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Abstract

This paper proposes an infinite hidden Markov model (iHMM) to detect, date stamp,

and estimate speculative bubbles. Three features make this new approach attractive to

practitioners. First, the iHMM is capable of capturing the nonlinear dynamics of different

types of bubble behaviors as it allows an infinite number of regimes. Second, the imple-

mentation of this procedure is straightforward as the detection, dating, and estimation of

bubbles are done simultaneously in a coherent Bayesian framework. Third, the iHMM, by

assuming hierarchical structures, is parsimonious and superior in out-of-sample forecast.

Two empirical applications are presented: one to the Argentinian money base, exchange

rate, and consumer price from January 1983 to November 1989; and the other to the U.S.

oil price from April 1983 to December 2010. We find prominent results, which have not

been discovered by the existing finite hidden Markov model. Model comparison shows that

the iHMM is strongly supported by the predictive likelihood.
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1 Introduction

Bubbles, which are recognized as germs of economic and financial instability, have drawn

considerable attention over the past several decades. Nevertheless, a general agreement on

specific data generating processes for bubbles has not yet been reached. Evans (1991), for

example, recommends a periodically collapsing explosive process for bubbles. The explosive

behavior of bubbles prevails throughout the sample period, however faces a probability of

collapsing (to a non-zero value) when it exceeds a certain threshold. If the bubble survives,

it expands at a rate faster than the previous stage.1 In contrast, Phillips et al. (2011b,

PWY hereafter) propose a locally explosive bubble process in which the explosive behavior is

a temporary phenomenon. Namely, asset prices transit from a unit root regime to a mildly

explosive regime when bubbles originate and slide back to the level before origination (with a

small perturbation) upon collapsing.2

This paper applies an infinite hidden Markov model (iHMM) to reconcile existing data

generating processes within a unified and coherent Bayesian framework. The iHMM is generic

to bubble dynamics, since current literature assumes that the data dynamics in the presence of

bubbles are associated with regime changes. Heuristically, Figure 1b illustrates the periodically

collapsing bubble process of Evans (1991), and Figure 1c shows the locally explosive bubble

behavior of PWY.

This new approach is attractive to practitioners from three perspectives. First, in contrast

to the aforementioned data generating processes, where they assume a fixed number of regimes,

the iHMM is approximated by truncation with a finite but large state dimension in estimation.

The number of regimes of the iHMM is then treated as a parameter and estimated endogenously.

The flexibility of the iHMM allows it to capture not only the the existing nonlinear bubble

dynamics in Figure 1a-1c, but also some much richer dynamics with multiple and heterogeneous

bubbles in Figure 1d.3

1Charemza and Deadman (1995) propose a stochastic explosive bubble process based on the periodically
collapsing process of Evans (1991).

2Phillips et al. (2011b) modify the locally explosive process by replacing the one-period bubble collapsing
process with a stationary mean-reverting process.

3Phillips et al. (2011a) argues that multiple bubbles are an inherent feature of a long-span economic or
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Figure 1: Illustration of different data generating processes of bubbles

The second reason this new approach is attractive to practitioners is that the iHMM, es-

timated in the Bayesian framework, can serve as an easy and coherent dating algorithm for

bubbles. One of the prevailing approaches for date stamping bubbles4 is the Markov-switching

Augmented Dickey-Fuller (MSADF) test proposed by Hall et al. (1999, HPS hereafter). The

MSADF test requires an assumption or test for state dimension before estimating the model.

However, to the best of our knowledge, the performance of testing procedures for the state

dimension of a Markov-switching model which involves nonstationary (especially explosive)

behavior has not yet been investigated. A subjective or an inaccurate selection of the state di-

mension may cause significant bias in parameter estimation and regime classification. Moreover,

financial price series.
4Another prevailing approach is the sup type unit root test of Phillips et al. (2011c) and Phillips et al. (2011a).
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the bootstrapping procedure embedded in the MSADF test is computationally burdensome, as

Psaradakis et al. (2001) pointed out. Moreover, the asymptotic correctness of such a bootstrap-

ping procedure has not yet been established and is far from obvious. In contrast to existing

frequentists’ approaches, the Bayesian methodology allows us to draw inferences with a small

sample size. The number of regimes and other model parameters are estimated simultaneously

using Markov Chain Monte Carlo methods. The dating algorithm is then built on the posterior

distributions of the iHMM’s parameters. The implementation of this algorithm is much less

computationally demanding than the HPS.

Lastly, our approach is attractive to practitioners as it is less subjective than the iHMM

of Teh et al. (2006) and Fox et al. (2011) by using two parallel hierarchical structures for the

model parameters. Geweke and Jiang (2011) emphasize the importance of the prior elicitation

for regime change models. One prominent approach to dealing with this problem is by using

hierarchical structures, as in Pesaran et al. (2006) (among many others). It estimates the prior

for the parameters which characterize each regime instead of assuming them as fixed. This

methodology produces results that are more robust than the prior choice from an empirical

point of view. It is also very convenient from the computational perspective, since regime

switching may be practically infeasible with some wild prior. The hierarchical structure will

shrink it to a reasonable one, hence facilitating the mixing of the Markov chain.

The first application of the iHMM is to the money base, exchange rate, and consumer price

in Argentina from January 1983 to November 1989 as in HPS. It is designed to investigate if

any new evidence will show up after we extend the finite hidden Markov model to the infinite

dimension. The two-regime Markov switching model of HPS (MS2 thereafter) is estimated in

the Bayesian framework as a benchmark.

