it�1)

= �it + �it � �(�it�1
3 + 2!it�1�it�1

2 + 2!2it�1�it�1)

but while one term in this expression is the innovation term �it, the expression also contains

numerous other terms that are very likely correlated with the inputs.24 More generally, it appears

that with a non-linear Markov process, it will not be possible to cleanly construct a valid moment

in the innovation term using the sums  it. In contrast, in our procedure, because we are able to

recover the individual !it�s, it is trivial to deal with non-linear �rst order Markov processes (in

this example, just regress !it on !3it�1 and form moments with the residual). Not only can our

24In particular, given that !it is correlated with input choices (in all periods), it is highly likely that 2!it�1�it2

will be correlated with the inputs as well.

26



procedure deal with such non-linearities, but it also easily permits non-parametric estimation of

these processes. Again, the crucial step here is the �rst stage estimation, which nets out the �it
and allows us to "observe" !it conditional on the parameters. This �exibility in modelling of the

!it process is a clear advantage of our procedure over dynamic panel methods.25

A second di¤erence concerns the relative e¢ ciency of the two estimators. The variance of a

GMM estimator is proportional to the variance of the moment condition being used. Suppose, for

example, that we know that !it follows an AR(1) process. In this case, our second stage would

involve regressing !it on just !it�1 (conditional on parameters) and setting the residual orthogonal

to appropriately lagged instruments. This residual is equal to the innovation in !it, i.e. �it, at

the true parameters. In contrast, the dynamic panel approach sets the residual  it � � it�1
orthogonal to instruments. This residual is equal to the innovation in !it plus some additional

terms, i.e. �it + (�it � ��it�1). Since these additional terms add variance to the moment condition

(for a given set of instruments), this di¤erence will tend to make our estimator asymptotically

more e¢ cient than the dynamic panel estimator.26 That said, our estimator requires estimation of

two distinct non-parametric functions that the dynamic panel estimator does not. This di¤erence

could detrimentally impact the small sample distribution of our estimator relative to the dynamic

panel estimator.

There are also signi�cant advantages of the dynamic panel estimator over our estimator. We

feel that the most important one concerns possible �xed e¤ects. For example, the start of this

section showed how dynamic panel methods can allow for a �xed e¤ect �i in addition to the

serially correlated process !it. The resulting estimator is consistent even for �xed T . This, to

our knowledge, cannot be done with our estimator.27 On the other hand, allowing for �xed

e¤ects in the dynamic panel literature requires an additional di¤erencing and further lagging of

instruments (compare the moment in (33) to that in (35)) - this likely puts considerably greater

demands on the data.28 Perhaps this is one reason why these estimators have sometimes not

worked particularly well in practice.29 Regardless, the ability to allow for �i�s is de�nitely an

advantage of the dynamic panel approach.

Another advantage of the dynamic panel literature is that it requires fewer assumptions regard-

ing input demand equations. Recall that our procedure requires both a strict monotonicity and a

scalar unobservable assumption on one of the input demand equations, e.g. on either investment

or materials.30 The dynamic panel literature does not require such assumptions. Of course, it

25Note that in the special case where �it is assumed zero for all i and t, the dynamic panel methodology can
allow a non-linear (or non-parametric) Markov process. This is because in this case (i.e. �it = 0), the !it�s are
recoverable given parameters.
26Formally proving this would need to account for the �rst stage estimation error in netting out the �it�s.
27If T !1, we could simply estimate the �xed e¤ects in our model, but this is a much weaker result.
28Both the additional di¤erencing and the further lagging of the instruments are likely to reduce the information

in the moment condition (see, e.g., Griliches and Hausman (1981)).
29Blundell and Bond (1998) suggest additional moments based on initial conditions to address this problem.
30It is possible to relax the scalar unobservable assumption in some cases, but this requires multiple proxy

variables (e.g. investment choice and advertising choice) and a multidimensional strict monotonicity assumption
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is these assumptions that allow us to form the �rst stage equation, net out the �it�s, observe the

!it�s conditional on the parameters, and thus treat the !it process non-parametrically.

The dynamic panel literature also permits one to make slightly weaker assumptions on the

�it�s. As described above, dynamic panel procedures can proceed either under a strict exogeneity

assumption (�it uncorrelated with input choices at all t) or a weaker sequential exogeneity assump-

tion (�it uncorrelated with input choices prior to t). For all practical purposes, our procedure

depends on the strict exogeneity assumption. The problem here does not regard the second stage

moments (�it does not even enter the second stage moments) - it is with the �rst stage. The

problem is that sequential exogeneity permits �it to a¤ect future input choices. This will tend to

violate the scalar unobservable assumption necessary for the �rst stage of our procedure.31 Note

that both types of procedures can allow �it to be correlated over time, at least in some cases. The

key assumption in both is that �it is not in any way predictable by �rms. For example, �it could

contain measurement error in yit that is serially correlated over time. Another seeming advantage

of the dynamic panel literature is that it can allow for a higher than �rst order Markov process

for !it, as long as this process is linear (e.g. an AR(2) process - note that this would require fur-

ther di¤erencing to construct a valid moment). However, ABBP show that our methods can be

extended to non-parametric higher order Markov process if one observes a set of control variables

equal to the order of the Markov process.

