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M athematical Genesis of the Spatio-Temporal Covariance Functions

'Gema Fernandez-AvilésJose-Maria Montero arfdorge Mateu
'Department of Statistics, Faculty of Law and SoSiciences (University of Castile-La Mancha at Tojed
Cobertizo de San Pedro Mértir, S/N. 45.071, Tol&jmgin)
“Department of Mathematics, University Jaume |, Bpai
Campus Riu Sec, E-12071 Castellén (Spain)

Abstract: Obtaining new and flexible classes of nonseparaplatio-temporal covariances have

resulted in a key point of research in the lastyeéthin the context of spatio-temporal Geostatsst

In general, the literature has focused on the prabdf full symmetry and the problem of anisotropy
has been overcome. By exploring mathematical ptigseof positive definite functions and their close

connection to covariance functions we are ableewelbp new spatio-temporal covariance models
taking into account the problem of spatial anigmroThe resulting structures are proved to have
certain interesting mathematical properties, togiettith a considerable applicability.

Key words: Spatial anisotropy, Bernstein and complete mondtanetions, spatio-temporal Geostatistics,
Positive definite functions, Space-time modelingat®-temporal data, spatial locations
parameter estimation, Ecologists study, Randomtlexm(RF), mathematical genesis

INTRODUCTION The study of spatial and overall spatio-temporal
variability is a relatively new area within Staiist,
Spatial and spatio-temporal statistics recognizegvhich explains the scarcity of spatial (spatio-tena)
and exploits the spatial locations of data whepstatistical tools available 30 years ago. Therebeen a
designing for, collecting, managing, analyzing andgrowing realization in the last 10 years that kruyvi
displaying such data. Spatial and spatio-tempoash d Where and when data were observed could help
are typically dependent, for which there are clagsle €normously in answering the substantive questibas t

spatial models available that allow process prafict Precipitated their collection. One of the most pdule
and parameter estimation. tools for spatial data analysis is the map. Fomta,

Spatially arranged measurements and spatia{r' military applications, the battle space is mapjper

it . isinal id it fcommand and control.
patterns —occur in a_surprisingly wide varnety -o The sensors are both in situ and remote and they
scientific disciplines. The origins of human lifenk

X ) . generate spatially distributed data of many diffiere
s'Fudle_s of the evolution of galaxies, the structofe  kinds (see Faddat al., 2008, andSaberioonet al.,
biological cells and settlement patterns in arck&Bo 2010, among others). Producing a statisticallyrogti
Ecologists study the interactions among plants ang¢hap, together with measures of map uncertaintychvhi
animals. Foresters and agriculturalists need tds always up-todate, is a complicated task. Oneseh
investigate plant competition and account for soiltypes of statistical problems are solved, a Geducap
variations in their experiments. Information System, or GIS, is well suited to fonmi
The estimation of rainfall and of ore and petrateu the decision-making maps. .

reserves is of prime economic importance. Rocks, Recent literature persistently emphasizes theotise
metals and tissue and blood cells are all studted a @PProximation methods and new methodologies for
microscopic level. Geology, soil science, imaged€aling with massive spatio-temporal data sets. Whe
processing, epidemiology, crop science, ecologydealmg with spatio-temporal data, calculation bé t

. . . inverse of covariance matrices becomes a crucial
forestry, astronomy, atmospheric science, or siraply

L ) . problem. For instance, the inverse is needed fat be
discipline that works with data collected from di€nt  |inear unbiased prediction (also known as krigiagyl

spatial locations, need to develop models thatcatéi js repeatedly calculated in maximum likelihood
when there is dependence between measurements edtimation or Bayesian inferences. Thus, largeiepat
different locations.
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temporal sample sizes traduce into big challengea f Next, wefocus on the problem of modeling anisotropy

the computational point of view. through isotropy within components. We present some
As well known, interpolation-based kriging necessary definitions and theoretical backgroung. W

procedures strongly depend on the choice of the aufcontinue presenting the Bernstein class, a geaatilh

covariance associated to a space-time random(Aeldlar  of Gneiting (2002) approach to obtain new clasdes o

et al., 2008and Gholizadekt al. 2009, are two references space-time covariance functions which are spatially

in nonstandard fields). Thus, the geostatistical & to  anisotropic. The study ends with some discussiah an

obtain permissible dependence structures for spade concluding remarks.

time; in other words, what is needed are nonsefgarab

spatio-temporal covariance models associated tiorstay MATHEMATICAL SETUP AND BACKGROUND

or non-stationary random fields. This has beendjribe ON SPACE-TIME COVARIANCE FUNCTIONS

most important challenges for the statistical comitgun

the last ten years. But spatio-temporal covariance A space-time process can be denoted by

functions must be positive definite and this chrstic is {Z(s,t) :seD(t)CRY, teTC R} . where each oZ,

no easy to prove and this is the reason why rdse@rc

have opted for using celebrated mathematical theore

from 20th Century that lead to positive definiteadance

functions.

