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Abstract

This study examines the benefits of nonlinear time series modelling to improve
forecast accuracy of the El Niño Southern Oscillation (ENSO) phenomenon. The
paper adopts a smooth transition autoregressive (STAR) modelling framework to
assess the potentially regime-dependent dynamics of sea surface temperature
anomaly. The results reveal STAR-type nonlinearities in ENSO dynamics, resulting
in superior out-of-sample forecast performance of STAR over the linear autoregressive
models. The advantage of nonlinear models is especially apparent in the short- and
intermediate-term forecasts. These results are of interest to researchers and policy
makers in the fields of climate dynamics, agricultural production, and environmental
management.
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1 Introduction

In recent years there has been growing interest in studying the role of weather anomalies

on the performance of various economic variables (Keppenne, 1995; Brunner, 2002; Kim

and McCarl, 2005). Researchers have paid particular attention to the large-scale

medium-frequency event known as El Niño Southern Oscillation (ENSO) (e.g. Glantz,

2001), and its economic effects (e.g. Handler, 1990; Carlson et al., 1996; Hansen et al.,

1998; Legler et al., 1999). Studies have shown that the ENSO impact on the world

economy is significant. For example, some of the extreme episodes of ENSO have caused

damages exceeding several billions of dollars in the United States alone (Adams et al.,

1999; Pielke Jr and Landsea, 1999). Additionally, studies have shown that ENSO impact

goes beyond its economic importance, and affects social lives too, to the extent that it

may even cause civil conflicts in the developing world (Hsiang et al., 2011). The corollary

is also true: society will benefit from improved prediction of extreme ENSO events, as it

will give economic agents and policy makers time to plan ahead. For example, the

expected annual value of accurate ENSO prediction in the agricultural sector of the U.S.

has been measured to be in the order of several hundred million dollars (Solow et al.,

1998).

What the foregoing discussion shows is that ENSO is an important and costly

phenomenon, and more accurate forecasts of this anomaly has the potential of mitigating

social and economic costs associated with it. A variety of methods have been proposed

and used to predict ENSO occurrences, many of which rely on historical behavior of the

time series data (Kirtman and Schopf, 1998; Tang and Hsieh, 2002; Halide and Ridd,

2008; Deng and Tang, 2009). In this context, studies have shown that ENSO cycles can

be associated with nonlinear dynamics (e.g. An and Jin, 2004; Boucharel et al., 2011),

thus one obvious way to improve the ENSO forecasting accuracy is by implementing
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more sophisticated, nonlinear time series models. Recent developments in nonlinear time

series modelling have allowed researchers to examine the intricate dynamics of an ENSO

cycle (e.g. Tangang et al., 1998; Berliner et al., 2000; Hall et al., 2001; An, 2009). In this

research we adopt the smooth transition autoregressive (STAR) modelling framework of

(Luukkonen et al., 1988) and (Terasvirta, 1994) to investigate regime-dependent

asymmetries in ENSO dynamics. STAR models have been advocated for their superiority

in fitting turbulent variable dynamics. This modelling framework thus appears to be a

suitable method to analyze ENSO dynamics, and has been successfully applied by (Hall

et al., 2001), who demonstrate support for distinct autocorrelations in ENSO anomalies

in different, El Niño and La Niña regimes. Based on these findings, they suggest that

point forecasts from nonlinear models are likely to outperform those from linear models.

The focal point of the current research is finding whether the improvement in in-sample

fit corresponds to more accurate out-of-sample prediction.

The objective of this study is to assess ENSO forecast accuracy from STAR-type

nonlinear models. We hypothesize that parameters of nonlinear models facilitate

improved forecast accuracy over their linear counterparts. Using historical monthly SST

data we generate a sequence out-of-sample forecasts from linear and nonlinear models,

and examine them with respect to actual realizations of SST. By means of statistical

tests and graphical illustrations we derive inferences about forecast performance of

nonlinear and linear models. In what follows, we first present the methodological

framework, describing the peculiarities of STAR modelling and forecasting. We then

proceed by implementing this technique in the empirical framework, where we provide

information regarding the data used in this research, and discuss main results of this

study, followed by summarizing our findings in the conclusions.
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2 Modelling Framework

The general idea behind time series modelling is that a current observation is a function

of its previously observed values. A basic representation of this relationship is a linear

autoregressive (AR) model, which may be expressed in first differenced form as in

Equation (1).

