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Abstract

This paper develops a model of noncooperative network formation. Link formation is

two-sided. Information flow is two-way. The paper is built upon Bala and Goyal (2000). A

unique assumption is that the value of information decays as it flows through each agent,

and the decay is increasing and concave in the number of his links. Thus, an agent may

choose to avoid accessing an agent who possess many links since he is aware of the decay

incurred through this agent. This avoidance leads to two particular results in the analysis

of Nash networks: (1) Nash networks are not always connected; (2) Nash networks do not

exist under some parameters. Since disconnectedness is reminiscent of a common feature

of real-world network, the model may explain why real-world networks may exhibit this

feature even when there is no heterogeneity among agents. Discussion on this insight is

provided.

*ALHOSN University, Uniterd Arab Emirates. E-mail: b.charoensook@alhosnu.ae. This paper is a chapter of
my doctoral dissertation, which was supervised by Dino Gerardi. I thank him for his guidance and generous
supports
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1 Introduction

This paper presents a model of network formation game that is built upon the two-way flow

model of Bala and Goyal (2000), henceforth BG. A unique assumption is that an increase in link

establishment damages the quality of information that flows in the network. Under this assumption,

each agent knows that his decision to add a link causes a decline in the value of information

flow. This decline is a disbenefit both to himself and other agents in the network. Hence, on top

of link formation cost, there are additional disbenefits associated with link formation. This pa-

per aims to understand how this assumption may affect link-formation decision of agents and

hence the shape of networks. To this end, we characterize the shapes of equilibrium networks

and analyze why they differ from those in the literature. Finally, using the analyses the paper

discuss how the model may explain some features of real-world networks.

We argue that our assumption is realistic and hence worth studying, particularly in the

context of information network. Consider a firm in which employees’task is to communicate

with each other. In this network, there may be a center-like agent whose role is to collect and

distribute informations of other agents. Therefore, the quality of information flow depends on

the center’s communicating performance. Thus, it is likely that his performance declines as

contacts between him and other agents increase. In such context, each agent has to take into ac-

count that contacting the center damages the information flow. Hence, the value of information

he receives may not worth the efforts to contact. When this is the case, he may avoid contacting

the center by contacting another agent or staying disconnected from this network. At the same

time, the center may decline the contact initiated by an agent if the decline in his communi-

cating performance does not allow him to reap much benefit from the information that flows

through him.This problem is known as network congestion in the context of communication net-

works, where we call the first case. However, how this realism affects agents’ linking decision

has not been investigated in the literature in network formation to our knowledge. Thus, our

attempt to address this uninvestigated issue is the central contribution of this paper.

With this situation in mind, we address this network congestion issue by making the fol-

lowing modification to the two-way flow model of BG. Whenever information passes through

an agent, a quantity of information loss is incurred. The value of the remaining information

is decreasing and strictly concave in the amount of agent’s links 1. In contrast, in the original

model of BG, the quantity of information loss depends solely on the distance between agents.

Specifically, the original setting of BG is as follows. Each agent possesses a unique private piece

of information that is nonrival. He can choose to sponsor costly links to any agents without

their agreements. All links together form the network. If there is a link or a series of links be-

tween two agents, they are obliged to share their private informations. Thus, the decision of

1The justification of this stylized assumption is relegated to the model section.
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agent to form a link represents his decision to make his private information available to other

agents in exchange of receiving their informations, and concurrently his willingness to be an

information transmitting device.

Since we model this network congestion in a stylized way, we provide two justifications.

First, this model makes observing the effects of congestion avoidance easier. The original BG

model and our model permit each agent to access others without their agreements. This im-

plies that each agent decides on his own as to how to avoid the congestion he finds in the

network, hence easing the observation. This advantage is also facilitated by the assumption

that agents’information are nonrival 2. Second, because links are formed in a noncooperative

way, Nash equilibrium in pure strategies can be applied as the solution cencept. This eases the

analysis.

Despite, the one-sided access assumption has a major disadvantage. It implies that agent

cannot defend against an access by another agent, even when the access lowers his payoff. This

implication is not realistic. For example, in a file sharing network, one agent may decline an

access by another agent if the access lowers his internet speed. Hence, our model does not

provide an insight to this side of reality.

Based on the observation from the main results, two insights into the effects of network con-

gestion on the structure of real-world network can be learnt. First, when network congestion is

present, an equilibrium network may be fragmented, consisting of subnetworks disconnected

from each other. The intuition is that agent in one network may avoid entering another due

to the congestion. This may explain why empirical literature finds that disconnected networks

are common in the real world. Second, with network congestion, moving from a smaller net-

work to a larger one (a network with more agents) does not imply that the moving agent will

improve his payoffs. The intuition is that agents in a larger network may be more congested

(having more links), causing information to flow better in a smaller network. This may ex-

plain why real-world networks often consist of fragmented communities of notably different

sizes. For example, in a friendship network, some students may prefer to keep their friendship

within a small group rather than joining the crowd because they enjoy a stronger friendship

that provides a higher benefit flow. While our paper models network congestion in a stylized

way, this analysis may provide an alternative explanation of ‘social isolates’ observed in the

real world, suggesting that the underlying cause of such network feature may not necessarily

be heterogeneity among agents.These insights can be observed in our first proposition, which

finds that no nash network is connected under some restriction on the congestion parameter.

This disconnectedness is a sharp contrast to the result in the original model of BG that all Nash

Networks are connected.

2if assumed otherwise, it may be difficult to distinguish whether agent decides not to access another as a result
of the congestion or the rival nature of information.
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Beside the above disconnectedness, two results are also different from BG’s. First, Nash

Network in pure strategies do not exist under some parameters. This result is shown by an

example. Second, no stars are Nash except center-sponsored star 3.

Our paper contributes to the literature in network formation. This literature is pioneered

by the work of Jackson. and Wolinsky (1996)4. Their model assumes that two agents must

share a mutual consent in order that a link is established. A seminal work that contrasts to this

model is that of BG, in which one-sided link formation is assumed. Among existing extensions

of BG, the model of Caffarelli (2009) has in mind a situation in which managing too many links

simultaneously leads to information congestion. It assumes that the cost of link maintenance

increases in relation to the quantity of informations received. Hence, accessing an agent does

not directly damage the quality of information flow at the accessed agent. Our model differs in

that network congestion is reflected directly in the increasing information loss both the agent

being accessed and the accessing agent. This allows us to better observe the effects of congestion

avoidance. Beside this difference, Caffarelli (2009) assumes that information sharing is not two-

way, in that the the agent who forms link does not share his information with his partner.

2 The Model

N = {1, ..., n} is a set of agents and i and j are typical members of this set. Each agent

possesses a unique private piece of information that is valuable both to himself and anyone

who has an entry to it. Whenever i and j together share their informations, i has an entry to the

information of j and vice versa. However, the information transmission is made possible only

if a pairwise link between them is established.

Link establishment is costly and one-sided. i can spend the cost c to establish a link with

j without j’s consent. Therefore, a strategy of i is a set gi = (gi1, ..., gii−1, gii+1, ..., gin) where

gij ∈ {0, 1} and gij = 1 if and only if i formsj by paying c. In this case, we say that i accesses j.

We restrict our analysis to pure strategies throughout the paper. Let g = (g1, ..., gn) be a strategy

profile. The strategy space i is Gi and the set of all pure strategy profiles is G = {×Gi}n
i=1.

To visualize how information flows among agents, a strategy profile g can be represented

by a network. Pictorially, a network consists of a set of nodes and a set of arrows pointing from

one node to another. To enable the network representation of a strategy profile, a one-to-one

correspondence between the set of all directed networks with n nodes and the set of strategy

ptofiles G is contructed by the following rule. In a network g, we enumerate the node from 1 to

3a star is a network in which there is a unique center-like agent who connects to all other agents. But all other
agents have no links with each other. A center-sponsored star is a star that the center sponsors the link to everyone.

4Jackson (2007) provides an overview of network formation literature
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n and let there be an arrow pointing from i to j if and only if i accesses j in the strategy profile

g. Therefore, we use the term network and strategy profile interchangably onwards. Figure 1

depicts an example of a network

54321

Figure 1: A network with five agents. n = 5, g1 = {1, 0, 0, 0} , g2 = {0, 1, 0, 0} , g3 =
{0, 0, 1, 0} , g4 = {0, 0, 0, 1} , g5 = {0, 0, 0, 0}

In a network, a link of i can be sponsored by himself or the other agent. Thus, to distinguish

the sponsorship, let N (i; g) = {k ∈ N|gik = 1} ∪ {i} be the set of all agents whom i accesses and

µi (g) ≡ |N (i; g)| − 1 be the number of links that i establishes. Notice that i ∈ N (i; g) because i

can access his own information 5. We indicate whether there is a link between i and j by the term

ḡij = max
{

gij, gji

}

. Hence, ḡij = 1 if and on if there is a link between i and j. In this case, we say

that i links with j. Similarly, we define N̄ (i; g) = {k ∈ N|ḡik = 1}∪ {i} and µ̄i (g) ≡ |N̄ (i; g)| − 1.

