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Martingale Approximation of Eigenvalues
for Common Factor Representation

Victor Bystrov∗, Antonietta di Salvatore†

Abstract

In this paper a martingale approximation is used to derive the limiting distribution of sim-
ple positive eigenvalues of the sample covariance matrix for a stationary linear process.
The derived distribution can be used to study stability of the common factor representa-
tion based on the principal component analysis of the covariance matrix.
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1 Introduction

The common factor representation of multivariate time series, which is based on the prin-

cipal component analysis, is extensively used in the economic forecasting. For the accurate

forecasting, it is important to have stable loadings of common factors onto individual time

series (Banerjee et al, 2009; Stock and Watson, 2009). The matrix of loadings is estimated by

eigenvectors of the sample covariance matrix. As the solution of the eigenvector problem is

a pair composed of an eigenvector and an eigenvalue, the problem of studying stability of an

eigenvector can be reduced to the problem of studying stability of the corresponding eigenvalue.

In the asymptotic theory, developed for the dynamic factor models (Stock and Watson,

1999; Bai 2003), the limiting distributions of common factors and their loadings are derived

under the assumption that both time series and cross section dimensions are increasing. It is

not the case in a typical forecasting application where the cross-section dimension is large but

fixed, and the time series dimension is increasing.
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In this paper we do not rely on the asymptotics developed for dynamic factor models, but

assume that a multivariate time series is generated by a linear stationary process of a fixed cross-

section dimension, and the factor model is considered as a representation of this time series.

We use a martingale approximation of partial sums to derive the asymptotic distribution of

simple positive eigenvalues of the sample covariance matrix. This distribution can be used to

study stability of the common factor representation.

2 Model Setup

Consider an N -dimensional process {Xt} that admits an infinite moving-average representation,

Xt =
∞∑
i=0

Biεt−i,

where

Assumption 1: {εt} is an N -variate independent identically distributed (i.i.d.) sequence,

E[ε0] = 0, E|ε0iε0jε0kε0l| < ∞ for any i, j, k, l = 1, 2, ..., N ;

Assumption 2:
∑∞

s=1 s∥Bs∥2 < ∞.

We use ∥·∥ to denote Euclidian norm for vectors and the induced spectral norm for matrices.

Let us denote Σε = E[ε0ε
′
0] and Σεε = E[(ε0ε

′
0 −Σε)⊗ (ε0ε

′
0 −Σε)]. Assumption 1 implies that

∥Σε∥ < ∞, and ∥Σεε∥ < ∞.

Assumptions 1 and 2 imply stationarity and linearity of the process {Xt}. Though the

asymptotic theory, developed for dynamic factor models, does not require neither stationarity

nor linearity of common factors, non-stationary time series are usually transformed to make

them stationary before applying the principal component analysis, and common factors are

often modeled as a vector autoregression.

Let us define the covariance matrix ΣX = E[X0X
′
0] =

∑∞
s=0BiΣεB

′
i.

Assumption 3: γ1 > γ2 > ... > γr > 0 (r ≤ N) are simple positive eigenvalues of matrix ΣX

and λ1, λ2, ..., λr are corresponding orthonormal eigenvectors.

2



The assumption of simple eigenvalues is not restrictive for the purpose of empirical analysis,

as for a continuous probability distribution, the eigenvalues of the estimated covariance matrix

are simple with probability one in a finite sample.

