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ABSTRACT 
 

Following the reduced-form models of Duffee (1999) and Jarrow, Lando and Yu (2003), this study 

investigates the risk diversification issue of corporate bond portfolios. Considering especially long run 

market behavior, our empirical decomposition of corporate bond yield spreads indicates that the 

idiosyncratic component serves as a good vehicle for risk diversification. Moreover, the idiosyncratic 

spread provides significant inferences about observed conditional corporate bond default rate, while 

full spread does not. Applying an affine model from Duffie and Singleton (1999), we find that the 

idiosyncratic credit spreads do not respond empirically to Treasury yields, unlike what is suggested in 

the structural model of Longstaff and Schwartz (1995) and literatures that follow. Systematic credit 

spreads are however positively related to Treasury yields in the long-run, but negatively so in the short 

run, suggesting the validity of both the tax and the option hypotheses. A long-run and optimal 

decomposition scheme yields an idiosyncratic credit spread measure at a median of 60 b.p. for the Baa 

index and is specifically compatible with Duffee’s model. It is insensitive to interest rate in the 

short-run, but would rise slightly with a positive shock in the long run at a rate of one to a hundred. Our 

findings in the study contribute to the risk practice of bond portfolio diversification. 
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I. Introduction 

 

The purpose of this study is to suggest a empirical method to separate the systematic and the 

unsystematic part of yield spreads, or credit spreads, on corporate bonds, which has crucial implication 

in risk diversification with bond portfolios. Existing literature has explored credit spreads under a 

framework where diversifiable idiosyncratic credit risk is considered. Empirical investigation in this 

area has not, however, been conducted rigorously to establish the role of idiosyncratic risk implied by 

credit rating of firms. Methods employed by previous works have also mostly focused on short-run 

relations and failed to cope with temporal pattern of credit spreads. Without solid evidences to support 

a proper formulation of credit spreads, adequate pricing of corporate bonds is thus unsatisfactory. This 

study follows the arguments of Duffee (1999) and Jarrow, Lando and Yu (2003) to examine 

decomposed credit spreads using corporate bond indices. The study of idiosyncratic credit risk has 

implications on diversification specifically as studies of individual corporate bond yields are relatively 

few. In our study, systematic and idiosyncratic components of credit spreads are examined separately so 

that diversification of default risk can be explicitly addressed. Following the affine approach of Duffie 

and Singleton (1999), we take a reduced-form model approach where we decompose credit spreads into 

two parts. One is related to the systematic characteristics of corporate bond as a defaultable contingent 

claim, while the other is more related to idiosyncratic default risk of bonds of different grades. Our 

study considers especially the difference between short and long run in the effects of underlying factors 

influencing credit spreads. Based on a simple linear scheme, we show that systematic credit spreads are 

related to common factors like interest rates which cannot be diversified away in portfolios. On the 

other hand, the idiosyncratic credit spreads are not related to common risks, implying a diversification 

benefit of holding bond portfolios.  

Existing studies makes no distinction between the systematic and idiosyncratic credit risks, nor do 

they distinguish phenomena in the long run from those in the short run. These earlier explorations of 

credit spread determinants have been conducted by Longstaff and Schwartz (1995), Jarrow and 

Turnbull (1995), Collin-Dufresne, Goldstein and Martin (2001), among others. These studies have 

generally concluded that observed credit spreads are negatively related to short term interest rate, slope 

of the Treasury yield curve, and positively so to corporate leverage and asset volatility. Employing data 

on corporate bond indices, Neal, Rolph, and Morris (2000) and Joutz, Mansi and Maxwell (2001) 

introduced the idea of long-run and short-run effects of Treasury yields on credit spreads. Using the 

latest cointegration analysis, they showed that credit spreads are positively related to Treasury yields in 
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the long-run, but negatively so in the short run. These results help greatly the pricing of corporate debt 

through the construction of yield spreads of individual bonds. However, critiques on these studies 

indicate that, without the separation of systematic and idiosyncratic components in credit spreads, the 

accuracy of the pricing mechanism will be substantially affected
1
. While the structural approach, or the 

Merton model, clearly requires a role for the idiosyncratic credit risks, which have different temporal 

patterns from the systematic risks such as those suggested by Elton et al. (2001). In practice, the 

construction of yield quotes incorporates both components distinctively as suggested by Saunders, 

Srinivasan and Walter (2002), which causes the persistence of observed yield spreads according to 

Duffee (1998). 

In order to characterize clearly how diversification of credit risk affects corporate bond pricing 

behavior, the decomposition credit spreads is crucial. Previous studies have focused mostly on the 

innovation of credit spreads over time, rather than comparing them across firms as credit rating 

agencies do. Wilson (1998) formally introduced a model of credit spread decomposition by adopting a 

multi-factor model to calibrate the loss distribution of systematic and idiosyncratic risk components, 

with volatility of default rate as the systematic risk. Duffee (1999) approached the decomposition by 

explicitly modeling a default intensity process, where only the systematic default risk is related to yield 

curve, while the idiosyncratic default risk is exogenous. Gatfaoui (2003) extended the argument to 

formally decompose credit risks into the two components in a Merton context. A closed-form bond 

formula was developed out of stochastic volatility of a firm’s asset value. Jarrow et al. (2003) also 

extended arguments in Duffee (1999) to explore the diversification implication of the idiosyncratic 

default risk. Other studies such as Elton et al. (2001) and Pedrosa and Roll (1998) have also 

investigated the decomposition indirectly. Works above rely mainly on simulated results from 

individual corporate bonds, which need improvements in two areas. First, an empirical investigation on 

the decomposition is yet to be done, as time series issues on observed credit spreads have to be 

addressed to obtain reliable implications. Secondly, the actual quoted credit spread construction process 

requires the consideration of credit rating before achieving the final credit spread on the individual firm 

level. So a further study of decomposition on that level using yield index is necessary.   

This study proposes a decomposition scheme based on an affine term structure model. Our model 

is shown to be supported by observed credit spreads and corporate defaults, and is also consistent with 

                                                 
1
 Duffee (1998) argued that much of the negative relation between credit spreads and Treasury yields could be due to the 

callable feature of corporate bond. Collin-Dufresne et al. (2001) indicated also that various market-wide as well as 

firm-specific factors could only explain a limited portion (25 percent, in there study) of the observed credit spread behaviors. 

Cambell and Tasker (2003) suggested that idiosyncratic volatility explained equally well the credit spread changes as credit 

ratings. Elton, Gruber, Agrawal and Mann (2001) even argue that observed credit spreads beyond tax premium can be 

explained by the Fama and French (1996) systematic factors. 
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existing literature. The results from our study strongly suggest the necessity of decomposing credit 

spreads, and they supply evidence to bridge the gap between theories from previous literatures and 

actual practice. Our analysis focuses on the decomposition at the portfolio or crediting level, rather than 

the individual firm level, which is more compatible with actual pricing practice than Duffee (1999) and 

Jarrow et al. (2003). The idiosyncratic credit spread produced through our more general decomposition 

scheme provides reasonable and useful estimates for spreads across credit rating groups, or the default 

spread as used in the literature. Our use of bond indices avoids possible liquidity related data problem 

with individual bonds, and our methods identifies empirically the proper model where systematic credit 

spread should be constructed. The general decomposition scheme proposed, which considers long term 

equilibrium governing yield spreads, also offers explanation to the puzzles raised by Duffee (1998) and 

Elton et al. (2001). Specifically, long-run results validate the tax differential effect as noted by Elton et 

al. (2001), which argues that the burden of local taxes on non-government bonds draws a tax premium 

on the yield spreads of corporate bonds in addition to the default premium. The tax premium is higher 

on bonds of lower grade, as their coupons, hence yields and spreads, are higher due to higher default 

risks. Short-run analysis strongly supports the option-based hypothesis of structural approach presented 

by Longstaff and Schwartz (1995), which characterizes a negative relationship between the yield 

spreads and the short term interest rates due to the fact that higher default risks are present at times of 

low interest rates. As the option hypothesis predicts a negative effect of interest rate on credit spreads, 

it is contrary to the tax hypothesis where the effect is positive. However our theoretical model offers an 

reconciliation of the two and our empirical results verify that with solid evidences. The cointegration 

approach employed in our study generates unambiguous causal inferences as compared to Neal et al. 

(2000) and Joutz et al. (2001). To the extent that this study offers explicitly a yield spread construction 

method, it contributes corporate bond pricing mechanism in general, and further examination of 

idiosyncratic credit spreads on the firm level.  

The remainder of the paper is organized as follows. Section II presents an affine model of yield 

spreads, laying a foundation of credit spread decomposition to be examined subsequently. Section III 

describes our data and preliminary statistics. A ‘baseline’ credit spread regression is carried out to 

verify standard results anticipated in our data set, with the considerations of structural changes across 

subperiods. We then employ two approaches of cointegration analysis in section IV, which provides us 

with the validity of alternative models as well as long and short run relations between interest rate 

dynamics and credit spreads with a naive decomposition scheme. We then present results under 

different credit spread decomposition method. In section V we examined how actual corporate default 

rates are predicted by idiosyncratic credit spreads and if decomposition method matters. Robustness 
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and related issues are discussed in section VI. Section VII summarizes the paper with conclusion, 

possible improvements and extensions. 
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II. An Affine Model of Credit Spreads 

 

We propose in this section an affine model credit spread based on the framework of Duffie and 

Singleton (1999) and Liu, Longstaff and Mandell (2004). In the latter model, valuations of liquid and 

illiquid default-free bonds, and a defaultable bond are achieved simultaneously. As our interest in this 

study is in the spread between higher and lower grade corporate bonds, we include in our model only 

one default-free bond, one higher grade and one lower grade defaultable bond. 

 The default-free zero-coupon bond maturing at T has at time t a value of 

 

( )( , ) exp
T

Q s
t

D t T E r ds = −
  ∫ , (1) 

 

where sr  is the short rate and EQ is the expectation with respect to measure Q, the risk-neutral 

counterpart of the physical or objective measure P. The value of a high grade defaultable bond will 

incorporate a liquid spread sγ  to compensate for the illiquidity compared with default-free bonds
2
, 

and default intensity spread sλ  which is from a Poisson process with time varying parameter. At time t 

it can be expressed as 

 

( )( , ) exp [ ]
T

Q s s s
t

A t T E r dsγ λ = − + +
  ∫ , (2) 

 

which is identical to the expression in Liu et al. (2004) but the liquidity spread is imposed on the 

defaultable rather than the default-free bond. The use of a high-grade defaultable bond in place of the 

off-the-run default-free bond or swap in their model has certain implications. The high-grade 

defaultable bond resembles the off-the-run issue in its low liquidity relative to the on-the-run issue, and 

is similar to a swap in having default risk. Jarrow et al. (2003) focuses on the liquidity characteristic 

and treats an AAA bond as default-free. So (2) in essence relates to the two studies with reasonable 

theoretic support. Note that the yield or credit spread of A(t,T) is modeled to be influenced by rs only 

through default spread sλ , which implies the absence of tax differential effect in the case of high grade 

bond.  

                                                 
2
 As our focus in the study is on the yield spreads of corporate issues, the modeling here is essentially a mix of the illiquid 

default-free bond and a defaultable bond as presented in Liu et al. (2004). 
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A lower grade defaultable bond with similar structure is then modeled to have a value of 

 

( )1 2 3( , ) exp [ ]
T

Q s s s
t

B t T E r dsφ φ γ φ λ = − + +
  ∫  (3) 

 

at time t. The parameters 1φ , 2φ , and 3φ  are all positive and is modeled to reflect different sensitivity 

to the short rate, possible larger liquidity and credit or default spreads. Different from (2), the 

coefficient of short rate in (3), 1φ , is modeled to reflect the tax differential effect argued by Elton et al. 

(2001). As short rate goes up, in order for potential bondholders to hold the lower grade bond, more 

compensation is needed. Therefore 1φ  in (3) should be greater than 1, the coefficient of rs in (1). The 

dynamics of the three endogenous variables are characterized by a general affine model with a set of 

four state variables which are Markovian under the equivalent martingale measure Q and square-root 

diffusions. The short rate is assumed, without loss of generality, to be driven by two state variables. 

They represent common shocks to the economy, as in Duffee (1999), which is different fro the three 

state variables as in Liu et al. (2004),  

 

0 1 2sr X Xδ= + + , (4) 

 

where 0δ  is a constant. The liquidity spread in the high grade defaultable bond is assumed to take the 

form of 

 

1 3s Xγ δ= + , (5) 

 

where 1δ  is also a constant and the state variable X3 represents the premium required for the illiquid 

corporate issues, regardless of default risks. The default intensity is assumed such that 

 

2 4s sr Xλ δ τ= + + , (6) 

 

where 2δ  and τ  are both constants and the latter stands for the sensitivity of default to the short rate. 