An agent in N (i; g) and N̄ (i; g) is called directed neighbor and neighbor of i respectively.

With these notations, we turn to describe how information flows in a network. Apart from

the direct transmission via a single link, the information also flow indirectly via a series of links.

Formally, an ij-path is a sequence ḡi,j1 , ḡj1 j2 , ..., ḡjm j whose each element is 1, and is denoted by

Pij (g). The set of all Pij (g) is Pij (g). If an ij-path exists, we say that i observes j. Notice that the

existence of Pij guarantees the existence of Pji (g) = ḡjjm , ḡjm jm−1, ..., ḡj1i.

Ideally, if information is trasmitted and received perfectly by i, it gives i the payoff of 1.

However, throughout the transmission this value may decay. In this paper, we assume that

the decay is incurred nodewise. As the information traverses through agent i, the productivity

of i, σ (i; g), is the percentage rate at which the value is preserved. Hence, if the information

is transmitted through a path ḡi,j1 , ḡj1 j2 , ..., ḡjm j, the value of j’s information that i receives is

σ (i; g) σ (j1; g) σ (j2; g) ...σ (j; g) and is denoted by Vij. Figure 2 illustrates how the values of

information of other agents flow to agent 1 in the network of Figure 1.

54321

Figure 2: In the above network, V12 = σ1 (1) σ2 (2) = σ2, V13 = σ1 (1) σ2 (2) σ2 (3) = σ2
2 , V14 =

σ1 (1) σ2 (2) σ2 (3) σ2 (4) = σ3
2 , V15 = σ1 (1) σ2 (2) σ2 (3) σ2 (4) σ1 (5) = σ3

2

If there are multiple ij-paths, the value of j’s information to i is given by the optimal paths.

Formally, let Pij (g) =
{

P1
ij (g) , P2

ij (g) , ..., PL
ij (g)

}

be the set of all paths through which i ob-

serves j in a network g. The value of the information of j that i obtains in this network is

V̄ij (g) = max
k∈1,..,L

V(Pk
ij; g). We call a path that solves maxk∈1,..,L V(Pk

ij; g) an optimal ij-path. The set

5This assumption follows the convention set by the original model of BG.
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of all optimal paths is P̄ij (g). If there is no path through which i observes j, we let V̄ij (g) = 0.

For i’s own information, we let Vii = σ (i; g). That is, the decrease in his productivity also

decreases his own value of information 6.

Having defined the value of information, we are now ready to define the payoff of player i

from the strategy profile g in a game with n players. It is:

U
(

i; g
)

= ∑
j∈N

V̄ij

(

g
)

− c · µi

(

g
)

The first term on the right-hand side is the total value of information i receives in g or the

revenue of i in g and is denoted by Rev (i; g).

We point out a difference between our model and BG’s before adjourning this subsection.

This difference is in how information decays. In BG, the decay factor is assumed to be linkwise

and geometric. For example, let λ be this decay. If an ij-path consists of m links, then the infor-

mation of j decays to λm when it arrives to i. Hence, the aggregated decay of a path depends

solely on its length. In contrast, the decay in our model is defined nodewise, σ (i; g). Therefore,

two ij-paths with the same length may not provide the same value.

2.1 Assumptions on decay

Our key assumption is that the pdoductivity σ (i; g) depends solely on the number of i’s

links. To formalize this idea, let σ (i; g) be a function of µ̄i, ie., σ (i; g) : N → [0, 1], and the value

of σ (i; g) at µ̄i is σµ̄i
(i; g). When omission is possible we simply write σ (i; g). Throughout the

paper, the following assumptions on σ (i; g) are assumed.

Assumption 1 (Concave Decreasing Decay). σ is decreasing and strictly concave in µ̄i. Moreover,

1. σ (i; g) = σ (j; g) if µ̄i = µ̄j

2. σ1 = 1

3. There exists a positive number K > 1 such that σx = 0 for any x ≥ K.

Let us justify these assumptions. The first assumption implies that agents are homogeneous

in productivity. Second, 2 implies that perfect communication when agent has one link. Finally,

the strict concavity implies that the decline in productivity increases at an increasing rate. While

there is no theoretical support, this assumption can be justified by some realistic scenarios. For

6For example, if agent’s own information is an unread newspaper article, then he has to put efforts to under-
stand it in order to receive the benefit. Hence, his productivity affects also his own value of information. This
assumption is also established in existing literature. Feri and Melendez-Jimenez (2009) assumes likewise.
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example, suppose that an agent stores all pieces of information in one place, then due to the

limitedness of space the chance that two pieces of information get mixed up, causing more

difficulties in communicating accurately is likely to increase at an increasing rate. Another

example is when each piece of information is very similar to one another, then the chance that

an agent does not know which is which is likely to increase at an increasing rate.

2.2 Network-related Definitions

This subsection introduces some properties of networks and definitions of special networks

that are frequently referred in the analysis. Our first definition captures the concept that two

networks can have the same structure even if links are not sponsored by the same agent.

Definition (Network Architecture). Let g1 and g2 be networks and N1 and N2 be their set of players,

g1 and g2 are said to have the same architecture if there exists a permutation π : N1 → N2 such that

gij ∈ g1 if and only if gπ(i)π(j) ∈ g2

Definition (subnetwork). Let g1 and g2 be networks and N1 and N2 be their set of agents, g1 is a

subnetwork of g2 if N1 ⊂ N2 and g1 ⊂ g2

Definition (Connected network). a network g is connected if an ij-path exists for any i, j ∈ N.

Definition (component). Let g1 be a subnetwork of g2 and N1 and N2 be their set of agents, g1 is a

component of g2 if

1. g1 is connected

2. there exists no ij-path in g2 if i ∈ N1 and j ∈ N2

The above definition reflects that a network can be fragmented, having different subnet-

works that are disconnected from each other.

Definition (Minimal Network). a network is minimal if every ij-path is unique.

With the introduction of these properties, the followings are the definitions of some network

architectures.

Definition (Line). A network g is a line if there exists a permutation of m agents j1, ..., jm such that

ḡ =
{

ḡj1,j2 , ḡj2,j3 , ..., ḡjm−1jm

}

. Moreover, if there are m agents in a line, we say that its length is m − 1.

Definition (Empty network). A network is an empty network if every agent in it has no link.

Definition (Star). A network g is a star if

7



1. there exists exactly one agent ic that has a link with every other agent;

2. for any two agents that are not ic, there is no link between them.

Moreover, if ic accesses everyone, we say that the star is a center-sponsored star.

2.3 Nash Networks

Given a network g, if we remove all the links that i establishes, the network that remains is

a collection of the strategies of all other agents except i. Denote this remaining network by g−i.

We write g = gi ⊕ g−i to emphasize that a network g can be formed by the union of g−i and gi.

We use these notations to introduce to following definitions.

Definition (Best response). A strategy gi is a best response of i to g−i if

U
(

i; gi ⊕ g−i

)

≥ U
(

i; g′i ⊕ g−i

)

, for all g′i ∈ Gi

Definition (Nash network). A network g is a Nash network if gi is a best response to g−i for every

agent i ∈ N.

We remark the following relation between Nash Network and its architecture. If a network

is Nash, so are all networks that have the same architecture. This relation is used tostate the

results in the next section.

3 Main Results

Our goal is to identify Nash Networks and their properties. For σ2 ≤ 1
2 , Nash network

exists regardless to the cost range and number of players. Proposition 1 also provides a full

equilibrium characterziation. In contrast, for σ2 > 1
2 , Nash Network always does not exist. We

provide an example that shows the nonexistence and study some properties of minimal Nash

network in Proposition 2, 3 and 4.

Proposition 1. 1. If σ2 ≤ 1
2 , Nash network exists for any cost c and number of players n. Moreover,

any component in it is one of the following three types.

• a three-agent line whose central agent does not establish a link, ie., network (a) in Figure 3

• a two-agent line, ie., network (b) in Figure 3

• an isolated agent, ie., network (c) in Figure 3

8



(a) (b) (c)

Figure 3: Three types of components in a Nash network, given that σ2 ≤ 1
2

2. Using the network (a), (b) and (c) in Figure 3, the set of nash networks for each set of parameters

c and σ2 is given below.

• If c > 1 and σ2 = 1
2 , then the empty network is the unique Nash.

• If c ≤ 1 and σ2 = 1
2 , then the set of Nash networks consists of networks that have the following

architectures:

– the empty network

– the network with the following properties: (1) each component is either (a) or (b) or (c); and

(2) at most one component is (c)

• If c > 1 and σ2 < 1
2 , then the empty network is the unique Nash.