Lastly, there are some di¤erences in how these two types of estimators have been used in

practice, but that are less fundamental than the di¤erences above. For example, a frequent

assumption in the literature applying OP/LP methods has been that kit is part of Iit�1. This

generates orthogonality between �it and kit, which is likely a more informative moment than

orthogonality between �it and kit�1. This assumption has typically not been made in the dynamic

panel literature, but it easily could be. One can simply add kit�1 to the conditioning set in (33) or

kit to the conditioning set in (35) (under strict exogeneity). Presumably, this would increase the

e¢ ciency of dynamic panel estimates. The same idea could be applied to other "�xed" inputs as

well. Another di¤erence between how these estimators have been applied in practice is that while

the dynamic panel literature has typically utilized orthogonality between di¤erenced residuals and

all inputs suitably lagged (i.e. from � = 1 to � = t � 2 or t � 3), applications using OP/LP
methodology have often only used the latest dated valid observation for each input as instruments

(the application in LP is a notable exception). Of course, all further lagged inputs are also valid

instruments in our methodology (or OP/LP) and could also be used, analagous to the dynamic

panel methodology. The tradeo¤ is as often the case - more moments generate more e¢ ciency

and result in overidenti�cation (which can be useful for testing purposes), but they often can also

generate signi�cant small sample biases.

(see ABBP).
31Formally, our procedure can allow �it to a¤ect future choices of inputs not used for the �rst stage inversion

(e.g. labor), but allowing �it to a¤ect future labor choices but not, e.g. future material or investment choices, seems
somewhat arbitrary.
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In summary, while our procedure and dynamic panel methods for estimating production func-

tions are related, there are fundamental di¤erences between the two. While our procedure has

more �exibility regarding the serially correlated transmitted error !it, it is less �exible regarding

the non-transmitted error �it and in allowing �xed e¤ects �i. Our procedure also requires the

additional assumptions necessary for the �rst stage inversion. In some cases, data considerations

and/or a-priori beliefs about a particular production process may guide choices between the two

approaches. In other cases, one may want to try both techniques. Finding that production

function parameters are consistent across multiple techniques with di¤erent assumptions is surely

more convincing than only using one.

6 Empirical Example

We now brie�y compare our estimator to existing estimators with a commonly used dataset.

Generally, we feel that in practice one should take the key timing, scalar unobservable, and strict

monotonicity assumptions behind these methods quite seriously. For example, one should be

relatively sure that the variable being used to "invert" out unobserved productivity, whether it

be investment or an intermediate input, is well measured. In addition, one will hopefully be able

to use industry sources to motivate whichever timing assumptions one chooses to make, e.g. that

capital (and/or labor) is decided a full period before production. We are much more cursory in

motivating these assumptions here. This is both for brevity and because our interest is not in

the empirical results per-se, but in simply exhibiting that our estimator can generate reasonable

results. The exact empirical results should be interpreted with this caveat.

For our example, we utilize the same Chilean plant level data as do LP. One can consult LP

and the references therein for details on the dataset. We also examine the same four industries

as LP - food products (ISIC code 311), Textiles (321), Wood Products (331), and Metals (381).

These were chosen by LP because they contain a large number of plant-year observations. ISIC

311 has the most, with more than 5000 plant-year observations over the period 1979-1986. One

key di¤erence between our results and those exhibited in LP is that we estimate value-added

production functions rather than gross-revenue production functions. There are two reasons for

this. First, as noted previously, the aforementioned work by Bond and Söderbom (2005) casts

some doubt on being able to reliably identify coe¢ cients on perfectly variable inputs in Cobb-

Douglas production functions without input price variation across �rms. Second, estimating a

gross-revenue production function requires estimating coe¢ cients on all intermediate inputs. In

this dataset this includes materials, electricity, and fuels. These variables are highly collinear

with each other (and with capital and labor), and we have found it hard using any of the available

techniques to generate particularly stable estimates for parameters on all these inputs.