According to the option-based structural models, such as Longstaff and Schwartz (1995), τ  should be 
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negative
3
. In this four-factor model, we use an affine term-structure model with general Gaussian 

processes to define the state variable vector X=(X1, X2, X3, X4), using the notation of Liu et al. (2004), 

   

QdX Xdt dBβ= − + Σ , (7) 

 

where β  is a diagonal matrix and B
Q
 is a vector of independent standard Brownian motions under the 

risk-neutral measure of Q. Σ is a lower diagonal matrix containing covariances among the state 

variables, and it is assumed also that the covariance matrix ΣΣ’ is of full rank to allow correlations of 

state variables. Corresponding to this affine structure is the dynamics under the physical measure P, 

 

( ) PdX X dt dBκ ξ= − + Σ , (8) 

 

where κ is also a diagonal matrix and ξ  is a vector of long-term value of the state variables. The 

solutions to the default-free, high and low grade defaultable bonds can be solved under the risk-neutral 

dynamics (7). Their closed-form representation is as follows, 

 

[ ]0( , ) exp ( ) ( ) '( )D t T T t a t b t Xδ= − − + +  (9) 

 

[ ]0 1 2( , ) exp ((1 ) )( ) ( ) '( )A t T T t c t d t Xτ δ δ δ= − + + + − + +  (10) 

 

[ ]1 0 2 1 3 2( , ) exp ( (1 ) )( ) ( ) '( )B t T T t e t f t Xφ τ δ φ δ φ δ= − + + + − + +  (11) 

 

where 

 

( )( )

1 1 1 2 ( )

,

1 1
( ) ' ' ( ) ' ' ( ) '

2 2 ( )

ii jj T t

T t
i j

i j ii jj ii jj

e
a t L L T t L I e L L

β β
ββ β β β

β β β β

− + −
− − − − − −

−
= ΣΣ − − ΣΣ − + ΣΣ

+
∑ ,  

1 ( )( ) ( )T tb t e I Lββ − − −= −  

 

and I is the identity matrix and Lʹ=[1,1,0,0]. Functions c(t) and d(t) are the same as a(t) and b(t) except 

                                                 
3
 Without loss of generality, if we model λ  to be just related to default-induced spread, tax differential effect would not 

be relevant here. 1φ  in (3) would be the only source for that effect. 
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that Lʹ is defined as [1+τ, 1+τ,1,1], whereas e(t) and f(t) are the same as a(t) and b(t) except that Lʹ is 

defined as [φ1(1+τ),φ1 (1+τ),φ2, φ3].  

 The credit spread of the high grade bond is thus a linear function of state variables in the form of 

 

0 1 2 1 1 1 2 2 3 3 4 4( )ASP t X X X Xτδ δ δ η ωτ ω τ ω ω= + + + + + + + , (12) 

 

and the credit spread for the low grade bonds can be expressed similarly as  

 

' ' '
1 0 2 1 3 2 2 1 1 1 2 1 2 3 2 3 4 3 4( )BSP t X X X Xφ δ φ δ φ δ η ω φ ω φ ω φ ω φ= + + + + + + + , (13) 

 

where ω ’s are functions of parameters and time, and '
1 1(1 ) 1φ φ τ= + − . 1( )tη  and 2( )tη  are 

functions of time and parameters. Generalizing the characterizations of (3) to bonds of other grades, we 

could consider X1 and X2 as common risks as their effects are proportional across bonds. Although X3 

and X4 drive the evolution of A(t) as well as B(t), their combinations in the two securities are different. 

The setup of our model treats the liquidity state variable X3 as one distinguishing the defaultable bond 

from the default-free bond, unlike the specification in Liu et al. (2004) where the liquidity spread is to 

separate off-the-run default-free bonds from on-the-run issues. The difference in the combination of 

(X3,X4) in evaluating A(t) and B(t) allows the liquidity factor to also enter as a specific or unsystematic 

risk in SP
A
 and SP

B
, in addition to the pure default spread factor X4.  

It is straightforward from (12) and (13) that the expression 

 

'
1B B AISP SP SP

φ
υ

τ
= + − , (14) 

 

where υ  is a function of parameters and time, is free of common risks X1 and X2, and can be utilized 

to characterize the idiosyncratic component of the low grade bond. Note that the specification of (2) 

makes little distinction among 
s

r , 
s

γ  and 
s

λ , which requires the valuation of three securities to 

separate them, as in Liu et al. (2004). As swap spreads have increasingly become a major benchmark of 

risky fixed income securities, the exact pricing structure in (2) turns less necessary. However, the 

specification of (3) allows us to focus on pricing risks contained in defaultable bonds of various credit 

grades, without referencing to the relationships among default-free bonds. The idiosyncratic credit 

spread measure in (14) serves as empirically testable tool to facilitate that purpose. It is also useful to 
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verify the validity of both the option-based hypothesis and the tax differential effect. It is obvious that 

the coefficient of SP
A
 in (14) must be negative, like a hedge ratio, for common risks to be hedged using 

the two defaultable bonds. The hedging function of the idiosyncratic credit spread brought forward in 

(14) has profound implications on risk diversification in fixed income portfolios, as properly priced  

defaultable bonds of various grades suggest an accurate risk allocation where portfolio risks are 

accurately diversified. It is then required that '
1φ <0. With 1φ  required to be greater than 1 for the 

existence of tax effect, it should satisfy also the following inequality, 

 

1

1
1

1
φ

τ
> >

+
. (15) 

 

The upper limit of 1φ  in (15) depends on the magnitude of τ , which is larger for lower grade bonds. 

As larger tax effect also happens on lower grade bonds, the option and the tax effect are actually 

closely related to each other in this affine model. Only when there is room for higher credit risk 

premium is there a possibility to be subject to higher state taxes. With the framework of this section, 

we’ll be able to test the validity of both effects.   
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III. Data and preliminary analysis 

 

The Data 

 

In order to avoid possible liquidity effect
4
 on individual corporate bond yield spreads, we choose 

to explore our model with indices. The data employed in this study are the composite monthly and 

weekly yield observations from seasoned Aaa- and Baa-grade corporate bonds, which are compiled by 

the Moody’s Investors Service and are obtained from the Board of Governors of the Federal Reserve 

System. Each index contains various major corporate bonds with different maturities. The data period 

starts from May 1953 and ends in September of 2003. The spreads are computed by taking the 

difference between the index yields and those of the 10- or 20-year treasury bonds. We have used 

monthly and weekly series of the Aaa and Baa yield spreads, or SP
AAA

 and SP
BAA

. Also presented there 

is the difference between the two, or ISP
BAA

, which will be used later as a naive proxy for idiosyncratic 

credit spreads
5
. Monthly yield spreads in the latest period, between 1982 and 2003, are much higher 

than the other three periods. Cambell and Tasker (2003) also noted in their data that credit spreads are 

especially higher in the late 1990’s, given higher equity returns within the period. Even as the 

proportion of non-callable bond rises over time, which implies that it should have suppressed yield 

spread to some extent, the credit spread rises through time regardless. Whether this phenomenon is 

related to liquidity, taxes, business environment, or risks will be discussed later in this study. The data 

period is divided into three subpriods to examine potential structural changes of the capital market, 

with break points computed by an algorithm proposed by Bai and Perron (2003), with subsequent 

paragraphs in this section and Table II containing more descriptions. Besides the yield data, we have 

also used default rate data from Moody’s. The default data is basically compiled annually, but the yield 

data is averaged weekly and then matched against the default data according years, whose details will 

be further described in in Section V and in Table VI. 

It is worth noting that the kurtosis and skewness of the levels of SP
AAA

 and SP
AAA

 for the entire 

sampling period are not far from a normal distribution. The naive idiosyncratic credit spread, ISP
BAA

, 

has higher values in both measures for the whole period. A separate analysis has also been done on the 

changes of yield spreads, which exhibit excessive kurtosis also, a result similar to findings from 

Pedrosa and Ross (1998). Various studies employed yield spread changes that could suffer this 

                                                 
4
 Collin-Dufresne et al. (2001) suggested that ‘individual liquidity shock’ causes a significant portion of unexplained 

variations in credit spreads of individual corporate bonds. 
5
 It also corresponds to a special credit spread decomposition scheme, one which implies '

1φ τ=  in (14) 
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problem
6
. The liquidity effect on the individual corporate bond spreads in those studies worsens it 

further. Our subsequent analysis employs levels of yield spreads directly rather than changes to not 

only retain information contained in the original variable, but also avoid potential inferencing errors
7
. 

 

The Baseline Model and Preliminary Analysis 

 

To explore the characteristics of τ in (6), the interest rate or systematic credit risk measure, we 

begin analysis with our sample from the following regression equation, 

ittitiiit
eTERMMTBSP +∆+∆+=∆ 210 3 βββ , i=1,2,…I; t=1,2,…T , (16) 

where it
SP∆ denotes the change of SP

AAA
, SP

BAA
 or ISP

BAA
 at period t, whereas tMTB3∆ is the change on 

3-month Treasury Bill yield and tTERM∆ is the difference between yields of 10 year Treasury Bond 

and 3-month TB. Equation (15) is called hereunder the Baseline Model, as many other works employ 

this equation in their analysis too. Duffee (1998) and Collin-Dufresne et al. (2001) carried out their 

analysis using a model like equation (15) finding both estimates of βi1 andβi2 to be negative, which 

draws the starting line of our analysis. As the Baseline Model estimates the two parameters 

independently and is hence more flexible than the specification in (4). 

We establish estimation results of this model as a benchmark of inferences. Our estimation on this 

model differs from other works in that we examine the effect of structural change over the long sample 

period of 50 years. Break points carefully derived from it provide us with econometrically sensible 

subperiods for all subsequent analysis. First differences of original variables are used regardless of the 

said excessive kurtosis in their sampling distribution. Table II reports the results of OLS regressions of 

(15) on three series of credit spreads, for both monthly and weekly samples. The division of subperiods 

is according to break points found for ISP
BAA

, the idiosyncratic credit spreads of Baa (difference 

between Aaa and Baa yields) from an endogenous multiple structural change algorithms according to 

Bai and Perron (2003)
8
. 

Results from (15) are consistent with predictions made by literatures adopting the structural 

                                                 
6
 Pedrosa and Roll (1998) showed that a randomized Gaussian-mixture models yield spread changes better than a simple 

Gaussian distribution assumption. 
7
 It will shown subsequently in our paper that applying changes only in a short-run analysis would also miss the picture of 

long-run equilibrium which only applying level of variables can possibly capture. 
8
 The Bai and Perron procedure does allow for the consideration of heterscedasticity and autocorrelation. The number of 

breaks tends to be smaller (changing from 3 to 2) when taking into account the situations above. Parameter estimates for (15) 

turns out to maintain their signs with smaller magnitude, regardless of the number of breaks. The endogenous break 

identification procedure has also been carried out for both SP
AAA

 and SP
BAA

, with locations of break points not far from what 

we have found for ISP
BAA

. 
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approach. Under that approach, β1  and β2  should be negative and larger in magnitude for lower 

grade bond. Tax differential based approach argues, however, that the two parameters should be 

positive instead. To the extent that (15) is a short-run analysis, it validates the structural approach effect 

in the short run only. The estimation results from weekly observations in Panel B provide examination 

of effects from infrequent trading, as well as a benchmark contrast to subsequent long- and short-run 

analyses. The levels and standard errors of weekly coefficient estimates on SP
AAA 

and SP
BAA

 are 

uniformly 30% larger than those in the monthly panel. Duffee (1998) estimated a model very similar to 

(15), whose results are similar to ours, but not as large in magnitude after controlling for effects of the 

embedded option of callable bond issues
9
. Results from Collin-Dufresne et al. (2001) are also similar 

although the significance in the term structure coefficient is in inconclusive. As the R
2
 is too low, they 

conclude that it is worth cautious attention when estimating determinants of credit spreads with an 

equation such as (15). 

Results in Table II are different from previous studies in two areas, which also justify the use of 

Bai-Perron’s structural change procedure. First, parameter estimates of β1 and β2 drop substantially 

from the earlier to the later subperiods, uniformly for both SP
AAA

 and SP
BAA

, in both monthly and 

weekly panels. The monthly estimate forβ1 goes from -0.6284 in the first subperiod down to -0.2862 

in the last subperiod, while β2 goes from -0.7128 to -0.2910. If this phenomenon does not imply the 

credit spreads are becoming less sensitive to interest rate, then it might well be due to the reduction of 

callable bonds in the market as suggested by Duffee (1998)
10

. To the extent that our sample starts from 

1953, when callable bonds are the majority, to the year of 2003, when the percentage of callable bonds 

is greatly reduced by about 60%, the uniformly smaller effects from interest rate dynamics implies the 

influence of callability. This phenomenon and the volatility of Treasury bill yields exemplify strongly 

structural changes over time when discussion credit spreads. 