• If c = 1 and σ2 < 1
2 , then the set of Nash networks consists of all networks that have the following

architectures:

– the empty network

– the network with the following properties: (1) each component is either (b) or (c); and (2) at

most one component is (c)

• If 2σ2 < c < 1, then the set of Nash networks consists of the networks whose architecture has the

following properties: (1) each component is either (b) or (c); and (2) at most one component is (c)

• If c ≤ 2σ2 < 1, then the set of Nash networks consists of the networks that have the following

architectures:

– at most one component is (c), the rest of the components are (b)

– each component is (a) or (b)

A noticable feature of Nash Networks in Proposition 1 is that none of them are connected,

given that n > 3. This is a sharp contrast to Proposition 5.3 and its generalization by Jaegher

and Kamphorst (2008) that show that every Nash Networks is connected. What drives this

contrast? The result in BG relies on the following intuition: if i believes that the component he is

accessing provides more benefit than another component that j is accessing, then j’s deviation

is to leave his component and enter the component of i. By this deviation, j receives at least

as much as the payoff of i. However, under the concave decreasing decay assumption, this

9



i

j

k

l

m

Figure 4: A nash network with five agents for c = 2σ2 < 1

reasoning is not valid. Whenever j enters the component of i, he is increasing the congestion

at the node being accessed. The congestion may cause the information flow to be very low.

Hence, there is no guarantee that his payoff will improve. The following example clarifies this

intuition by showing what happens when the constant decay assumption in BG is replaced by

our assumption.

Example 1. Consider the Nash network for c = 2σ2 < 1 in Figure 4. Suppose that a decay on each link

is a constant λ < 1 as in BG. k’s gain from accessing l is λ + λ2 while i’s gain from accessing j is λ.

Therefore, i is better off imitating the strategy of k by accessing l instead of j. This imitating deviation of

i gives him the gain of λ + 2λ2 and rules out this network to be Nash.

We now replace the constant λ by our assumption that 2σ2 = c < 1 and show that the same imitating

strategy is no longer a positive deviation, causing this network to remain a candidate for Nash network.

Define the gain from accessing an agent as the total information value that arrives from that agent. As

opposed to the above case, the gain of i from accessing j, σ (j) = 1, is higher than the gain of k from

accessing l, 2σ2 = σ2 (l) + σ2 (l) σ1 (m). Moreover, because σ3 = 0, i’s payoff becomes 0 if he imitates the

strategy of k by accessing l. Therefore, such imitating strategy does not improve i’s payoff. In addition,

neither accessing k or m will improve his payoff because σ2 < 1
2 .

On the other hand, can k improve his payoff by imitating the strategy of i? If k accesses j instead

of l, his gain is 2σ2 = σ2 (j) + σ2 (j) σ1 (i). Because the gain from accessing j is equal to the gain from

accessing l, this imitating strategy is not a positive deviation of k.

Contrary to Proposition 1, if σ2 > 1
2 , Nash network does not exist for some parameters c and

n. An example which shows the nonexistence is given below. While the proof is relegated to

the appendix, an intution is hereby provided. The non-existence stems from that σ (i; g) of any

agent i changes in a discrete way. In other words, whenever an agent deviates from his strategy,

the productivities of involved agents decrease or increase discretely. Hence, for some σ, c and n,

it may turn out that there exists an agent who finds a positive deviation in any given network.

Example 2. Given that 1√
2
> σ2 > 1

2 , σ3 = 0, and c = 0.98, no network with 5 agents is Nash.

The second proposition below gives a noticable property that two single-neighbor agents

never access the same center-like agent in a minimal Nash network. This result is driven by

congestion avoidance: a single-neighbor agent avoids the center and access another single-

neighbor agent instead. Such avoidance is profitable because σ2 > 1
2 guarantees a sufficiently

10



low congestion at the agent being accessed. The consequence is that every link between a

single-neighbor agent and the center is sponsored by the center in equilibrium. Formally, call a

single-neighbor agent, end node, the agent who is his neighbor parent, and an agent who has no

link isolated node. We use these terms to state Proposition 2.

Proposition 2. Given that σ2 > 1
2 and n > 3 7. In a minimal Nash network g, let j be an end node and

i be his parent,

1. if j accesses i, j is the only end node of i;

2. if i accesses j, i accesses all his end nodes. Morover, if he has more than one end node, then he

accesses all his neighbors, including ones that are not end nodes.

The same intuition above is also applied to prove Proposition 3. Informally, If there are two

centers, i and k, who access their end nodes, i will find that accessing an end node of k is more

profitable than accessing his own end node. The reason is that accessing his end node provides

him only one piece of information, while accessing an end node of k provide multiple pieces,

yet with a higher congestion. Such deviation becomes profitable if the higher connection at k is

not too high, which is guaranteed by σ2 > 1
2 .

Proposition 3. Given that σ2 > 1
2 , if g is a minimal Nash network, g has at most one component that

contains a parent who accesses all his neighbors.

The power of Proposition 2 and 3 is that they rule out many minimal networks to be Nash

regardless to σ, c and n. For example, a network that consists of two disconnected center-

sponsored stars cannot be Nash because one center will find a positive deviation by accessing

an end node of the other center. Figure 5 illustrates some networks that are ruled out.

As a result of Proposition 2, the only star that remains a candidate for Nash Network is the

center-sponsored star. This result differs from Proposition 5.3 in BG which shows that all kinds

of stars are Nash under some range of decay. Proposition 4 below provides a neccessary and

sufficient condition for a center-sponsored star to be Nash. This condition involves a restriction

on σ and n. Figure 6 gives an example of parameters that satisfie this restriction.

Proposition 4. Given that n > 3, let g be a star network

1. If g is not a center-sponsored star, g is not nash

7if n ≤ 3, this proposition does not apply. Every component of nash network is either a line or empty. The
proof is trivial and is omitted

11



(a) (b) (c)

(d) (e)

Figure 5: Networks that are ruled out to be Nash according to Propositon 2 and 3

Figure 6: Nash Network with n = 5, c = 0.5, σ5 = 0.9, σ4 = 0.969 σ3 = 0.9799 σ2 = 0.99 σ1 = 1

2. If g is a center-sponsored star, the following inequalities are neccessary and sufficient condtions for

g to be nash:

σn−1 − (n − 1) (σn−2 − σn−1) ≥ c ≥ (σ2)
2 − σn−1 − (1 − σ2) (1 + (n − 2) σn−1)

Beside center-sponsored star, line is also a network architecture that is Nash for some σ, c

and n. Figure 7 exemplifies two lines that are Nash.

(a) n = 6, c = 0.2, σ2 =
0.97, σ3 = 0.2, σ4 = σ5 = σ6 = 0

(b) n = 4, c = 0.3, σ2 = 0.9, σ3 = 0.5, σ4 = 0

Figure 7: Two lines that are Nash

4 Discussions

This section observes two features of Nash Networks in this model that differ from those

in BG. These features results from that the constant decay assumption of BG is replaced by

concave decreasing productivity. Intuitions and discussions on how these features are likely to

be exhibited in real-world settings are also provided.
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4.1 Network congestion may lead equilibrium networks to be disconnected

The first observation comes from that all Nash networks for σ2 ≤ 1
2 are disconnected (Propo-

sition 1). The intuition, which is made clear by Example 1, can be summarized as follows. While

establishing a link to an agent is a way to access a component, it also increases the congestion at

the agent being accessed. This congestion may cause much loss in the information transmitted

via the agent. When such congestion, or inefficieny in information transmission, is sufficiently

high, agent may be better off avoiding the congestion altogether and remaining disconnected

from the component.

How does this observation help understand real-world phenomena? Our model may serve

as a hypothesis that explains why empirical evidences find that real-world networks are often

disconnected 8. For example, if a society is considered as a network in which information is

exchanged among agents, it is likely that the society is fragmented into small communities if

agents find that avoiding connecting to each other is a way to reduce inefficiency in information

flow.

4.2 Connecting to a larger component does not imply a higher gain

Our second observation is that a smaller component may provide a higher gain to their

members than a larger one. The observation comes from that many nash networks in Proposi-

tion 1 consists of components whose size, or the number of agents, are not equal. Consider, for

example, the equilibrium network in Example 1. Observe that i chooses to access an isolated

agent j rather than someone in the larger component. If i accesses j, j’s productivity is σ1. If i

accesses someone in the larger component, the productivity of the accessed agent is at most σ2.

Hence, if σ2 is sufficiently lower than σ1, then entering a larger component gives i a lower gain.