∆yt = θ′xt + εt (1)

where ∆ is a first-difference operator, such that ∆yt = yt − yt−1; yt is a dependent

variable; xt = (1, yt−1,∆yt−1, . . . ,∆yt−p+1)′ is a vector of right-hand-side variables;

θ = (α, β, φ1, . . . , φp−1)′ is a vector of parameters to be estimated, where β is the unit

root parameter, such that the restriction β = 0 imposes a unit root process; finally, εt is

an additive error process such that εt ∼ iid(0, σ2).

By relaxing the linearity assumption, Equation (1) can be further augmented in a

number of ways, resulting in several well–known nonlinear frameworks such as threshold

autoregressive (e.g. Tsay, 1989; Tong, 1990), Markov switching (e.g. Hamilton, 1989), and

artificial neural network (e.g. Kuan and White, 1994) models. An alternative

specification, which is also a nonlinear generalizations of a basic AR model, and moreover

which embeds elements of the aforementioned nonlinear models, is the STAR model.

Conceptually, smooth transition regressions were first proposed by Bacon and Watts

(1971), while modelling and testing methods were subsequently developed by Luukkonen

et al. (1988), Terasvirta and Anderson (1992), Terasvirta (1994), and Eitrheim and

Terasvirta (1996).

STAR-type models are widely applied in studies modelling asymmetric cyclical

variations(e.g. Terasvirta, 1995; Hall et al., 2001). One of the attractive features of the
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STAR modelling framework is that it it allows for non-discrete switching points between

the extreme regimes, resulting in a potentially smooth transition between them. Since its

introduction, the STAR modelling approach has gained in popularity and has been

increasingly applied to examine potential nonlinearities of unemployment rates, GDP,

money demand, and interest rates (e.g. Terasvirta, 1995; Eitrheim and Terasvirta, 1996;

Sarantis, 1999; Skalin and Terasvirta, 2002), and more recently to investigate nonlinear

features of climate variables, including ENSO (Hall et al., 2001), and their effects on

commodity prices (Ubilava, 2012).

The general class of smooth transition regressions can be specified as Equation (2).

∆yt = θ0
′xt + θ1

′xtG (st; γ, c) + εt (2)

where G (st; γ, c) represents the so called transition function, which is, by construction,

bounded between zero and one, and where st is a transition variable, and γ and c are,

respectively, smoothness and location parameters. The transition function alters the

dynamics of the model conditional on the transition variable in a potentially smooth

manner.

A generalized version of one of the more frequently applied transition functions is

represented as Equation (3):

G (st; γ, c) =

{
1 + exp

[
−γ/σkst

∏
k

(st − ck)k
]}−1

(3)

where σst is the standard deviation of the transition variable. By setting k = 1 and k = 2,

one obtains logistic and quadratic transition functions, respectively, resulting in logistic

STAR (LSTAR) and quadratic STAR (QSTAR) models. An alternative transition

function is an exponential function, yielding an exponential STAR (ESTAR) model, and
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defined as Equation (4).

G (st; γ, c) =
{

1− exp
[
−γ/σ2

st (st − c)2
]}

(4)

In the transition functions the smoothness parameter, γ, is defined to be a non-negative

parameter. The LSTAR and QSTAR models converge to a linear AR model when γ → 0,

and a threshold autoregressive (TAR) model when γ →∞. Alternatively, ESTAR

converges to a linear AR model both when either γ → 0 or γ →∞.