The second major difference our analysis in Table II brings about is that ISP
BAA

, the idiosyncratic 

credit spread of BAA, responds much less to interest rates, given that it is a special case of our 

specification in (15). Estimates forβ1 andβ2 are much smaller in magnitude in all periods, and are at 

the order of tenth to twentieth of those for the full credit spreads. Especially in the last subperiod, the 

                                                 
9
 His analysis covered the period between 1985 and 1995, corresponding roughly to the third subperiod of our sample. With 

around 120 monthly observations for yields on all bonds with “medium” maturities (7 to 15 years), the estimated β1 and β2 

for SP
AAA

 is respectively -0.021 and 0.001, both insignificant, while estimates for SP
BAA

 is respectively, and significantly, 

-0.249 and -0.147. 
10

 Güntay et al. (2003) reported that the percentage of callable bond among new issues between 1981 and 1988 was 76.5%, 

while it dropped substantially to only 29.6% between 1989 and 1997 (they also documented that callable bond percentage is 

higher for high rated bonds than for medium rate ones). 
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β1 andβ2 estimates for SP
BAA

 are -0.3666 and -0.3137 respectively, while those for ISP
BAA

 are merely 

-0.0804 and -0.0227. Estimates for ISP
BAA

 are insignificant especially in the first and the last subperiod, 

in both monthly and weekly samples. Especially, the insignificance is even stronger when its sampling 

distribution, with positive skewness and high kurtosis, tends to produce incorrect significant results 

under standard t-values. Note that the callability issue could affect results in the first period while the 

second period would suffer from the ultra high interest rate problem, as argued in Duffee (1999) and 

Jarrow et al. (2003). In both cases, effects unrelated to credit risk could contaminate the results. If the 

idiosyncratic credit spread is properly identified under our specification, then it should not respond to 

interest rate, a state variable related to common or systematic credit risks. Results in Table II are 

partially consistent with this argument, given the contaminating factors outlined above. The 

idiosyncratic credit spread is only significantly related to Treasury yields in the second subperiod, 

between 1972 and 1987, when short-term interest rate is so high that it often exceeded the long bond 

yields
11

. As for how the substantially compressed credit spreads under high and volatile interest rates 

are related to the strong magnitude of coefficient t-statistics in the second subperiod, further 

investigation with non-linear or frontier related estimations may have to be carried out to make 

clarifications. 

 

IV. Empirical decomposition of credit spreads 

 

The so-called reduced-form models, first introduced by Jarrow and Turnbull (1995) assume 

explicitly that default probability and recovery rate of risky debt follow certain exogenous processes. 

These models allow liquidity and systematic credit risk premia to be modeled directly while the 

probability of default can be derived from the term structure of credit spread. Duffie and Singleton 

(1997) included in the analyses the spread between Aaa and Baa grade commercial papers as an 

exogenous default risk proxy. Notably, they used weekly data in their analysis, to capture the dynamic 

influences from the components of the two-factor model stipulated there. Duffee (1999) argued in fact 

that the yield spreads are supposed to be positive even for the highest-quality firms, due to liquidity and 

tax reasons. Jarrow et al. (2003) have actually used yield on Aaa grade bond as a proxy for default-free 

yield in short-run analysis to incorporate non-default related part of yield spreads. Duffie and Singleton 

(1997) used our measure of idiosyncratic credit spread, or the default spread, to proxy default risk. The 

                                                 
11

 Duffee (1999) indicated specifically that this is the problem with of the type of reduced-form model introduced by Duffie 

and Singleton (1997).  
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use of Aaa credit spread is also consistent with the notion of non-negative credit spreads in high quality 

firms. The examination of idiosyncratic credit spreads is important especially in its implication on 

credit risk diversification with bond portfolios. 

As a variation of (6), Duffee (1999) set up a default model with three factors, which states the 

default intensity of the jth firm, jth , follows  

tjtjjtjjt sshah 2211

* ββ +++= , j=1,2,…N; t=1,2,…T (17) 

with *

jth  being an unpredictable square root process and ts1 and ts2  each corresponds to level of 

Treasury yield and the slope of Treasury yield curve. Credit spread of firm j is a monotone function of 

its default intensity, jth . (17) is also consistent with negative credit spreads when interest rates are 

very high. Jarrow et al. (2003) employed a similar model and showed that *

jth  should be related to 

default risk diversifiable within a large portfolio. *

jth  in (17) and jα  are supposed to be firm specific 

factors while ts1 and ts2  are common factors affecting credit spreads. In our terms, the systematic 

credit spread should be a function of the latter two, while the idiosyncratic credit spread a function of 

the former two. According to Duffee (1999), jα  for Aaa-rated near-zero-maturity zero-coupon bond 

translates into a minimal yield spread of 41.9 b.p. given that the default risk *

jth  is zero. For our 

sample with medium maturity, coupons and certain default risks, estimates from (16), the Baseline 

Model, should be larger. We follow Duffee’s specification, proxying jth  with yield spreads and fit the 

parameter estimates from Table II back to the original level variables, and find that the median of jα + 

*

jth  is 149 b.p. for SP
AAA

 and 250 b.p. for SP
BAA

, indicating possible over-risk-compensation
12

 for 

ts1 and ts2  by the Baseline Model. In another word, the idiosyncratic component has been estimated to 

include premium for systematic credit risks. 

As a naive scheme, we first use credit spread of Aaa index as the systematic credit spread, as 

SP
AAA

 combines features of a low-liquidity-effect default-free bonds and a defaultable swap. The 

idiosyncratic credit spread defined in (14) offers a testable framework which we can employ to make 

useful inferences. The following linear equation will be applied to investigate how credit spread 

decomposition should be carried out,  

                                                 
12

 Duffee (1999) showed that the difference between long- and short-end of the yield curve is less than 20 b.p. for Aaa-rated 

bonds and 70 b.p. for Baa-rated ones. Also the two measures are much higher than the sample means reported in Table I. 
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j j AAA

t t j tISP SP SPθ= − , j=1,2,…J; t=1,2,…T (18)  

where 

'

1 j

j

j

φ
θ

τ
=   

with '

1 jφ  and jτ  as defined in (14) for the BAA and AA indices in our data. jθ  characterizes the 

relative magnitude of the option and the tax effect. (3) and (15) predicts jθ  to be positive and with a 

magnitude of greater that 1. Empirically, jθ  will also be the standardized long run cointegration 

coefficient between j

tSP and AAA

tSP . An estimation of jθ  being greater than 1 is therefore consistent 

with both effects on credit spreads. The naive idiosyncratic spread defined in the previous section, 

where jθ  is simply 1, serves as a special case of (14). In the paragraphs that follow, we will focus first 

on the simplified, naive situation first to obtain certain fundamental results under the linear time series 

model. After that we will examine the situation of a more general version of jθ . As the approach 

undertaken differs from many previous studies, we will present observations of the need for the new 

methodology before proceeding with our analysis. 

 

 

Problems of using credit spread changes 

 

Changes in credit spreads have been used extensively, although level relationship is the focus of 

both the structural and reduced-form models. Given that using changes avoid partially problems arising 

from non-stationarity and autocorrelation in level of credit spreads, it is not without fundamental 

problems. The loss of information is the first problem. In the Baseline Model of equation (16), 

employing changes in credit spreads does not help examining that issue. On the other hand, if 

decomposing credit spreads helps revealing valuable information, then relying on observations of 

changes simply discards the information. The second problem of resorting to credit spread changes lies 

in their statistical properties. Aside from being leptokurtic as indicated by Pedrosa and Roll (1998), 

they are also found to persist over time in Duffee (1998). With regard to our sample, a separate analysis 

has also been carried out and we found the persistence to be significant as well
13

. Both Aaa and Baa 

                                                 
13

 The AR(1) autocorrelation coefficient, for the monthly sample, is 0.073 (significant at 10%) for AAA yield spread 
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yield spread changes in our monthly sample are also found to be persistent up to at least two periods in 

a Generalized Impulse Response analysis.  

 

Long-run analysis with cointegration  

 

Following Pedrosa and Roll (1998), we will reexamine in this section the long-run equilibrium 

relationship among the three variables in the Baseline Model. We adopt primarily the approach of 

AutoRegressive Distributed Lags (ARDL) in the context of Pesaran, Shin and Smith (2001), or PSS 

(2001), which stresses the crucial nature of level and long run relationships. As cointegration approach 

of long run equilibrium has been widely used following Johansen (1988, 1994), and Johansen and 

Juselius (1990), stationarity and the order of integration of data employed is crucial. In a separate 

analysis, we have found that levels of all the variables involved in (16) are nonstationary and integrated 

of order one, or I(1)
14

. Compared with other cointegration-based studies in this area, mostly based on 

the Johansen methodology, our Error Correction Model under ARDL, or ARDL-ECM, provides more 

unambiguous implications with fewer restrictions, including homogeneous order of integration on all 

variables. With the specific sequence of a two-stage test suggested by PSS (2001), we are able to 

identify specifically appropriate modes for each of the credit spread variables of interest. We obtain 

hence coherent statistical inferences, and economically sensible implications, from our analyses. 

As most of previous studies focus on the short run phenomenon and derive inference based on 

relationships on differences of variables, our results provide comparatively economically consistent and 

econometrically consistent implications. Findings of our examinations are in line with predictions of 

mainstream literature but offer more specific explanations of unresolved issues. Non-stationarity in 

credit spreads could arise from common or firm-specific factors. If key variables of interest rate 

dynamics, such as tMTB3  and tTERM , are the only common factors, then the nonstationarity of 

credit spreads should be accounted for by them. However, if the residuals are still not stationary, then 

either credit spreads are related to other systematic factors or idiosyncratic factors unrelated to common 

factors. The ARDL model is used to identify exogenous or the forcing variables within the system, as 

well as long- and short-run driving intensity of them. More importantly, in the context of an ARDL- 

ECM, only one error-correction term will be present. A significant error-correction term in the related 

ECM acts as a sufficient condition for long run equilibrium relation, or cointegration. On the other 

                                                                                                                                                                        
changes and 0.181 (significant at 1%) for BAA. But in the subperiods, autocorrelation correlation coefficient goes from an 

insignificant 0.018 in the first period to a strongly significant 0.249 in the third period. Autocorrelations are much more 

pronounced for the weekly sample, probably due to higher proportion of zeros from inactive trading in shorter intervals. 
14

 The I(1) property of variable TERM is only marginally supported. Unit root tests vary across subperiods too.  
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hand, a significant result from a Variable Addition Test (VAT) on the levels of variables serves as a 

necessary condition to the validity of the system in interest.  

In the model identification stage, we have used both the Johansen’s Vector AutoRegressive (VAR) 

cointegration and PSS’ ARDL-ECM approach. Results are similar but the latter yields more conclusive 

implications. Hence, our focus will be on the ARDL model, while providing estimation results from the 

other as a reference. In Table III, we report under the column Model I-Johansen both the number of 

cointegrating vectors and coefficients for them in ECM estimations. Five Vector AutoRegressive (VAR) 

models have been considered in a Baseline Model to identify the number of cointegrating vectors. The 

uniform result of the number 2 indicates that there are two linear relations among the three variables of 

interest which help achieving stationarity for the system. In the first column of ECM panel of Table III, 

two coefficients, one for each cointegrating vector, are obtained, for all three series of credit spreads in 

the context of Johansen (1988). For each of SP
AAA

, SP
BAA

 and ISP
BAA

, OLS estimation is performed on a 

Vector-ECM (VECM) with lags of credit spread and the other two interest rate variables, and the 

error-correction terms. The signs of the error correction terms are not all negative, indicating a 

problematic situation where opposing adjustments to a long-run equilibrium seem to take place
15

. Neal 

et al. (2000) encounters similar problems employing Johansen’s cointegration approach
16

. Almost all 

error-correction coefficients are significant, implying to some extent the validity of cointegrating 

vectors in the sense of Engle and Granger (1987). Although the cointegrating vectors have been 

estimated to be linearly independent to each other, the opposing influences from TB3Mt-1 and TERM t-1 

on, say AAA

tSP , do not seem to be consistent with results from the basic OLS procedures in Table II
17

. 

We have to therefore resort to an alternative which avoids canceling effects from multiple error 

correction terms. 