This observation may explain why there are agents who prefer to reside in a smaller com-

munity rather than a larger one in a real-world social network. When link is a source of in-

efficiency, a smaller community that has less connections may provide a higher benefit to the

participating members such that they do not want to join a crowded community. In other

words, agents may face a tradeoff between quantity of information and quality of information

when network congestion is present. While a larger community may have more information,

the quality of information may be deterred if agents possess too many connections. A friend-

ship network among students may serve as an example of this hypothesis. Some students may

choose to maintain their friendships within a smaller group and avoid contacting the crowd

because they enjoy a stronger tie of friendship.

8For instance, Ennett and Bauman (2000) observes that a common feature of friendship networks is that there
are agents who are social isolate, disconnecting themselves from the principal component. R. Kumar and Tomkins
(2010) also finds that some online social networks contain isolated communities.
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5 Conclusion

This paper provides a stylized model with two key assumptions. First, link can be formed

without a mutual consent between agents. Second, link addition increases the congestion, or

more information loss, at the accessed agent and the agent who accesses. The model allows us

to see how an agent may avoid accessing other agents due to an increasing congestion. The two

key assumptions lead to equilibrium networks that are disconnected. Moreover, nonexistence

of equilibrium network in pure strategies arises under some parameters. These two features

are different from the results in the original setting of Bala and Goyal (2000) from which this

model is developed.
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A Appendix

This appendix covers all the proofs in this paper. We begin by introducing some concepts

and a lemma.

A.1 The Concepts of Marginal Cost and Marginal Revenue

Let us introduce two concepts that will be used to simplify the equilibrium analyses. Given

a network g, by identifying that an agent i has a profitable deviation by adding or destroying

just one link, we can show that g is not in equilibrium. Most of our analyses rest upon this

proving technique. Let g + ij = g ∪ gij and g − ij = g\gij be the networks corresponding to the

addition and deletion of gij respectively.

When i adds gij , this new link may give an entry to some new agents that are not i’s

neighbor in g. At the same time, via gij, i may find a new path through which he observes the

neighbors that pre-exist in g. For some neighbors, a new path may yield a higher payoff than

the optimal one that i uses when he is in g. Therefore, as g changes to g + ij, the optimal path to

reach some pre-existing neighbors may also change. We denote the set of such new agents and

the set of such pre-existing neighbors of i by Ni (g, g + ij) = {j ∈ N|j ∈ Ni (g + ij) ∧ j /∈ Ni (g)}
and Mi (g, g + ij) =

{

j ∈ Ni (g) |P̄ij (g) ∩ P̄ij (g + ij) = ∅
}

, where P̄ij (g) is defined as in section

2, respectively. The example below illustrates how Ni (g, g + ij) and Mi (g, g + ij) are identified.

Example 3. Consider Figure 8. Ni (g, g + ij) = ∅, because i finds no new neighbor in g + ij. Mi (g, g + ij) =

{j, 3}, because P̄ij (g) =
{

ḡi1, ḡ12, ḡ23, ḡ3j

}

but P̄ij (g + ij) =
{

ḡij

}

and P̄i3 (g) = {ḡi1, ḡ12, ḡ23} but

P̄ij (g + ij) =
{

ḡij, ḡj3

}

j321i
(a) Network g

j321i
(b) Network g + ij

Figure 8: Example 3

With these notations, we are ready to introduce the concept of marginal revenue, which sums

together the additional benefit of i when he adds gij to g

Definition (Marginal Revenue). Let Ni (g, g + ij) and Mi (g, g + ij) be defined as above, the marginal

revenue of i when adding gij to g is

MR
(

i; gij → g
)

= ∑
k∈Ni(g,g+ij)

V̄ik

(

g + ij
)

+ ∑
k∈Mi(g,g+ij)

(

Vik

(

g + ij
)

− Vik

(

g
))
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The first summation answers how much i gains from having entries to the new neighbors.

The second summation quantifies how much i gains from having new optimal paths in g + ij

as compared to the old one in g. Observe that Vik (g + ij) − Vik can be negative due to the

decreasing productivity of i. Hence, MR
(

i; gij → g
)

can be negative.

Example 4. In Figure 8, because Mi (g, g + ij) = {j, 3} and Ni (g, g + ij) = ∅, MR (g, g + ij) =
(

σ2 (i; g + ij) σ2 (j; g + ij)− σ1 (i; g) σ2 (1; g) σ2 (2; g) σ2 (3; g) σ1 (j; g)

)

+
(

σ2 (i; g + ij) σ2 (j; g + ij) σ2 (3; g + ij)−σ1 (i; g) σ2 (1; g) σ2 (2; g) σ2 (3; g)

)

=
(

σ2
2 − σ3

2

)

+
(

σ3
2 − σ3

2

)

We now introduce the concept of marginal cost. As the network changes from g to g + ij,

there are neighbors of i that he still uses the same optimal path to reach them. The set of these

neighbors is Ni (g) \Mi (g, g + ij). Inspite of the same optimal paths, the information’s value

that reach to i decreases due to the decreasing productivity of i that results from adding the

new link. The decreasing value, together with link establishment cost c, are the marginal cost

formalized below.

Definition (Marginal Cost). Let Mi (g, g + ij) be defined as above, the marginal cost of i from adding

gij to g is MC
(

i; gij → g
)

= c + ∑Ni(g)\M(g,g+ij)

(

V̄ij (g)−
(

V̄ij (g + ij)
))

Example 5. In Figure 8, because Mi (g, g + ij) = {j, 1} and Ni (g, g + ij) = ∅, MC
(

i; gij → g
)

=

(σ1 (i; g)−σ2 (i; g + ij) )+ (σ1 (i; g) σ2 (3; g)−σ2 (i; g + ij) σ2 (3; g + ij) )+ (σ1 (i; g) σ2 (3; g) σ2 (2; g)−
σ2 (i; g + ij) σ2 (3; g + ij) σ2 (2; g + ij) )

Remark. While MC is defined as above, the fact that i’s productivity decreases is not expressed ex-

plicitly in the definition. By simple algebraic rearrangement, it can be expressed as MC
(

i; gij → g
)

=
(

σµi(g) − σµi(g)+1

)

(

∑k∈Ni(g)\Mi(g,g+ij) V̄ik (g) · 1
σµi(g)

)

. One can think of V̄ik (g) · 1
σµi(g)

as the value

of information of k that arrives to i, without taking i’s own productivity into consideration. Hence,

this term remains the same, while the only change as g becomes g + ij, which is the productivity of i, is

expressed as σµi(g) − σµi+1(g).

To use the MR and MC in the equilibrium analysis, we finally needs to show that i wants to

deviate from the network g by adding gij if he finds that MR
(

i; gij → g
)

exceeds MC
(

i; gij → g
)

.

The following lemma serves this purpose.

Lemma 1. U (i; g + ij)− U (i; g) = MR
(

i; gij → g
)

− MC
(

i; gij → g
)

Proof. By the definition of Ni (g, g + ij) and Mi (g, g + ij), Ni (g + ij) = Ni (g) t Ni (g, g + ij) and

Ni (g) = (Ni (g) \Mi (g, g + ij)) t Mi (g, g + ij). Therefore, Ui (g + ij) = Ui (g) + K if and only if
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∑
k ∈Mi(g,g+ij)

V̄ik

(

g + ij
)

+ ∑
k ∈Ni(g)\Mi(g,g+ij)

V̄ik

(

g + ij
)

+ ∑
k∈Ni(g,g+ij)

V̄ik

(

g + ij
)

+ µd
i

(

g + ij
)

· c = ∑
k∈Mi(g,g+ij)

V̄ik

(

g
)

+ ∑
k∈Ni(g)\Mi(g,g+ij)

V̄ik

(

g
)

+ µd
i

(

g
)

· c + K

Rearranging the inequality,

∑
k ∈Mi(g,g+ij)

(

V̄ik

(

g + ij
)

− V̄ik

(

g
)

)

+ ∑
k ∈Ni(g,g+ij)

V̄ik

(

g + ij
)

= c + ∑
k∈Ni(g)\M(g,g+ij)

(

V̄ik

(

g
)

− V̄ik

(

g + ij
)

)

+ K

Observe that the left-hand side is MR
(

i; gij → g
)

and the right-hand side is MC
(

i; gij → g
)

+ K.

Therefore, U (i; g + ij)− U (i; g) = MR
(

i; gij → g
)

− MC
(

i; gij → g
)

Remark. While the above lemma shows whether i has a profitable deviation by adding gij to g, it can

also be used to show whether i has a profitable deviation by deleting gij in g. To do so, replace the term

MC
(

i; gij → g
)

and MR
(

i; gij → g
)

with MC
(

i; gij → (g − ij)
)

and MR
(

i; gij → (g − ij)
)

in the

above proof. This gives another version of the lemma: U (i; g)− U (i; g − ij) = MR
(

i; gij → g − ij
)

−
MC

(

i; gij → g − ij
)

.