2.1 Testing Nonlinearities

The question of whether nonlinearity is truly an underlying feature of the data is a

testable hypothesis. However, we cannot directly test the null hypothesis of linearity, that

is, H0 : γ = 0, in a STAR model, due to unidentified nuisance parameters, also known as

Davies’ problem (Davies, 1977, 1987). Specifically, in the context of Equation (2), the

nonlinear model will reduce to the linear AR model by imposing the restriction γ = 0 or

θ1 = 0. Therefore, the standard test statistics are no longer applicable. Luukkonen et al.

(1988) proposed a solution to the problem by approximating the transition function,

G (st; γ, c), using a third order Taylor series expansion. This results in a testable auxiliary

regression, expressed as Equation (5):

∆yt = θ0
′xt +

3∑
i=1

θi
′xts

i
t + ξt (5)

where ξt combines the original error term, εt, and the approximation error resulting from

the Taylor expansion. The new specification makes it possible to apply conventional

testing methods, particularly in the test for linearity against the STAR specification.

This is now equivalent to testing the null hypothesis of H ′0: θ1 = θ2 = θ3 = 0, where θi,
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i = 1, 2, 3, are vectors of parameters from the auxiliary regression. An additional benefit

of testing nonlinearities using a third order approximation, as presented in Equation (5),

is that tests against LSTAR and ESTAR/QSTAR models are also embedded in the

testing framework: the test against the LSTAR model is equivalent to testing the null

hypotheses of H03: θ3 = 0 and H01: θ1 = 0|θ2 = θ3 = 0. Alternatively, the test against

the ESTAR/QSTAR is equivalent to H02: θ2 = 0|θ3 = 0.

In practice, the transition variable is often a priori unknown. One is, therefore,

required to test a set of candidate transition variables, and select the suitable transition

variable based on probability values associated with the aforementioned hypotheses.

Once the transition variable (and the associated transition function) is selected, one may

proceed to estimate the related STAR model using a nonlinear optimization procedure

(refer to Luukkonen et al. (1988); Terasvirta (1995); Eitrheim and Terasvirta (1996) for

additional details regarding the testing procedure, including remaining nonlinearity,

parameter constancy and residual autocorrelation tests withing the STAR modelling

framework).

2.2 Out-of-Sample Forecasting

Forecast accuracy improvement is assessed by analyzing the relative out-of-sample

forecast performance of the linear (restricted) and the nonlinear (unrestricted) models as

represented by Equations (1) and (2), respectively. Consider a general specification of a

univariate autoregression given as Equation (6).

yt = f(xt|θ) + εt (6)

where the dependent variable, yt, is defined by a linear or nonlinear function of the

right-hand-side variables, xt = (yt−1, . . . , yt−p, . . .)
′, and an error term, εt. Based on

7



Equation (6), the expected one-step-ahead forecast can be written as Equation (7).

yft+1|t = E
(
yt+1|t

)
= E (f(xt+1|θ) + εt+1) = E (f(xt+1|θ)) (7)

where xt+1 = (yt, . . . , yt−p+1, . . .)
′. In the case of linear models, an h-step-ahead forecast,

where h > 1, may be obtained recursively in a manner similar to Equation (7). This is a

näıve, or so called “skeleton extrapolation” approach, which in the case of nonlinear

models would yield biased forecasts (see Tong, 1990; Granger and Terasvirta, 1993).

Alternatively, a proper forecasting method would require a numerical integration, which

quickly becomes cumbersome as the forecast horizon length increases. This can be

circumvented by approximating the multidimensional integral using a simulation or a

bootstrap resampling method (e.g. Lundbergh and Terasvirta, 2004). For example, in the

case of h = 2, the bootstrap forecast of yt+2 yields Equation (8).

yfbt+2|t = E
(
ybt+2|t

)
= E (f(xt+2,b|θ) + εt+2) = B−1

B∑
b=1

(f(xt+2,b|θ)) (8)

where for p > 2, xt+2 = (ybt+1|t + εt+1, yt, . . . , yt−p+2, . . .)
′, and where the idiosyncratic

shocks, εt+j,b, j = 1, 2, are randomly drawn from the distribution of residuals of the

estimated nonlinear model. A general h-step-ahead forecast equation, Equation (9), can

thus be developed in a manner similar to Equation (8).