Under ARDL approach, the existence of a unique valid long run relationship among variables, 

and hence a sole error-correction term, is the basis for estimation and inference. Short run, or 

difference-based, relationship cannot be supported unless a unique and stable equilibrium relationship 

holds in significant statistical sense. Both Neal et al. (2000) and Joutz et al. (2001) have made 

extensive discussion over a positive long run relationship between credit spread and interest rates 

                                                 
15

 We have used the Johansen’s error correction version of cointegration estimation simply to show, as Rolph, et al. (2000) 

did, the problem of resorting to multivariate error correction cointegration analysis in a Johansen context as many studies 

did. The problematic result of opposing long run adjustments suggest the need of necessary remedies. 
16

 They had to realign the two cointegrating vectors to remove offsetting effects from the same variable within two linear 
combinations. But the results derived after such procedure could run into potential problems in the sense of PSS (2001).  
17

 A negative sign for TERM in both the coefficients with a cointegrating vector and the related error-correction term 

implies that an increase in TERM t-1 would increase AAA

t
SP as well. With positive autocorrelated TERM, it is incompatible for 

us to observe an increase in TERM t-1 alongside decreased AAA

t
SP , as the Baseline Model would generally predict. 
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versus a negative short run relationship within a Johansen framework. The long run relationship, which 

is represented by a cointegrating vector, however, needs not to be unique. We will demonstrate in this 

study evidences for each credit spread series a similarly unique and significantly positive long run 

relationship between credit spread and interest rates, as well as a significantly negative short run 

relationship. The validity of a unique (set of) long run coefficient(s) can be obtained by passing a VAT 

on the levels of all the variables involved, without having to resort to the result of a short-run oriented 

VECM estimation as with the Johansen model. In fact, according to arguments on the crucial nature of 

level relationship and the two-step testing procedures outlined in PSS (2001), the second-stage short 

run estimation is unnecessary and meaningless if the first-stage long run VAT is failed. In this regard, 

our results based on valid long run results offer firmer and logically more consistent evidences than 

previous literature in this field. It is further more our basis in pointing out problems arising from the 

traditional methods used in examining credit spread-interest rate relationship, and the importance of 

decomposing credit spread to separate the idiosyncratic credit risk from the systematic one.      

【Table III】 

In the long run, or cointegration, test under ARDL, we examine four alternative models, which 

can be found that only one model is fit for each of the three credit spread series. The model I in Table 

III is just the Baseline Model from (1). TB3M and TERM are the two potential independent or forcing 

variables considered, while credit spread is the dependent or outcome variable. The computed 

F-statistic for the VAT has a non-standard distribution according to PSS (2001). For the case of two 

forcing variables, the 5% critical value is 3.79 if both variables are I(0), and 4.85 if both are I(1). If the 

two variables are cointegrated or mixed with I(0) and I(1), then a critical value in between could reject 

the null hypothesis of no cointegration, or no level relationship. We learn from a separate unit root 

analysis that TB3M is I(1) and TERM is I(0) in some subperiods and that a separate analysis shows 

TB3M and TERM are cointegrated. However, PSS (2001) indicates that this does not imply we can 

apply critical values between the bounds as pretest problems could arise. VAT for Model I fails to 

reject the null hypothesis, which implies that TB3M and TERM cannot both be the forcing variables for 

SP
AAA

 or SP
BAA

, in both monthly and weekly data sets. This is direct evidence against findings in 

various literatures
18

, and even what has been reported in Table II. On the one hand, one cannot simply 

avoid the nonstationarity problem by using changes instead. Level relationship needs to be more exact 

to be applicable on the other hand. The above rejections of the Baseline Model for SP
AAA

 or SP
BAA

 

                                                 
18

 Joutz et al. (2001), applying on a similar data set, reported almost identical results using Johansen cointegration analysis 

with TB3M and TERM as forcing variables. Our analysis here is a direct counter-evidence against their results.  
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cannot also be achieved with the lack of causality in the results from Johansen’s cointegration approach. 

Neither do the results in Table III rely on the requirement of homogeneous order of integration, which 

our data violates to a certain degree.  

The most important result with Model I is that the Baseline Model is only applicable to ISP
BAA

. 

Our findings earlier in Table II seem to suggest the opposite. In fact, it will be shown later that we 

would need this result to make further inferences on the issue. Some of the error-correction coefficients 

for monthly data under Model I are reported for reference purpose. According to PSS (2001), ECM 

estimation should only be carried out after the first stage VAT is passed. The coefficients for SP
AAA

 and 

SP
AAA

 are then irrelevant regardless of their significance. Only estimates for ISP
BAA

 are valid, and they 

are significant according to a non-standard t-statistic table, whose critical values are much higher. Note 

also that the ARDL procedure allows for uneven lag orders, while the Johansen’s VECM does not. 

Model II and III in Table III attempts to find out if SP
AAA

 or SP
BAA

 provides information to each 

other. Under Model II, for SP
AAA

, we would add SP
BAA

 to the Baseline Model as the third forcing 

variable, and for SP
BAA

, we add in SP
AAA

. Under Model III, the variable TERM is omitted. Neal et al. 

(2000) pointed out with their Johansen VECM estimation that neither Aaa nor Baa yields contains 

useful information to each other
19

. Results under Model II do not support the inclusion of three forcing 

variables in a long run equilibrium relationship with credit spreads of the two bond grades, regardless 

of the significance of ECM coefficients. As the F-statistics fall below the lower bound for SP
AAA

, it 

suggests that even all the forcing variables, SP
AAA

, TB3M and TERM are stationary, they should not be 

included. Model III, however, supports that, along with TB3M, SP
AAA

 help providing information about 

SP
BAA

, but not vice versa. Both the VAT and ECM results are significant under non-standard critical 

values.    

So we have identified appropriate long-run models for ISP
BAA

 (Model I) and SP
BAA

 (Model I), as 

well as for SP
AAA

. In Model IV, with TB3M as the only forcing variable
20

, the VAT and ECM both 

indicate that it cointegrates with and stabilizes SP
AAA

. Similar argument may also apply to the case of 

ISP
BAA

 in Model I, which will be addressed in the next section and shown to be consistent with the 

reasoning here. It is apparent the ARDL two-stage procedure identifies precisely what model to be used 

for each variable of interest. Compared with the Johansen cointegration method, which does not make 

distinction in model selection, ARDL method offers more specific implication, both on model validity 

                                                 
19

 As there are two cointegrating vectors, hence error-correction terms, the definition of the coefficients, and its implication 

is somewhat different from ours in Table III. They rely on the standard tests on the coefficients for inferences on the 

dependent variable. In our analysis, the PSS second-stage non-standard t-test examines the fitted residual of the dependent 

rather than the forcing variable, which results from a potentially equilibrium system involving the forcing variable. 
20

 This finding is consistent with the unit root test. TERM turns out to be stationary under the more powerful criteria of 

DF-GLS and NP, which makes it improper to be included as one of the candidates to stabilize a non-stationary SP
AAA

. 
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and economic content which will be discussed later. More importantly, the analysis in this section 

establishes a foundation for decomposing credit spread. Evidences that follow will further indicate that 

the examination of idiosyncratic credit spread is crucial in determining how credit spreads are formed.      

 

ARDL-ECM, long and short run estimates 

【Table IVa, IVb】 

After the identification of models, we now proceed to the error-correction version of ARDL, 

which provides more detailed inferences on model validity, long run equilibrium relationship and short 

run dynamics. Tables Va and Vb report estimation results for monthly and weekly data respectively. 

Beside ECM estimations for the entire sampling period, we also report results for subperiods, whose 

division follows Table II. The inferences in subperiods exhibit strong distinction, confirming the 

structural change hypothesis of Table II
21

. 

Model IV for generates interesting results and implications. VAT suggests that TB3M does not 

cointegrate with SP
AAA

 in the sense of PSS at least in the second and the third subperiods. Within 

periods where cointegration seems to exist, the long run coefficients for TB3M are uniformly 

insignificant. This is a special case of non-existence of level or long run equilibrium relationship that is 

characterized as degenerate in PSS (2001) even both stage of tests are passed. Compared with Joutz et 

al (2001), where long run coefficients for both TB3M and TERM are strongly significant, our 

inferences demonstrate the superiority of PSS approach of ARDL. The identification of dependent 

versus independent variable through VAT and the ECM estimation that follows warrants more 

discriminating results. Our analysis previously and here under Model IV indicates that TB3M is the 

only valid variable to influence SP
AAA

, and it only does so in the short run! The short run coefficients 

for Model IV in all periods, wherever applicable, are nonetheless uniformly negative and significant, 

further confirming that the negative relation under the option hypothesis between credit spread and 

interest rate is merely a short run phenomenon. The magnitude of the TB3M coefficients is much 

smaller than what is reported in Table II. 

Model III for SP
BAA

 in Table IVa is literally valid for the whole period only. Analyses for the 

subperiods either failed VAT or generate insignificant ECM coefficients. In terms of implications, it is 

somewhat different. As SP
AAA

 is modeled as a forcing variable, the R-squared reported is much higher 

than in Model IV. The short run coefficient of SP
AAA

 is also significant and very close to 1, suggesting 

                                                 
21

 The lack of stability in estimation across these periods can also be examined with a CUSUMSQ structural stability test 

for Model I according to Brown, Durbin and Evans (1975). Structural breaks identified in Table II coincide with locations 

where the test fails at 
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its informational content
22

. Short run coefficient for TB3M is significant and negative, but is only about 

one-tenth of the magnitude of corresponding coefficient in Table II, a natural result from the fact that 

SP
AAA

 seems to have absorbed almost all influence from TB3M. Unlike Model IV, long run coefficients 

for TB3M are significantly positive. It verifies the tax hypothesis as modeled in our affine model and 

and suggested in (15), and is similar to the findings of Liu et al. (2004). 

    Findings for Model I in Table IV confirm some of the results in Table II, but add more insights to 

previous models. Although the whole-period short run coefficient estimates for TB3M and TERM are 

both significantly negative and of about the same magnitude as in Table II, we can only find weak 

support for it in the subperiods. VAT is passed for Model I in the first subperiod, but the second-stage 

ECM coefficient test fails for both monthly and weekly data. So on the monthly analysis, only the 

results in the third subperiod is worth noticing, which produces insignificant short run coefficients for 

both variables. Our results here are different from Joutz et al. (2001) in the long run coefficients of 

TERM, which are insignificant in all periods. That is, the slope of the Treasury yield curve has no effect 

on the idiosyncratic credit spread of BAA in the long run, but only some weak effect in the short run.      

The ARDL-ECM analysis in Table IVa and IVb brings about three implications. First, much of the 

information about SP
BAA

 is contained in SP
AAA

, but not vice versa. Second, in the long run, interest rate 

dynamics has no influence on the systematic credit spread, or SP
AAA

, but strong influence on SP
BAA

 

through its unsystematic component ISP
BAA

 indirectly
23

. Last but not the least, interest rate dynamics 

does affect credit spreads in the short run through the systematic component, but not the unsystematic 

component in most of the subperiods, a result consistent with Table II. The negative relationship 

between ISP
BAA

 and interest rate dynamics in the whole-period estimation may have been related to 

how a credit spread is decomposed into a systematic and an unsystematic component, which will be the 

focus of our discussion in the next section. We then examine again the measure of jα + *

jth  in (17) 

following Duffee’s specification and find the medians are now 84 b.p. for SP
AAA

 and 168 b.p. for SP
BAA

, 

an indication of better risk-compensation identified by the superior ARDL time series method. The 42 

b.p. above the minimum jα  credit spread of 41.9 b.p. reported by Duffee can be considered as made 

up of instantaneous default premium *

jth  plus any term-related liquidity and default premia.  

                                                 
22

 A separate and similar ECM analysis has been conducted on the full monthly data set by placing SP
AAA

 as the outcome 

variable, while setting BAA
SP

 and TB3M as the forcing variables. The short run coefficient for was merely 0.67 and 

R-squared is 0.70. The long run coefficient is 0.65, 41% smaller than the estimate derived in IVa. On weekly data, the short 

and long run coefficients are 0.69 and 0.68 respectively. The latter is only half of the long run coefficient estimate reported 

in IVb. However, the weekly model does not pass the VAT, so its ECM results can only serve as a reference. 
23

 As TB3M is included in both Model III and IV and it has no long run effect on SP
AAA

, the almost equivalent long run 

coefficients estimated for TB3M in Model IV and I clearly suggest this possibility. 
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Results thus far support the use of idiosyncratic credit spread as a proper measure of firm-level 

credit risk level. While it exhibits a long-run and positive comoving pattern with interest rate dynamics, 

it does not necessarily do so in the short-run. It will be seen in our subsequent discussion that the 

negative short-run relation, if any, is merely a consequence of inaccurate specification of the 

idiosyncratic risks. The systematic credit spread does however exhibit significant dependence on the 

interest rates. Our results are also comparable with Neal et al. (2000) and Joutz et al. (2001) in that 

systematic credit spreads are related to Treasury rates negatively in the short run and positively in the 

long run
24

.  

 

ARDL-ECM for the general decomposition model 

 

In the preceding paragraphs, systematic credit spread has been proxied by SP
AAA

, while the 

idiosyncratic credit spread is simply the residual spread for a particular bond grade of interest. To the 

extent that the actual division of credit spread could be the result of market behavior, taking difference 

is equivalent to imposing a long run cointegration restriction on the two variables. The restriction 

works as if a cointegrating vector of (1,-1) can be derived from a long run equilibrium relationship. In 

order to properly capture the idiosyncratic credit spread, one should, when decomposing credit spreads, 

take into account how credit spreads of different grades co-move in the long run. Otherwise, the long 

run dynamics of the idiosyncratic credit spreads will be distorted. This requires the application of (18), 

which suggests a cointegrating vector of (1, -θj) between ISP
BAA

 and SP
AAA

.  

【Table V】 

Table V compares alternative decomposition formulas to identify an appropriate definition of 

idiosyncratic credit spread. The first column is a natural, naive or default premium characterization. 