In addition to standard OLS and �xed e¤ects estimators, we examine the LP estimator, our
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ACF estimator, and a version of the dynamic panel methodology described above.32 With the

LP method, we use kit as the second stage instrument. For ACF, our main results use kit and

lit as second stage instruments, i.e. we use the moment (26). As such we make the timing

assumption that lit was decided before (or without knowledge of) the realization of �it. We have

also tried our procedure under weaker timing assumptions where we use kit and lit�1 as second

stage instruments. This allows labor to be chosen with knowledge of the full !it. While the

results are qualitatively similar to the main results, standard errors were generally higher. Table

1A in the appendix contains these alternative estimates. There are three intermediate inputs in

the dataset - materials, electricity, and fuel. Following LP, we try using each separately as the

proxy variable in the LP and ACF methods. Also following LP, we allow the inverse intermediate

input demand function to vary (non-parametrically) across three macroeconomic cycles in the data

(1979-81, 1982-83, 1984-86). As described above, one can generate overidenti�cation restrictions

with the LP, DP, and ACF estimators by adding further lags of the inputs to the conditioning

set of the moment conditions. However, because 1) numerically it is easier to estimate exactly

identi�ed systems (particularly given that we bootstrap the standard errors), and 2) because we

sometimes reject these overidentifying restrictions (LP also �nd this), we simply work with the

exactly identi�ed set of moments.

As discussed above, there are various sets of identifying assumptions one can make in applying

the dynamic panel (DP) methodology. To make our estimates as comparable as possible, we

choose these assumptions to be as similar as possible to those we are making in the ACF and

LP procedures. Speci�cally, we assume that the composite error  it is composed of only an

AR(1) process (!it) and an iid process (�it) (as in model (34)). Although the DP literature

could potentially also allow for a �xed e¤ect �i, this 1) would not be as similar to our ACF/LP

assumptions, and 2) it is also considerably more demanding on the data (because it requires

double di¤erencing).33 We also assume for the DP estimator that kit and lit (kit and lit�1 in the

table in the appendix) are orthogonal to the innovation in the AR(1) process �it. Again, this is

analagous to what we are assuming in the ACF/LP procedures and can be motivated by the same

timing/informational assumptions. Thus, the basic moment used for DP estimation is

(36) E

"�
 it � � it�1

�
�
 
kit

lit

! #
= 0

where  it = !it + �it and !it = �!it�1 + �it.
34

32Probably because it requires dropping more than 50% of the observations (there are a large number of observa-
tions with 0 investment in this developing country dataset), the OP estimator gives considerably di¤erent estimates
than the ACF, LP, and DP estimators. Hence, we do not report these results.
33We presume that the reason LP had problems with the DP methods (and ended up not reporting results) is

because they tried estimating the more demanding versions that allow for a �xed e¤ect �i.
34In the DP procedure, one needs an additional moment for estimation to identify �. We use the moment

E [�it � (!it�1 + �it�1)] = 0, i.e. we assume that the innovation �it is uncorrelated with !it�1 and �it�1: This
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Table 1 presents our main results. In the LP and ACF procedures, we use kernel estimators

for the non-parametric �rst stages.35 For all estimators we block-bootstrap (at the plant level) the

standard errors - this allows for correlations between the moment conditions of the same plant in

di¤erent years. It also appropriately computes the LP and ACF standard errors given that two

stage procedures are used in estimation. The �rst two rows for each industry exhibit OLS and

�xed e¤ects estimators. As typical in production datasets, the �xed e¤ects approach generates

what seem to be unrealistically low estimates of the capital coe¢ cient and returns to scale. In

industry 331, the �xed e¤ects estimate of the capital coe¢ cient is actually negative.

The ACF estimates seem reasonable, regardless of which intermediate input is used as the

proxy. With each of the 3 proxies across all 4 industries, the estimated returns to scale using ACF

are lower than the returns to scale estimated by OLS. This makes sense, as one would generally

expect input choices to be positively correlated with !it, biasing the OLS estimates of returns to

scale upwards. Table 2 tests whether these di¤erences are signi�cant. The values in the cells

of the table are the proportion of bootstrap repetition in which the ACF estimate is lower that

the corresponding OLS (or LP or DP) coe¢ cient. As such, a value either higher than 0.95 or

lower than 0.05 indicates that the coe¢ cients are signi�cantly di¤erent from each other (at 90%

con�dence level). For example, in Industry 321, ACF with the material proxy produces a lower

returns to scale coe¢ cient than OLS in 98.2% of the bootstrap replications - this is a signi�cant

di¤erence. In fact, the ACF returns to scale estimate is signi�cantly lower than the OLS estimate

in all 12 speci�cations (4 industries with each of 3 proxy variables). Most of the di¤erences in

the estimates of returns to scale appear to be coming from the respective labor coe¢ cients, as

the ACF labor coe¢ cient estimates are also signi�cantly lower than their OLS analogues in all 12

speci�cations. On the other hand, the capital coe¢ cients go in various directions - in some cases

the ACF estimate is higher than the corresponding OLS estimate. While this movement in the

capital coe¢ cient is not necessarily an intuitive result, it is possible if labor is more "variable"

than capital and as a result lit is more correlated with !it than is kit .