D andT is possibly random. Geostatistical approaches
have been developed to fit Random Field models in
continuous space and time settings, based on tetmi

In this study we first deeply explore the conneti number of spatially and/or temporally dispersed

between geostatistics and pure mathematical resul&bservaﬂqns. Th.ese. approaches .model the opseTgatlo
proved several decades ago and which are now broug S a part|al realization .Of a spatlal_-temporal,|d§by
to light when dealing with spatial-temporal covaras. aussian, Random Field (here indicated with the
Connections between covariance functions andCronym RF).
completely monotonic  functions and Bemnstein  LetZ(st),s R‘ andt R, be a real be a real-
functions are highlighted. These are importantsdot  valued spatial-temporal RF with mear{s,t) and with
the construction of positive definite radial fuets and  congtant and finite variance. Then, the function
have been used to define important inequalities s tt —C. s.s.tt. defined on the product
involving characteristic functions. S8 tts R P
In modern literature we can find severalspace R R? R R is called the spatial-temporal
approaches to the construction of nonseparableovariance function of the process and, if no farth
covariance’s. In the earlier contributions the euas assumptions are made, depends on the space-time
on extending spatial or temporal methods to spatiocoordinatess,,s,,t,,t, . As well known, a real valued
temporal ones, considering the spatio-temporali
dependency separately in most of the cases. Most 0
these contributions deal with stationary spatiogeral ~ spaceR® R? R Ris the covariance function
covariance’s assuming isotropy in space and timeassociated to a spatial-temporal RF if and only if:
However, isotropy is a very restrictive conditiomiah
is not reasonable in many real applications, but tod~ "
which sometimes researchers need (are forced)dp u;);ga‘aicﬂ <(S"’ti)’<si ’ti)) =0 1
due to the lack of practical alternatives. Thisvisy our -
approach here is to build new families of spacestim
covariance functions by removing the isotropyfor all finite sets of real CoeffiCienE$and pOintS
condition. In particular we present a new way of s,t R® R,i 1..n. This property is called
defining anisotropic models by assuming the cooditi
of anisotropy by isotropy within components. Thean
definition needs the support of several importan
mathematical results appeared in the disciplinpuwé b
mathematical analysis and brought and adaptedeto thy o eq several decades ago and which are now brough
language usgd in the geostatlstlcal community. to light when dealing with spatial-temporal
After this introductory section, we present thecoyariance’'s.  Connections between  covariance
mathematical set up and background needed in th@nctions and completely monotonic functions and
building of space-time covariance functions. Weoals Bernstein functions are highlighted. These are
include a spatio-temporal covariance function setupimportant tools for the construction of positivefidize
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nction C, defined on the product

positive definiteness, or with alternative notation
tpermissibility.

In this study we first deeply explore the conratti
etween geostatistics and pure mathematical results
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radial functions and have been used to define itapbr independent increment processes through so thedcall
inequalities involving characteristic functions. Ween | gyy-Khinchine representation. For the semigratib,

first recall the definition and some propertiestab th | tati d o B tei
such important functions. fuﬁct%r;]aogous representation reduces to Bernstein

