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Abstract

This paper analyzes optimal contracts in a linear hidden-action model with normally
distributed returns possessing two moments that are governed jointly by two agents,
who can observe each others’ effort levels and draft enforceable side–contracts on chosen
effort levels and realized returns. After showing that standard constraints, resulting
in incentive–contracts, may fail to ensure implementability, we examine (centralized)
collusion–proof contracts and (decentralized) team–contracts. We prove that optimal
team–contracts provide the highest implementable returns to the principal. In other
words, the principal may restrict attention to outsourcing/decentralization without
any loss of generality. Moreover, situations in which incentive–contracts are collusion–
proof, thus implementable, are fully characterized.
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1 Introduction

The design of managerial contracts with strategic interaction among employees has been one

of the major issues in economics of organization. Two significant aspects are (1) whether

or not agents can draft state-contingent binding side–contracts among themselves, and, (2)

whether or not they are better informed than the principal about effort levels chosen. Nat-

urally, the first of these two holds in any free society.1 On the other hand, when agents

can observe and verify others’ actions, they may employ enforceable side–contracts based on

their joint effort choices. In this case, considered in the current study, standard incentive

constraints are not sufficient to eliminate side contracting opportunities that enable agents

not only to insure one another, but also to coordinate their actions. Consequently, this

paper revisits the problem of constructing optimal incentives in a two-agent setting when

agents can write enforceable side–contracts based on effort levels and realized outcomes. By

examining three forms of contracts, namely incentive–contracts, collusion–proof contracts

and team–contracts, we provide a through welfare comparison.

In our linear two-agent hidden-action framework, the principal maximizes the expected

utility obtained from the returns of the organization. These returns are governed by a normal

distribution with a mean and variance that depend on the effort profile agents choose. All

parties, including the principal, have exponential utility functions, with given coefficients of

absolute risk aversion (CARA, henceforth). And, agents observe each other’s effort choices

and exploit all feasible collusion opportunities via enforceable side–contracts contingent on

effort levels and realized outcomes.2

First, we establish that incentive–contracts, contracts that are individually rational and

incentive compatible and involve efficient risk sharing among agents, are not necessarily

implementable. That is, colluding agents may deviate jointly to an effort profile and a feasible

1This is because after all agents cannot be prevented access to either the judicial system, or the capital
markets in a free trade economy. Thus, they are able to insure one another with the use of state-contingent
binding side contracts, even if agents cannot observe others’ actions.

2We work with a general model where agents jointly control the mean and the variance in nonrestricted
ways, yet, an interesting case happens when effort choices of the first agent, e.g. the sales manager, only
increases the mean, and those of the second, e.g. the finance manager, only decreases the variance.
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redistribution of their compensation schemes, in turn, obtaining strictly higher payoffs while

making the principal strictly worse off. That is why, optimal contracts free from collusion are

obtained by borrowing the collusion constraints from Barlo (2003); who, adopting the ideas

and formulations of Laffont and Martimort (2000), works with cooperative game theoretic

notions and proves the existence of collusion–proof contracts in multi-agent hidden action

models.3 In particular, for a contract to be collusion–proof, principal’s offer must be in the

core of the strategic interaction it induces. That is, the principal’s proposed effort profile and

state-contingent compensation scheme must be such that, there should not be a non-empty

set of agents and another feasible and participatory side contract among them, making each

of these agents strictly better off. Next, we concentrate on team–contracts, that can be

interpreted also as outsourcing or subcontracting or decentralization. Indeed, agents’ side–

contracting abilities may be beneficial for the principal. This is because with team–work,

agents allocating the total share coordinating their choices in order to maximize the sum of

their expected utilities implies that their voluntary coordination in effort choices and efficient

risk allocation are ensured without the need of incentive compatibility constraints.4

This study proves that in this setting among all implementable contracts, team–contracts

provide highest returns. In other words, the principal may restrict attention to team–

contracts without any loss of generality, meaning that outsourcing or decentralization out-

performs other implementable methods of contracting.

In order to reach this conclusion, we first show that the principal always prefers to

employ team–contracts rather than collusion–proof contracts. Then, we provide a full char-

acterization of situations under which incentive–contracts are also collusion–proof, hence,

implementable. We find that collusion may be ignored when returns are monotone, and

3A large body of literature, some of which includes Demski and Sappington (1984), Demski, Sappington,
and Spiller (1988), Mookherjee (1984), Ma, Moore, and Turnbull (1988), Tirole (1986), Laffont and Rochet
(1997), Brusco (1997), Faure-Grimaud, Laffont, and Martimort (2002) and Felli and Hortala-Vallve (2011)
among many others, has emphasized the significance of collusion in hidden-action models.

4Some of the significant studies on team–work include Holmstrom (1982), Holmstrom and Milgrom (1990),
Varian (1990), Itoh (1991), Itoh (1993) and Ramakrishnan and Thakor (1991), and indicate that agents’
sharing information unobservable to the principal is necessary for him to benefit from team–work. This is
because when only returns (not chosen effort levels) are contractible among agents, the principal can offer
such contracts (with efficient risk sharing) herself.
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implementing the best effort profile is optimal with incentive–contacts.5 To show that these

assumptions are minimal, we present examples proving that collusion makes the principal

strictly worse off (i.e. incentive–contracts are not implementable) when any of these assump-

tions are violated. These results, then, imply our main finding.

Holmstrom and Milgrom (1990) analyze welfare effects of side contracting in a linear

agency model and identify situations in which side–contracts are desirable for the principal.

Agents are engaged in two-tasks by providing inputs to both. A performance measure is

observed for each activity, an indicator of the production function, that depends on input

profile chosen by agents, combined with activity specific and possibly correlated error terms.