Comparing the ACF results to the LP results, a few interesting patterns arise. First, there

are many signi�cant di¤erences in the coe¢ cients. Of the 12 sets of estimates, 7 of the capital

coe¢ cients, 8 of the labor coe¢ cients, and 7 of the returns to scale coe¢ cients are signi�cantly

di¤erent between the ACF and LP speci�cations. In terms of the directions of the di¤erences,

they can go either way, but the LP estimates of the labor coe¢ cients are more often smaller

is analagous to what is being done in the LP and ACF procedures when one regresses implied !it on implied
!it�1 to construct �it. It is also the same as using a speci�c function of the lagged data f(yit�1; lit�1; kit�1) =
yit�1 � �llit�1 � �kkit�1 as an "instrument".
35We use the "rule-of-thumb" bandwidth for the multivariate case proposed in Hardle, Muller, Sperlich, and

Werwatz (2004). We suggest some care here, as in our experience these estimators can be somewhat sensitive to
choice of non-parametric technique and degree of smoothing. For the second stage non-parametric regressions of !it
on !it�1 we use a 5th order polynomial instead of a kernel. This is done because the regressor is one dimensional
and to save computational time since these regressions need to be run many times (for each candidate value of the
2nd stage parameters).
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than their ACF counterparts. This is suggestive that the LP �rst stage labor coe¢ cient estimates

may be biased downward. An interesting di¤erence between the estimators is their sensitivity to

which proxy is used. The ACF estimates are fairly stable across the materials, electricity, and

fuel proxies. In ISIC 311, for example, the ACF estimates of the labor coe¢ cient only varies

between 0.842 and 0.884 depending on which proxy is used. In contrast, the LP estimates vary

much more across the 3 di¤erent proxies - in ISIC 311 the estimated LP labor coe¢ cient is 0.676

when the materials proxy is used, but 0.942 when the fuel proxy is used. Again in ISIC 311, the

ACF estimates of returns to scale vary from 1.212 to 1.279, while the LP estimates vary from

1.131 to 1.352. The other ISICs exhibit a similar pattern - the LP estimates generally seem much

more sensitive to the particular proxy used. This instability of the LP labor coe¢ cients seems

consistent with our arguments questioning the source of identi�cation of the LP �rst stage labor

coe¢ cient.36

The last row for each ISIC contains estimates using the DP methodology. The DP estimates

also generally look reasonable - for example, the estimates of returns to scale are generally lower

than OLS. While the DP estimates generally seem closer to the ACF estimates than do the LP

estimates, there are still a number of signi�cant di¤erences. Of the 12 comparisons, 4 of the capital

coe¢ cients, 5 of the labor coe¢ cients, and 9 of the returns to scale estimates are signi�cantly

di¤erent. These signi�cant di¤erences suggest that one of the assumptions behind the estimators

may be incorrect. For example, it is possible that !it follows a 1st order Markov process that is

more complicated than a AR(1) process - this would invalidate the DP estimates (but not the ACF

estimates). Alternatively, perhaps the scalar unobservable and strict monotonicity assumptions

behind the ACF �rst stage inversion are incorrect - this would invalidate the ACF estimates (but

not the DP estimates). That said, while the estimates are statistically di¤erent, they are somewhat

close economically, so it is possible that any economic predictions might be insensitive to which

estimates are used.

Lastly, it is interesting to examine the standard errors of the various estimators. As expected,

the OLS estimates have the lowest standard errors while the �xed e¤ects estimates have the

highest standard errors. Regarding the LP, DP, and ACF standard errors, it is interesting that

none seem to dominate - they are all generally in the same range. That said, when using lit�1
36There is still the question of why the LP procedure seems to consistently generate positive (and signi�cant)

labor coe¢ cients in practice. Recall that at least in the "simplest" possible DGP process for the labor variable,
the labor coe¢ cient should not be identi�able in the �rst stage. In our opinion, there are a number of possible
explanations for this. First, it is possible that one (or a combination) of the alternative DGP�s described in section
3.1 is occuring. For example, the combination of labor being decided at t � b (as a function of !it�b rather than
!it) plus some optimization error in labor could generate this �nding. Of course, in this case, the LP estimate is
not a consistent estimate of �l. Another possible story is that the non-parametric approximations are not working
well. In general, this will generate a positive, but again spurious estimate of �l in the LP �rst stage. Lastly, one
might want to consider the possibility that maybe some of the more fundamental assumptions behind both LP and
ACF are wrong. For example, there could be optimization or measurement error in the proxy variables. This would
almost surely generate a positive (but spurious) coe¢ cient on labor in the LP �rst stage procedure. Of course, it
is also likely to generate spurious coe¢ cients in the ACF procedure.
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as the instrument (Table 1A), the standards errors of the DP and ACF estimates increase as

expected. It is also interesting that the LP, DP, and ACF standard errors seem closer to OLS

standard errors than they do to the �xed e¤ects standard errors. This seems to be a positive

result for these methods.