First, the iHMM and MS2 have the same results for the money base, which resemble

the locally explosive behavior of PWY. Second, the iHMM implies that the exchange rate’s

dynamic is similar to to the periodically collapsing process of Evans (1991), while the MS2

finds no sign of bubble collapse. Moreover, the iHMM finds evidence of bubble existence in

the consumer price throughout the whole sample period, whereas the MS2 suggests that the
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explosive behaviors only appear for two short periods starting in June 1985 and July 1989,

respectively.

We use the predictive likelihood as the criterion for model comparison. It is based on

prediction and acts as the Ockham’s razor by automatically punishing overparameterization.

The results show that the two-regime specification is as good as the iHMM for the money base.

However, for the exchange rate and the consumer price, the predictive likelihood strongly

supports the iHMM against the MS2. Hence, the results found by the iHMM are more credible

from the statistical point of view. We find the explosive money growth in June 1985 did not

trigger a significant change of dynamics for the exchange rate and the consumer price. On the

other hand, the explosive growth of the money base in July 1989 is associated with both the

exchange rate and the consumer price switching to explosive dynamic regimes.

The second application is to the U.S. oil price from April 1983 to December 2010. The oil

inventory is used as a proxy to the market fundamental. According to the predictive likelihoods,

the iHMM fits the oil price better than the MS2. The iHMM suggests that mild bubbles existed

in the oil price during most of the sample period, with four major bubble collapsing periods

following the 1985 oil price war, the first Persian Gulf War, the 1998 Asian financial crisis, and

the subprime mortgage crisis. On the other hand, no explosive dynamic is discovered in the

oil inventory data.

The rest of the paper is organized as follows. Section 2 introduces the infinite hidden

Markov model. The estimation procedure, along with the dating algorithm of bubbles and the

model comparison method, are described in Section 3. The applications to the Argentinian

hyperinflation period and the U.S oil price are in Sections 4 and 5. Section 6 concludes the

paper.
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2 Infinite Hidden Markov Model

The infinite hidden Markov model is expressed as

Pr(st = i | st−1 = j, S1,t−2, P, Y1,t−1) = Pr(st = i | st−1 = j, P ) = πji, (1)

yt | st = i,Θ, Y1,t−1 ∼ f(yt | θi, Y1,t−1), (2)

where yt is the data at time t, Y1,t−1 = (y1, · · · , yt−1), st is the regime indicator at time t,

S1,t−2 = (s1, · · · , st−2), Θ = (θ1, θ2, · · · ) is the collection of parameter θi’s, P is an infinite

dimensional transition matrix with πji on its jth row and ith column, and i, j = 1, 2, · · · .5

Equation (1) implies that the dynamic of st only depends on st−1. The distribution (2) shows

that the conditional density of yt depends on st and the past information Y1,t−1.

A finite hidden Markov model (HMM) with K regimes, for instance the two-regime Markov-

switching model of HPS (K = 2), is nested in the iHMM by assuming
K∑
i=1

πji = 1 for j =

1, · · · ,K, and the initial regime s1 ∈ {1, · · · ,K}. The periodically collapsing process of Evans

(1991) and the locally explosive process of Phillips et al. (2011c) can be captured by a three-

regime HMM.

We assume that yt in each regime is a Gaussian autoregressive process of finite order of at

most q, and work with the implied conditional density for ∆yt which is

f(∆yt | θst , Y1,t−1) ∼ N(ϕst,0 + βstyt−1 + ϕst,1∆yt−1 + · · ·+∆ϕst,qyt−q, σ2
st), (3)

where q is the lag order and θst = (ϕ′
st , σst) by construction with ϕst = (ϕst,0, βst , ϕst,1, · · · , ϕst,q)

′.

Notice that we model ∆yt instead of yt. The existence of explosive behaviors is determined by

the coefficient of yt−1, namely βst . A random walk process implies βst = 0 in an ADF test. In

this paper, a positive βst shows that yt is explosive at time t.

The Bayesian approach is applied in estimation to deal with infinite dimensionality. Two

parallel hierarchical priors, one governing Θ and the other governing P , are introduced as

5By definition, πji ≥ 0 for all j, i = 1, 2, · · · and
∞∑
i=1

πji = 1 for all j = 1, 2, · · · .
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follows.

2.1 Prior of Θ

For each regime, we assume θi to have the regular normal gamma distribution NG(ϕ,H, χ2 ,
ν
2 )

(see Geweke 2009), which is conjugate to linear models. In detail,

σ−2
i ∼ G

(χ
2
,
ν

2

)
and ϕi | σi ∼ N

(
ϕ, σ2

iH
−1
)
. (4)

The inverse of the variance σ−2
i is drawn from a gamma distribution with degree of freedom

ν
2 and scalar χ

2 . Conditional on σi, the vector of regression coefficients, ϕi, has a multivariate

normal distribution with mean ϕ and covariance matrix σ2
iH

−1.

Define λ = (ϕ,H, χ, ν) as the collection of the parameters in the normal gamma distribution.

A common practice for a finite hidden Markov model is to assume λ as constant. For the iHMM,

however, the number of regimes can grow with the sample size, which allows us to learn λ by

using the information across regimes. Hence, we estimate it by giving it the prior as follows:

H ∼ W(A0, a0); ϕ | H ∼ N(m0, τ0H
−1); χ ∼ G(

d0
2
,
c0
2
); ν ∼ Exp(ρν). (5)

H is a positive definite matrix and is drawn from a Wishart distribution.Conditional on H, ϕ

has a multivariate normal distribution with mean m0 and covariance matrix τ0H
−1. The prior

of χ is a gamma distribution with scalar d0/2 and degree of freedom of c0/2. The prior of ν is

an exponential distribution with parameter ρν .