The principal pays to each agent as a function of both performance measures. Under sev-

eral properties of the production technologies and performance measures, Holmstrom and

Milgrom (1990) show that team–contracts (side-trading) are beneficial to the principal when

compared with incentive–contracts (no side-trading). These properties include technologi-

cally independent production, meaning that production function of each task depends only

on the input of one of the agents, and sufficiently low correlation coefficient of the error

terms. Hence, their result suggests that cooperation maybe potentially harmful because of

interactions in the production function and/or correlated error terms. Along the same lines,

Itoh (1993) examines the effects of coalitions through side–contracting based on efforts pro-

files and side–transfers in a two agent setting.6 In that model, each agent is responsible of

and governs a separate production process where the outcome of one depends also on the

effort level of the other and a noise term, and compensation schemes are contingent on both

of the outcomes. He first shows that when each agent governs only his process, and his effort

choice affects the other’s returns only through the noise term both of which are are stochas-

tically independent, the principal can implement any effort pair with less costs under agents

side–contracting than under no side–contracting. In this case, optimal incentive–contracts

5The returns are said to be monotone if the mean of the return is increasing and the variance decreasing
separately in the effort levels of both of the agents. And, the best effort profile is one that induces the highest
mean and the lowest variance, and is not related with costs. It exists whenever returns are monotone.

6Itoh (1993)’s notion of coalition-free contracts corresponds to our incentive–contracts, and the principal’s
problem with team–work in our paper corresponds to what he refers to as effort-coordination problem.
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consists of individual-based schemes. Then, he considers team–work when the principal can

observe an aggregate output level, the distribution of which depends on the efforts of the two

agents. He finds that the same result holds if the probability distribution over total output

satisfies the conditions which make the first-order approach valid and agents are identical

with identical effects on probability distributions of output.7

Therefore, earlier literature displays that sufficiency conditions under which the principal

prefers team–contracts to incentive–contracts, involve separable production functions with

either no or weak interactions, or the limitation to identical agents when a richer set of

interactions is allowed. Naturally, a model involving team production with agents having

different abilities and attitudes towards risk and jointly determining both the mean and the

variance of returns in nonrestricted ways, is more appealing. Moreover, the consideration

of implementability through the use of collusion–proofness allows us to produce the sharp

conclusion that hiring agents as a team is more desirable by the principal, without the need

of any additional restrictions. Meanwhile, the full characterization of situations in which

incentive–contracts are collusion–proof (hence, implementable), also characterizes cases in

which comparisons between incentive–contracts and team–contracts are justified.

In section 2 the model is presented. Section 3 demonstrates an example showing that

standard constraints fail to eliminate collusion, and presents collusion constraints. In section

4 we formulate the principal’s problem with team–work and in the subsequent section we

present our results.

7Similar settings are also featured in Itoh (1994) and Hortala-Vallve and Sanchez Villalba (2010). The
former analyzes optimal methods to allocate tasks among agents and whether the principal benefits from
offering relative performance schemes, in a simplified version of the model of Itoh (1993). On the other
hand, the latter displays that with team production, efficiency of organizations maybe improved by partially
internalizing externalities between workers via the use of hierarchy, the delegation of authority of contracting
rights. Other relevant papers include Baliga and Sjostrom (1998), Macho-Stadler and Perez-Castrillo (1998),
and Jelovac and Macho-Stadler (2002).
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2 The Model

Ours is a linear two-agent single-task hidden-action model with observable and verifiable

returns. The principal possesses an asset that delivers observable and verifiable returns

drawn from a normal distribution whose mean and variance are determined by employees’

effort choices that the principal cannot observe. Hence, contracts cannot depend on agents’

effort profile. On the other hand, the returns from the asset and the return-contingent

contracts that the principal offers to agents are all observable and verifiable. We assume that

each agent can observe and verify the other’s effort choices. Finally, everyone is assumed to

have access to capital markets and none of the parties involved are wealth-constrained.

The pioneer work in establishing theoretical justifications for the use of linear contracts

obtained from normally distributed returns and exponential utility functions is Holmstrom

and Milgrom (1987), and was generalized by Schättler and Sung (1993) and Hellwig and

Schmidt (2002). They involve repeated settings with a single agent, and the lack of income

effects due to exponential utility functions is employed to obtain the optimality of linearity :

Among optimal contracts there is one that is linear in aggregate output. Thus, the situation,

given by a complicated repeated agency setting, is as if the agent chooses the mean of

a normal distribution only once, and the principal is restricted to employ linear sharing

rules. Sung (1995) generalizes this result by allowing the single agent to control the variance

as well. Barlo and Ozdogan (2011) consider the multi-agent version of this generalization

with instantaneous efficient risk sharing and/or collusion possibilities, and prove that the

optimality of linearity continues to hold, in turn, justifying the analysis of the current study.

We assume that Ei, the set of effort levels of agent i = 1, 2, is a finite and ordered

set.8 Asset’s effort-contingent returns x ∈ < are distributed with F (x | e), such that for

all e = (e1, e2) ∈ E ≡ E1 × E2, F (x | e) is the normal cumulative distribution given by

the mean µ(e) and the variance σ2(e). We assume that both of the agents are strictly risk

averse, yet, our formulation includes cases when the principal is risk neutral. The principal

and agents have exponential utility functions with the following CARA figures: R for the

8Finite effort set is assumed to abstract from non-fruitful technicalities and to keep numerical program-
ming simple.
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principal, and ri for agent i = 1, 2, where R ≥ 0, and r1, r2 > 0. Agent i’s private cost of

effort, denoted by ci(ei) for ei ∈ Ei, is given in terms of returns. Each agent has an outside

employment opportunity resulting in a reserve certainty equivalent of Wi, i = 1, 2. Given

a contract (Si(x))i=1,2,x∈< which makes both agents accept and exert the effort level e ∈ E,

expected utilities of the principal and agent i = 1, 2 are:

Eup(S1, S2 | e) =

∫
− exp{−R(x− S̄x)}dF (x | e)

Eui(Si | ei, e−i) =

∫
− exp{−ri(Si(x)− ci(ei))}dF (x | ei, e−i),

where S̄x = S1(x)+S2(x). The attention is restricted to linear contracts of the form Si(x) =

γix + ρi, where γi ∈ <+ are such that
∑

i=1,2 γi ∈ [0, 1], and ρi ∈ <, i = 1, 2. Notice

that these restrictions contain the feasibility requirement making sure that principal’s asset

cannot be inflated. Then, the certainty equivalent, henceforth to be abbreviated as CE, of

agent i = 1, 2, when e ∈ E is:

CEi(γi, ρi | e) = γiµ(e) + ρi − ri

2
γ2

i σ
2(e)− ci(ei).