7 Conclusions

This paper has examined some of the recent literature on identi�cation of production functions

(Olley and Pakes (1996) and Levinsohn and Petrin (2003)) and argues that there may be signi�cant

collinearity problems in the �rst stages of these methods. Given these potential collinearity prob-

lems, we search for possible data generating processes that simultaneously 1) break this collinearity

problem, and 2) are consistent with the LP/OP assumptions. For LP, we conclude that there

are only two such DGP�s, and that both rely on very strong and untintuitive assumptions - one

involves a story where one variable input choice has a large amount of optimization error, while

another variable input choice has exactly no optimization error. The second DGP involves a story

where 1) intermediate inputs are chosen prior to labor, 2) that between the points in time when

intermediate inputs are chosen and when labor is chosen, the �rm�s productivity level does not

change, 3) that between these points in time, the �rm is exposed to a price or demand shock

that in�uences its choice of labor, and 4) that this price or demand shock varies across �rms and

is not correlated across time. Neither of these DGP assumptions seem realistic enough (even to

an approximation) to generally rely on in practice. For OP, there is an additional DGP that

breaks the collinearity and is consistent with the model - this involves labor being chosen prior to

production and relies on the evolution of productivity between the time when labor is chosen and

when production takes place to break the collinearity. This DGP seems more realistic to us than

those needed validate the LP procedure.

We then suggest a new approach for estimating production functions. This approach builds

upon the ideas in OP and LP, e.g. using investment or intermediate inputs to "proxy" for pro-

ductivity shocks, but does not su¤er from the above collinearity problems. The key di¤erence

is that unlike the OP and LP procedures, which estimate the labor coe¢ cient in the �rst stage

(where the collinearity issue arises), our estimator involves estimating the labor coe¢ cient in the

second stage. Even though no parameters are identi�ed in our �rst stage, we still use the �rst

stage to net out the non-transmitted production function error �it. This is what allows us to

treat the evolution of the transmitted error !it non-parametrically. We show that our estimator

is robust to a number of alternative (and seemingly reasonable) DGPs. As well as addressing the

above collinearity problem, another important bene�t of our estimator is that it makes compar-

ison to the dynamic panel literature, e.g. Arellano and Bond (1991), quite easy. We are able

to highlight the advantages and disadvantages of our estimator in relation to this dynamic panel

literature. Lastly, using the same dataset as Levinsohn and Petrin, we examine how our estimator
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works in practice. Estimates using our methodology appear more stable across di¤erent potential

proxy variables than do estimates using the Levinsohn-Petrin methodology, consistent with our

theoretical arguments.
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8 Appendix 1 - Alternative Procedure

This section examines an alternative procedure to estimate production function coe¢ cients. While
it also breaks the potential collinearity problems of OP/LP, it does rely on some additional as-
sumptions, speci�cally an additional monotonicity assumption and independence assumptions on
innovations in the !it process. It is also a bit more complicated than the procedure we suggest
above. On the other hand, this procedure does allow one to learn something about when inputs
are chosen, e.g. how "variable" an input labor is.
The intuition behind identi�cation in this second approach follows directly from the intuition

of identi�cation of the coe¢ cient on capital in OP (and LP). We make heavy use of the fact that
if an input is determined prior to production, the innovation in productivity between the time of
the input choice and the time of production should be orthogonal to that input choice. Again,
this is not only an econometric assumption, but an assumption on the information set of the �rm
at various points in time. More formally, if !i is the productivity level of the �rm at the time
input level i is chosen, and !p is the productivity level at the time of production, then:

(!p � E[!pj!i]) ? i

This type of moment identi�es the capital coe¢ cient in OP and LP. Our approach simply extends
this intuition to identi�cation of parameters on labor inputs, combining this with non-parametrics
to "invert out" values of the productivity shock at various decision times.
Consider a production model with 3 inputs, capital, labor, and an intermediate input, e.g.

materials. We make the following timing assumptions regarding when k, l, and m are chosen.
Suppose between periods t� 1 and t, the following occurs, where 0 < b < 1:

Time Action
t� 1 !it�1 is observed, mit�1 is chosen, kit is chosen, period t� 1 production occurs
t� b !it�b is observed, lit is chosen
t !it is observed, mit is chosen, kit+1 is chosen, period t production occurs

Like OP/LP, we assume that kit is determined at time t� 1. Actually, like LP (but not OP),
we only really need to assume that kit is determined at either t � 1 or earlier. For the more
variable inputs, we assume that lit is chosen at some time t � b (between t � 1 and t), and that
mit is perfectly �exible and chosen at time t.
Note that we assume ! evolves between t� 1, t� tb, and t. As in our "story" behind OP, this

movement is needed to alleviate possible collinearity problems between labor and other inputs.
We assume that ! evolves as a �rst-order markov process between these stages, i.e.:

!it�b = g1(!it�1; �
b
it)(37)

!it = g2(!it�1; �it)
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where the ��s are independent of the !�s (as well as all other variables that are chosen before their
realizations). Note that this is a stronger assumption than that of OP, LP, and the estimator
proposed in the main section of this paper. Those assume only a �rst-order markov process on
!. On the other hand, the fact that the g�s are arbitrary functions does allow some forms of
heteroskedasticity. While our "staggered" input choice process might initially seem somewhat
ad-hoc, we feel that it does capture some interesting aspects of reality.37

Given the above timing assumptions and assuming that labor is a static input, a �rm�s choice
of labor will be a function of !it�b, i.e.