yfbt+h|t = E
(
ybt+h|t

)
= E (f(xt+h,b|θ) + εt+h) = B−1

B∑
b=1

(f(xt+h,b|θ)) (9)

By applying the bootstrap resampling method one can effectively generate a distribution

of forecasts around the mean. Therefore, this approach can also be useful if one intends

to calculate empirical confidence intervals of the forecasts.
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2.2.1 Out-of-Sample Forecast Evaluation

Out-of-sample forecasts are evaluated using some forecast accuracy measures, one of

which is Root Mean Squared Forecast Errors (RMSFE) defined as Equation (10).

RMSFE =

(
R−1

R∑
r=1

∣∣∣yr,t+h − yfbr,t+h|t

∣∣∣2)
1
2

(10)

where yr,t+h is the actual realization of the event at the horizon h, and R is the total

number of out-of-sample forecasts.

The statistical significance of the forecast accuracy may be examined using loss

differential approach, originally proposed by Diebold and Mariano (1995) and

subsequently modified by Harvey et al. (1997). The loss differential for an observation t is

defined by dt = g(ei,t,h)− g(ej,t,h), where g(·) in the current case is a quadratic loss

function, and ei,t,h and ej,t,h are h-step-ahead forecast error functions for two methods i

and j to be compared. Thus, the null hypothesis of equal forecast performances of the

two competing models, in terms of the forecast loss functions, is Hd
0 : d̄ = 0, where

d̄ = n−1
∑n

t=1 dt, and where n is the total number of loss differentials.

The original Diebold and Mariano (1995) version of the loss differential statistic, DM,

assumes that d̄ is asymptotically normally distributed. However, we implement a

small-sample version of the DM statistic (Harvey et al., 1997). The modified

Diebold-Mariano (M-DM) statistic is defined as in Equation 11, where h-step-ahead

forecasts are assumed to be autocorrelated up to and including the lag h− 1, but not at

lag h and beyond:

M-DM =
{
n−1

[
n+ 1− 2h+ n−1h (h− 1)

]}1/2
DM (11)
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where

DM =
[
V
(
d̄
)]−1/2

d̄ (12)

and where V
(
d̄
)

is the variance of the mean loss differential as defined in Equation (13):

V
(
d̄
)

= n−1

(
γ0 + 2

h−1∑
k=1

γk

)
(13)

where

γk = n−1
n∑

t=k+1

(
dt − d̄

) (
dt−k − d̄

)
; k = 0, . . . , h− 1 (14)

Not uncommonly, this specification of the variance, as presented in Equation 13, may

result in a negative value. To circumvent this problem, the variance equation is modified

(Equation (15)) using a weighting approach proposed by Newey and Kenneth (1987):

V ∗
(
d̄
)

= n−1

(
γ0 + 2

h−1∑
k=1

wkγk

)
(15)

where wk = (1− k/h) is a weight associated with the kth autocovariate. Finally, the

obtained M-DM statistic follows Student’s t-distribution with (n− 1) degrees of freedom.

3 Empirical Framework

In this section we apply the methodology outlined in the previous section to obtain

estimates for the linear and nonlinear models. These estimates are then used to forecast

ENSO and perform an out-of-sample forecast accuracy test.
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3.1 Data

The sample consists of monthly observations between January 1950 and December 2011.

The time series variable representing the ENSO anomaly, Niño 3.4, is derived from the

index tabulated by the Climate Prediction Center at the National Oceanic and

Atmospheric Administration. This index measures the difference in Sea Surface

Temperature (SST) in the area of the Pacific Ocean between 5◦N − 5◦S and

170◦W − 120◦W , and is therefore a strong indicator of ENSO occurrence in the tropical

Pacific. The Niño 3.4 monthly measure is an average of daily values interpolated from

weekly measures obtained from both satellites and actual locations around the Pacific.