Results for ISP
BAA

 from Model I ARDL-ECM in Tables IVa and IVb are transcribed directly and placed 

on the top panel. On the bottom panel, we have added an analysis for ISP
AA

 in a Model I context as a 

cross section comparison. As data is only available within part of the original weekly sample from 1982 

to 1993, we have thus dropped the estimation for SP
AA

 in all previous analyses. The results here, which 

have also been divided into two subperiods
25

 according to a break point used for SP
AAA

 and SP
BAA

, are, 

                                                 
24

 An anonymous referee has asked us to clarify the stability of this phenomenon in our study. We therefore note here that it 

is supported by results under Model IV in Table IVb, where the signs of long- and short-run coefficients are the same in the 

1
st
 sub-period. In the 2

nd
 and 3

rd
 sub-periods, although results are not reported due to insignificant VAT statistics, the sings 

maintain the same pattern as in the 1
st
 sub-period. 

25
 A CUSUMSQ test has also been carried out for SP

AA
, and is rejected for stability for the whole period, as shown in 

Figure 2 and 3.  
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however, supportive of all the preceding findings
26

. Turning our focus on the idiosyncratic credit spread, 

we find Model I is accepted according VAT for all periods. The long run coefficients for ISP
AA

 are 

found to be positive for both TB3M and TERM, during the entire period of 12 years where data is 

available, but insignificant within both subperiods. The short run results are similar to those for ISP
BAA

, 

in that they are negative earlier and insignificant in the later period. Findings in this column reconfirm 

the generality of those for ISP
BAA

 presented in the previous sections. So we can proceed with our 

analysis with the same methodology on the two idiosyncratic credit spreads as follows.   

We conduct another set of ARDL estimations on SP
BAA

 and SP
AA

, to obtain long run coefficients 

against SP
AAA

, which are used to construct an alternative measure of idiosyncratic credit spread. With 

the support of VAT
27

, we adopt a long run coefficient of 1.35 for SP
BAA

 against SP
AAA

, and 1.2 for SP
AA

 

based on the weekly sample estimation results, which are used in place of 1 in the naive definition to 

construct our measure of idiosyncratic credit spreads. The same set of ARDL-ECM procedures are 

carried out on this new measure, yielding interesting results. As we are using the residual from a long 

run cointegration or equilibrium equation to fit against TB3M and TERM, which are systematic factors 

strongly influencing SP
AAA

 in the short run, it is reasonable to find this residual to be unrelated to 

driving factors of the independent variable to which the residual is supposed to be conditionally 

orthogonal. This is indeed the case in Table V. Under the cointegration definition of idiosyncratic credit 

spreads, neither ISP
BAA

 nor ISP
AA

 is significantly and negatively related to the interest rate dynamics. 

The estimate of β1 for ISP
BAA

 under Model I has become -0.0072, a 94% drop in magnitude compared 

with what is under the naive scheme. On the other hand, for ISP
AA

 the estimate drops by 83% in 

magnitude. In the second subperiod for ISP
AA

 estimation, the short run coefficients are even turning 

significantly positive, an indication of misspecification resulted from using a single cointegration 

coefficient for structurally changing periods. The R-squared’s have become fractional of those under 

the naive definition, suggesting the lack of explanatory power of the two forcing variables. Long run 

coefficients are, however, not much different. The coefficients of TB3M are of the same order of 

magnitude in the case of ISP
BAA

, and also significantly positive for ISP
AA

. So the cointegration scheme 

seems to retain long run characteristic of idiosyncratic credit spread, while removing contaminated 

short run effects due to inappropriate specifications. In another word, spirits incorporated in the 

cointegration method are compatible with the risk diversification discussed earlier in the specification 
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 The model identification outcome for SP
AA

 is similar to that for SP
AAA

. Models I, II and III are all rejected with 

F-statistics at 3.54, 2.53 and 4.05 respectively. Model IV in VAT yields a significant 5.96 to be accepted. The ECM 

estimation results are similar to those for SP
AAA

 as well, with an ECM coefficient significantly at 3.63, above the PSS 

non-standard critical value at 3.22. 
27

 The VAT F-statistics are 6.72 and 8.01 respective on monthly and weekly data out of an ARDL model on SP
BAA

 against 

the sole forcing variable SP
AAA

, and the F-statistic is 6.91 from a similar model for SP
AA

. 
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of the affine model. 

The decomposition under the cointegration scheme is proposed as an alternative to the naive one. 

The application of the cointegration regression analysis needs to be examined for its validity in the 

decomposition process. As a robustness check against the above results, we have added an arbitrary 

approach to contrast them. The arbitrary scheme in Table V adopts arbitrarily a value of 1.5 as the long 

run coefficient for SP
AAA

 in constructing idiosyncratic credit spreads. Estimations in subperiods of SP
AA

 

fail to pass VAT, indicating reduced relevancy among variables. All the short run coefficients become 

significantly positive, an implication of under-risk-compensation in constructing default premium. 

Long run coefficients are almost still the same. This exercise further suggests that short run coefficients 

are strongly sensitive to how the idiosyncratic credit spread is constructed. Properly identified 

unsystematic credit risk should not exhibit significant response to common economic variables in the 

short run. Correctly specified decomposition leaves only unsystematic risks in the idiosyncratic spreads. 

This is consistent with the predictions of our affine model in Section II. The magnitude of jθ , the long 

run coefficient, confirms that being greater than 1 reflects the tax effects in (3). Furthermore, it also 

says that 1φ , the measure of tax effect in the numerator of jθ , is limited by the magnitude of τ , a 

negative option effect, such that jθ  is also limited to certain extent. That is exactly the situation of our 

arbitrary case in Table V. If the tax burden for lower grade bond is over-compensated in the long run 

beyond the risks characterized by τ  in the short run, then common risks would not have been 

properly hedged in as in (14). As a result, idiosyncratic spreads could be positively influenced by, 

instead of being independent of, the interest rate. 

While long run relationship revealed in the system tells what economic behavior is in effect and 

how it governs the capital markets, models relying only on short run methodology and evidences could 

really be biased by the absence of long run aspects. Note again that the median ISP
BAA

 under the 

cointegration scheme is 60 b.p., which fits well within the equilibrium equation in the context of 

Duffee’s definition
28

, while the naive scheme produces a median of 81 b.p. for the monthly sample 

would turn out to have incorporated too much systematic effect. The identification of the idiosyncratic 

credit spread thus has support not only in the analytic sense, but also relates to actual market-quoted 

measures. The decomposition of credit spread is uniquely defined and also consistent across different 

credit ratings. In the next section, we will show that the decomposition is furthermore supported by 
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 Appling the cointegration equation and multiply 84 b.p., the 
jα + *

jth  measure for SP
AAA

 given in the previous section, 

by the cointegration coefficient 1.35 and then add 60 b.p. to it gives 173 b.p., very close to 168 b.p., the 
jα + *

jth  measure 

for SP
BAA

 also given in the last section. 



 

 26 

observed corporate defaults in an even more direct way. 
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V. Informational content of idiosyncratic credit spread 

 

So far we have established to a certain degree that, in the short run, idiosyncratic credit spread is 

unrelated to common factors. While systematic credit spread reflects premium to compensate for 

general risk of default, idiosyncratic credit spread is supposed to price unsystematic risk of default 

related to specific firm or sector. In this section, we would like to explore the above premise. We 

examine how the idiosyncratic credit spread of certain credit rating in our data responds to default risk 

particular to that grade. In addition, credit spread decomposition methods will also be compared to see 

if results are consistent with our findings from the last section. 

In order to construct a realistic measure of conditional default intensity, we adopt Moody’s 

dynamic cohort default rates instead of the widely used unconditional one-year default rate
29

 at any 

given year. Cohort in a given year of a given senior rating is made up of all issuers in that year, which 

are followed through time to keep track of their default rates until leaving the rated universe. The 

existence of these dynamic cohorts allows multi-year cumulative default risk to be estimated. 

Comparisons made among default rates over different periods are thus sensitive not only to measure of 

default intensity that is absolute in, but also relative to, time, and hence conditional. To match the 

average age of bonds in our data, we limit our cohort range to between 13 and 18 years from issuance. 

For each given year between 1983 and 1999, there is then a panel of six groups with comparable 

default rate data. Although the average age of the issues in the Aaa or Baa indices could be lower than 

15 years, we use the change in cumulative cohort default rates which are potentially realized two to 

three years after the bond yields are quoted to incorporate potential informational effect reflected in the 

credit spreads observed. The cumulative default rates of Baa-rated issues generally reached their peaks 

ranging from 10.5% to 11.25% between 1993 and 1997, whereas higher credit spreads are observed 

between 1986 and 1993 at around 200 to 300 b.p., compared to a sample mean of 169. As the number 

of default events are compiled over time but reported once at year end, we adopt a three-year moving 

average of cumulative cohort default rate to account for cross-year effects and possibly extended lead 

time before a default event
30

 is declared or realized.  

【Table VI】 

Table VI reports estimation results on the informational content of the idiosyncratic credit spreads 

                                                 
29

 Both the unconditional and the cohort rate are 12-month trailing default rate utilizing a universe 12 months earlier as the 

base in calculation. 
30

 Moody’s default definition covers three types of default events. Missed/delayed interest and/or principal are the first one, 

while Chapter 11 or 7 filing and ‘distressed exchange’ (issuer’s offer of less favorable terms or other default-preventing 

exchange with bondholders) are the other two. 
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ISP
AA

 and ISP
BAA

. Besides comparing results for the original, full credit spread and idiosyncratic credit 

spread according to a naive decomposition scheme, we also include estimations for four alternative 

schemes. Following arguments in the last section, information on default rate for a certain rating should 

be contained only in the idiosyncratic credit spread of a bond of the given rating, rather than in the 

systematic credit spread, which reveals only information on common factors. This is indeed the case in 

Table VI, where default rates are shown not to be significantly related to full credit spreads of SP
AA

 and 

SP
BAA

. After removing the systematic component, under the naive way or other alternatives, default rate 

becomes predictable and is significant and positively related to the idiosyncratic credit spread. We have 

also shown in this table that the above findings do not happen incidentally. If we decompose the credit 

spread arbitrarily, we would not obtain similar results. For SP
AA

, in the case of ISP-I and ISP-II, 

idiosyncratic credit spread cannot significantly predict default rate as too little systematic component is 

removed. For SP
BAA

, over- and under-risk-compensation prevent the idiosyncratic credit spread to 

properly reveal information about default rate in the case of ISP-I and ISP-V. To the extent that this is 

evidence that firm-level default risk is priced in the idiosyncratic, rather than the systematic, credit 

spreads, the decomposition of credit spreads is shown to be crucial in credit disk identification as well 

as corporate bond pricing practice. 
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VI. Related issues and discussions  

 

Alternative credit spread measures 

We have so far utilized yield spreads of Aaa and Baa indices against the 10-year Treasury bonds. 

As bonds included in the two groups have maturities longer than 10 years, we have to find out how our 

results are dependent on the choice of benchmark risk free rate. The 20-year Treasury rate is a 

reasonable candidate for alternative credit spread computation. Since it ceased to exist as of 1987, we 

are only able to compare results within a shorter period ending in December 1986. Substituting the 

20-year based credit spreads produces comparable but weaker results than those in Table IVa. For the 

entire period through December 1986, VAT’s under ARDL are significant and accepted for all three 

models, while ECM estimates are also similar, and long and short run coefficients are smaller or of 

about the same order of magnitude
31

. The results for subperiod 1 are also weaker in that Model IV for 

SP
AAA

 fails to pass VAT. For the other two models, neither of the ECM coefficients is significant, like in 

Table IVa. Federal Reserve Board has, however, constructed 20-year Treasury yields out of bonds with 

the same remaining life since October 1993, which we will use only as a reference. In this period, none 

of the models passes VAT after substituting in the 20-year based credit spreads as dependent variables, 

again comparable but weaker than what Table IVa reports. These findings indicate that the average 

maturity of bonds included in the Aaa and Baa indices is indeed between 10 and 20 years, and either 

credit spread measure could be as good as the other one. To the extent that we might have overstated 

the actual credit spreads as we subtract a smaller yield base previously, we have not found serious 

biases with our examination here. Using the 10-year yield base offers better data continuity and testing 

power as well. This further supports our analysis in section VI that what matters lies more in how we 

separate out the idiosyncratic credit spreads, and less on which one of the long term Treasury yields, 

which move closely together, we adopt to construct credit spreads.  