A.2 Proofs of the propositions

Proof (Proof of Proposition 1). The strategy of this proof is to first eliminate all networks that have an

agent with a positive deviation, and then identify which of the non-eliminated networks are Nash given

c and σ2. For convenience, type A, B and C component in the proof refers to the network (a), (b) and (c)

in Figure 3.

Step 1: If a network g has an agent who has more than two links, g is not nash. Let this

agent be i. Observe that σ3 = σ4 = ... = 0 because σ2 ≤ 1
2 and σ is strictly concave. Therefore, i’s

productivity σ (i; g) = σµi(g) is 0 because he has more than two links. Because σ (i; g) = 0 and i is

on every ij-path, V
(

Pij; g
)

= ∏k∈N(Pij)
σ (k; g) = 0 for any j that is a neighbor of i. As a result, the

revenue of i, ∑j∈N V̄ij (g), is 0. Therefore, if i accesses some agent in this network, he will want to remove

it because the link establishment is costly but his revenue is 0. Moreover, if i is accessed by a neighbor j,

j will also want to remove the link for the same reason. Because of these deviations, g is not nash.

Step 2: For any network g that is not ruled out by Step 1, if it contains a component that

is not one of the three networks in Figure 3, it is not nash. Such component is either a cycle or a

line that is neither (a) nor (b) in Figure 3. In what follows, we show that there is an agent who wants to

deviate from such component.
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i = 1 j = n’2 n’-1
b

Figure 9: A cycle with n′ agents, enumerated from left to right.

Step 2.1: Suppose that this component is a cycle with n′ agents. Denote this cycle agents by gcy.

In gcy, consider an agent i that establishes at least one link gij. Observe that if i removes gij the cycle

becomes a line. Denote this line by gli. We will show that the payoff of i in gli is greater than his payoff

in gcy.

Consider the value of information that flows to i in gcy. Enumerate the agents in gcy according to

Figure 9. For any k, there are two ik-paths. One is by using the same path that i uses when he is in the

line, ie. when there is no gij. The other one is to retrieve the information of k via the new link gij. Let Vold
ik

and Vnew
ik denote the value of information from the two paths. Because every node in the cycle has produc-

tivity σ2, Vold
ik = (σ2)

k and Vnew
ik = (σ2)

n−k+2. Therefore, MR
(

i; gij → g − ij
)

is ∑
n
k> n+2

2 +2
V̄ik (gcy) =

∑
n
k> n+2

2
Vnew

ik because Vnew
ik > Vold

ik for n ≥ k > n+2
2 . We now turn to find MC

(

i; gij → g − ij
)

.

Because Vnew
ik ≤ Vold

ik for k ≤ n+2
2 , MC

(

i; gij → g − ij
)

= c + (1 − σ2)
(

1
σ2

) (

∑k≤ n+2
2

Vold
ik

)

. Hence,

MC
(

i; gij → g − ij
)

> MR
(

i; gij → g − ij
)

because σ2 ≤ 1
2 . Applying Lemma 1 to this inequality,

we conclude that i is strictly better off by deleting gij. Therefore, i has a positive deviation.

Step 2.2: Suppose that this component is a line network that is neither (a) nor (b) in Figure 3.

Denote this component by gline. Consider all agents that have exactly two links. Among them, there

exists at least one agent who establish one or two links. In what follows we aim to show that such agent

is strictly better off by deleting exactly one link, breaking the line into two disconnected lines.

We let this agent be i and a link that he establishes be gij. Without gij, i is disconnected from

the line that contains j, denote the component that contains j by gj and the other component, which

contains i, by gi. Suppose that there are n′ agents in gj, the total benefit from estaliblishing gij is

MR
(

i; gij → gline − ij
)

= σ2

(

i; gline
)

σ1

(

j; gline
)

= σ2 if n′ = 1 and MR
(

i; gij → gline − ij
)

=

∑
n′
k=1 V̄l,k = ∑

n′−1
k=1 σk

2 σ2

(

i; gline
)

+ σn′−1
2 σ2

(

i; gline
)

. In relation to MR
(

i; gij → gline − ij
)

, the total

cost for establishing the link is MC
(

i; gij → gline − ij
)

, which we now identify a lower bound. Beside

the cost c, i’s productivity drops from σ1 = 1 to σ2 if he establishes gij. Therefore, the lower bound

MC
(

i; gij → gline − ij
)

is MC = c + (σ1 − σ2) = c + (1 − σ2). Because σ2 ≤ 1
2 , MC > 1

2 but

MR
(

i; gij → gline − ij
)

≤ 1
2 . Therefore, MR

(

i; gij → gline − ij
)

< MC
(

i; gij → gline − ij
)

. Apply-

ing Lemma 1 to this inequality, we conclude that U
(

i; gline − ij
)

< U
(

i; gline
)

= U (i; g). Hence, i is

strictly better off by deleting gij.

Step 3: Equilibrium characterizations. By step 2, a nash network consists of components that is

either type A, B or C. Thus, this step’s goal is to shown exactly which combination of these three kinds

of components composes a Nash Network for a given c and σ2. To achieve this goal, it is neccessary to
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identify exactly which combination gives an existence of an agent who has a positive deviation and which

does not. Because checking all such deviations can be cumbersome, our strategy is the following. We first

identify all kinds of deviations that are never positive, regardless of c and σ2. This allows us to pin down

only some deviations that need to be checked by quantifying the payoff of the deviating agent.

First, choose any network whose each component is either type A, B or C. We will show that any

deviation such that the deviating agent has more than one link is never positive. Consider a deviation in

which the deviating agent has two links. Because all other agents in the network have at most two links,

the deviation makes him a part of a line or a cycle. If he is in a cycle, in step 2 we show that the agent’s

payoff is strictly higher if he removes the link and remain in a line. Similarly, if he is in a line, in step 2 we

show that his payoff is stricly higher if he removes the link, breaking the line into two disconnected ones.

Therefore, applying step 2, any deviation such that the deviating agent has two links is never positive.

Now consider, instead, a deviation such that the deviating agent has more than two links. In step 1, we

have shown that such deviation yields the zero revenue to himself because his productivity is 0 while he

has to pay for the link establishment cost. Therefore, any deviation such that the deviating agent has

more than one link is never positive.

we now further eliminate some combinations that are not Nash for some given parameters. For c < 1,

any combination that has more than one component that is type C is not nash. Type C component is an

isolated agent. Let the isolated agents be i and j. If i access j, his payoff is 1 + (1 − c). If i does not access

j, he remains isolated and his payoff is 1. Therefore, if c < 1 and there are more than one isolated agents

(two type C components), it is not nash because one isolated agent will deviate by accessing another.

Hence, there is at most one type C component in a Nash network if c < 1.

Using these results, we list all the networks that remain candidates for Nash Networks below. All of

them are combinations whose each component is type A, B or C

1. all components are C (only for c ≥ 1)

2. at least one A, at least one B, exactly one C

3. at least one A, at least one B, no C

4. all A, no B, exactly one C

5. all A, no B, no C

6. all B, no C

7. all B, exactly one C

We now list all possible deviations in these combinations. Exploiting the above result that a deviation

such that the deviating agent has more than one link is never positive, Figure 10, 11, 12 show all possible
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one-link deviations which orginate from an agent in type A, B and C component respectively. In Figure

10, 11, The first three deviations are such that the agent removes himself from the component and access

another component. The dotted line shows the link that is removed and the arrow-headed link shows the

decision to access another component. The last deviation is the deviation such that the agent removes

himself from the component and becomes isolated. In Figure 12, because type C component is an isolated

agent, there are three possible deviations - accessing type A, B and C component.

Finally, because a combination in the list is Nash if and only if there is no positive deviation, whether

the combination is nash depends on whether the existence of any deviation that gives a higher payoff than

the payoff from the no-deviating strategy, given c and σ2. To identify the existence, tables in Figure 10,

11, and 12 compare the payoff of the deviating agent when he does not deviate with the payoff when he

deviates. Therefore, for a given a set of parameters c and σ2, applying this table to identify whether each

combination in the above list is Nash gives us the set of Nash Networks, which completes the proof.

(a)

(b)

(c)

(d)

Deviation from-deviation payoff no-deviation payoff

(a) 2σ2
2 + σ2 + 1 − c 2σ2 + 1 − c

(b) 2σ2 + 1 − c 2σ2 + 1 − c
(c) 2 − c 2σ2 + 1 − c
(d) 1 2σ2 + 1 − c

Figure 10: Deviations in type A component

(a) (b)

(c)

(d)

Deviation from-deviation payoff no-deviation payoff
(a) 2σ2 + 1 − c 2 − c
(b) 2 − c 2 − c
(c) 2σ2

2 + σ2 + 1 − c 2 − c
(d) 1 2 − c

Figure 11: Deviations in type B component
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(a)

(b) (c)

Deviation from-deviation payoff no-deviation payoff
(a) 2σ2 + 1 − c 1
(b) 2σ2

2 + σ2 + 1 − c 1
(c) 2 − c 1

Figure 12: Deviations in type C component

Proof (Proof of Proposition 2). The proof is divided into two parts according to the two properties in

the proposition.