(38) lit = f1t(!it�b; kit)

Since the �rm�s choice of labor in a given period is made before its choice of materials, the labor
term will be taken into account when choosing the level of materials, i.e.

(39) mit = f2t (!it; kit; lit)

Once again, we will assume monotonicity of this equation in !it, allowing us to invert this
function and obtain:

!it = f�12t (mit; kit; lit)

This term can be substituted into the production function from (1) to get:

yit = �kkit + �llit + f�12t (mit; kit; lit) + �it

and collecting terms results in the �rst stage equation:

(40) yit = �t(mit; kit; lit) + �it

This is exactly the same �rst stage as section 5.1, and the � function can be estimated in the
same way. Similarly, we can construct the same moment condition for capital:

(41) E[�it(�k; �l)jkit] = 0

where �it = !it � E[!itj!it�1], and �it(�k; �l) can be constructed in the usual way, i.e. by
non-parametrically regressing (!it(�k; �l) = b�t(mit; kit; lit) � �kkit � �llit) on (!it�1(�k; �l) =b�t(mit�1; kit�1; lit�1)� �kkit�1 � �llit�1).
What di¤ers between this and the above procedures is the moment condition intended to

identify the labor coe¢ cient. De�ne �bit as the unexpected innovation in ! between time t� b and
t, i.e.

�bit = !it � E[!itj!it�b]
Given that labor is chosen at t� b, it should be orthogonal to this innovation

(42) E[�bitjlit] = 0

This is the moment condition we will use - what remains to be shown is how we can construct a
sample analog to this moment given a value of the parameter vector. To do this, �rst note that

37Though this is clearly a stylized model of what is likely a more continuous decision process.
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the �rst stage estimates of (40) allow us to compute, conditional on the parameters, !it for all t.
Call these terms !it(�k; �l). Now consider the �rm�s labor demand function (38). Substituting
in (37) results in

lit = f1t(g1(!it�1; �
b
it); kit)

= ef1t(!it�1(�k; �l); �bit; kit)
Note that conditional on (�k; �l), the only unobservable in this equation is �

b
it. Thus, assuming

that the equation is strictly monotonic in �bit, one can use the methods of Matzkin (2003) to non-
parametrically invert out �bit up to a normalization. Call this function �(�

b
it; �k; �l). Again, the

dependence on �k and �l comes from the fact that the !it are inferred conditional on �k and �l.
This non-parametric inversion relies on the assumption that �bit is independent of !it�1 and kit.
The basic intuition is that for a given !it�1 and kit, one can form a distribution of lit. �(�bit; �k; �l)
for a given i is simply the quantile of lit in that distribution.
Next, note that since !it�b is a function of �bit and !it�1, we can also write it as a function of

�(�bit; �k; �l) and !it�1, i.e.

!it�b(�k; �l) = g1(!it�1(�k; �l); �
b
it)

= eg1(!it�1(�k; �l); �(�bit; �k; �l))
As a result, to construct �bit = !it�E[!itj!it�b], we can form the necessary conditional expectation
by non-parametrically regressing !it(�k; �l) on !it�1(�k; �l) and �(�

b
it; �k; �l) (as an alternative

to non-parametrically regressing !it(�k; �l) on !it�b(�k; �l)). Denoting the residual from this
regression by �bit(�k; �l), we can form the moment

(43) E[�bit(�k; �l)jlit] = 0

to be used for estimation. Note that this procedure can easily be adjusted to allow for labor to
have dynamic implications. One simply needs to include lit�1 in both the material and labor
demand functions.
One nice aspect of this procedure is that it allows us to infer something about when inputs

are chosen. The basic idea here is to compare how well !it�1(�k; �l) non-parametrically predicts
!it(�k; �l) to how well !it�1(�k; �l) and �(�

b
it; �k; �l) (i.e. !it�b(�k; �l)) non-parametrically predicts

!it(�k; �l). Intuitively, if adding �(�
b
it; �k; �l) sharpens the prediction by alot, it suggests that

!it�b(�k; �l) is "close" to !it(�k; �l), i.e. that t� b is close to t, and that labor is a fairly variable
input. In contrast, if adding �(�bit; �k; �l) does not help explain !it(�k; �l) much, it suggests that
!it�b(�k; �l) is close to !it�1(�k; �l) (and t� b is close to t� 1) and that labor is more of a �xed
input.
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   TABLE 1
Industry 311