This methodology is less subjective than Teh et al. (2006) and Fox et al. (2011) because

the hierarchical structure is robust to prior elicitation. It also facilitates the mixing of the

Markov chain by shrinking λ to a reasonable region so that a new regime can be easily born if

a structural change is implied by the data.
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2.2 Prior of P

The infinite-dimensional transition matrix P is comprised of an infinite number of infinite-

dimensional row vector πj ’s, where j = 1, 2, · · · . Each πj = (πj1, πj2, · · · )′ represents a prob-

ability measure on the natural numbers, namely, Pr(A | πj) =
∞∑
i=1

πji1i∈A. By definition, we

should have πji ≥ 0 for each j and i and
∞∑
i=1

πji = 1 for each j. The prior of P is set as

π0 ∼ SBP(γ), (6)

πj | π0 ∼ DP (c, (1− ρ)π0 + ρδj) . (7)

π0 is a random probability measure on the natural numbers and drawn from a stick breaking

process (SBP).6 It serves as a hierarchical parameter of all πj ’s. Conditional on π0, each πj

is drawn from a Dirichlet process (DP) with concentration parameter c and shape parameter

(1 − ρ)π0 + ρδj .
7 The aforementioned constraints on πj ’s are automatically satisfied by this

prior.

From (7), the shape parameter, (1 − ρ)π0 + ρδj , is an infinite discrete distribution and

represents the mean of πj by the definition of DP. It is a convex combination of the hierarchical

distribution π0 and a degenerate distribution at integer j, δj
8, with ρ ∈ [0, 1]. The hierarchical

distribution π0 creates a common shape for each πj and δj reflects the prior belief of regime

persistence. By construction, conditional on π0 and ρ, the mean of the transition matrix P is

6The stick breaking process generates a probability measure over natural numbers. Each number is associated
with a non-zero probability. For a probability measure p ≡ (p1, p2, · · · ) ∼ SBP(γ), where γ is a positive scalar
which controls the concentration of a random probability measure, pi is the probability associated with integer
i with i = 1, 2, · · · . Appendix A.2 provides a detailed explanation of this process.

7A Dirichlet process is a distribution of discrete distributions. It has two parameters: the shape parameter
and the concentration parameter. The shape parameter is a probability measure and controls the centre of the
random samples, which is analogous to the mean of a distribution. The concentration parameter is a positive
scalar and controls the tightness of a random draw, which is analogous to the inverse of the variance of a
distribution. Appendix A.1 provides a detailed discussion of this process.

8δj is a probability measure with δj(A) =

{
1 if j ∈ A
0 o.w.

.
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a convex combination of two infinite-dimensional matrices, expressed by

E(P | π0, ρ) = (1− ρ) ·


π01 π02 π03 · · ·

π01 π02 π03 · · ·

π01 π02 π03 · · ·
...

...
...

. . .

+ ρ ·


1 0 0 · · ·

0 1 0 · · ·

0 0 1 · · ·
...

...
...

. . .

 .

The above conditional mean of P shows that the self-transition probability is larger as ρ goes

closer to 1. In the rest of the paper, ρ is referred to as the sticky coefficient. It is introduced to

the iHMM for two reasons. First, empirical evidence shows that regime persistence is a salient

feature of many macroeconomic and finance variables. The sticky coefficient explicitly embeds

this feature into the prior. Second, a finite hidden Markov model usually has a small number of

regimes, which guarantees that each regime can have a reasonable amount of data. The infinite

hidden Markov model, however, may assign each data to one distinct regime. This phenomenon

is called state saturation, which is obviously not interesting and harmful to forecasting. The

sticky coefficient shrinks the over-dispersed regime allocation towards a coherent one and hence

avoids the state saturation problem.

In summary, the iHMM is comprised of (1) and (2), in which (2) takes the form of (3) for

bubble detection and estimation. The hierarchical prior for Θ is assumed as (4) and (5), while

(6)-(7) comprise the hierarchical prior for P .

3 Estimation, Dating Algorithm, and Model Comparison

3.1 Estimation

The posterior sampling is based on a Markov chain Monte Carlo (MCMC) method. Fox et al.

(2011) show that the block sampler which approximates the iHMM with truncation is more

efficient than the individual sampler.9 We approximate the iHMM by truncation with a finite

9Consistency proof of the approximation can be found in Ishwaran and Zarepour (2000) and Ishwaran and
Zarepour (2002). Ishwaran and James (2001) compare the individual sampler with the block sampler and find
that the later one is more efficient in terms of mixing.
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but large number of regimes. If the number of regimes is large enough, the finite approximation

is equivalent to the iHMM in practice.

Suppose L is the maximal number of regimes in the approximation, the model is as follows:

π0 ∼ Dir
( γ
L
, · · · , γ

L

)
, (8)

πj | π0 ∼ Dir ((1− ρ)cπ01, ..., (1− ρ)cπ0i + ρc, · · · , (1− ρ)cπ0L) , (9)

st | st−1 = j ∼ πj , (10)

(ϕ,H, χ, ν) ∼ G, (11)

θi ∼ NG(ϕ,H,
χ

2
,
ν

2
), (12)

∆yt | Y1,t−1 ∼ N(ϕst,0 + βstyt−1 + ϕst,1∆yt−1 + · · ·+∆ϕst,qyt−q, σ2
st), (13)

where j = 1, 2, · · · , L and Dir represents the Dirichlet distribution. Notice that the only ap-

proximation is (8), which is from Ishwaran and Zarepour (2000). They show thatDir
( γ
L , · · · ,

γ
L

)
converges to SBP(γ) as L → ∞. (9) is not an approximation, because a DP is equivalent to

a Dirichlet distribution if its shape parameter only has support on a finite set. (8) and (9)

comprise the prior of P . The dynamic of the regime indicator (10) is the same as (1). The

hierarchical prior (11) is (5) and the prior for the parameters which characterize each regime

in (12) is simply (4). The conditional data density (13) is the same as (3). Different L’s are

tried in order to investigate the robustness of the block sampler in applications.