Similarly, the CE of the principal is:

CEp(γ, ρ | e) =

(
1−

2∑
i=1

γi

)
µ(e)− R

2

(
1−

2∑
i=1

γi

)2

σ2(e)−
2∑

i=1

ρi. (1)

In this setting, the individual rationality constraint for agent i = 1, 2, who has a given

reserve CE of Wi, is:

γiµ(e) + ρi − riγ
2
i

2
σ2(e)− ci(ei) > Wi. (IRi)

Similarly, the incentive compatibility constraint for agent i = 1, 2 is:

γi (µ(e)− µ(e′i, e−i))− riγ
2
i

2

(
σ2(e)− σ2(e′i, e−i)

)
> ci(ei)− ci(e

′
i), ∀e′i ∈ Ei. (ICi)

So far the model described is basically the two-agent single-task version of the one given

by Holmstrom and Milgrom (1991).

Since returns from the asset and contracts the principal offers are all observable and

verifiable, it is natural to consider efficient risk sharing, and not allowing agents the ability
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to insurance each other is rather restrictive.9 It is worth noting that these side insurance

contracts are not contingent upon the effort choices. In the N -agent Brownian model, Barlo

and Ozdogan (2011) show that agents’ instantaneous insurance abilities lead to the substitu-

tion compatibility constraint.10 In the current setting which can be interpreted as being the

reduced form of that model, this constraint ensures that the marginal rate of substitution of

the first agent between any two states is equal to that of the second agent. Due to CARA

utilities and having two agents, substitution compatibility is simplified to:

γ1

γ2

=
r2

r1

. (SC)

Consequently, the principal’s problem is to maximize (1), subject to (IRi), (ICi), i = 1, 2,

and (SC). Henceforth, we call the set of contracts satisfying (IRi), (ICi), i = 1, 2, and (SC),

the incentive–contracts.

3 Collusion

Before presenting the formal execution, we wish to present a numerical example to display

that an optimal incentive–contract may be susceptible to collusion.

3.1 Example 1

Let Ei = {eL, eH}, and returns x ∈ < are distributed with the normal cumulative distribution

function F with the mean µ(e) and variance σ2(e), whose particular levels are given in table

1. The private cost of agents’ effort choices are: c1(eH) = 1, c1(eL) = c2(eL) = 0, and

c2(eH) = 0.35. Let ri = 10, i = 1, 2, and the principal is risk neutral, i.e. R = 0. Moreover,

9This is because, even under such a restriction, an alternative way of obtaining such an insurance is as
follows: Suppose that markets are complete, and agents have access to them. Then, there exists a portfolio
with returns that are equal to the returns that agents wish to obtain via the insurance contract. Thus, by
trading that portfolio agents may obtain the returns they desire from the insurance contract.

10In fact, Theorem 1 of Barlo and Ozdogan (2011), in addition to showing optimality of linearity, pins
down the substitution compatibility requirement: With N agents, N ≥ 2, it is shown that

γi =

∏
j 6=i rj∑

i∈N

∏
j 6=i rj

, i = 1, . . . , N.
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(eH , eH) (eH , eL) (eL, eH) (eL, eL)

µ(e) 10 10 5 5

σ2(e) 1 2 1 2

Table 1: The mean and variance figures of example 1.

(e1, e2) γ1(e) γ2(e) ρ1(e) ρ2(e) CEp(e)

(eH , eH) 0.264575 0.264575 −0.295751 −1.44575 6.45

(eH , eL) 0.20 0.20 0.40 −1.10 6.70

(eL, eH) −− −− −− −− −−
(eL, eL) 0 0 1 0.50 3.50

Table 2: Optimal incentive–contracts of example 1.

the reserve CE figures of agents, are W1 = 1 and W2 = 0.5. It is worthwhile to point out

that in this example, effort choices of the first agent only affects the mean, and those of

the second agent only the variance. Another interesting feature is that the principal would

desire high effort from the second agent only to decrease the risk faced by the first agent.

When optimal incentive–contract is considered (ICi) and (SC) constraints are:

(IC1) : γ1 (µ(e1, e2)− µ(e′1, e2)) > (c1(e1)− c1(e
′
1)), ∀e′1 ∈ E,

(IC2) : −r2γ
2
2

2

(
σ2(e1, e2)− σ2(e1, e

′
2)

)
> (c2(e2)− c2(e

′
2)), ∀e′2 ∈ E.

(SC) : γ1 = γ2.

Consequently, table 2 presents optimal incentive–contracts and corresponding CE figures to

the principal when a given effort level e ∈ E is to be implemented with (IRi), (ICi), i = 1, 2,

and (SC). Thus, the optimal incentive–contract, (S∗i )i=1,2 involving the implementation

of the effort profile e = (eH , eL), is given by (γ∗1 , γ
∗
2 ; ρ

∗
1, ρ

∗
2) = (0.20, 0.20; 0.40,−1.10) , and

delivers the principal a return of 6.70.11 It should be mentioned that when the effort profile

(eL, eH) is to be implemented, the incentive compatibility constraint of the first and second

11When the principal is risk averse with a CARA given by 1/2, the optimal contract involves the same
compensation scheme and the same effort profile as the one with a risk neutral principal, (γ∗1 , γ∗2 ; ρ∗1, ρ

∗
2) =

(0.20, 0.20; 0.40,−1.10) ; but delivers a CE of 6.52 to the risk averse principal.
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agents result in the set of constraints being empty.12

However, S∗ is not immune to collusion, hence, is not implementable. That is, there is

a feasible side–contract contingent on agents’ effort choices, making both strictly better off.