Capital Labor Returns to Scale
Estimate SE Estimate SE Estimate SE

OLS 0.336 0.025 1.080 0.042 1.416 0.026
FE 0.081 0.038 0.719 0.055 0.800 0.066
ACF – M 0.371 0.037 0.842 0.048 1.212 0.034
ACF – E 0.379 0.031 0.865 0.047 1.244 0.032
ACF – F 0.395 0.033 0.884 0.046 1.279 0.028
LP – M 0.455 0.038 0.676 0.037 1.131 0.035
LP – E 0.446 0.032 0.764 0.040 1.210 0.034
LP – F 0.410 0.032 0.942 0.040 1.352 0.036
DP 0.391 0.026 0.987 0.043 1.378 0.028

Industry 321
Capital Labor Returns to Scale

Estimate SE Estimate SE Estimate SE
OLS 0.256 0.035 0.953 0.056 1.210 0.034
FE 0.204 0.068 0.724 0.087 0.927 0.108
ACF – M 0.242 0.041 0.893 0.063 1.135 0.040
ACF – E 0.272 0.037 0.832 0.060 1.104 0.039
ACF – F 0.272 0.038 0.873 0.061 1.145 0.040
LP – M 0.320 0.037 0.775 0.059 1.094 0.049
LP – E 0.241 0.037 0.978 0.065 1.219 0.047
LP – F 0.254 0.039 1.008 0.062 1.262 0.048
DP 0.320 0.042 0.837 0.064 1.157 0.041

Industry 331
Capital Labor Returns to Scale

Estimate SE Estimate SE Estimate SE
OLS 0.236 0.047 1.038 0.074 1.274 0.052
FE -0.028 0.103 0.897 0.095 0.869 0.136
ACF – M 0.196 0.064 0.923 0.085 1.119 0.076
ACF – E 0.195 0.065 0.897 0.088 1.092 0.073
ACF – F 0.212 0.062 0.915 0.086 1.127 0.075
LP – M 0.352 0.056 0.678 0.077 1.030 0.072
LP – E 0.305 0.059 0.786 0.086 1.090 0.075
LP – F 0.241 0.052 0.993 0.079 1.234 0.071
DP 0.252 0.054 0.998 0.073 1.249 0.061

Industry 381
Capital Labor Returns to Scale

Estimate SE Estimate SE Estimate SE
OLS 0.223 0.025 1.160 0.045 1.383 0.033
FE 0.036 0.056 0.783 0.077 0.819 0.098
ACF – M 0.262 0.033 1.010 0.053 1.273 0.040
ACF – E 0.250 0.030 1.002 0.053 1.252 0.040
ACF – F 0.259 0.028 1.022 0.051 1.280 0.039
LP – M 0.342 0.038 0.803 0.053 1.145 0.056
LP – E 0.306 0.033 0.944 0.047 1.251 0.044
LP – F 0.265 0.031 1.090 0.049 1.355 0.041
DP 0.275 0.034 1.056 0.053 1.331 0.037



    TABLE 2
Industry 311 Industry 321

M E F M E F
ACF vs OLS ACF vs OLS

K 0.111 0.040 0.010 K 0.585 0.192 0.192
L 1.000 1.000 1.000 L 0.970 1.000 0.996

RTS 1.000 1.000 1.000 RTS 0.998 1.000 0.998

ACF vs LP ACF vs LP
K 1.000 1.000 0.707 K 0.982 0.052 0.070
L 0.000 0.000 0.899 L 0.048 0.998 1.000

RTS 0.000 0.061 0.990 RTS 0.198 1.000 1.000

ACF vs DP ACF vs DP
K 0.737 0.788 0.505 K 1.000 0.992 0.992
L 1.000 1.000 1.000 L 0.052 0.511 0.084

RTS 1.000 1.000 1.000 RTS 0.820 0.996 0.669

Industry 331 Industry 381
M E F M E F

ACF vs OLS ACF vs OLS
K 0.892 0.840 0.830 K 0.060 0.058 0.054
L 0.974 0.990 0.984 L 1.000 1.000 1.000

RTS 1.000 1.000 1.000 RTS 1.000 1.000 1.000

ACF vs LP LP vs ACF
K 1.000 1.000 0.860 K 0.996 0.980 0.683
L 0.000 0.024 0.876 L 0.000 0.072 0.910

RTS 0.056 0.431 0.984 RTS 0.002 0.323 0.984

ACF vs DP ACF vs DP
K 0.962 0.922 0.884 K 0.834 0.916 0.892
L 0.940 0.986 0.962 L 0.852 0.844 0.649

RTS 1.000 1.000 0.998 RTS 0.984 0.992 0.934

Note: Value is the % of bootstrap reps where ACF coeff is less than OLS, LP, or DP coef.  A value
either above 0.95 or below 0.05 indicates that coefficients are significantly different from each other.