To sample from the posterior distribution, the MCMC method partitions the parameter

space into four parts: (S, I), (Θ, P, π0), (ϕ,H, χ) and ν, where S and I are the collection of

regime indicators st’s and binary auxiliary variables It’s respectively.
10 Each part is randomly

sampled conditional on the other parts and the data Y = (y1, · · · , yT ). The sampling algorithms

are as follows (see Appendix B for more details):

1. Sample (S, I) | Θ, P, Y

(a) Sample S | Θ, P, Y by the forward filtering and backward sampling method of Chib

10It is an auxiliary variable to sample π0. Details are in Appendix B.
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(1996).

(b) Sample I | S by a Polya Urn scheme.

2. Sample (Θ, P, π0) | S, I, Y

(a) Sample π0 | I from a Dirichlet distribution.

(b) Sample P | π0, S from Dirichlet distributions.

(c) Sample Θ | S, Y by the regular linear model results.

3. Sample (ϕ,H, χ) | S,Θ, ν

(a) Sample (ϕ,H) | S,Θ by conjugacy of the Normal-Wishart distribution.

(b) Sample χ | ν, S,Θ from a gamma distribution.

4. Sample ν | χ, S,Θ by a Metropolis-Hastings algorithm.

After initiating the parameter values, the algorithm is applied iteratively to obtain a large num-

ber of samples of the model parameters. We discard the first block of the samples to remove de-

pendence on the initial values. The rest of the samples, {S(i),Θ(i), P (i), π
(i)
0 , ϕ(i), H(i), χ(i), ν(i)}Ni=1,

are used for inferences as if they were drawn from their posterior distributions. Simulation con-

sistent posterior statistics are computed as sample averages. For example, the posterior mean

of ϕ is calculated by 1
N

∑N
i=1 ϕ

(i). In order to avoid the label-switching problem in the mixture

models11, we use label-invariant statistics suggested by Geweke (2007) so that the posterior

sampling algorithm can be implemented without modification.

3.2 Dating Algorithm of Bubbles

The explosive behavior of bubbles depends on the estimates of (13). The autoregressive coef-

ficient of yt−1 (i.e. βst) should be positive in the presence of explosive bubbles and negative

when the data is locally stationary mean-reverting.

11For example, switching the values of (θj , πj) and (θk, πk), swapping the values of state st for st = j, k while
keeping the other parameters unchanged results in the same likelihood.
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The Bayesian approach produces the whole posterior distribution of βst instead of a point

estimate, so one can make decisions based on his/her specific loss function. This paper considers

two intuitive posterior statistics, which are derived from two simple loss functions, to help

identify bubbles. One is the posterior probability P (βst > 0 | Y ) and the other is the posterior

mean E (βst | Y ).

For the first statistic, we claim that a bubble exists at time t if the posterior probability of

βst > 0 is above 0.5 and there is no bubble otherwise. More concisely,

bubble exists in period t if P (βst > 0 | Y ) > 0.5 .

It is easy to see that this criterion is derived from an absolute value loss function. The cutoff

value can be different from 0.5 if the loss function is asymmetric.

The second statistic is based on a quadratic loss function. We claim that a bubble exists if

the posterior mean of βst is above zero and there is no bubble otherwise. More concisely,

bubble exists in period t if E (βst | Y ) > 0 .

This statistic also shows the magnitude of explosiveness. The higher the value is, the faster

the bubble expands.

3.3 Model Comparison

We use the predictive likelihood for model comparison as suggested by Geweke and Amisano

(2010). Conditional on an initial data set Y1,t, the predictive likelihood of Yt+1,T = (yt+1, · · · , yT )

by model Mi is calculated as

p(Yt+1,T | Y1,t,Mi) =

T∏
τ=t+1

p(yτ | Y1,τ−1,Mi).

It is equivalent to the marginal likelihood p(Y | Mi) if t = 0.

12



The one-period predictive likelihood of a model Mi is calculated by

p̂(yt | Y1,t−1,Mi) =
1

N

N∑
i=1

f(yt | Υ(i), Y1,t−1,Mi), (14)

where Υ(i) is one sample of the parameters from the posterior distribution conditional on the

past data Y1,t−1. For the iHMM, the one-period predictive likelihood is

p̂(yt | Y1,t−1) =
1

N

N∑
i=1

L∑
k=1

π
(i)
jk f(yt | θ

(i)
k , s

(i)
t−1 = j, Y1,t−1).

After calculating the one-period predictive likelihood, p̂(yt | Y1,t−1), the data is updated by

adding one more observation, yt, and the model is re-estimated for the prediction of the next

period. This is repeated until the last predictive likelihood, p̂(yT | Y1,T−1), is obtained.

The log predictive Bayes factor, namely log(BFij | Y1,t) = log(Yt+1,T | Y1,t,Mi)−log(Yt+1,T |

Y1,t,Mj), is used for model comparison. Kass and Raftery (1995) suggest comparing the dif-

ference between the log marginal likelihoods. Geweke and Amisano (2010) show that the

interpretation for the predictive likelihood is the same as the marginal likelihood if we regard

the initial data set Y1,t as a training sample. Therefore, we use the following criterion from

Kass and Raftery (1995) as evidence of model Mi against Mj : Not worth more than a bare

mention if 0 ≤ log(BFij) < 1; Positive if 1 ≤ log(BFij) < 3; Strong if 3 ≤ log(BFij) < 5; Very

strong if log(BFij) ≥ 5.