Consider S ′, involving (eH , eH) and (γ′1, γ
′
2; ρ

′
1, ρ

′
2) = (0.20, 0.20; 0.205,−0.905) . S ′ is feasible

because γ∗1 + γ∗2 = γ′1 + γ′2 and γ′1, γ2 ≥ 0 and ρ′1 + ρ′2 = ρ∗1 + ρ∗2, and clearly (SC) holds

since γ′i = γ∗i , i = 1, 2. The resulting CE figures are CE1(S
′) = 1.005 > 1 = CE1(S

∗), and

CE2(S
′) = 0.545 > 0.50 = CE2(S

∗), and CEP (S ′) = 6.70 = CEP (S∗). With this side–

contract, the first agent agrees to make a side–transfer to the second in return of her high

effort choice, resulting in a lower variance of output; and this, in turn, mitigates the amount

risk the principal desires the agents to be exposed to.13 Therefore, with side–contracting

agents are able to sustain the best effort profile, even though the risk neutral principal (or

one with sufficiently low CARA) finds it costly to make the second agent exert high effort. It

should be pointed out such side–contracting on effort levels enables non-incentive compatible

(yet, feasible and participatory) arrangements to be beneficial for the agents.14

3.2 Collusion Formulation

Borrowing collusion constraints from Barlo (2003) and using the fact that in this study we

consider two-agent situations, the resulting constraint is that the principal is restricted to

offer individually rational contracts that none of the agents can strictly benefit upon by

12To be precise, the (IC1) for that case calls for γ1 ≤ 0.20, and (IC2) for γ2 ≥
√

0.07 = 0.26458. Finally,
due to (SC), γ1 = γ2, resulting in the constraint set to be empty.

13That is, the “sales” person, agent 1, provides incentives to the agent in charge of “finance” for her high
effort choice, in order to alleviate the effects of the risk that the principal’s contract is exposing them to.

14The side–contract S′ is not incentive compatible for the second player, because γ′2 = 0.20 is strictly
lower than

√
0.07 = 0.264575. Moreover, in this example S′ does not hurt the principal. However, a risk

neutral principal (or a risk averse principal with a sufficiently low CARA) may get strictly worse off by
side–contracting, when it involves an effort profile which results in a lower mean. In order for agents to
benefit from such an arrangement, they should have sufficiently high CARA, and the effort profile agreed
upon results in a low enough variance compensating the decrease in the total surplus due to a lower mean.
To see this, consider the above example with the only change to the mean of the return associated with the
effort profile e = (eH , eH) to from 10 to 9.98. Then, the optimal incentive–contract remains the same and
delivers a return of 6.70 to the risk neutral principal. On the other hand, the same side contract S′ given
above is still strictly beneficial to both of the agents and brings about CEp(S′′) = 6.688 < 6.70 = CEp(S∗).
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deviating jointly to a feasible side contract and effort profile. In the current setting it results

in the following: (Si, ei)i=1,2 satisfies the collusion constraint, if there is no feasible (S̃i, ẽi)i=1,2

(i.e.
∑

i=1,2 S̃i(x) − Si(x) ≤ 0 for all x ∈ < and ẽ ∈ E), such that the expected utility of

every agent when the side–contract (S̃i, ẽi)i=1,2 is used, strictly exceeds that under (Si, ei)i=1,2

(i.e. E[ui(S̃i | ẽ)] > E[ui(Si | e)] for all i = 1, 2). Barlo (2003) deals with this constraint by

formulating the interaction among agents with a utilitarian bargaining game (see Thomson

(1981) for more on utilitarian bargaining games) which is induced by the principal’s offer

who does not know the particular bargaining weights of the agents. He proves that when

for all i, ui is twice differentiable and satisfies assumptions A1 – A3 of Grossman and Hart

(1983) (Si, ei)i=1,2 satisfies the collusion constraint if and only if the following two conditions

hold: (1) E[ui(Si | e)] − E[ui(Si | ẽ)] ≥ 0 for i = 1, 2 and all ẽ ∈ E; and, (2) there exists a

bargaining weight vector θ ∈ ∆({1, 2}) = {θ′ : θ′i ∈ [0, 1] for all i, and
∑

i θ
′
i = 1} such that

θ1u
′
1(S1(x)) = θ2u

′
2(S2(x)) for all x ∈ <. Adopting these techniques in the instantaneous

interaction among agents in the multi-agent Brownian model, Barlo and Ozdogan (2011)

prove that among the optimal collusion–proof contracts there is one that is linear in aggregate

output, in turn, justifying the following: The set of collusion constraints, denoted by (CC),

can be replaced by (1) Feasibility, i.e. γi ∈ [0, 1], i = 1, 2, and
∑

i γi ≤ 1; (e1, e2) ∈ E; (2)

(IRi) holds at γi, ρi, ei, i = 1, 2; (3) (SC) holds; and (4) for i = 1, 2

γi (µ(e)− µ(e′))− riγ
2
i

2

(
σ2(e)− σ2(e′)

)
> ci(ei)− ci(e

′
i), ∀e′ ∈ E. (CCi)

A contract satisfying (CC) is said to be collusion–proof ; and, the principal’s problem

under collusion is to maximize (1) subject to (CC).