   TABLE 1A
Industry 311

Capital Labor Returns to Scale
Estimate SE Estimate SE Estimate SE

OLS 0.336 0.025 1.080 0.042 1.416 0.026
FE 0.081 0.038 0.719 0.055 0.800 0.066
ACF – M 0.304 0.050 0.993 0.089 1.297 0.054
ACF – E 0.344 0.041 0.957 0.078 1.301 0.049
ACF – F 0.371 0.041 0.940 0.070 1.311 0.040
LP – M 0.455 0.037 0.676 0.037 1.131 0.040
LP – E 0.446 0.031 0.764 0.040 1.210 0.034
LP – F 0.410 0.032 0.942 0.040 1.352 0.036
DP 0.335 0.034 1.128 0.066 1.463 0.042

Industry 321
Capital Labor Returns to Scale

Estimate SE Estimate SE Estimate SE
OLS 0.256 0.035 0.953 0.056 1.210 0.034
FE 0.204 0.068 0.724 0.087 0.927 0.108
ACF – M 0.211 0.050 0.959 0.093 1.170 0.056
ACF – E 0.261 0.047 0.856 0.085 1.117 0.050
ACF – F 0.264 0.045 0.892 0.082 1.155 0.050
LP – M 0.320 0.037 0.775 0.059 1.094 0.049
LP – E 0.241 0.037 0.978 0.065 1.219 0.047
LP – F 0.254 0.039 1.008 0.062 1.262 0.048
DP 0.271 0.055 0.940 0.103 1.211 0.061

Industry 331
Capital Labor Returns to Scale

Estimate SE Estimate SE Estimate SE
OLS 0.236 0.047 1.038 0.074 1.274 0.052
FE -0.028 0.103 0.897 0.095 0.869 0.136
ACF – M 0.178 0.100 0.966 0.205 1.144 0.133
ACF – E 0.199 0.099* 0.888 0.195* 1.087 0.124*
ACF – F 0.231 0.090 0.868 0.189 1.099 0.129
LP – M 0.352 0.056 0.678 0.077 1.030 0.072
LP – E 0.305 0.059 0.786 0.086 1.090 0.075
LP – F 0.241 0.052 0.993 0.079 1.234 0.071
DP 0.206 0.075 1.119 0.140 1.324 0.091

Industry 381
Capital Labor Returns to Scale

Estimate SE Estimate SE Estimate SE
OLS 0.223 0.025 1.160 0.045 1.383 0.033
FE 0.036 0.056 0.783 0.077 0.819 0.098
ACF – M 0.238 0.040 1.088 0.079 1.326 0.053
ACF – E 0.230 0.035 1.069 0.075 1.300 0.052
ACF – F 0.250 0.034 1.049 0.070 1.300 0.049
LP – M 0.342 0.038 0.803 0.053 1.145 0.056
LP – E 0.306 0.033 0.944 0.047 1.251 0.044
LP – F 0.265 0.031 1.090 0.049 1.355 0.041
DP 0.244 0.040 1.141 0.082 1.385 0.054



TABLE 2A
Industry 311 Industry 321

M E F M E F
ACF vs OLS ACF vs OLS

K 0.864 0.754 0.266 K 0.926 0.559 0.591
L 0.739 0.874 1.000 L 0.339 0.908 0.726

RTS 0.980 0.975 1.000 RTS 0.711 0.988 0.880

ACF vs LP ACF vs LP
K 1.000 1.000 0.925 K 0.998 0.327 0.345
L 0.000 0.000 0.352 L 0.010 0.924 0.946

RTS 0.005 0.005 0.754 RTS 0.034 0.982 0.988

ACF vs DP ACF vs DP
K 0.709 0.307 0.040 K 0.930 0.555 0.547
L 0.990 1.000 1.000 L 0.491 0.964 0.838

RTS 1.000 1.000 1.000 RTS 0.898 0.998 0.974

Industry 331 Industry 381
M E F M E F

ACF vs OLS ACF vs OLS
K 0.930 0.846 0.691 K 0.469 0.483 0.319
L 0.407 0.685 0.876 L 0.756 0.874 0.920

RTS 0.768 0.910 0.980 RTS 0.858 0.940 0.960

ACF vs LP LP vs ACF
K 1.000 0.982 0.707 K 1.000 0.992 0.868
L 0.014 0.130 0.764 L 0.000 0.006 0.577

RTS 0.046 0.327 0.916 RTS 0.000 0.036 0.826

ACF vs DP ACF vs DP
K 0.707 0.517 0.214 K 0.659 0.687 0.475
L 0.858 0.954 0.988 L 0.822 0.890 0.940

RTS 0.982 0.978 0.996 RTS 0.944 0.986 0.986

Note: Value is the % of bootstrap reps where ACF coeff is less than OLS, LP, or DP coef.  A value
either above 0.95 or below 0.05 indicates that coefficients are significantly different from each other.