4 Empirical Application: Hyperinflation in Argentina

In this section, we apply the iHMM approach to the money base, exchange rate, and consumer

price in Argentina from January 1983 to November 1989. The money base is used as a proxy

for market fundamental and the exchange rate data series is to capture fundamentally deter-

mined bubble-like behavior. The purpose is to investigate whether there is evidence of bubble

behaviors in the consumer price.

These three data series are also examined in HPS and Shi (2010). Both HPS and Shi (2010)

13



conduct a two-regime Markov-switching ADF (MSADF) test (with different specifications in

the error variance) on these three data series and conclude no evidence of bubbles in the

consumer price. The two-regime Markov-switching (MS2) models of HPS and Shi (2010) are

both estimated by MLE.

As a benchmark, we estimate a MS2 model using the Bayesian approach, which is12

Pr(st = j | st−1 = j) = pjj (15)

∆yt | st = j, Y1,t−1 ∼ N(ϕj0 + βjyt−1 + ϕj1∆yt−1 + · · ·+ ϕj4∆yt−4, σ
2
j ) (16)

with j = 1, 2. The prior of the self-transition probabilities p11 and p22 isBeta(9, 1) and the prior

of (ϕj , σj) is a normal-gamma distribution, namely σ−2
j ∼ G(1, 1) and ϕj | σj ∼ N(0, σ2I).

The infinite hidden Markov model, (8)-(13) is estimated by setting L = 5 and with priors

H ∼ W(0.2I, 5), ϕ | H ∼ N(0,H−1), χ ∼ G(1, 1) and ν ∼ Exp(1).13 We set this prior in order

to make the prior parameters of the MS2 model equal to the mean of the hierarchical prior of

the iHMM.

Figure 2 illustrates the posterior probabilities of βst > 0 (i.e P (βst > 0|Y )) for the logarith-

mic money base, exchange rate, and consumer price. From the MS2 model (dotted line), we

can see that the posterior probability exceeds the 0.5 in June 1985 and July 1989 for all three

data series, which suggests the existence of explosive behaviors. Meanwhile, since the spikes

appear simultaneously in these two periods, the explosive behavior of market fundamentals

(money growth) is consistent with the explosive dynamics of the exchange rate and consumer

price. However, we also find bubbles in the exchange rate emerge in April 1987, October 1987,

and September 1988, which have some locally explosive dynamics that can not be explained

by the money base. This is further supported by the posterior mean of βst (i.e. E(βst |Y ))

displayed in Figure 3.

The posterior probability and posterior mean of the money base from the iHMM (dashed

line) are identical to those from the MS2 model. Therefore, it is reasonable to have a two-regime

12The lag order is the same as that in HPS and Shi (2010).
13Larger Ls produce very similar results for bubble detection and the posterior means of the time-varying

parameters.
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Figure 2: The growth rate and the posterior probabilities of βst > 0 for the money base,
exchange rate and consumer price
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Figure 3: The growth rate and posterior mean of βst for the money base, exchange rate and
consumer price
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specification for the money base. On the other hand, the iHMM shows distinct probability and

mean patterns for the exchange rate and consumer price.

For the exchange rate, the posterior probability of βst > 0 implied by the iHMM in Figure 2

is almost a mirror image of that implied by the MS2 model, except in 1989. Any plunge of

P (βst > 0 | Y ) of the iHMM is associated with a decrease of the exchange rate, which is

consistent with Evans’s (1991) bubble collapse regime. For the MS2 model, 4 out of 5 spikes in

Figure 2 correspond to decreasing the exchange rate, which is counter intuitive. This is caused

by the limited number of regimes in the MS2 model. The iHMM in Figure 2 and 3 shows that

there are approximately 3 regimes: one is associated with the bubble emerging at July 1989;

another is related to the periods of exchange rate decrease starting at June 1985, April 1987,

October 1987, and September 1988; and the final one is for the rest of the sample. The MS2

model clearly combines the first two regimes into one and produces confusing results.

For the consumer price, the iHMM implies that bubbles exist throughout the whole sample

period in the bottom panel of Figure 2. The bottom panel of Figure 3 shows the dynamics of

the consumer price are consistent with Evans’s (1991) assumption, with time-varying degrees

of explosiveness. The expansion rate is relatively higher in the one and a half years spanning

from June 1987 to August 1988, and a considerable increase occurred over the period from

March 1989 to July 1989. The posterior mean of βst at the peak of this episode is 0.08. The

rate then dropped rapidly so that by August 1989 it was 0.01 (same as the rate before the

increase occurred). On the other hand, the MS2 is unable to capture the dynamics due to

assuming a limited number of regimes. Although it identifies two bubble periods starting at

June 1985 and July 1989, we can visually find that they are falsely grouped together since the

first of these two episodes is associated with price decrease while the last one corresponds to

the price increase from Figure 3.

In summary, according to the iHMM, the dynamic pattern of the money base appears like

the locally explosive pattern of PWY, where the explosive bubble behaviors are transitory. More

specifically, a data series switches between a non-explosive regime and an explosive regime.

In contrast, the dynamics of the exchange rate and the consumer price are similar to the
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periodically collapsing behavior of Evans (1991), where bubbles exist throughout the sample

period. The iHMM also implies that the switching of the money supply’s dynamic to an

explosive regime at July 1989 was closely related to the change of dynamics for the exchange

rate and the consumer price (switching to a regime with a faster expansion rate). On the other

hand, the explosive behavior of the money base in June 1985 did not cause regime switching

in either the exchange rate or the consumer price.