The anomaly is the deviation of the Niño 3.4 monthly measure from the average historic

measure for that particular month from the period 1971 – 2000.

In order to generate out-of-sample forecasts, we employ an expanding window

modelling approach (e.g. Terasvirta et al., 2005). The benefit of this approach, as

opposed to a fixed-length rolling window approach (e.g. Milas and Rothman, 2008), is

that at any point of time we employ the maximum historical information available. On

the other hand, the potential drawback of this approach is the de-emphasized possibility

of structural breaks (see Swanson, 1998; Terasvirta et al., 2005). However, we took

advantage of parameter constancy tests in STAR testing framework to find out that there

is indeed no evidence of a structural change in any of the windows employed. So, we

proceeded by estimating STAR models using an expanding window framework. We

simulate a set of h-step-ahead forecasts for each window, where the maximum horizon

length, hmax, is set to 36 months. The first estimation window covers the period from

January of 1952 to December of 1990, and the last window ends with December of 2008.

Within this range, each consecutive window is estimated by expanding the window ahead

by one observation, which in our case constitutes one month. This approach generates a
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total of 216 h-step-ahead forecasts, h = 1, . . . , hmax. Finally, while the models are

re-estimated on a monthly basis, the autoregressive lag structure and the delay lag of the

transition variable are re-examined on an annual basis.

3.2 Estimation Results

We use the Augmented Dickey-Fuller (ADF) test to examine the stationarity hypothesis

of the ENSO variable. Based on the test results, we reject the unit root in the ENSO

series, meaning that despite shocks of any magnitude, over time ENSO returns to its

long-run mean. Thus, the following linear version of the regression as in Equation (16)

was estimated.

∆ENSOt = α+ βENSOt−1 +

p−1∑
i=1

θi∆ENSOt−i + δ′Dt + εt (16)

where ENSOt denotes the SST anomaly used in this research, Dt is a vector of monthly

dummy variables, and the rest are parameters to be estimated.

The next step is to assess STAR-type nonlinearities in each of the equations. We use

lags of the ENSO variable, ENSOt−d, d = 1, . . . , 6, as candidate transition variables.

Thus, we allow for the possibility that ENSO dynamics will vary conditional on its recent

past occurrence. For example, ENSO adjustment to its long-run mean may happen at a

different speed, depending on the recent conditions of the anomaly.

A battery of nonlinearity and other diagnostic test results reveal evidence of

two-regime STAR-type nonlinearities throughout all considered windows (here we do not

present the nonlinearity test results, for the sake of brevity, but they are available upon

request). In all cases the nonlinearities appear to be of a logistic form, which constitutes

the criterion for choosing the LSTAR model specification. Thus, we formulate our final
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specification as in Equation (17).

∆ENSOt = α0 + β0ENSOt−1 +

4∑
i=1

θ0,i∆ENSOt−i + δ0
′Dt (17)

+

(
α1 + β1ENSOt−1 +

4∑
i=1

θ1,i∆ENSOt−i + δ1
′Dt

)
G (·) + εt

where transition function, G (·), is defined as Equation (18).

G (·) =
{

1 + exp
[
−γ
σ

(ENSOt−d − c)
]}−1

(18)

The estimated parameters of the transition function suggest smooth transition between

the extreme regimes. An example of the estimated transition function is presented in

Figure 1. The figure illustrates a smooth transition between the extreme regimes. Note

that the inflection point, G = 0.5, of the transition function is slightly below zero,

however, because of the smoothness of the transition function, we observe a continuum of

inflection points, such that the normal ENSO regime can be characterized by the

dynamics which is a weighted average of the dynamics underlying the two extreme

regimes.

3.3 Forecasting Results

We use the estimated parameters and residuals from the linear and nonlinear models of

each expanding window to calculate out-of-sample forecasts. We obtain ENSO forecasts

using a bootstrap resampling approach. Specifically, we simulate B paths of

Et+1|t, Et+2|t, . . . , Et+hmax|t, where B = 1000 and hmax = 36 is the maximum horizon

length. So, for a path b, the h-step-ahead forecast of ENSO is formulated as
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Equation (19).