Suppose that a series of T observations is available: X1, X2, ..., XT . Consider the estimator

Σ̂
(T )
X = T−1

∑T
t=1XtX

′
t of the matrix ΣX . Let γ̂

(T )
1 > γ̂

(T )
2 > ... > γ̂

(T )
r > 0 be r largest

eigenvalues of Σ̂
(T )
X , and λ̂

(T )
1 , λ̂

(T )
2 , ..., λ̂

(T )
r be corresponding orthonormal eigenvectors. Given

these estimates, we can consider the decomposition

Σ̂
(T )
X = Λ̂(T )Γ̂(T )Λ̂(T )′ + Υ̂(T ),

where Γ̂(T ) is an (r × r) diagonal matrix with (γ̂
(T )
1 , γ̂

(T )
2 , ..., γ̂

(T )
r ) at the main diagonal, Λ̂(T ) =

(λ̂
(T )
1 , λ̂

(T )
2 , ..., λ̂

(T )
r ), and Υ̂(T ) is an (r × r) residual matrix. Then the common factor represen-

tation of Xt (t = 1, 2, ..., T ) is

Xt = Λ̂(T )F̂
(T )
t + υ̂

(T )
t , (1)

where F̂
(T )
t = Λ̂(T )′Xt is an (r×1) vector of estimated common factors such that T−1

∑T
t=1 F̂

(T )
t F̂

(T )′
t =

Λ̂(T )′(T−1
∑T

t=1 XtX
′
t)Λ̂

(T ) = Γ̂(T ), Λ̂(T ) is the matrix of loadings of the estimated factors onto

observed variables, and υ̂
(T )
t is a vector of residuals.

3 Preliminary Results

3.1 Vectorization

Consider the outer-product

XtX
′
t =

(
∞∑
i=0

Biεt−i

)(
∞∑
i=0

Biεt−i

)′

= At + Ct + C ′
t,

where At =
∑∞

i=0Biεt−iε
′
t−iB

′
i and Ct =

∑∞
j=1

∑∞
i=0Bi

(
εt−iε

′
t−i−j

)
B′

i+j. For the symmetric

matrix (Ct +C ′
t), it holds that vec(Ct +C ′

t) = 2PNvec(Ct), where PN = DN(D
′
NDN)

−1D′
N and
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DN is a duplication matrix. Let Yt = vec(XtX
′
t). Then

Yt = vec(At) + vec(Ct + C ′
t) = vec(At) + 2PNvec(Ct), (2)

where vec(At) =
∑∞

i=0 (Bi ⊗Bi) vec(εt−iε
′
t−i) and vec(Ct) =

∑∞
j=1

∑∞
i=0 (Bi ⊗Bi+j) vec(εt−iε

′
t−i−j).

3.2 Beveridge-Nelson decomposition

Equation (2) can be rewritten using lag polynomials,

Yt = F0(L)vec(εtε
′
t) + 2PN

∑∞
j=1 Fj(L)vec(εtε

′
t−j), (3)

where F0(L) =
∑∞

i=0 (Bi ⊗Bi)L
i and Fk(L) =

∑∞
i=0 (Bi ⊗Bi+k)L

i. The multivariate Beveridge-

Nelson decomposition can be applied to the polynomial Fk(L) giving

Fk(L) = Fk(1)− (1− L)F̃k(L), where F̃k(L) =
∑∞

l=0

(∑∞
m=l+1 Bm ⊗Bm+k

)
Ll.

Then it is possible to rewrite equation (3) as

Yt = (F0(1)− (1− L)F̃0(L))vec(εtε
′
t) + 2PN

∞∑
j=1

(Fj(1)− (1− L)F̃j(L))vec(εtε
′
t−j).

After rearrangement,

Yt = F0(1)vec(εtε
′
t) + 2PN

∑∞
j=1 Fj(1)vec(εtε

′
t−j)+

−(1− L)F̃0(L)vec(εtε
′
t)− 2PN(1− L)

∑∞
j=1 F̃j(L)vec(εtε

′
t−j).