Table 1: Log predictive likelihoods

MS2 IHMM

Money Base 34.1 34.4

Exchange Rate 34.9 43.5

Consumer Price 54.4 67.0

The last 50 observations (out of 82) are used to calculate
the predictive likelihood.

For formal model comparison, Table 1 reports the log predictive likelihoods. For the money

base, the predictive likelihoods of the MS2 model and the iHMM are very close, which are

consistent with the conclusion from Figures 2 and 3. The log predictive likelihoods of the

exchange rate and the consumer price from the iHMM are much higher than those from the

MS2 model. The differences in the log predictive likelihoods for the exchange rate and the

consumer price are 43.5 − 34.9 = 8.6 and 67.0 − 54.4 = 12.6, respectively. Therefore, we

strongly reject the MS2 model for the exchange rate and the consumer price by Kass and

Raftery’s (1995) criterion.

5 Empirical Application: U.S. Oil Price

The second application investigates the existence of speculative bubble behaviors in the U.S.

oil price. Several papers have studied the evidence for bubbles in the oil price (among others,

Phillips and Yu (2011), Sornette et al. (2009) and Shi and Arora (2012)). Although the sample

periods and methodologies used in these papers are different, most studies have found evidence
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of bubble existence.

Our data is sampled from April 1983 to December 2010. The price of the nearest-month

West Texas Intermediate futures contract, obtained from DataStream International, is used

as a proxy for the spot oil price. We deflate the oil price by U.S. Consumer Price Index,

obtained from the U.S. Bureau of Labour Statistics. The market fundamental is proxied by

the oil inventory, which is the ending stocks excluding Strategic Petroleum Reserve of crude

oil and petroleum products (thousand barrels) and comes from the U.S. Energy Information

Administration.

We apply both the MS2 model and the iHMM to the logarithmic real oil price and the

logarithmic oil inventory.14 The priors are assumed to be the same as in Section 4. The

posterior probabilities of βst > 0 and the posterior mean of βst are presented in Figures 4 and

5, respectively.

For the oil inventory, both models suggest that there is no evidence of explosive behavior.

Namely, the posterior probabilities (posterior means) of the inventory from both models are

below 0.5 (zero). In fact, the posterior mean of βst remains the same throughout the sample

period.15

For the oil price, the patterns of the posterior probability P (βst > 0|Y ) and the posterior

mean E (βst |Y ) from the MS2 model are different from the iHMM. For the MS2 model, the

posterior probabilities of βst > 0 are always smaller than 0.5 and the posterior means of βst

are negative. Therefore, no evidence of bubble exists, based on the MS2 model. However, the

iHMM implies that the oil price dynamic is comprised of mild explosive behavior and bubble

collapse phases, which is a prominent feature and different from Evans (1991) and PWY. For

most of the sample period, the posterior mean of βst is slightly positive. There are significant

falls (below zero) in periods following the 1985 oil price war (1985M11-1986M09), the first

Persian Gulf War (1990M04-1991M03), the 1998 Asian financial crisis (1998M12-1999M08),

14For the oil inventory, we have estimated three versions of the data: the raw data, the data that is scaled
by 10−5 and the log of the raw data. All results are the same for bubble detection and regime identification.
Therefore, we only report the results based on the log of the raw data.

15Notice that the posterior mean of βst from the iHMM is smaller than that from the MS2 model. This is
because the iHMM uses hierarchical structures but the two-regime MS model does not.
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Figure 4: Posterior probabilities of βst > 0 for the logarithmic oil price and inventory
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Figure 5: Posterior mean of βst for the logarithmic oil price and inventory
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and the subprime mortgage crisis (2008M07-2009M07).

The formal model comparison is in Table 2. It reports the log predictive likelihoods for

the oil price and the oil inventory. We can see that the iHMM outperforms the two-regime

MS model for both data series. The differences of the log predictive likelihoods are 72 and 488

for the log price and the log inventory respectively. The results strongly support the iHMM

against the two-regime switching model.

Table 2: Log predictive likelihoods

2-regime MS model IHMM

Oil price 249 321

Oil inventory -2397 -1909

The last 300 observations (out of 333) are used to calculate
the predictive likelihood.

6 Conclusions

This paper proposes a new infinite hidden Markov model to integrate the detection, date-

stamping, and estimation of bubble behaviors in a coherent Bayesian framework. It reconciles

the existing data generating processes of speculative bubbles and is designed to capture the

dynamics of real macroeconomic time series data. Two parallel hierarchical structures provide

a parsimonious methodology for robust prior elicitation and improve out-of-sample forecasts.

The iHMM is applied to the Argentinian money base, exchange rate, and consumer price

from January 1983 to November 1989, and U.S. oil price and oil inventory from April 1983 to

December 2010. The predictive likelihoods strongly support the iHMM against a finite Markov

switching model.

The dynamic of the Argentinian money base is similar to the locally explosive behavior of

PWY, where the explosive behavior is a transitory phenomenon. The Argentinian exchange

rate and consumer price, on the other hand, have time-varying explosive dynamics throughout

the whole sample period as Evans (1991). Furthermore, we discover that the expansion of
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the money supply in July 1989 is synchronous with the exchange rate and the consumer price

changing to a faster expansion regime.