3.2.1 Example 1 under collusion

Table 3 presents the optimal collusion–proof contracts and associated CE figures to the risk

neutral principal when a given effort level e ∈ E is to be implemented.15 The optimal

15When (eH , eL) and (eL, eH) are to be implemented, the set of constraints is empty, i.e. they cannot be
sustained with collusion. This is because, when for (eH , eL) we have γ2

1 ≤ 0 from CC1 considering deviations
from (eH , eL) to (eH , eH), and γ1 ≥ 0.20 from CC1 considering deviations from (eH , eL) to (eL, eL). For the
implementation of (eL, eH), similarly, we have 5γ2

2 ≥ 0.35 from CC2 considering a deviation from (eL, eH)
to (eL, eL), and γ2 ≤ 0 again from CC2 when considering a deviation from (eL, eH) to (eH , eH).
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(e1, e2) γ1(e) γ2(e) ρ1(e) ρ2(e) CEp(e)

(eH , eH) 0.264575 0.264575 −0.295751 −1.44575 6.45

(eH , eL) −− −− −− −− −−
(eL, eH) −− −− −− −− −−
(eL, eL) 0 0 1 0.5 3.5

Table 3: Optimal collusion–proof contracts of example 1.

collusion–proof contract, given by (S∗∗, e∗∗) involves e∗∗ = (eH , eH) and (γ∗∗1 , γ∗∗2 ; ρ∗∗1 , ρ∗∗2 ) =

(0.264575, 0.264575;−0.295751,−1.44575), and delivers the risk neutral principal a return

of 6.45.16 Recall from section 3.1 that the optimal incentive–contract, (S∗, e∗), is given by

e∗ = (eH , eL) and (γ∗1 , γ
∗
2 ; ρ

∗
1, ρ

∗
2) = (0.20, 0.20; 0.40,−1.10) , with an associated return of 6.70

to the risk neutral principal. Therefore, collusion makes the principal strictly worse off when

compared with incentive–contracts. This is because, e∗ = (eH , eL) cannot be implemented

with collusion (see footnote 15), thus, the principal is obliged to go for (eH , eH).

4 Team–Work

In example 1, it can easily be computed that the CE of a risk averse principal with R = 1/2

under the side–contract S ′ is 6.61, higher than 6.52, the CE associated with the optimal

incentive–contract S∗ (see footnote 11 for the details). Thus, in general the principal may

benefit from side–contracting. This leads to the identification of situations when the principal

should hire agents as a team, offering a total share from the return and let agents coordinate

effort choices and allocations from the total share themselves. Then, the principal does not

need to deal with incentive constraints because the side–contracts, which are not necessarily

incentive compatible, are binding.

16When the principal is risk averse with a CARA of 1/2, the optimal contract involves the same compen-
sation scheme and the same effort profile as the one given for the risk neutral principal, (γ∗1 , γ∗2 ; ρ∗1, ρ

∗
2) =

(0.264575, 0.264575;−0.295751,−1.44575) ; but, delivers a return of 6.39458 to the risk averse principal.
Recall that the optimal contract with (IRi), (ICi), i = 1, 2, and (SC) constraints, (S∗, e∗) is given by
e∗ = (eH , eL) and (γ∗1 , γ∗2 ; ρ∗1, ρ

∗
2) = (0.20, 0.20; 0.40,−1.10) , with an associated return of 6.52 to the risk

averse principal with a CARA of 1/2.
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A team–contract (T, eT ) consists of T : < → <, a linear compensation plan for the

team where T (x) = γT x + ρT , γT ∈ [0, 1] and ρT ∈ <; and eT ∈ E. Given a team–

contract (T, eT ), a feasible within team allocation (Ti, ei)i=1,2 consists of Ti : < → < with

T1(x) + T2(x) ≤ T (x) and Ti(x) = γT
i x + ρT

i for all x ∈ < (i.e. γT
1 + γT

2 = γ̄T , γT
i ∈ [0, 1],

i = 1, 2; and ρT
1 + ρT

2 = ρ̄T ); and (e1, e2) ∈ E. We say that, given a team–contract (T, eT ), a

within team allocation, denoted by (Ti, ei)i=1,2, solves the team’s problem if it is (1) feasible;

(2) satisfies individual rationality, i.e. (IRi), i = 1, 2; and (3) there is no other feasible and

individually rational within team allocation (T̂i, êi)i=1,2 which provides both of the agents

strictly higher CE figures. It should be pointed out that incentive constraints are not included

because of the perfect enforceability of side–contracting. Following the same steps of Barlo

and Ozdogan (2011), as is discussed in section 3.2, it is not difficult to verify that given a

team contract (T, eT ), a within team allocation (γT
i , ρT

i , ẽT
i )i=1,2 solves the team’s problem if

and only if (1) it is feasible; and (2) (IRi) holds for i = 1, 2; and (3) (SC) holds; and (4) the

team constraint defined below (denoted by (TC)) holds:

(
γT

1 + γT
2

) (
µ(ẽT )− µ(e′1, e

′
2)

)−
((

γT
1

)2
r1 +

(
γT

2

)2
r2

2

)
(
σ2(ẽT )− σ2(e′1, e

′
2)

)

>
∑
i=1,2

(
ci(ẽ

T
i )− ci(e

′
i)
)
, for all (e′1, e

′
2) ∈ E.

Moreover, we say that a team–contract (T, eT ) is practicable if there exists a within team

allocation (γT
i , ρT

i , ẽT
i )i=1,2 solving the team’s problem and ẽT = eT .

The principal’s problem with team–contracts, then, is

max
γT ,ρT ,eT

(
1− γT

)
µ(e)− R

2

(
1− γT

)2
σ2(e)− ρT ,

subject to (T, eT ) being a practicable team–contract.

4.1 Example 1 with Team–Work

Revisiting example 1 of section 3.1, table 4 presents optimal team–contracts and associ-

ated CE figures to the principal when a given effort profile e ∈ E is to be implemented.