3.3 Martingale approximation

We can write vec(ΣX) = F0(1)vec(Σϵ). Let us define

Zt = F0(1) (vec(εtε
′
t)− vec(Σϵ)) + 2PN

∞∑
j=1

Fj(1)vec(εtε
′
t−j).
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It can be easily shown that {Zt} is a martingale difference sequence. Let

Rt = (1− L)F̃0(L)vec(εtε
′
t) + 2PN(1− L)

∞∑
j=1

F̃j(L)vec(εtε
′
t−j)

be a residual term. Then we have

Yt − vec(ΣX) = Zt −Rt

Lemma 1. Under Assumptions 1-3, T−1
∑T

t=1 ZtZ
′
t →a.s. ΣZ (→a.s. stands for almost sure

convergence), where

ΣZ = F0(1)ΣεεF0(1)
′ + 4PN

[ ∞∑
i=1

Fi(1)(Σε ⊗ Σε)Fi(1)
′
]
P ′
N , (4)

rank(ΣZ) ≥ r2 and ∥ΣZ∥ < ∞. (For the proof, see Appendix).

Let us Define SY t =
∑t

s=1(Ys− vecΣX), SZt =
∑t

s=1 Zs, and SRt =
∑t

s=1Rs. Then we have

SY t = SZt − SRt, (5)

where {SZt} is a martingale, and {SRt} is a residual sequence.

As {Zt} is a martingale difference sequence and {SZt} is the corresponding martingale, we

have E[T−1SZTS
′
ZT ] = E[T−1

∑T
t=1 ZtZ

′
t] = T−1

∑T
t=1E[ZtZ

′
t] and T−1SZTS

′
ZT →a.s. ΣZ .

Lemma 2. Under Assumptions 1 and 2, T−1SY T →a.s. 0.

The proof of Lemma 2 makes use of decomposition (5) (see Appendix). Lemma 2 implies that

ΣX can be consistently estimated by T−1
∑T

1 XtX
′
t, as T

−1SY T = T−1
∑T

t=1 vec(XtX
′
t)−vecΣX

converges to zero a.s.

4 Main Results

Consider
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γ =


γ1
γ2
...
γr

 , Λ⊗ =


λ′
1 ⊗ λ′

1

λ′
2 ⊗ λ′

2
...

λ′
r ⊗ λ′

r

 , γ̂(T ) =


γ̂
(T )
1

γ̂
(T )
2
...

γ̂
(T )
r

 , and Λ̂
(T )
⊗ =


λ̂
(T )′

1 ⊗ λ̂
(T )′

1

λ̂
(T )′

2 ⊗ λ̂
(T )′

2
...

λ̂
(T )′
r ⊗ λ̂

(T )′
r


Proposition 1 (Consistency) Under Assumptions 1 - 3, γ̂(T ) →a.s. γ and Λ̂

(T )
⊗ →a.s. Λ⊗

The proof immediately follows from Lemma 2 and the continuous mapping theorem, as eigen-

vectors and eigenvalues are continuous functions of matrix entries.

Using the eigenvalue derivative (Magnus, 1985) and the Taylor expansion (Fuller, 1976, p.

192), we obtain

γ̂(T ) − γ = Λ⊗vec(Σ̂
(T )
X − ΣX) +OP (T

−2)

where vec(Σ̂
(T )
X − ΣX) = T−1SY T . As SY T = SZT − SRT , we get

T 1/2(γ̂(T ) − γ) = T−1/2Λ⊗SZT − T−1/2Λ⊗SRT +OP (T
−3/2)

Proposition 2 (Central Limit Theorem). Under Assumptions 1 - 3,

T 1/2(γ̂(T ) − γ) →d N(0,Λ⊗ΣZΛ
′
⊗).

(For the proof, see Appendix).