For the U.S. oil price, we find that mild explosive behavior exists for most of the time,

except four major bubble-collapsing periods following the 1985 oil price war, the first Persian

Gulf War, the 1998 Asian financial crisis, and the subprime mortgage crisis. This feature is

different from existing data generating processes such as Evans (1991) or PWY. In addition,

no explosive behavior exists in the U.S. oil inventory.
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A Dirichlet Process and Stick Breaking Process

A.1 Dirichlet Process

Before introducing the Dirichlet process, the definition of the Dirichlet distribution is as follows:

Definition The Dirichlet distribution is denoted by Dir(α), where α is a K-dimensional

vector of positive values. Each sample x from Dir(α) is a K-dimensional vector with xi ∈ (0, 1)

and
K∑
i=1

xi = 1. The probability density function is

p(x | α) =
Γ(

K∑
i=1

αi)

K∏
i=1

Γ(αi)

K∏
i=1

xαi−1
i

A special case is the Beta distribution, where K = 2.

Define α0 =
K∑
i=1

αi and Xi as the ith element of the random vector X from a Dirichlet

distribution Dir(α). The random variable Xi has mean αi
α0

and variance αi(α0−αi)
α2
0(α0+1)

. Hence,

we can further decompose α into two parts: a shape parameter G0 = (α1
α0
, · · · , αK

α0
) and a

concentration parameter α0. The shape parameter G0 represents the center of the random

vector X and the concentration parameter α0 controls how close X is to G0.

The Dirichlet distribution is conjugate to the multi-nominal distribution in the following

sense: If

X ∼ Dir(α),

β = (n1, . . . , nK) | X ∼ Mult(X),

where ni is the number of occurrences of i in a sample of n =
K∑
i=1

ni points from the discrete

distribution on {1, · · · ,K} defined by X. Then,

X | β = (n1, . . . , nK) ∼ Dir(α+ β).
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This relationship is used in Bayesian statistics to estimate the hidden parameters X, given a

collection of n samples. Intuitively, if the prior is represented as Dir(α), then Dir(α + β) is

the posterior following a sequence of observations with histogram β.

The Dirichlet process was introduced by Ferguson (1973) as the extension of the Dirichlet

distribution from finite dimensions to infinite dimensions. It is a distribution of distributions

and has two parameters: the shape parameter G0 is a distribution over a sample space Ω, and

the concentration parameter α0 is a positive scalar. They have similar interpretations as their

counterparts in the Dirichlet distribution. The formal definition is the following:

Definition The Dirichlet process over a set Ω is a stochastic process whose sample path is a

probability distribution over Ω. For a random distribution F distributed according to a Dirich-

let process DP(α0, G0), given any finite measurable partition A1, A2, · · · , AK of the sample

space Ω, the random vector (F (A1), · · · , F (AK)) is distributed as a Dirichlet distribution with

parameters (α0G0(A1), · · · , α0G0(AK)).

Using the results form the Dirichlet distribution, for any measurable set A, the random

variable F (A) has mean G0(A) and variance G0(A)(1−G0(A))
α0+1 . The mean implies the shape

parameter G0 represents the center of a random distribution F drawn from a Dirichlet process

DP(α0, G0). Define ai ∼ F as an observation drawn from the distribution F . Because by

definition P (ai ∈ A | F ) = F (A), we can derive P (ai ∈ A | G0) = E(P (ai ∈ A | F ) | G0) =

E(F (A) | G0) = G0(A). Hence, the shape parameter G0 is also the marginal distribution of

an observation ai. The variance implies the concentration parameter α0 controls how close the

random distribution F is to the shape parameter G0. The larger α0 is, the more likely F is

close to G0, and vice versa.

Suppose there are n observations, a = (a1, · · · , an), drawn from the distribution F . Use
n∑

i=1
δai(Aj) to represent the number of ai in set Aj , where A1, · · · , AK is a measurable partition

of the sample space Ω and δai(Aj) is the Dirac measure, where

δai(Aj) =


1 if ai ∈ Aj

0 if ai /∈ Aj

.
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Conditional on (F (A1), · · · , F (AK)), the vector

(
n∑

i=1
δai(A1), · · · ,

n∑
i=1

δai(AK)

)
has a multi-

nominal distribution. By the conjugacy of Dirichlet distribution to the multi-nominal distri-

bution, the posterior distribution of (F (A1), · · · , F (AK)) is still a Dirichlet distribution

(F (A1), · · · , F (AK)) | a ∼ Dir

(
α0G0(A1) +

n∑
i=1

δai(A1), · · · , α0G0(AK) +

n∑
i=1

δai(AK)

)

Because this result is valid for any finite measurable partition, the posterior of F is still a

Dirichlet process by definition, with new parameters α∗
0 and G∗

0, where

α∗
0 = α0 + n

G∗
0 =

α0

α0 + n
G0 +

n

α0 + n

n∑
i=1

δai
n

The posterior shape parameter, G∗
0, is the mixture of the prior and the empirical distri-

bution implied by observations. As n → ∞, the shape parameter of the posterior converges

to the empirical distribution. The concentration parameter α∗
0 → ∞ implies the posterior of

F converges to the empirical distribution with probability one. Ferguson (1973) showed that

a random distribution drawn from a Dirichlet process is almost surely discrete, although the

shape parameter G0 can be continuous.

A.2 Stick breaking process

For a random distribution F ∼ DP(α0, G0), because F is almost surely discrete, it can be

represented by two parts: different values θi’s and their corresponding probabilities pi’s, where

i = 1, 2, · · · . Sethuraman (1994) found the stick breaking representation of the Dirichlet process

by writing F ≡ (θ, p), where θ ≡ (θ1, θ2, · · · )′, p ≡ (p1, p2, · · · )′ with pi > 0 and
∞∑
i=1

pi = 1. The
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F ∼ DP(α0, G0) can be generated by

Vi
iid∼ Beta(1, α0) (17)

pi = Vi

i−1∏
j=1

(1− Vj) (18)

θi
iid∼ G0 (19)

where i = 1, 2, · · · . In this representation, p and θ are generated independently. The process

generating p, (17) and (18), is called the stick breaking process and denoted by p ∼ SBP(α0).