The optimal team–contract, (S∗∗∗i )i=1,2 involving the implementation of e∗∗∗ = (eH , eL), is

13



(e1, e2) γ1(e) γ2(e) ρ1(e) ρ2(e) CEp(e)

(eH , eH) 0.187083 0.187083 0.304171 −0.845829 6.80

(eH , eL) 0.10 0.10 1.10 −0.40 7.30

(eL, eH) −− −− −− −− −−
(eL, eL) 0 0 1 0.50 3.50

Table 4: Optimal team–contracts of example 1.

given by (γ∗∗∗1 , γ∗∗∗2 ; ρ∗∗∗1 , ρ∗∗∗2 ) = (0.10, 0.10; 1.10,−0.40) , and delivers the principal a CE

of 7.30. It is appropriate to remind the reader that the principal obtains 6.45 as the CE

achieved at the optimal collusion–proof contract, (S∗∗, e∗∗) involving e∗∗ = (eH , eH) and

(γ∗∗1 , γ∗∗2 ; ρ∗∗1 , ρ∗∗2 ) = (0.264575, 0.264575;−0.295751,−1.44575). So, the principal is bet-

ter off with team–contracts compared with collusion–proof contracts. Similarly, the op-

timal incentive–contract S∗ delivers a CE of 6.70 to the risk neutral principal, and in-

volves the same effort profile e∗ = (eH , eL), but a different compensation scheme given by

(γ∗1 , γ
∗
2 ; ρ

∗
1, ρ

∗
2) = (0.20, 0.20; 0.40,−1.10). Thus, in this example the principal strictly prefers

team–contracts when compared with incentive–contracts.17

5 Team Wins

This section presents our findings concerning the comparison of the principal’s welfare un-

der the three types of contracts, team–contracts, collusion–proof contracts, and incentive–

contracts.

The following displays that the principal prefers team–contracts to collusion–proof con-

tracts.

Proposition 1 Suppose that a contract is collusion–proof, i.e. satisfies (IR), (SC) and

(CC) constraints. Then, it also satisfies team–work constraint (TC).

17If the principal were to be risk averse with a CARA 1/2, the optimal team–contract, (S∗∗∗i )i=1,2 involving
e∗∗∗ = (eH , eL) and (γ∗∗∗1 , γ∗∗∗2 ; ρ∗∗∗1 , ρ∗∗∗2 ) = (0.10, 0.10; 1.10,−0.40) , delivering the principal a CE of 6.98,
which is strictly higher than 6.39458 attained by the optimal collusion–proof contract S∗∗, and also higher
than 6.52 provided by S∗, the optimal incentive–contract. Hence, the conclusions of example 1 with a risk
neutral agent do not change when a risk averse principal (with a CARA of 1/2) is considered.

14



Proof. The result follows from the observation that (TC) is simply obtained from the

summation of (CC1) and (CC2).

Restricting attention to collusion–proof contracts and incentive–contracts, we provide

a full characterization of situations in which the principal can ignore collusion, and con-

sider only incentive–contracts. In other words, cases in which incentive–contracts are imple-

mentable are fully characterized.

We need the following for the statement of our results.

Definition 1 The asset of the principal is said to have monotone returns if µ(e1, e2) is

weakly increasing, and σ2(e1, e2) weakly decreasing separately in both e1 and e2. Moreover,

define the best effort profile, e ∈ E, by µ(e) > µ(e′) and σ2(e) 6 σ2(e′) for all e′ 6= e.

Monotonicity of returns entails the interesting case where the first agent governs only

the mean, i.e. µ(e1, e2) = µ(e1) which is weakly increasing in e1, and the second only the

variance, i.e. σ2(e1, e2) = σ2(e2) which is weakly decreasing in e2. On the other hand, in

general the best effort profile may not exist. But, because that the set of effort levels is

finite, there exists a best effort profile whenever returns are monotone.

Proposition 2 Suppose that returns are monotone and the optimal incentive–contract in-

volves the best effort profile. Then, any incentive–contract is collusion–proof, hence, opti-

mal incentive–contracts and optimal collusion–proof contracts provide the principal the very

same CE. Furthermore, for situations in which any of these conditions are violated, optimal

incentive–contracts are not necessarily immune to collusion which may make the principal

strictly worse off.

Proof. By hypothesis there exists a best effort profile in E, and is denoted by e. Moreover,

the principal finding it optimal with (IRi), (ICi), i = 1, 2, and (SC), to make agents choose

(e1, e2), implies that (CCi), i = 1, 2, are satisfied. This is because for i, j = 1, 2 and i 6= j

(CCi) : γi (µ(e)− µ(e′1, e
′
2))−

riγ
2
i

2

(
σ2(e)− σ2(e′1, e

′
2)

)
> ci(ei)− c1(e

′
i), ∀e′ ∈ E.

(ICi) : γi (µ(e)− µ(e′i, ej))− riγ
2
i

2

(
σ2(e)− σ2(e′i, ej)

)
> ci(ei)− ci(e

′
i), ∀e′i ∈ Ei.

and the left hand side of (ICi) is less than the left hand side of (CCi) for i = 1, 2, we conclude

that any solution satisfying (ICi) also satisfies (CCi), i = 1, 2.
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The four examples, presented in the Appendix, consider cases when the hypothesis of

Proposition 2 is not satisfied, and concludes the proof. These examples’ features are:

1. Returns are monotone, but implementing the optimal incentive–contract does not in-

volve the best effort profile (in Appendix A);

2. Returns are not monotone, but there exists a best effort profile which the principal

finds optimal with incentive–contracts (in Appendix B);

3. Returns are not monotone, but there is a best effort profile, yet implementing that

effort profile with incentive–contracts is not optimal (in Appendix C);

4. Returns are not monotone, and there is no best effort profile (in Appendix D).

At this stage it is useful to remind that our setting features agents who can perfectly

observe each other’s effort choices and can engage in enforceable side–contracting based on

these observations. Thus, incentive–contracts are not necessarily implementable. On the

other hand, Proposition 2 describes some set of conditions with which incentive–contracts

become implementable, because with these conditions every incentive–contract turns out to

be collusion–proof. In other words, collusion can be ignored when returns are monotone and

the best effort profile is chosen in the optimal incentive–contract. Proposition 2 also displays

the minimality of these conditions. That is, the violation of any single part of them results

in optimal incentive–contracts being not implementable, in the sense that a set of colluding

agents can strictly benefit by a joint deviation sustained in an enforceable side–contract.

Therefore, incentive–contracts have an appeal only when returns are monotone and the best

effort profile is chosen in the optimal incentive–contract.