Part 1: If j accesses i, j is the only end node of i. We prove by the following contradiction. Suppose

there exists another end node k of i in a minimal network g, this end node has a postive deviation by

removing the link with i and establish a link with the end node j instead. Formally, let g′ be the network

with such deviation of k and gc be the component that k and j reside. Observe that k spends only one

unit of link establishment cost c both in g and g′. Therefore, to show that U (k; g) < U (k; g′), it suffices

to show that Rev (k; g) < Rev (k; g′) in what follows.

Consider Rev (k; g). We can decompose Rev (k; g) in the following way. While all the information

of every agent in the component gc flows to k via gik, we can partition all agents in gc in to three sets

and will decompose Rev (k; g) accordingly. Let N1, N2 and N3 be the three sets. Let N1 consists only

the agent j, N2 consists of all end nodes of i except j and k, and N3 consists of the rest of the agents

in gc except k. Moreover, let Vk

(

Np; g
)

and V̄k

(

Np; g′
)

, be the sum of V̄kl (k; g) and Vkl (k; g), where

l ∈
{

Np

}

. We express Vk (N1; g) and Vk (N2; g) as follows.

Vk

(

N1; g
)

= σ1

(

j
)

σµi(g)σ1 (k) (i)

Vk

(

N2; g
)

=
(

µi

(

g
)

− 3
)

σ1σµi(g)σ1 (k)

Therefore,

Rev
(

k; g
)

= σµi(g) +
(

µi

(

g
)

− 3
)

σµi(g) + Vk

(

N3; g
)

Similarly, we express Vk (N1; g′) and Vk (N2; g′) as follows.

Vk

(

N1; g′
)

= σ2

(

j
)

σ1 (k)

To express Vk (N2; g′), we use the fact that σ (i; g′) = σµi(g)−1 because k removes the link he has with i

in g.

Vk

(

N2; g′
)

= σ2

(

j
) (

µi

(

g
)

− 3
)

σ
(

i; g′
)

σ1 (k)

= σ2

(

j
) (

µi

(

g
)

− 3
)

σµi(g)−1σ1 (k)
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Therefore,

Rev
(

k; g′
)

= σ2 + σ2σµi(g)−1

(

µi

(

g
)

− 3
)

+ Vi

(

N3; g′
)

In the expression of Rev (k; g′) and Rev (k; g) above, the only terms left unexpressed are Vk (N3; g′)

and Vk (N3; g). Therefore, in order to check whether Rev (k; g) < Rev (k; g′) and finish the proof, we

need to find a relation between Vk (N3; g′) and Vk (N3; g). This relation is expressed below.

(1)Vk

(

N3; g′
)

= Vk

(

N3; g
) 1

σµi

(

g
)σµi(g)−1σ2

(

j
)

We now explain how the relation is derived. Consider how information of an agent in the set N3

flows to k in g and g′. The flows of information, in both networks, have to pass through i. The only two

differences in the flow, however, are the followings. While the information flows to i and finally reaches k

in g, it flows to i, then j and finally k in g′. Hence, the term σ2 (j; g′) apprears on the right hand side of

the expression. Moreover, the productivity of i in g is σµi(g) while it is σµi(g)−1 in g′ because k removes

his link that he establishes with i in g. This change in productivty of i appears as the term 1
σµi

(g)
σµi(g)−1.

By these two differences in the flow of information of agents in the set N3, we have the above relation.

Having found the above relation, to finish the proof it remains to show that Rev (k; g′) > Rev (k; g).

(2a)Rev
(

k; g′
)

= σ2 + σ2σµi(g)−1

(

µi

(

g
)

− 3
)

+ Vi

(

N3; g
) 1

σµi

(

g
)σµi(g)−1σ2

(2b)Rev
(

k; g
)

= σµi(g) +
(

µi

(

g
)

− 3
)

σµi(g) + Vi

(

N3; g
)

Therefore, Rev (k; g′) > Rev (k; g) if and only if

(2c)σ2 + σ2σ(µi(g)−1)
(

µi

(

g
)

− 3
)

+ Vi

(

N3; g
) 1

σµi

(

g
)σµi(g)−1σ2

> σµi(g) +
(

µi

(

g
)

− 3
)

σµi(g) + Vi

(

N3; g
)

Rearranging the inequality,

(2d)Vi

(

N3; g
)

(

1

σµi

(

g
)σµi(g)−1σ2 − 1

)

+
(

σ2 − σµi(g)

)

+
(

µi

(

g
)

− 3
)

(

σµi(g)−1σ2 − σµi(g)

)

> 0

Observe that the second term on the left-hand side is positive. Moreover, The first and the third are

also postive because
σµi(g)−1

σµi(g)
> σ2

σ1
due to the assumption that σ is concave. Because all the terms on the

left-hand side is positive, the inequality above is valid and Rev (k; g′) > Rev (k; g).
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Part 2: If i accesses j, i accesses all his end nodes. Morover, if he has more than one end node, he

accesses all his neighbors, including ones that are not end nodes.

For the first part, that i accesses all his end nodes, the proof is identical to the proof of Part 1. That is,

if k is an end node that accesses i in g, k has a positive deviation by removing the link with i and accesses

j instead.

We now consider the second part, that if he has more than one end node, he accesses all his neighbors.

The proof follows the same strategy as the proof of Part 1. Formally, let o be a neighbor that is not an end

node of i. Suppose, by contradiction, that o accesses i in the network g. Our goal is to show that o has

a positive deviation by deleting the link with i and accesses j. Let g′ be the network with such deviation

of o. As with the proof of Part 1, by Lemma 1 it suffices to show that Rev (o; g) < Rev (o; g′) in what

follows.

Let N1 be the set of all agents, except o and j, in the component that o belongs. Let Vo (N1; g) =

∑p∈N1
V̄op (g) and Vo (N1; g′) = ∑p∈N1

V̄op (g′). We express Rev (o; g′) and Rev (o; g) below.

Rev
(

o; g
)

= σ1

(

j
)

σµi(g) (i) σ
(

o; g
)

+ Vo

(

N1; g
)

+ σ
(

o; g
)

Rev
(

o; g′
)

= σ2

(

j
)

σµi(g)−1 (i) σ
(

o; g′
)

+ Vo

(

N1; g′
)

+ σ
(

o; g
)

, where that σ (o; g) = σ (o; g′) because o deviates from g to g′ by accessing j instead of i.

Hence, to show that Rev (o; g) < Rev (o; g′) , it remains to find a relation between Vo (N1; g′) and

Vo (N1; g). This relation is expressed below using the same reasoning for the Equation 1 of Part 1.

Vo

(

N1; g′
)

= Vo

(

N1; g
) 1

σµi

(

g
)σµi(g)−1σ2

(

j
)

Having found this relation, we apply a calculation similar to those in the equations 2 to show that

Rev (o; g) < Rev (o; g′), which finishes the proof.

Proof (Proof of Proposition 3). We prove by contradiction. Let g′ and g′′ be components that contain

a parent who supports all his neighbors. Let i and k be such parents in g′ and g′′ respectively. Let j and

l be end nodes of i and k. Our proof aims to show that i has an incentive to remove the link with j and

accesses l instead. Our proof is composed of three cases: (1) k has only one neighbor, (2) k has exactly

two neighbors, (3) k has more than two neighbors.

Case 1 Let g = gi ⊕ g−i. We introduce another strategy of i, g̃i =
{

gi\
{

gij

}}

∪ {gil}, which is gi

with the only modification that i accesses l instead of j. Let g̃ = g̃i ⊕ g−i. With these notations, in what

follows we show that gi is not a best response of i to g−i because Ui (g̃i ⊕ g−i) > Ui (gi ⊕ g−i).
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To show this inequality, by lemma 1, it suffices to show that MR (i; gil → (g − ij)) >

MR
(

i; gij → (g − ij)
)

. This is because

MC
((

g − ij
)

+ il
)

= MC
((

g − ij
)

+ ij
)

= c +
(

σµi(g−ij) − σµi(g−ij)+1

)



1 + ∑
q∈Ni(g′−ij)\i

V̄iq

(

g′ − ij
) 1

σµi(g−ij)



 .

That is, since the margical cost of accessing l and j are equal given the network g− ij, we can compare

only the benefits that i obtains from accessing l and j. MR (i; gil → (g − ij)) and MR
(

i; gij → (g − ij)
)

are expressed below.