ENSOb
t+h|t = f

(
ENSOb

t+h−1|t, . . . , ENSO
b
t+h−p|t|θ

)
+ εbt+h|t (19)

where p is the autoregressive lag length of the ENSO variable, and where

ENSOb
t+h−p|t = ENSOt+h−p|t if p ≥ h; εbt+h|t is an innovation sampled from the pool of

residuals of the estimated ENSO model. The expected forecast of ENSO, ENSOfb
t+h|t, is

obtained by averaging the computed bootstrap paths. These forecasts are subsequently

used to evaluate forecast accuracy of linear and nonlinear models using the RMSFE

measures and the associated M-DM test statistics, as defined previously.

We calculate the h-step-ahead out-of-sample forecasts of ENSO from both the linear

and nonlinear models, using estimated parameters and residuals from AR and STAR

models, respectively. We then evaluate these forecasts in relation to the actual

realizations of ENSO. The ultimate goal is to assess the ENSO forecast accuracy using

STAR specification as compared to the linear alternative.

The first three columns of Table 1 report the RMSFE measures, along with the

associated M-DM statistics, which defines the statistical significance of forecast accuracy

improvement when using the nonlinear specification. We obtain these measures by

applying the predicted and actual realizations of the ENSO variable to the

Equations (10), and (11) – (15). These results confirm that not only does the STAR

specification improve the in-sample fit, but it also outperforms the corresponding AR

model in an out-of-sample setting. This improvement is apparent (statistically

significant) for up to one-and-a-half year ahead forecast horizon.

We further use point forecasts of the SST anomalies to calculate percent correctly

predicted (PCP) measures of ENSO events. To do so, we define El Niño and La Niña

events as SST anomaly being greater than 0.5◦C and less than -0.5◦C, respectively.
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Columns 4 – 7 of Table 1 present the PCP measures from AR and STAR models. Here as

well, the relative advantage of nonlinear modelling becomes apparent at and beyond

3-months-ahead forecast horizons. Two features of interest are revealed here. First of all,

the forecast horizon ENSO events is notably longer using the STAR as compared to AR

models. Second, models predict La Niña events more accurately than El Niño events.

In addition to the point forecasts of the SST anomalies, we are interested in assessing

forecast accuracy of the specific extreme ENSO events. We use empirical forecast

densities from the bootstrap resampling procedure to compare forecast ability of the two

models. In this exercise, for illustration purposes, we introduce notions of “extreme” and

“moderate” events, wherein Extreme Event ≡ SST ≥ |1◦C|;

Moderate Event ≡ |1◦C| > SST ≥ |0.5◦C|; and, finally,

Normal Conditions ≡ SST < |0.5◦C|. Thus, for each window we forecast probabilities of

each of the five events up to and including 36-months-ahead horizon. We illustrate

predicted probabilities of ENSO in Figure 2. The forecasts are made using information

up to and including Dec 1997 – the peak of the most extreme El Niño occurrence of the

recent history. While in the very short run (1–3 months) both, linear and nonlinear

models yield comparable results, the picture changes in the intermediate run (6–12

months), when the STAR model predicts La Niña episode with about 80 percent

probability, while the AR model predicts La Niña with a “modest” 40 percent probability.

In reality, 1997 El Niño was indeed followed by a strong La Niña in late 1998, which

carried over in 1999 and 2000. This illustration is characteristic of the STAR model in

that it is especially effective in predicting La Niña events in the intermediate run.
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4 Conclusions

ENSO is a costly phenomenon, causing considerable economic damages around the globe

(Handler, 1990; Solow et al., 1998; Brunner, 2002). It has also been considered a factor in

social unrests and even civil wars (Hsiang et al., 2011). Given the important nature of

this climatic anomaly, researchers have attempted with some success to improve its

predictability. One way to improve forecast accuracy of ENSO has been proposed to

implement recent developments in nonlinear time series modelling, and specifically the

smooth transition autoregressive framework of Luukkonen et al. (1988) and Terasvirta

and Anderson (1992). Using the same methodology Hall et al. (2001) have found that

ENSO does follow a regime-dependent dynamic process, while the regimes are connected

to each other in a smooth manner. The STAR framework offers an improved in-sample

fit, suggesting the possibility of improved out-of-sample fit as well.