Given a consistent estimator of Λ⊗ΣZΛ
′
⊗, it is possible to construct recursive confidence

intervals for eigenvalues (γ1, γ2, ..., γr)
′ = γ, and analize stability of these eigenvalues and of the

corresponding eigenvectors, (λ1, λ2, ..., λr) = Λ. If these eigenvectors are stable, so should be

their estimates, representing the matrix of loadings Λ̂(T ) = (λ̂
(T )
1 , λ̂

(T )
2 , ..., λ̂

(T )
r ) in the common

factor representation (1).
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5 Concluding Remarks

In this paper a martingale approximation is used to derive the limiting distribution of sim-

ple positive eigenvalues of the sample covariance matrix for a stationary linear process. The

eigenvalues jointly with the corresponding eigenvectors represent a solution of the eigenvector

problem. Their limiting distribution can be used for studying stability of this solution, which

is equivalent to studying stability of the common factor representation based on the principal

component analysis of the covariance matrix. The development of a statistical procedure for

the stability analysis is left for future research.
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Appendix. Outlines of Proofs

Proof of Lemma 1. Using Assumptions 1 and 2, it can be shown that {ZtZ
′
t} is a stationary

integrable sequence and E[ZtZ
′
t] = ΣZ , where ΣZ is given by (4). The matrix ΣZ is finite,

as Σε and Σεε are finite by Assumption 1, and F0(1)F0(1)
′ and

∑∞
i=1 Fi(1)Fi(1)

′ are finite by

Assumption 2. By the pointwise ergodic theorem, T−1
∑T

t=1 ZtZ
′
t →a.s. ΣZ .

Assumption 3 implies that ΣX =
∑∞

s=0BiΣεB
′
i has a rank of at least r. Then the rank of

Σε is at least r and the rank of Σεε is at least r2. Using decomposition (4), it can be shown

that rank(ΣZ) ≥ r2.

Proof of Lemma 2. Consider the decomposition SY t = SZt − SRt. For the first component,

SZt, we have

SZt =
t∑

s=1

Zs =
t∑

s=1

[
F0(1) (vec(εsε

′
s)− vecΣϵ) + 2PN

∞∑
j=1

Fj(1)vec(εsε
′
s−j)

]
.

The sequence {SZt} is a uniformly L2-bounded martingale, that satisfies the conditions of Theo-

rem 12.4 in Heyde (1997, p.187), as
∑∞

t=1E∥t−1Zt∥2 =
∑∞

t=1 t
−2tr(E[ZtZ

′
t]) =

∑∞
t=1 t

−2tr(ΣZ) <

∞. Then T−1SZT converges to zero almost surely. The residual SRt is a telescoping sum of

random variables that can be written as

SRt = F̃0(L)

[
vec(εtε

′
t)− vec(ε0ε

′
0)

]
+ 2PN

∞∑
j=1

F̃j(L)

[
vec(εtε

′
t−j)− vec(ε0ε

′
0−j)

]
.

Under Assumptions 1 and 2, E[SRt] = 0 and E∥SRt∥2 < ∞. Then, using Chebyshev inequality

and Borel-Cantelli lemma it can be proven that T−1SRT →a.s. 0.

Proof of Proposition 2. Given the decomposition

t1/2(γ̂(t) − γ) = t−1/2Λ⊗SZt − t−1/2Λ⊗SRT +OP (t
−3/2),
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consider its first component, Λ⊗SZt, which is a martingale satisfying

(i) t−1/2 sups≤t |Λ⊗Zs| →p 0, where Zs = SZs − SZs−1;

(ii) t−1
∑t

s=1 Λ⊗ZsZ
′
sΛ

′
⊗ →p Λ⊗ΣZΛ

′
⊗;

(iii) t−1E[Λ⊗SZtS
′
ZtΛ

′
⊗] = Λ⊗ΣZΛ

′
⊗.

Lemma 1 implies that rank(ΣZ) ≥ r2. Under Assumption 3, rank(Λ⊗) = r and Λ⊗ΣZΛ
′
⊗ is

positive definite. Then the conditions of Theorem 12.6 in Heyde (1997, p.192) are satisfied. It

follows that T−1/2Λ⊗SZT → N(0,Λ⊗ΣZΛ
′
⊗). Using Chebyshev inequality, it is easy to show

that the residual term, T−1/2Λ⊗SRT , converges to zero in probability, as E[SRT ] = 0 and

E∥SRT∥2 < ∞.
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