MR
(

i; gij →
(

g − ij
))

= σ
(

i; g
)

σ1

(

j; g
)

= σ
(

i; g
)

MR
(

i; gil →
(

g − ij
))

= σ
(

i;
(

g − ij
)

+ il
)

σ2

(

l;
(

g − ij
)

+ il
)

+ σ
(

i;
(

g − ij
)

+ il
)

σ2

(

l;
(

g − ij
)

+ il
)

σ1

(

k;
(

g − ij
)

+ il
)

= σ
(

i;
(

g − ij
)

+ il
)

(2 · σ2)

Because σ (i; g) = σ (i; (g − ij) + il), MR (i; gil → (g − ij)) > MR
(

i; gij → (g − ij)
)

Case 2 Let m be a neighbor of k and m 6= l. As in case 1, MC (i; gil → (g − ij)) = MC
(

i; gij → (g − ij)
)

,

MR
(

i; gij → (g − ij)
)

= σ (i; g) σ1 (i; g). Therefore, it remains to quantify MR (i; gil → (g − ij)) and

verify that MR (i; gil → (g − ij)) > MR
(

i; gij → (g − ij)
)

.

We now quantify a lower bound of MR (i; gil → (g − ij)). Consider the decision of i to access l

when he faces g − ij. In g − ij, i is not in component g′′ but l is. Therefore, as he accesses l, he uses l to

retrieve information of every agent in g′′. Hence, MR (i; gil → (g − ij)) can be expressed as

MR (i; gil → (g − ij)) =

σ (i; g̃) σ (l; g̃) + σ (i; g̃) ∑
q∈g′′;q 6=l

V̄lq (g̃) (3)

The first term is the value of l’s own information that arrives to i. The second term is the value of

information of every node in g′′, apart from l, that travels to i. Observe that the term ∑q∈g′′;q 6=l V̄lq (g̃) is

∑q∈g′′;q 6=l V
(

P̄lq (g̃)
)

, where P̄lq is an optimal lq-path, which is unique because g̃ is minimally connected.

Consider how information flows in P̄lq (g̃) for q ∈ g′′. Information of any q flows to k, then k passes to l

via the link gkl . Therefore, the term ∑q∈g′′;q 6=l V̄lq (g̃) can be expressed as
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∑
q∈g′′;q 6=l

V̄lq (g̃) =

σ (l; g̃) + σ (l; g̃) ∑
q∈g′′;q 6=l

V̄kq (g̃) (4)

Therefore, to quantify a lower bound of MR (i; gil → (g − ij)), we turn to find a lower bound of

∑q∈g′′;q 6=l V̄kq (g̃). Observe that V̄kq (g̃) = V̄kq (g) because the addition of link gil changes only the

relation between i and l, and l is not in any optimal kq-path. To identify V̄kq (g), consider the payoff of k

in g that is expressed below,

(5a)
Uk

(

g
)

= Rev
(

k; g
)

− µ̄k

(

g
)

· c

= ∑
q∈g

V̄kq

(

g
)

− µ̄k

(

g
)

· c

Because k has a link only with those in g′′, substitute g with g′′,

(5b)

Uk

(

g
)

= ∑
q∈g′′

V̄kq

(

g′′
)

− µ̄k

(

g′′
)

· c

= ∑
q∈g′′;q 6=l

V̄kq

(

g
)

+ σ
(

l; g′′
)

σ
(

k; g′′
)

− µ̄k

(

g′′
)

· c

= ∑
q∈g′′;q 6=l,k

V̄kq

(

g
)

+ σ
(

l; g′′
)

σ
(

k; g′′
)

+ σ
(

k; g′′
)

− µ̄k

(

g′′
)

· c

Because we assume that µk (g′′) = 2, k establishes exactly two links with l and m. Therefore, for any

agent q 6= k, l, k receives q’s information via gkm. The total value of information that flows via gkm is

∑q∈g′′;q 6=l V̄kq (g), which appears in the last line above. Moreover, this strategy gk is k’s best response to

gk. That he maintains exactly two links, together with that this strategy is his best response, are used to

to identify the following lower bound of ∑q∈g′′;q 6=l V̄kq (g).

(6a)Uk

(

g
)

> Uk

(

g − km
)

(6b)Uk

((

g − km
)

+ km
)

> Uk

(

g − km
)

(6c)MR
(

k; gkm →
(

g − km
))

> MC
(

k; gkm

→
(

g − km
))

(6d)∑
q ∈g′′;q 6=l,k

V̄kq

(

g
)

> c + (σ1 − σ2)
(

σ1

(

k; g − km
)

+ σ1

(

k; g − km
)

σ1

(

l; g − km
))

(6e)∑
q ∈g′′;q 6=l,k

V̄kq

(

g
)

> c + (1 − σ2) (2)
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Thus, we have found the lower bound of ∑q∈g′′;q 6=l,k V̄kq (g) in the last line of the above expression.

To finish the proof, we use it to show that MR (i; gil → (g − ij)) > MC
(

i; gij → (g − ij)
)

MR (i; gil → (g − ij)) > MR
(

i; gij → (g − ij)
)

(7)

if and only if (8)

σ (i; g̃) σ (l; g̃) + σ (i; g̃) ∑
q∈g′′;q 6=l

V̄lq (g̃) > σ (i; g) σ (j; g) (9)

Because σ (i; g̃) = σ (i; g) , and σ (j; g) = 1

σ (l; g̃) + ∑
q∈g′′;q 6=l

V̄lq (g̃) > 1 (10)

We now show that the last expression above is valid.

σ (l; g̃) + ∑
q∈g′′;q 6=l

V̄lq (g̃) > 1 (11)

σ (l; g̃) + σ (l; g̃) σ (k; g̃) + σ (l; g̃) ∑
q∈g′′;q 6=l,k

V̄kq (g̃) > 1 (12)

σ2 + σ2σ2 + σ2σ2 ∑
q∈g′′;q 6=l,k

V̄kq (g̃) > 1 (13)

The last inequality is satisfied because σ2 > 1
2 and that ∑q∈g′′;q 6=l,k V̄kq (g) = ∑q∈g′′;q 6=l,k V̄kq (g̃) >

c + (1 − σ2) (2). Therefore, MR (i; gil → (g − ij)) > MR
(

j; gij → (g − ij)
)

case 3 The proof follows the same analogy as that of Case 2. The only difference is that the term

∑q∈g′′;q 6=l,k V̄kq (g) in inequality 6e is changed because µ̄k (g) = µk (g) > 2. Despite this change, in

what follows we show that inequality 6e, ∑q∈g′′;q 6=l,k V̄kq (g) > c + (1 − σ2), remains valid so that the

rest of the inequalities in the proof of Case 2 are still satisfied. In what follows, parent k is assumed to

have at most one neighbor m that is not an end node.

We provide the proof that guarantees the existence of such parent in any minimally connected net-

work g before proceeding. Suppose, by contradiction, that each parent has at least two neighbors that

are not an end node. Remove all end nodes in the network and all links with them. We have a modified

network ĝ. Observe that ĝ is minimally connected because g is minimally connected. Observe also that

ĝ has no end node because each node in it has at least two links. However, if there is no end node, ĝ is not
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minimally connected 9. A contradiction.

Because m is the only neighbor that is not an end node of k, k observes any non-neighbor q in g′′ via

the link gkm. Formally, let Nkm be the set of all such agents and Nc
km = {q ∈ g′|q /∈ Nkm ∧ q 6= k, l}. We

can express ∑q∈g′′;q 6=l,k V̄kq (g) as

∑
q∈g′′;q 6=l,k

V̄kq (g) = ∑
q∈Nkm

V̄kq (g) + ∑
q∈Nc

km

V̄kq (g) (14)

We now show that ∑q∈Nkm
V̄kq (g) > c + (1 − σ2) (2) to finish the proof. Because ∑q∈Nkm

V̄kq (g)

is exactly MR (k; gkm → (g − km)) and that k’s strategy to maintain the links with all his neighbors is

his best response in g, it follows that

MR (k; gkm → (g − km)) > MC (k; gkm → (g − km)) (15)

∑
q∈Nkm

V̄kq (g) > c +
(

σµk(g) − σµk(g)+1

)

(1 + (µk (g)− 2)) (16)

Moreover,

c +
(

σµk(g) − σµk(g)+1

)

(1 + (µk (g)− 2)) > c + (1 − σ2) (2) (17)

The last inequality is satisfied because µk (g) ≥ 3 and
(

σµk(g) − σµk(g)+1

)

> (σ1 − σ2) due to the

concavity of σ, we conclude that ∑q∈Nkm
V̄kq (g) > c + (1 − σ2) (2).

Proof (Proof of Proposition 4). The first part is a corollary of the second proposition. For the second

part, let i be the center who estaliblishes all the links and j be a neighbor of i and g∗ be a center-sponsored

star. Our proof consists of two parts. The first one shows that the inequality on the left is a neccessary

and sufficient condition for i to maintain all his links in g. The second one shows that the inequality on

the right is a neccessary and sufficient condition for j to sponsors no link in g. Both parts rely on the

strict concavity of σ.