In this research we extended the study by Hall et al. (2001) to investigate

out-of-sample predicting accuracy of the ENSO phenomenon. Using root mean squared

forecast error measures and modified Diebold-Mariano test statistics. We found that

forecasts from the nonlinear STAR model outperform their counterparts from the linear

AR model in the short and intermediate terms. These results are important for economic

agents and policy makers across the world, as they offer improved ENSO forecasting and

more accurate economic and social inferences. The results are also interesting from a

research stand point, wherein this research is an addition to a series of studies suggesting

preference of nonlinear models in ENSO forecasting.
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5 Figures

Figure 1: Estimated Transition Function (January 1952 – December 2000)
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Figure 2: Predicted Probabilities of ENSO Events (December 1997)
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6 Tables

Table 1: ENSO Forecasting and Evaluation

h RMSFEAR RMSFESTAR RESTAR/AR AR STAR
La Niña El Niño La Niña El Niño

1 0.207 0.201 0.967 * 91.3 87.0 93.5 87.0
2 0.376 0.348 0.924 *** 70.2 72.1 68.1 72.1
3 0.506 0.453 0.897 *** 58.3 57.4 58.3 67.6
4 0.607 0.534 0.880 *** 42.9 47.1 53.1 63.2
5 0.694 0.604 0.871 *** 36.7 36.8 44.9 54.4
6 0.758 0.656 0.865 *** 24.5 22.4 36.7 44.8
7 0.808 0.700 0.866 *** 18.4 13.4 36.7 38.8
8 0.843 0.735 0.872 *** 12.2 10.4 38.8 28.4
9 0.864 0.765 0.885 *** 6.1 4.5 32.7 17.9
10 0.874 0.786 0.899 *** 4.1 – 28.6 9.0
11 0.879 0.800 0.910 ** 2.0 – 28.6 1.5
12 0.882 0.809 0.918 ** 2.0 – 24.5 –
13 0.882 0.811 0.918 *** – – 18.4 –
14 0.882 0.810 0.919 *** – – 16.3 –
15 0.879 0.812 0.924 *** – – 14.3 –
16 0.875 0.821 0.938 *** – – 12.2 –
17 0.870 0.831 0.956 ** – – 10.2 –
18 0.863 0.841 0.974 – – 8.2 –
19 0.859 0.850 0.989 – – 6.1 –
20 0.858 0.859 1.002 – – 2.0 –
21 0.859 0.865 1.007 – – – –
22 0.863 0.869 1.007 – – – –
23 0.867 0.871 1.005 – – – –
24 0.870 0.872 1.002 – – – –
25 0.873 0.872 0.999 – – – –
26 0.879 0.875 0.995 – – – –
27 0.884 0.876 0.992 – – – –
28 0.887 0.878 0.990 * – – – –
29 0.886 0.878 0.991 * – – – –
30 0.884 0.876 0.991 * – – – –
31 0.883 0.877 0.993 – – – –
32 0.882 0.877 0.994 – – – –
33 0.882 0.876 0.994 – – – –
34 0.881 0.875 0.993 – – – –
35 0.880 0.875 0.993 – – – –
36 0.881 0.876 0.994 – – – –

Note: ∗, ∗∗ and ∗∗∗ denote statistical significance of M-DM tests at 0.10, 0.05 and 0.01 levels, respectively; entries
in the column headed with h denote forecast horizon; entries in the columns headed with RMSFEAR and
RMSFESTAR denote RMSFE measures of AR and STAR models, while RMSFESTAR/AR denotes a ratio of
RMSFESTAR and RMSFEAR; entries in the columns headed with La Niña and El Niño denote percent correctly
predicted measures of each respective ENSO event.
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