 

Other Control Variables 

Market return, commonly proxied by the return of S&P500 index, has been modeled as one of the 

control variables for credit spreads in many literatures, which represents general economy condition 

and is predicted to influence credit spreads negatively. We would like to examine the inclusion of this 
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 The F-statistics for Model IV, III and I are 5.96, 6.39 and 10.45 respectively, whereas the ECM coefficients are -3.76, 

-5.03 and -5.66. Short run coefficient for TB3M under Model IV is -0.0266, compared at -0.1136 with Table Va. Under 

Model III, it is -0.0628, compared at -0.0585. The short run coefficients for TB3M and TERM under Model I are -0.1813 

and -0.1778 respectively, very close to their counterparts of -0,1282 and -0.1044.  
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variable, hereafter termed SP500, under our ARDL framework and compare the validity of it and how 

our results compare with others’. VAT suggests that the inclusion of SP500 in all three models of I, III 

and IV is valid. The long run coefficients all fall under the degenerate case although all ECM 

coefficients are significant. Neither are any of the short run coefficients significant. The addition of 

SP500 does not appear to affect the significance, sign and magnitude of TB3M and TERM as well. So 

there is no valid reason to include this variable in our models. The sign of the long run coefficients are 

all negative, while none of the short run coefficients are negative, a contrast to findings from other 

works too. 

Next we examine an alternative to TERM, measure of slope of the yield curve, using instead the 

difference between 20-year and 3-month Treasury yields, which we would term TERM20. Similar to 

TERM, this variable lacks good support from our models. Together with TB3M, it is not rejected to be 

included in Model I with a significant F-statistic of 9.15, and the ECM coefficient is also estimated at a 

significant value of -5.02. The long run coefficient is however still insignificant, like TERM. There is 

no evidence supporting a significant role of TERM20 in the subperiods as well. The ECM coefficient is 

not significant in the first subperiod, while VAT if failed for the last subperiod. As TERM is present 

only in model I, our comparison shows that few differences are produced with this replacement. We 

then construct yet another yield curve slope measure, TERM10, which is the difference between 

20-year and 10-year Treasury yields. Substituting in this alternative generate similar estimation results. 

But the short run coefficient becomes insignificant, compared with significantly negative ones with 

TERM and TERM20
32

. So while all three measures fail to exhibit long run influences, the variables 

TERM and TERM20 seem to capture better information contained in tem structure about the 

idiosyncratic credit spreads. As both are stationary and almost perfectly correlated with each other, our 

adoption of TERM is a better choice due to data availability.         

 

Causality among yield spreads 

For SP
AAA

 to serve as a proxy for the systematic credit spread which drives the dynamics of credit 

spreads of other rating, it is important to characterize certain causal relationships among these credit 

spreads. Granger Causality is examined here according to the specification of Granger (1969). We take 

fitted residuals from the Baseline Model in (16) to filter out effects from interest rate dynamics and 

carry out the Granger Causality tests, yielding results consistent with findings in section VI. The 

causality test results from the weekly data strongly indicates that, after filtering out interest rate 
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 For the entire period under Model I, ARDL-ECM produces a short run coefficient value of -0.2307 (p=0.000) for 

TERM20, but a value of 0.0058 (p=0.792) for TERM15. Note that also the 
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influences, change of SP
BAA

, as well as SP
AA

, is caused by that of SP
AAA

 in Granger’s sense
33

. 

 

Persistence of yield spreads 

Compared with monthly data, the more significant autoregressive relation in the weekly sample is 

due to higher estimate value rather that a reduction of standard error. Duffee (1998) had argued that the 

observed persistence of yield spreads were the result of slow adjustment of bond prices. Lack of 

liquidity or lower volatility of weekly yield spread, compared to its monthly counterpart, cannot seem 

to be ascribed as a key factor to this result. As seen in Table II, the estimated β1 and β2 are actually 

smaller in the monthly estimation. The same argument applies to lower-rated Baa yield spreads as 

opposed to AAA credit spreads. Saunders et al. (2002) reported that evidences from the OTC market 

that higher yield bonds have lower liquidity. Lack of trading should have generated stronger 

autoregressive effect. But it is stronger for Aa bonds than Baa bonds in the weekly data.  

There issues left which we have not discussed thoroughly such as data aggregation, 

macroeconomic variable influences, alternative methods of cointegration, inferences from simulated 

systematic and unsystematic default parameters and other related issues will be addressed in a later 

version of this study. 
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 With fitted residuals from weekly changes of SP
BAA

 against SP
AAA

, we obtain a significant F-statistic of 9.66 (p=0.0000) 

supporting the hypothesis of SP
BAA

 being Granger caused by SP
AAA

, while the opposing hypothesis is rejected (F=0.61; 

p=0.6099). For SP
AA

, weekly changes between January 15, 1982 and December 31, 1993 yield an F value of 6.55 (p=0.0002) 

for SP
AAA

 to Granger cause SP
AA

, but fail to support the reverse causality (F=1.56; p=0.1969). 
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VII. Conclusion 

 

This study provides an empirical framework to investigate the long run diversification of credit 

risks in bond portfolios. Specifically, our decomposition of credit spread produces direct measures of 

the two components, which makes diversification practice simpler. The idiosyncratic credit spread 

produced with our optimal long run decomposition scheme is uniquely compatible with models and 

measures produced separately by Duffee (1999). We have also identified, after decomposition, that the 

informational content on actual bond defaults is provided by the idiosyncratic component only, rather 

than the full credit spreads. The modeling of high and low grade corporate bonds in this work 

complements that of Liu et al. (2004) in dealing with tax, liquidity and default spreads in fixed income 

securities. The results from long and short run analysis are consistent with both the option and tax 

effects. Our study also helps clarifying unresolved issues in the literature such as structural changes of 

the model and yield spread persistence, among others. Our empirical analysis considers both long- and 

short-run phenomena as well as causal relations, which greatly improves estimation results from 

preceding studies. The general long-run credit spread decomposition scheme is statistically superior 

and economically meaningful, and is on the other hand compatible with corporate bond pricing practice 

and credit risk diversification.  

There are several contributions brought about by this study. First, the estimation of idiosyncratic 

credit spread, after filtering out the systematic credit spread, helps the pricing of corporate bond by 

properly measuring credit risks. Second, our analysis takes into account the long run, as well as the 

short run, relations between credit spreads and interest rates, while most of the literatures focus on short 

run phenomenon only. Our methodology specifically enables us to distinguish the short-run structural 

or option approach effect from the long-run tax differential effect, besides providing better estimates 

empirically for a further examination of models presented before. Third, we have provided an optimal 

credit spread decomposition scheme by incorporating the long run behavior of credit spreads, which is 

consistent with the results of recent literatures. The decomposition is optimal in its risk allocation 

implications, and is consistent risk diversification in the pricing of bonds within fixed income 

portfolios. Finally, our empirical models resolve pending issues posed by previous literatures and 

provide evidences that connect observed corporate defaults to the idiosyncratic or specific credit 

spreads of a given credit rating. 

We start with an affine model of term structure to specify the valuation of default-free and 

defaultable bonds, and then characterize the systematic credit spread as functions of interest rate term 
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structure, and idiosyncratic credit spread as containing both liquidity and default spreads. To facilitate 

the estimation of parameters relevant to credit spread decomposition, we begin with a Baseline Model 

reexamining the relation between yield spread and interest rate, but the structural change yields 

significantly different subperiod results. Due to nonstationarity in time series of data, we adopt 

cointegration analysis for estimation, which is different from the OLS approach in most of the literature. 

Our ARDL approach along the line of PSS (2001) stresses model validity, level and long-run 

relationships, as opposed to the usual short-run approach using differences of variables. The two-stage 

tests introduced by PSS (2001) allow us to identify an appropriate model, which has not been 

considered previously. The ARDL approach also provides more straightforward causality than other 

cointegration methods. As in other studies, we have also found the credit spreads to be negatively 

related to interest rates in the short run and positively so in the long run. To decompose credit spreads 

better, we have suggested a few schemes to and found an optimal one. It is shown that what matters 

more is how to properly separate out the idiosyncratic credit spread, rather than how to construct credit 

spreads against risk-free benchmarks. To provide as independent evidence to the informational role of 

idiosyncratic credit spread on default risk, we carry out a panel study of Moody’s cohorts over a 

17-year period and find that idiosyncratic credit spread significantly predicts future default rates, while 

the full credit spread does not. Further more, properly separated credit spread predicts better as opposed 

to arbitrarily-separated or non-separated ones, an indication that an optimal decomposition does make a 

difference.  

For the robustness of our analyses, we have obtained similar core results using alternative measure 

of yield spread, additional control or independent variables and subperiod analysis according an 

endogenous structural change modeling. We have also found significant causal effect from SP
AAA

 to 

SP
BAA

, which supports using the former as a proxy for the systematic component of credit spread. An 

impulse response model with orthogonal innovations further supports our argument that there is no 

short run relationship between idiosyncratic credit spread and common factors. As this study focuses on 

yield spreads on the aggregate level, an immediate extension should be looking at the yield 

decomposition on the individual bond level. There the issues of market- or firm-specific factors can be 

examined in details. The separation of credit spread on the firm level would obviously be firm-specific 

as well, which could potentially offer insight to individual bond pricing practices. Finally, the dynamic 

behavior of yield spread is a crucial issue to be resolved, especially on how the persistence of credit 

spread sustains and what causes the dynamic patter to change.    
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Table I 

Summary Statistics of Yield Spreads 

Data in this table is constructed with the Moody’s seasoned Aaa and Baa corporate bond indices and the 

10-year Treasury bond yield. Monthly and weekly observation of treasury yields are available from 

periods earlier than the corporate bond indices, but are trimmed to fit the time frame of the latter. SP
AAA

 

and SP
BAA

 are respectively the difference between the Aaa index and the 10-year Treasury bond yield, 

and that between the Baa index and the 10-year treasury yield. ISP
BAA

, the difference between SP
BAA

 and 

SP
AAA

 is taken as a simple measure of yield spread contained in Baa index which is not related to the Aaa 

index, or a naive measure of idiosyncratic credit spread. The division of subperiods is according to 

results from the Bai-Perron procedure reported in Table II. 

 

Data Mean Std. Dev.  Skewness Kurtosis Jarque-Bera 

 

Panel (a): Monthly Data 

Whole Period (1953:05~2003:09; 605 observations) 

SP
AAA

 0.7424 0.5025 0.8038 3.3763 68.7207 (0.0000) 
SP

BAA
 1.6929 0.7199 0.4505 2.6012 24.4718 (0.0000) 

ISP
BAA

 0.9504 0.4230 1.3806 5.0169 294.7316 (0.0000) 

1st Period (1953:05~1972:04; 228 observations) 

SP
AAA

 0.3999 0.3020 1.5697 5.8254 168.4041 (0.0000) 
SP

BAA
 1.1043 0.4869 1.4273 4.9645 114.1452 (0.0000) 

ISP
BAA

 0.7043 0.2271 0.8487 3.7960 33.3872 (0.0000) 

2nd Period (1972:05~1982:07; 123 observations) 

SP
AAA

 0.5954 0.3223 0.1785 2.7081 0.0902 (0.5798) 
SP

BAA
 1.8704 0.6173 0.4488 2.1725 7.6379 (0.0220) 

ISP
BAA

 1.2750 0.5058 0.5538 1.9383 12.0640 (0.0024) 

3rd Period (1982:08~2003:09; 254 observations) 

SP
AAA

 1.1211 0.4589 0.5378 3.4725 14.6057 (0.0007) 
SP

BAA
  2.1353 0.5629 0.8659 3.0761 31.8016 (0.0000) 

ISP
BAA

 1.0142 0.3842 1.5594 6.7971 255.5334 (0.0000) 
 

Panel (b): Weekly Data 

Whole Period (1962:01:12~2003:10:10; 2,179 observations) 

SP
AAA

 0.8326 0.5060 0.6205 3.2284 144.5698 (0.0000) 

SP
BAA

 1.8334 0.6965 0.2762 2.7501 33.3652 (0.0000) 

ISP
BAA

 1.0008 0.4324 1.2446 4.7654 845.5002(0.0000) 

1st Period (1962:01:12~1972:08:04; 552 observations) 

SP
AAA

 0.4914 0.3752 1.1972 3.6907 142.8301 (0.0000) 

SP
BAA

 1.2177 0.6058 0.9695 3.1201 86.8135 (0.0000) 

ISP
BAA

 0.7262 0.2676 0.6388 2.9786 37.5555 (0.0000) 

2nd Period (1972:08:04~1987:08:21; 785 observations) 

SP
AAA

 0.6743 0.3799 0.1826 2.8240 5.3742 (0.0680) 

SP
BAA

 2.0150 0.6455 0.4576 2.6890 30.5567 (0.0000) 

ISP
BAA

 1.3407 0.4737 0.7173 3.0386 67.3687 (0.0000) 

3rd Period (1987:08:28~2003:10:10; 842 observations) 

SP
AAA

 1.2040 0.4455 0.8291 3.0897 96.7479 (0.0000) 

SP
BAA

 2.0679 0.5422 0.9271 3.1943 121.9332 (0.0000) 

ISP
BAA

 0.8639 0.2282 0.6473 2.4475 69.5049 (0.0000) 



 

 

a  Break points and subperiod estimates for ISP
BAA

 only are generated from the Bai-Perron procedure, while 
all estimates for SP

AAA
 and SP

BAA
, and the whole period estimates for ISP

BAA
, are from OLS procedures. 