9any minimal non-empty network has at least one end node. The proof is as follows. Suppose not. Let every
node has at least two links but the network remains minimal. Choose any p and q that are connected. Because q is
has at least two links, q is connected to q′ who is not p, otherwise the network is not minimal. Moreover, q′ also is
connected to q′′ who is neither q′ nor p nor q for the same reason. This induction repetes infinitely because every
node has at least two links. It follows that this network has infinite nodes. A contradiction.
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Part 1: The neccessary and sufficient condition for i to maintain all his links in g∗ is σn−1 −
(n − 1) (σn−2 − σn−1) ≥ c. We first show the neccessary condition. If i’s best response is to maintain

all his links, then he does not want to deviate from g∗ by deleting one link, i.e., Ui (g∗)−Ui (g
∗ − ij) ≥ 0

or MR
(

i; gij → (g∗ − ij)
)

− MC
(

i; gij → (g∗ − ij)
)

≥ 0 by Lemma 1. Because MR
(

i; gij → (g∗ − ij)
)

=

σn (i) σ1 (j) and MC
(

i; gij → (g∗ − ij)
)

= c + (σn−2 − σn−1) (n − 1), σn−1− (n − 1) (σn−2 − σn−1) >

c is the neccessary condition.

To show the sufficient condition, our goal is to show that if the sufficient condition σn−1 =

MR
(

i; gij → (g∗ − ij)
)

≥ c + (n − 1) (σn−2 − σn−1) = MC
(

i; gij → g∗
)

holds, i’s best response

to g∗−i is to sponsor n − 1 links to all agents. Let gk = g∗−i ∪
{

gi,j1 , gi,j2 , ..., gi,jk

}

be a situation in

which i responses g∗−i by sponsoring k links. To finish the proof, we now show that Ui

(

g∗ = gn−1
)

≥
Ui

(

gn−2
)

≥ . . . ≥ Ui

(

g∗−i

)

, given the sufficient condition.

By lemma 1, this is equivalent to prove that MR
(

i; gik → gk−1
)

≥ MC
(

i; gik → gk−1
)

for all k.

Observe that MR
(

i; gik → gk−1
)

= σk (i) σ1 and MC
(

i; gik → gk−1
)

= c + (σk − σk−1) (1 + (k − 1)).

Moreover, MR
(

i; gik → gk−1
)

is strictly decreasing in k while MC
(

i; gik → gk−1
)

is strictly increas-

ing in k because σk < σk−1 and (σk − σk−1) > (σk−1 − σk−2) due to the strict concavity of σ.

Therefore, if MR
(

i; gij → (g − ij)
)

≥ MC
(

i; gij → (g − ij)
)

, then MR
(

i; gik →
(

gk−1
))

= σk ≥
MR

(

i; gin−1 →
(

gn−2
))

≥ MC
(

i; gin−1 →
(

gn−2
))

≥ MC
(

i; gik →
(

gk−1
))

; ∀k ≤ n − 2. Hence,

Ui

(

g∗ = gn−1
)

≥ Ui

(

gn−2
)

≥ . . . > Ui

(

g∗−i

)

.

Part 2: The neccessary and sufficient condition for j to maintain all his links in g∗ is c ≥
(σ2)

2 −σn−1− (1 − σ2) (1 + (n − 2) σn−1). Both the neccessary and sufficient condition will be proved

using the analogy of Part 1. The only difference is that this inequality motivates j to maintain no link,

while c ≤ σn−1 − (n − 1) (σn−2 − σn−1) motivates i to maintain all the links.

For the neccessary condition, let j′ 6= j be a neighbor of i. We will show that the inequality that causes

j to add no link to j′ is exactly c ≥ (σ2)
2 − σn−1 − (1 − σ2) (1 + (n − 2) σn−1), making this inequality

a neccessary condition. By Lemma 1, Ui (g∗ + jj′)− Ui (g∗) ≤ 0 if and only if MR
(

j; gjj′ → g∗
)

≤
MC

(

j; gjj′ → g∗
)

. Observe that MR
(

j; gjj′ → g∗
)

= σ2 (j; g∗ + jj′) σ2 (j′; g∗ + jj′)− σn−1 (i; g∗)

σ1 (i; g∗ + jj′) because j benefits from obtaining the information of j′ via the new link instead of obtaining

it indirectly via i. Moreover, MC
(

j; gjj′ → g∗
)

= c + (σ1 (i; g∗)− σ2 (i; g∗ + jj′)) (1 + σn−1 (n − 2)),

where the term σn−1 (n − 2) is what j receives via i except the information of j′. Therefore, MR
(

j; gjj′ → g∗
)

− MC
(

j; gjj′ → g∗
)

= (n − 1) (σn−2 − σn−1) + c − σn−1 ≤ 0 is the neccessary condition.

Next, let us consider the sufficient condition. In g∗, j has to access all the nodes via i. Thus, his devi-

ation is to add some links with other neighbors in order that he can reach them directly. We will find that

such deviation is never profitable if the sufficient condition holds. Let gm = g∗ ∪ gj,j1 , gj,j2 , ..., gj,jm ; n −
2 ≥ m ≥ 1 be a situation in which j adds m links to the nodes that are not i. Now consider the following

four terms
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• MR
(

j; gjm → gm
)

= σ2σm+1 − σn−1σm

• MR
(

j; gjj′ → g∗
)

= σ2 − σn−1

• MC
(

j; gjm → gm
)

= (σm − σm+1) (1 + σn−1 + σn−1 (n − 3 − m) + σ2 · m)

• MC
(

j; gjj′ → g∗
)

= (σ1 − σ2) (1 + σn−1 + σn−1 (n − 3))

Because σm < σm−1 and (σ1 − σ2) < (σm − σm+1), MR
(

j; gjj′ → g∗
)

> MR
(

j; gjm → gm
)

and MC
(

j; gjm → gm
)

> MC
(

j; gjj′ → g∗
)

for all m. Therefore, the sufficient condition, which is

MR
(

j; gjj′ → g∗
)

≤ MC
(

j; gjj′ → g∗
)

, implies that MR
(

j; gjm → gm
)

< MR
(

j; gjj′ → g∗
)

<

MC
(

j; gjj′ → g∗
)

< MC
(

j; gjm → gm
)

for all m. By lemma 1, these inequalities imply that Uj (g
∗) ≥

Uj

(

g∗ + jj′ = g1
)

> Uj

(

g2
)

> · · · > Uj

(

gn−2
)

. Therefore, j’s best response to g∗i is to maintain no

link.

A.3 Proof of Example 2

Proof (Proof of Example 2). Any network that has a node with three or more neighbors is not nash

because σ3 = 0. Therefore, onwards we consider only networks whose every node has at most two

neighbors.

The first kind of networks we eliminate as candidates for nash networks is any network that contains

a component that is a cycle of less than 5 players. Let gij be a link in such cycle. If i deletes gij, the cycle

component becomes a line. Because MR
(

i; gij → (g − ij)
)

< 0 for any a cycle of less than 5 players, i’s

payoff in the line is higher than his payoff in the cycle. Therefore, he has an incentive to destroy gij.

Next, among the networks that remain to be considered, we partition them into eight sets of networks

according to the following criterion. For g 6= g′, ḡ = ḡ′ if and only if they belong to the same group.

Figure 13 depicts all of them. Except group (a), positive deviation in each group can be easily identified.

Table 1 summarizes the deviations.

Finally, for the first set, we list all networks in this set in Figure 14 and point out a positive deviation

in each of them in 2
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edcba
(a)

edcba
(b)

edcba
(c)

edcba
(d)

edcba
(e)

edcba
(f)

edcba
(g)

edcba
(h)

Figure 13: We divide networks into 8 groups according to the following criterion. ḡ = ḡ′ if and
only if they belong to the same group.

Network Deviating Agent Deviation
(b) e access d
(c) a (b) destroy gab (gba) and make gac (gbc)

(d) e access d
(e) e access d
(f) e access d
(g) e (a) destroy gea (gae)
(h) e access d

Table 1: Positive deviations found in each group of networks in 13

Network Deviating Agent Deviation
(a) d destroy gde

(b) c destroy gcd

(c) c destroy gde

(d) d destroy gde

(e) d destroy gde

(f) d destroy gde

(g) d destroy gde

(h) b destroy gbc

(i) b destroy gbc

(j) d destroy gde

(k) b destroy gbc

(l) c destroy gcb

(m) b destroy gba

(n) d destroy gdc

(o) b destroy gba

(p) a destroy gba

Table 2: Positive deviation found in each network in group (a)
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Figure 14: All possible 16 networks in group (a)
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