The name comes after the pi’s generation. For each i, the remaining probability, 1 −
i−1∑
j=1

pj ,

is sliced by a proportion of Vi and given to pi. It’s like breaking a stick an infinite number of

times.

B Block sampler

B.1 Sample (S, I) | Θ, P, Y

S | Θ, P, Y is sampled by the forward filter and backward sampler of Chib (1996).

I is introduced to facilitate the π0 sampling. From (8) and (9), the filtered distribution of

πj conditional on S1,t and π0 is a Dirichlet distribution:

πj | S1,t, π0 ∼ Dir
(
c(1− ρ)π01 + n

(t)
j1 , · · · , c(1− ρ)π0j + cρ+ n

(t)
jj , · · · , c(1− ρ)π0L + n

(t)
jL

)
where n

(t)
ji is the number of {τ | sτ = i, sτ−1 = j, τ ≤ t}. Integrating out πj , the conditional

distribution of st+1 given S1,t and π0 is:

p(st+1 = i | st = j, S1,t, π0) ∝ c(1− ρ)π0i + cρδj(i) + n
(t)
ji

27



Construct a variable It with a Bernoulli distribution

p(It+1 | st = j, S1,t, π0) ∝


cρ+

L∑
j=1

n
(t)
ji if It+1 = 0

c(1− ρ) if It+1 = 1

and the conditional distribution:

p(st+1 = i | It+1 = 0, st = j, St, β) ∝ n
(t)
ji + cρδj(i)

p(st+1 = i | It+1 = 1, st = j, St, β) ∝ π0i

This construction preserves the same conditional distribution of st+1 given S1,t and π0. To

sample I | S, use the Bernoulli distribution:

It+1 | st+1 = i, st = j, π0 ∼ Ber(
c(1− ρ)π0i

n
(t)
ji + cρδj(i) + c(1− ρ)π0i

).

B.2 Sample (Θ, P, π0) | S, I, Y

After sampling I and S, write mi =
∑
st=i

It. By construction, the conditional posterior of π0

given S and I only depends on I and is a Dirichlet distribution by conjugacy:

π0 | S, I ∼ Dir(
γ

L
+m1, · · · ,

γ

L
+mL)

This approach of sampling π0 is simpler than Fox et al. (2011).

Conditional on π0 and S, the sampling of πj is straightforward by conjugacy:

πj | π0, S ∼ Dir(c(1− ρ)π01 + nj1, · · · , c(1− ρ)π0j + cρ+ njj , · · · , c(1− ρ)π0L + njL)

where nji is the number of {τ | sτ = i, sτ−1 = j}.

Sampling Θ | S, Y uses the results of regular linear models. The prior is:

(ϕi, σ
−2
i ) ∼ NG(ϕ,H,

χ

2
,
ν

2
).

28



By conjugacy, the posterior is:

(ϕi, σ
−2
i ) | S, Y ∼ NG(ϕi, H i,

χi

2
,
νi
2
)

with

ϕi = H
−1
i (Hϕ+X ′

iYi)

H i = H +X ′
iXi

χi = χ+ Y ′
i Yi + ϕ′Hϕ− ϕ

′
Hϕ

νi = ν + ni

where Yi is the collection of yt in regime i. xt = (1, yt−1, · · · , yt−q). Xi and ni are the collection

of xt and the number of observations in regime i, respectively.

B.3 Sample (ϕ,H, χ) | S,Θ, ν

The conditional posterior is:

ϕ,H | {ϕi, σi}Ki=1 ∼ NW(m1, τ1, A1, a1)
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where K is the number of active regimes, with which at least one data point is associated. ϕi

and σi are the parameters of regime i.

m1 =
1

τ−1
0 +

K∑
i=1

σ−2
i

(
τ−1
0 m0 +

K∑
i=1

σ−2
i ϕi

)

τ1 =
1

τ−1
0 +

K∑
i=1

σ−2
i

A1 =

(
A−1

0 +

K∑
i=1

σ−2
i ϕiϕ

′
i + τ−1

0 m0m
′
0 − τ−1

1 m1m
′
1

)−1

a1 = a0 +K.

The conditional posterior of χ is:

χ | ν, {σi}Ki=1 ∼ G(d1/2, c1/2)

with d1 = d0 +
K∑
i=1

σ−2
i and c1 = c0 +Kν.

B.4 Sample ν | χ, S,Θ

The conditional posterior of ν has no regular density form:

p(ν | χ, {σi}Ki=1) ∝

(
(χ/2)ν/2

Γ(ν/2)

)K ( K∏
i=1

σ−2
i

)ν/2

exp{− ν

ρν
}.

The Metropolis-Hastings method is applied to sample ν. Draw a new ν from a proposal

distribution:

ν | ν ′ ∼ G(
ζν
ν ′
, ζν)

with acceptance probability min

{
1,

p(ν|χ,{σi}Ki=1)fG(ν′; ζν
ν
,ζν)

p(ν′|χ,{σi}Ki=1)fG(ν; ζν
ν′ ,ζν)

}
, where ν ′ is the value from the pre-

vious sweep. ζν is fine tuned to produce a reasonable acceptance rate around 0.5, as suggested

by Roberts et al. (1997) and Müller (1991).
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