*
  Significant at 5% level. 

**
  Significant at 1% level. 

Table II 

Structural-Change Estimation Results of the Baseline Model (Bai-Perron procedure) 

A Baseline Model defined as, ittitiiit
eTERMMTBSP +∆+∆+=∆ 210 3 βββ , where 

itSP∆  stands for the 

changes of yield spread measure of AAA

tSP , BAA

tSP  or BAA

t
ISP

 
, the difference between the first two, and 

tMTB3∆  and 
tTERM∆ are changes of three-month treasury yield and the yield difference between the 

10-year and three-month treasuries respectively. This model is used to estimate endogenously possible 

structural changes over the sample period. The estimation procedure is according to the specification of 

Bai and Perron (2003). The number and locations of break points are obtained according to results of 

sequential procedure in particular. The estimation has also allowed for heterogeneity and autocorrelation 

in residuals, as well as AR(1) prewhitening prior to estimating the long run covariance matrix. 

 ββββ0 ββββ1 ββββ2 

Monthly, Whole Period (1953:05~2003:09; 605 observations) a 

SPAAA  0.0062 (0.0088) -0.3049** (0.0242) -0.3376** (0.0261) 
SPBAA  0.0439 (0.0121) -0.4302** (0.0278) -0.4459** (0.0341) 
ISPBAA 0.0007 (0.0070) -0.1256** (0.0266) -0.1120** (0.0301) 

Monthly, First Subperiod (1953:05~1972:04; 228 observations) 

SPAAA 0.0129* (0.0058) -0.6284** (0.0510) -0.7128** (0.0567) 
SPBAA 0.0145* (0.0070) -0.7014** (0.0562) -0.8268** (0.0682) 
ISPBAA 0.0034 (0.0042) -0.0674 (0.0353) -0.1094** (0.0418) 

Monthly, Second Subperiod (1972:05~1982:07; 123 observations) 

SPAAA  0.0127 (0.0167) -0.2582** (0.0363) -0.2855** (0.0478) 
SPBAA 0.0393 (0.0239) -0.5183** (0.0484) -0.5801** (0.0680) 
ISPBAA 0.0266 (0.0155) -0.2602** (0.0380) -0.2947** (0.0498) 

Monthly, Third Subperiod (1982:08~2003:09; 254 observations) 

SPAAA  0.0078 (0.0072) -0.2862** (0.0502) -0.2910** (0.0319) 
SPBAA -0.0154 (0.0090) -0.3666** (0.03002) -0.3137** (0.0252) 
ISPBAA 0.0076 (0.0064) -0.0804 (0.0414) -0.0227 (0.0258) 
 

Weekly, Whole Period (1962:01:19~2003:10:10; 2,179 observations) 

SPAAA  0.0018 (0.0021) -0.4196** (0.0181) -0.4367** (0.0210) 
SPBAA  0.0031 (0.0032 -0.5746** (0.0160) -0.5612** (0.0221) 
ISPBAA 0.0008 (0.0022) -0.0680** (0.0188) -0.0630** (0.0173) 

Weekly, First Subperiod (1962:01:19~1972:08:04; 552 observations) 

SPAAA  0.0046 (0.0030) -0.8641** (0.0404) -0.8951** (0.0405) 
SPBAA  0.0053* (0.0026) -0.8497** (0.0375) -0.9164** (0.0378) 
ISPBAA 0.0007 (0.0015) 0.0144 (0.0199) -0.0213 (0.0220) 

Weekly, Second Subperiod (1972:08:11~1987:08:21; 785 observations) 

SPAAA  0.0011 (0.0027) -0.3778** (0.0170) -0.4035** (0.0251) 
SPBAA  0.0019 (0.0037) -0.6089** (0.0250) -0.6180** (0.0340) 
ISPBAA 0.0008 (0.0029) -0.2312** (0.0212) -0.2145** (0.0236) 

Weekly, Third Subperiod (1987:08:28~2003:10:10; 842 observations) 

SPAAA  -0.0020 (0.0018) -0.4611** (0.0404) -0.3454** (0.0255) 
SPBAA  -0.0021 (0.0020) -0.4716** (0.0431) -0.3468** (0.0198) 
ISPBAA 0.0001 (0.0014) -0.0106 (0.0152) -0.0014 (0.0188) 



 

 

a  Cointegration rank test is performed on the Baseline Model (16) with the number of cointegrating vectors reported. For the error correction analysis, the model with intercept and no 
trend is used. For the monthly analysis, a two-lag VAR model is selected according to SBC, and a one-lag model is used for weekly data. 

b  Consider an ARDL(l,m,n) model for SPAAA, 1 1 2 1 3 1
1 0 0

3 3
AAA

t

l m n
AAA AAA

i t i j t j k t k t t t t
i j k

SP a b SP c TB M d TERM SP TB M TERMφ φ φ ε− − − − − −
= = =

∆ = + ∆ + ∆ + ∆ + + + +∑ ∑ ∑ . An OLS 

estimation is conducted without the level terms and the Variable Addition Test is to compute the F-statistic for the restriction of Φ1=Φ2=Φ3=0 after adding the level terms and 

compare it against a table of non-standard critical values provided in p. 300 of PSS (2001). We’ve used case III in the table with unrestricted intercept and no trend. 
c  ECM(-1) stands for the error-correction term from the previous period, whose coefficients are estimated in an even-order Vector Error Correction model for the Johansen 

cointegration analysis. Under ARDL-ECM, however, the lag orders of independent variables, or the ‘forcing variable’ in PSS’ term, can differ from one another. 
d  For Model I and III, a Variable Addition test is performed in the fashion of PSS (2001). The results in the Error-Correction section are for reference only if the F-test is failed. 
*  Significant at 5% level under a t-test. 
* *  Significant at 1% level under a t-test. 
+  Significant at 5% level under an F-test according to the asymptotic critical value bounds outlined in PSS (2001). For Model IV, which has one independent variable, the critical 

value is -5.73, regardless of the dependent variable’s being I(0) or I(1). For Model I and III, which has two dependent variables, the critical value is -4.85, while it is -4.35 for Model 
II with three independent variables.  

++ Significant at 5% level under a t-test according to the asymptotic critical value bounds outlined in PSS (2001). For Model IV, the critical value is -3.22. For Model I and III, it is 
-3.53, and -3.78 for Model II.

Table III 

Cointegration Test Comparisons, Johansen Maximum Likelihood Rank Test VS PSS ARDL Variable Addition Test and ARDL-ECM t-test 

We compare cointegration analysis results from the two methods. We focus on comparisons among various models to identify a valid one for the three series of credit spreads, according 
to PSS (2001). Specifically, we conduct a two-stage testing procedure where an F-test is carried out first and followed by a t-test. Through the screening process outlined in this table, 
we identify one appropriate model for each of SPAAA, SPBAA and ISPBAA, which will be used for subsequent estimation and testing. Model I is the Baseline Model in (16), whereas Model 
II for SPAAA is Model I with SPBAA added as an additional independent variable. Similarly, Model II for SPBAA has SPAAA as the added explanatory variable to its Model I version. Model 
III is the same as Model II except that the term TERM is excluded. Model IV applies to SPAAA only, with TB3M as the sole explanatory variable beside lag terms of SPAAA. 

 Model I-Johansen
a
 Model I-ARDL

d
 Model II-ARDL Model III-ARDL Model IV-ARDL  

Cointegration Test – Johansen Maximum Likelihood Rank Test and ARDL Variable Addition Test
b
, Monthly - Whole Period 

SPAAA 2 4.0618 - ARDL(1,4,4) 2.7133 - ARDL(1,2,4,4) 4.2192 - ARDL(1,1,4) 6.8953 - ARDL(1,4)+  
BAASP 2 3.9315 - ARDL(1,4,4) 4.0618 - ARDL(1,2,4,4) 7.8490 - ARDL(1,1,4)+   
BAAISP 2 10.6400 - ARDL(1,4,4)+     

Error-Correction Model – ECM(-1)
c
, Monthly - Whole Period 

SPAAA -0.0281*, 0.0012 -0.0200 (0.0084) -0.0438 (0.0137) -0.0554 (0.0133)++ -0.0362** (0.0102)++  
BAASP -0.0064**, 0.0054** -0.0179 (0.0074) -0.0578 (0.0118)++ -0.0689 (0.0115)++   
BAAISP -0.0514**, 0.0063** -0.0555 (0.0129)++  

    

Cointegration Test – Johansen Maximum Likelihood Rank Test and ARDL Variable Addition Test, Weekly - Whole Period 

SPAAA 2 3.7114 - ARDL(1,4,4) 2.7720 - ARDL(1,2,4,4) 4.7305 - ARDL(1,1,4) 6.2832 - ARDL(1,4)+  
SPBAA 2 4.2255 - ARDL(1,4,4) 4.5827 - ARDL(1,2,4,4)+ 8.0105 - ARDL(1,1,4)+   
ISPBAA 2 13.4228 - ARDL(1,4,4)+     

Error-Correction Model – ECM(-1), Weekly - Whole Period 

SPAAA -0.0100*, -0.0005* -0.0091 (0.0024)++ -0.0263 (0.0046)++ -0.0260 (0.0042)++ -0.0139 (0.0034)++  
SPBAA -0.0082**, 0.0010** -0.0064 (0.0018)++ -0.0222 (0.0033)++ -0.0215 (0.0032)++   

ISPBAA -0.0232**, 0.0033** -0.0119 (0.0029)++     



 

 

Table IVa 

a  ‘LR’ stands for long-run coefficient estimates from the ARDL procedures, which is of the exact opposite sign in a cointegrating 
vector. 

b  ‘SR’ stands for short-run coefficient estimates from the ARDL procedures 
c  ECM(-1) stands for the last period error correction term in the ARDL model. 
d  Numbers in parenthesis are respective lags for the three variables used in the ARDL estimation and are selected according to 

the Schwartz Bayesian Criterion. 
*  Significant at 5% level under a t-test. 
* *  Significant at 1% level under a t-test. 
+  Significant at 5% level under an F-test according to the asymptotic critical value bounds outlined in PSS (2001). 
++ Significant at 5% level under a t-test according to the asymptotic critical value bounds outlined in PSS (2001). 

Autoregressive Distributed Lag-Error Correction Model Estimation Results, Monthly Data 

The ARDL-ECM procedures are carried out for three sets of data, based on appropriate ARDL models following analysis in Table 
III. The first one, for SPAAA, comes from Model IV of Table III, while the one for SPBAA is Model III there. The third model, for 
ISPBAA, is the Baseline Model in (16), or Model I in Table III, which is, 

1 1 2 1 3 1
1 0 0

3 3
AAA

t

l m n
sp AAA

i t i j t j k t k t t t t
i j k

SP a b AAA c TB M d TERM SP TB M TERMφ φ φ ε− − − − − −
= = =

∆ = + ∆ + ∆ + ∆ + + + +∑ ∑ ∑ ,  

where l, m and n are respective number of lags for difference terms of the three variables and are optimally selected according the  
Schwartz Bayesian Criterion, and εt is assumed to be a white noise. The division of subperiods is according to results from the 
Bai-Perron procedure reported in Table II. A Variable Addition Test (VAT) has to yield a significant F-statistic value before the 
Error-Correction estimation can be carried out. 

 Model IV Model III Model I 

 SP
AAA

 -TB3M SP
BAA

 - SP
AAA

 -TB3M ISP
BAA

 -TB3M-TERM 

Whole Period (1953:05~2003:09, 605 obs.) 

VAT F-statistic 6.8953+ 7.8490+ 10.6400+ 
SPAAA - LRa  1.1094** (0.1080)  
TB3M - LR 0.0677 (0.0561) 0.1344** (0.0194) 0.1263** (0.0233) 
TERM - LR   -0.0036 (0.0717) 
∆SPAAA - SRb  0.9512** (0.0286)  
∆TB3M - SR -0.1136** (0.0116) -0.0585** (0.0091) -0.1282** (0.0133) 
∆TERM - SR   -0.1044** (0.0165) 
ECM(-1) c -0.0362 (0.0102)++ -0.0689 (0.0115)++ -0.0555 (0.0129)++ 
R-Squared 0.1943 - ARDL(3,3) d 0.7682 - ARDL(6,1,5) 0.3127 - ARDL(2,3,4) 

1st Period (1953:05~1972:04, 228 obs.) 

VAT F-statistic 7.7442+ 9.2856+ 5.4444+ 
SPAAA - LR  0.6186 (0.6861) 
TB3M - LR 0.0807 (0.0466) 0.2135 (0.1390) 0.1784 (0.0937) 
TERM - LR   -0.1283 (0.3924) 
∆SPAAA - SR  0.9834** (0.0271)  
∆TB3M - SR -0.1959** (0.0305) 0.0071** (0.0022) -0.0660** (0.0238) 
∆TERM - SR   -0.1093** (0.0293) 
ECM(-1) -0.1117 (0.0261)++ -0.0331(0.0213) -0.0184 (0.0215) 
R-Squared 0.2019 - ARDL(1,1) 0.8747 - ARDL(2,1,0) 0.1970 - ARDL(4,4,4) 

2nd Period (1972:05~1982:07, 123 obs.) 