Meanwhile, Proposition 1 establishes that (without the need of any of these conditions)

optimal team–contracts provide more CE levels to the principal than those obtained with

optimal collusion–proof contracts. But, due to the minimality part of Proposition 2, in

situations when optimal team–contracts provide strictly less returns than optimal incentive–

contracts (due to the conditions of Proposition 2 not being satisfied) incentive–contracts

16



are not implementable. This is because, when conditions of Proposition 2 are not satisfied

incentive–contracts are either not implementable or provide the same CE to the principal

as the optimal collusion–proof contract. To see the specifics, one should revisit example 1

where the condition that the best effort profile needs to be chosen in the optimal incentive–

contract is violated. Hence, even when the conditions of Proposition 2 are not satisfied

team–contracts must be preferred by the principal.

These observations are summarized in the following theorem, our main result; and, due

to the above, is stated without a proof:

Theorem 1 The maximum implementable certainty equivalent to the principal can be ob-

tained with team–contracts. Hence, the principal may restrict attention to team–contracts

without any loss of generality.

A Example 1

This example is the one given in section 3.1 and displays that collusion cannot be ignored

even when monotonicity of returns holds (thus, there is a best effort profile) but the best

effort profile, (eH , eH), is not chosen in the optimal incentive–contract.

The optimal collusion–proof contract, discussed in section 3.2.1, involves e∗∗ = (eH , eH)

and (γ∗∗1 , γ∗∗2 ; ρ∗∗1 , ρ∗∗2 ) = (0.264575, 0.264575;−0.295751,−1.44575), delivering a risk neutral

principal a CE of 6.45. On the other hand, the optimal incentive–contract, (S∗i )i=1,2 in-

volving the implementation of the effort profile e = (eH , eL), is given by (γ∗1 , γ
∗
2 ; ρ

∗
1, ρ

∗
2) =

(0.20, 0.20; 0.40,−1.10) , and delivers the risk neutral principal a return of 6.70. Moreover, as

displayed in footnote 16 our conclusions do not change if the principal were to be risk averse

with a CARA of 1/2: The specifics of the contracts remain the same, and the principal’s CE

figures become 6.39458 under collusion and 6.52 with the optimal incentive–contract.

B Example 2

This example demonstrates that collusion cannot be ignored when returns are not monotone,

even when there is a best effort profile which the principal finds optimal to implement with
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(eH , eH) (eH , eL) (eM , eH) (eM , eL) (eL, eH) (eL, eL)

µ(e) 31 29 30 31 26.5 28.3

σ2(e) 1/2 1 1 2 1/2 4/3

Table 5: The mean and variance figures of example 2.

γ1 γ2 ρ1 ρ2 CEP

(eH , eH) 0.289898 0.289898 −6.52673 −7.26673 26.7315

(eH , eL) −− −− −− −− −−
(eM , eH) 0.26411 0.26411 −5.82453 −6.06453 25.8199

(eM , eL) −− −− −− −− −−
(eL, eH) −− −− −− −− −−
(eL, eL) 0.142866 0.142866 −2.90705 −2.40705 24.8476

Table 6: Optimal incentive–contracts of example 2.

incentive–contracts. In this example, the mean and variance of the returns depend on effort

levels of both agents. Let E1 = {eL, eM , eH}, and E2 = {eL, eH}, and the levels of mean

and variance figures be given in table 5. The cost of efforts are, c1(eL) = 0, c1(eM) = 0.75,

c1(eH) = 1.25; c2(eL) = 0, and c2(eH) = 0.01. Moreover, reserve CE figures are W1 = 1,

W2 = 1.5; and CARA levels R = 2, ri = 10 for i = 1, 2. In this example, the best effort

profile is given by (eH , eH), yet agents’ effort choices may affect the variables in opposite

directions. That is why, returns are not monotone, so Proposition 2 does not hold.

For any given effort profile, optimal incentive–contracts are given in table 6. Note that the

principal cannot make agents choose the effort levels (eH , eL), (eM , eL), and (eL, eH). This is

because incentive and substitution compatibility constraints for these effort profiles, result

in the constraint set of the principal’s problem be empty.18 On the other hand, optimal

18When (eH , eL) is to be implemented with incentive contracts, IC1 ensuring that agent 1 chooses eH

instead of eM is −2γ1+5γ2
1 ≥ 0.50, and holds only if γ1 ≥ 0.57417. But, due to (SC), γ1 = γ2, so γ1+γ2 > 1,

an impossibility. For, (eM , eL), the IC1 ensuring agent 1 chooses eM instead of eL is 2.70γ1−10/3γ2
1 ≥ 0.75,

and cannot be satisfied for any γ1 ∈ [0, 1/2]. Finally, for (eL, eH), IC2 making sure that agent 2 chooses eH

instead of eL is −1.80γ2 + 25/5γ2
2 ≥ 0.01, which is satisfied for every γ2 ∈ [0.43749, 0.50]. But, due to (SC),

γ1 = γ2, and thus, IC1 guaranteeing that agent 1 does not choose eM and eH over eL (which are given by
−3.50γ + 5/2γ2

1 ≥ −0.75 and 4.50γ1 ≤ 1.25, respectively) cannot be obtained.
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γ1 γ2 ρ1 ρ2 CEP

(eH , eH) 0.312377 0.312377 −7.18975 −7.92975 26.6817

(eH , eL) −− −− −− −− −−
(eM , eH) −− −− −− −− −−
(eM , eL) −− −− −− −− −−
(eL, eH) −− −− −− −− −−
(eL, eL) 0 0 1 1.5 24.4667

Table 7: Optimal collusion–proof contracts of example 2.

collusion–proof contracts for given effort profiles are presented in table 7. It should be

mentioned that because that collusion constraints include incentive compatibility, the effort

levels (eH , eL), (eM , eL), and (eL, eH) continue to be impossible to be obtained. Moreover,

with collusion, the effort profile (eM , eH) is added to this list.19 Without collusion the

principal has an optimal level of CE given by 26.7315, which results from the contract

involving (eH , eH) and γ1 = γ2 = 0.289898. But, this level of shares does not suffice to

make the agents ignore joint deviations in effort choices. In order to do that, the principal

has to increase the share of the project allocated to the agents. This, however, is costly

because agents are more risk averse than the principal. Indeed, the optimal collusion–proof

contract involves the same effort profile of (eH , eH), but higher shares allocated to the agents,

0.312377. This, in turn, decreases the principal’s optimal CE from 26.7315 to 26.6817.

C Example 3

This example involves cases with non-monotone returns and features a best effort profile

which is not optimal to be implemented with incentive–contracts. In fact, example 3 is the

same as example 2 with only c1(eH) changed from 1.25 to 1.75.