VAT F-statistic 3.9514 3.7815 3.6471  

3rd Period (1982:08~2003:09, 254 obs.) 

VAT F-statistic 5.1896 4.5142 9.7515+ 
TB3M - LR   0.0457 (0.0286) 
TERM - LR   0.0874 (0.0584) 
∆TB3M - SR   -0.0409 (0.0225) 
∆TERM - SR   -0.0367 (0.0226) 
ECM(-1)   -0.0848 (0.0180)++ 
R-Squared   0.1921 - ARDL(2,1,3) 



 

 

a  ‘LR’ stands for long-run coefficient estimates from the ARDL procedures, which is of the exact opposite sign in a cointegrating 
vector. 

b  ‘SR’ stands for short-run coefficient estimates from the ARDL procedures 
c  ECM(-1) stands for the last period error correction term in the ARDL model. 
d  Numbers in parenthesis are respective lags for the three variables used in the ARDL estimation and are selected according to 

the Schwartz Bayesian Criterion. 
*  Significant at 5% level under a t-test. 
* *  Significant at 1% level under a t-test. 
+  Significant at 5% level under an F-test according to the asymptotic critical value bounds outlined in PSS (2001). 
++ Significant at 5% level under a t-test according to the asymptotic critical value bounds outlined in PSS (2001). 

Table IVb 

Autoregressive Distributed Lag Estimation-Error Correction Model Estimation Results, Weekly Data 

The ARDL-ECM procedures here are the same as that in Table IVa. The division of subperiods is according to results from the 
Bai-Perron procedure reported in Table II. All the numbers of lags in ARDL models are selected according to the Schwartz 
Bayesian Criterion as in the previous table. A Variable Addition Test (VAT) has to yield a significant F-statistic value before the 
Error-Correction estimation can be carried out. 

 Model IV Model III Model I 

 SP
AAA

 -TB3M SP
BAA

 - SP
AAA

 -TB3M ISP
BAA

 -TB3M-TERM 

Whole Period (1962:01:12~2003:10:10, 2,179 obs.) 

VAT F-statistic 6.2832+ 8.0105+ 13.4228+ 
SPAAA - LRa  1.3473** (0.1014)  
TB3M - LRa -0.0199 (0.0438) 0.1535** (0.0196) 0.1438** (0.0178) 
TERM - LR   0.0714 (0.0410) 
∆SPAAA - SR  0.9249** (0.0147)  
∆TB3M - SR -0.1532** (0.0073) -0.0839** (0.0055) -0.1554** (0.0075) 
∆TERM - SR   -0.1223** (0.0089) 
ECM(-1) c -0.0139 (0.0034)++ -0.0229 (0.0032)++ -0.0234 (0.0035)++ 
R-Squared 0.2118 - ARDL(3,2) d 0.7539 - ARDL(2,2,2) 0.2167 - ARDL(2,2,1) 

1st Period (1962:01:12~1972:08:04, 552 obs.) 

VAT F-statistic 5.8044+ 8.3221+ 5.4243+ 
SPAAA - LR  1.5494** (0.1157) 
TB3M - LR 0.0471 (0.0768) 0.1340** (0.0400) 0.2263(0.0602) 
TERM - LR   0.2842 (0.0926) 
∆SPAAA - SR  0.9298** (0.0155)  
∆TB3M - SR -0.2968** (0.0266) 0.0036** (0.0010) 0.0046** (0.0015) 
∆TERM - SR   -0.0245* (0.0119) 
ECM(-1) -0.0302* (0.0079)++ -0.0268 (0.0078) -0.0205 (0.0080) 
R-Squared 0.2688 - ARDL(2,2) 0.8852 - ARDL(2,2,0) 0.0863 - ARDL(2,0,1) 

2nd Period (1972:08:11~1987:08:21,785 obs.) 

VAT F-statistic 5.0993 5.8144+ 9.4037+ 
SPAAA - LR  1.5278** (0.2375) 
TB3M - LR  0.1656** (0.0331) 0.1529** (0.0273) 
TERM - LR   -0.0522 (0.0545) 
∆SPAAA - SR  1.0170** (0.0295)  
∆TB3M - SR  -0.0839** (0.0087) -0.2423** (0.0126) 
∆TERM - SR   -0.2230** (0.0156) 
ECM(-1)  -0.0333 (0.0065)++ -0.0344 (0.0063)++ 
R-Squared  0.7377 - ARDL(2,1,2) 0.3841 - ARDL(2,2,2) 

3rd Period (1987:08:28~2003:10:10, 842 obs.) 

VAT F-statistic 1.5179 1.1408 2.5147 
 



 

 

a  Naive decomposition refers to taking the simple difference between the credit spread of bond grade of interest and the credit spread 
of Aaa index 

b  Cointegration decomposition refers to subtracting Aaa spread multiplied by a cointegration ratio. The ratio is estimated with an 
ARDL procedure and the long-run coefficient of Aaa spread from the estimation is used as the ratio. 

c  Arbitrary decomposition subtracts 1.5 times AAA spread. 
*  Significant at 5% level under a t-test. 
* *  Significant at 1% level under a t-test. 
+  Significant at 5% level under an F-test according to the asymptotic critical value bounds outlined in PSS (2001). 
++ Significant at 5% level under a t-test according to the asymptotic critical value bounds outlined in PSS (2001). 

Table V 

Comparisons of ARDL Results for Idiosyncratic Credit Spreads from Alternative Decomposition Schemes 

The following analysis compares how idiosyncratic spreads respond to interest rate dynamics under alternative definitions. The 
simple or the naïve definition is used as a benchmark against the other two. The cointegration method takes into account rational 
forecast and the arbitrary method attempts to capture possible over-risk-compensation. The top panel compares results for BAA 
credit spread in both monthly and weekly observations, while the bottom panel presents additional results for AA-grade weekly 
credit spreads in a special period where data is available and two subperiods. 

 Naive
a
 Cointegration

b
 Arbitrary

c 

 (ISPBAA = SPBAA- SPAAA) (ISPBAA = SPBAA - 1.35*SPAAA) (ISPBAA = SPBAA - 1.5*SPAAA)  

ISPBAA under alternative decompositions 
Monthly, Whole Period (1953:05~2003:09, 605 obs.) 

VAT F-statistic 10.6400+ 10.9620+ 8.3289+ 
TB3M - LR 0.1263** (0.0233) 0.1204** (0.0248) 0.1166** (0.0287) 
TERM - LR -0.0036 (0.0717) 0.0259 (0.0665) 0.0313 (0.0743) 
∆TB3M - SR -0.1282** (0.0133) -0.0072 (0.0154) 0.0481** (0.0169) 
∆TERM - SR -0.1044** (0.0165) -0.0220 (0.0191) 0.0792** (0.0209) 
ECM(-1) -0.0555 (0.0129)++ -0.0606 (0.0143)++ -0.0569 (0.0140)++ 
R-Squared 0.3127 - ARDL(2,3,4) 0.1614 - ARDL(3,3,3) 0.1490 - ARDL(3,3,3) 

Weekly, Whole Period (1962:01:12~2003:10:10, 2,179 obs.) 

VAT F-statistic 13.4228+ 18.1947+ 13.9326+ 
TB3M - LR 0.1438** (0.0178) 0.1504** (0.0167) 0.1586** (0.0182) 
TERM - LR 0.0714 (0.0410) 0.0990** (0.0366) 0.0978** (0.0394) 
∆TB3M - SR -0.1554** (0.0075) -0.0158 (0.0092) 0.0714** (0.0103)  
∆TERM - SR -0.1223** (0.0089) -0.0168 (0.0109) 0.1033** (0.0122) 
ECM(-1) -0.0234 (0.0035)++ -0.0290 (0.0044)++ -0.0296** (0.0046) 
R-Squared 0.2167 - ARDL(2,2,1) 0.0808 - ARDL(2,3,2) 0.0979 - ARDL(2,3,2) 
 

 (ISPAA = SPAA- SPAAA) (ISPAA = SPAA- 1.2*SPAAA) (ISPAA = SPAA- 1.5*SPAAA) 

ISPAA under alternative decompositions 

Weekly Data, 1982:01:08~1993:12:31, 626 obs. 
VAT F-statistic 9.3270+ 8.9161+ 6.7660+ 
TB3M - LR 0.0387** (0.0114) 0.1887** (0.0277) 0.1166** (0.0287) 
TERM - LR 0.0749** (0.0264) 0.1692** (0.0636) 0.0313 (0.0743) 
∆TB3M - SR -0.0927** (0.0118) -0.0162 (0.0134) 0.0481** (0.0169) 
∆TERM - SR -0.0760** (0.0142) -0.0073 (0.0032) 0.0792** (0.0209) 
ECM(-1) -0.0731 (0.0131)++ -0.0432 (0.0091)++ -0.0569 (0.0140)++ 
R-Squared 0.1291 - ARDL(1,1,1) 0.0695 - ARDL(2,2,0) 0.1490 - ARDL(3,3,3) 

Weekly Data, Period W-1, 1982:01:08~1987:08:21,294 obs. 

VAT F-statistic 4.9972+ 5.0796+ 3.8002 
TB3M - LR 0.0155 (0.0177) 0.0555** (0.0255)  
TERM - LR 0.0568 (0.0469) 0.1166 (0.0640)  
∆TB3M - SR -0.1273** (0.0180) 0.0042 (0.0022)  
∆TERM - SR -0.1204** (0.0222) 0.0088 (0.0051)  
ECM(-1) -0.0932 (0.0214)++ -0.0757 (0.0221)++  
R-Squared 0.1919 - ARDL(1,1,1) 0.0416 - ARDL(1,0,0)  

Weekly Data, Period W-2, 1987:08:28~1993:12:31, 332 obs. 

VAT F-statistic 5.9732+ 4.8483+ 3.3721 
TB3M - LR 0.0099 (0.0133) 0.0364* (0.0166)  
TERM - LR 0.0298 (0.0227) -0.0363 (0.0284)  
∆TB3M - SR 0.0011 (0.0015) 0.0989** (0.0153)  
∆TERM - SR 0.0034 (0.0027) 0.1108** (0.0172)  
ECM(-1) -0.1135 (0.0255)++ -0.1026 (0.0230)++  
R-Squared 0.0570- ARDL(1,0,0) 0.2061 - ARDL(1,2,1)  
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a 
Seeming Unrelated Regression procedure has been carried out on a common effect model. There are totally 75 annual 

observations, between 1983 and 1999, for the estimation on ISP
BAA

, and 39 annual observations, between 1983 and 

1993, for the estimation on ISP
AA

.  

b 
ISP stands for idiosyncratic credit spread, where ISP-I is constructed by subtracting 0.2* SP

AAA
 from either SP

AA
 or 

SP
BAA

, and ISP-II subtracts 0.8*SP
AAA

. ISP-III is the naive definition of ISP, while the last two specifications subtract 

from full credit spread of SP
AA

 and SP
BAA

 respectively 1.1 and 1.2 times SP
AAA

. 

*
  Significant at 5% level.  

**
  Significant at 1% level.  

 

 

 

 

 

 

 

 

 

 

 

 

Table VI 

Informational Content of Credit Spreads about Bond Defaults, 

Based on Moody’s Cohorts between 1970 and 1990 - Panel (SUR) Estimation Results
a 

Estimation is performed on a cross section of panel 6 cohort groups, where each group contains data for corporate 

bonds with the same number of years from issuance. The youngest cohort is 13 years, while the oldest group is 18 

years from issuance. The dependent variable is the change of cumulative default rate since issuance of a given cohort 

for years ranging from 1983 to 1999. The independent variable is various versions of ISP
BAA

 and ISP
AA

, as shown 

below. The estimation is carried out with two lags of independent variable and one lag of default rate. SP
AA

, SP
BAA

 and 

SP
AAA

 in the following table are annual average of weekly spreads from 10-year Treasury yield respectively.  

ISP Specification
a
 ISP

AA
 D-W Statistic ISPBAA D-W Statistic

  

Full Credit Spread -0.8785 (0.4025) 2.24 0.4082 (0.3005) 2.32 

ISP-I (a spread from 0.2* SP
AAA

) -0.8113 (0.4620) 2.21 0.5274 (0.3445)  2.33 

ISP-II (a spread from 0.8* SP
AAA

) 0.3621* (1.0611) 2.12 1.2712* (0.5957) 2.36 

ISP-III (a spread from SP
AAA

) 2.6447* (1.1096) 2.05 1.4886* (0.6851) 2.35 

ISP-IV ((a spread from 1.1* SP
AAA

) 3.2309** (1.0492) 2.16 1.4223* (0.6904) 2.33 

ISP-V ((a spread from 1.2* SP
AAA

) 3.1215** (0.9996) 2.21 1.2457 (0.6638) 2.30 

 