Thence, optimal incentive–contracts implementing e ∈ E are given in table 8. The best

19When the principal desires the colluding agents to choose the effort level of (eM , eH), CC2 guaranteeing
agent 2 to prefer this effort profile to (eH , eH) becomes −γ2 − 5/2γ2

2 ≥ 0 implying that γ2 = 0. But due to
(SC) we have γ1 = γ2, and γ1 = 0 is not compatible with CC1 that ensures that agent 1 prefers the effort
profile (eM , eH) to (eL, eH), which is given by 3.50γ1 − 5/2γ2

1 ≥ 0.75.
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γ1 γ2 ρ1 ρ2 CEP

(eH , eH) 0.463325 0.463325 −11.0764 −12.3164 25.664

(eH , eL) −− −− −− −− −−
(eM , eH) 0.26411 0.26411 −5.82453 −6.06453 25.8199

(eM , eL) −− −− −− −− −−
(eL, eH) −− −− −− −− −−
(eL, eL) 0.142858 0.142858 −2.90682 −2.40682 24.8476

Table 8: Optimal incentive–contracts of example 3.

γ1 γ2 ρ1 ρ2 CEP

(eH , eH) 0.463325 0.463325 −11.0764 −12.3164 25.664

(eH , eL) −− −− −− −− −−
(eM , eH) −− −− −− −− −−
(eM , eL) −− −− −− −− −−
(eL, eH) −− −− −− −− −−
(eL, eL) 0 0 1 1.50 24.4667

Table 9: Optimal collusion–proof contracts of example 3.

effort profile is (eH , eH), but the optimal one for the principal is (eM , eH).20 The optimal

collusion–proof contracts implementing e ∈ E are presented in table 9. Notice that besides

(eH , eL), (eM , eL), and (eL, eH) collusion additionally render (eM , eH) impossible.21 The

optimal incentive–contract involves (eM , eH), and a share allocation of 0.26411 to each agent.

But, these shares fail to eliminate collusion considerations. Indeed, implementing (eM , eH) is

impossible, and thus, with collusion the principal has to go for (eH , eH) allocating 0.463325

portion of the asset to each of agent, in turn, decreasing his CE from 25.8199 to 25.664.

20(eH , eL), (eM , eL), and (eL, eH) cannot be obtained with incentive–contracts. First, note that due to
(SC), γ1 = γ2. For (eH , eL), every (IC) constraints can only be satisfied for γ1 = γ2 ≥ 0.83599, which is not
feasible because γ1 + γ2 cannot exceed 1. When (eM , eL) is to be sustained, IC1 that guarantees that agent
1 chooses eM over eL takes the form of 2.70γ1 − 10/3γ2

1 ≥ 0.75, and this constraint cannot be satisfied for
any γ1 ∈ [0, 1/2]. Finally, for (eL, eH), IC2 implying agent 2 prefer eH to eL is −1.80γ2 + 25/6γ2

2 ≥ 0.01
which requires γ2 to be greater or equal to 0.43749. But, then the all (IC1) constraints (which are given by
−3.5γ1 + 5/2γ2

1 ≥ −0.75 and 4.50γ1 ≤ 1, 75) cannot be satisfied for γ1 = γ2 ∈ [0.43749, 0.50].
21The reason is the very same given in footnote 19.
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(eH , eH) (eH , eL) (eL, eH) (eL, eL)

µ(e) 30 31 26.50 28.30

σ2(e) 1 2 1/2 4/3

Table 10: The mean and variance figures of example 4.

(e1, e2) γ1(e) γ2(e) ρ1(e) ρ2(e) CEp(e)

(eH , eH) 0.26411 0.26411 −6.32453 −6.06453 26.3199

(eH , eL) −− −− −− −− −−
(eL, eH) −− −− −− −− −−
(eL, eL) 0.142858 0.142858 −3.40682 −2.40682 25.3476

Table 11: Optimal incentive–contracts of example 4.

D Example 4

This example shows that collusion cannot be ignored when returns are not monotone and

there is no best effort profile. Let E1 = {eL, eH}, and E2 = {eL, eH}, and the mean and

variance figures are given in table 10. The cost of efforts are, c1(eL) = 0, c1(eH) = 0.75;

c2(eL) = 0, and c2(eH) = 0.01. Moreover, the reserve CE figures are W1 = 0.50, W2 = 1.5;

and CARA levels R = 2, ri = 10 for i = 1, 2.

The optimal incentive–contracts (collusion–proof contracts) implementing e ∈ E are

given in table 11 (and table 12, respectively), showing that collusion decreases the optimal

(e1, e2) γ1(e) γ2(e) ρ1(e) ρ2(e) CEp(e)

(eH , eH) 0.332674 0.332674 −8.17687 −7.91687 26.0213

(eH , eL) −− −− −− −− −−
(eL, eH) −− −− −− −− −−
(eL, eL) 0 0 0.50 1.50 24.9667

Table 12: Optimal collusion–proof contracts of example 4.

CE of the principal from 26.3199 to 26.0213, even though the associated effort profile remains

the same.22

22In this case, (eH , eL) and (eL, eH) cannot be implemented. For (eH , eL), IC1 implies 2.70γ1− 10/3γ2
1 ≥
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