A function is said to beompletel .
u. _I. .t'_) _(.t)’t 01 ) In ey The celebrated Bochner's theorem establishes a
monotonic if it is positive and( 1)" "(t) O, foralln  one to one correspondence between continuous \mositi
a natural number. For well known results, compjetel definite functions and the Fourier transform of a

monotonic functions admit the representation inpositive  and bounded measure, i.e., a
Bernstein’s theorem, i.e.: functionf : R — C is positive definite and continuous
n if and only if it is the Fourier transform of a pibge
o(t) = ﬁOM)e dF(r) finite measure on RY, i.e., if and only if:
for F a probability measure. In other words, a function f (x) = f e ™9dp(e) (2)
Rd

such that p(0)=1 is a completely monotonic
function if and only if it is the Laplace transforof a By Bernstein’s theorem a functiofi J0, [ R
probability measure. In additiorBernstein functions . . o
are positive functions whose first derivative is is completely monotonic if and only if it is the place
completely monotonic. transform of a positive measureon[0, [, i.e.:
Finally, bivariate Laplace transforms, here dedote

asl , admit the representation: F(X) = Lu(x) = j; e—(x,£>du(§) 3)
L@o,,0,)= e " P dF (1,1
(6:.0.) f[O-oc)z (fr2) The connection with positive definite

. o N functions is provided by the Schoenberg theorem. Fo
where, F is a bivariate probability measure, sd thargiation invariant function$ : R® — R, i.e. functions
L(0,0)= 1. Obviously, if the probability measure is
concentrated on the ling =6,, then L reduces to a
completely monotonic function. :[0, [and

The concept of positive-definiteness of a function
defined onT T for arbitraryT has played major role . , .
in the study of Gaussian processes. In additiofisfa :[0, [ Rbe given. Then |x|" is continuous

semi group with involution, one can study the - - d . .
structure of positive definite functions. This cae and positive definite oR" for alld >1 if and only if

related to problems in operator theory. Classically IS the Laplace transform of a positive finite measu
continuous positive definite functions oR®, R* or on[0, [.

of the form f(x) ||x||2 for some function

denoting the Euclidean norm,
Shoenberg proved the following important resultt: Le

N, can be related to the non-negative measures through . . :
Focusing on the construction of space-time

Fourier, Laplace and moment transforms. In order tQqyariance functionsn the last years there has been a
determine if a function is positive definite one great demand for models describing the evolutiom of
associates it as an inner product between two safie ;iqge range of phenomena in space and time. In
a Hilbert space valued functidn The natural question particular, there is a big need for models ableapture
arises: what are the properties cﬂﬁ (t) f(5)||2, the simultaneous behavior of the spatial and teaipor
t,s T.? This was answered by 1.J. Shoenberg whgomponents. If we considered them separately, ge lar
. . . _amount of information would be lost.
mtr_oc_luced thg concept of condmonall_y negative We refer to geostatistical spatio-temporal modglin
definite function. 1.J. Shoenberg provided some,q 5 |eading instrument to analyze the evolutiosuch
relations between conditionally negative def'”'tespatio-temporal processes. As well  known
functions and positive definite functions. . interpolation-based kriging procedures stronglyetep

In terms of stochastic processes, continuougn the choice of the autocovariance associated to a
conditionally negative-definite functions can béated  space-time random field. Thus, the geostatistical
to more general class (than Gaussian) of stationaryerspective is to obtain permissible spatio-tempora
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covariances which take into account the interactiorused even in situations in which they are not
between space and time; in other words, what we neehysically justifiable.
is nonseparable spatio-temporal covariance models An interesting definition coined in Gneiting (2002
associated to stationary or nonstationary randehdsi s full symmetry, which happens if:
This has been one of the most important challefgres
the statistical community in the last ten years. — — —
Geostatistical apprgaches have beyen developed tco:s‘(h’u)_cSI (h,~u)=C, Chw=C, h-u) (1)
fit Random Function (RF) models in continuous space .
and time, based on a limited number of spatiali/an  for every (h,u) R® R. Equivalently, Lu and
temporally dispersed observations. These approach&gmmerman (2005) speak aboneflection symmetry. It
model the observations as a partial realizationaof has been shown by Gneitiegal. (2005) that if G is
spatio-temporal (typically Gaussian) random functio  fully symmetric, so is its associated spectral dgng
Stationarity, isotropy, separability and full it exists. Another interesting aspect is that saipler
symmetry are then simplifying assumptions which arecovariances are also fully symmetric, while viceeeis
often needed for estimation and modeling. not necessarily true. Hence, covariance structtirat
Let Z(st),s R%andt R, be a stationary real are not fully symmetric are non-separable and tiests

valued Gaussian spatio -temporal RF with constanf[UII symmetry can be USEd.tQ reject separablllt_y.
mean, which does not depend on the space-time Gneitinget al. (2005) it is nicely summarized the

coordinates and with constant and finite variafit®n, relationships b(_etween the various notions In teohs
the function: classes of spatio-temporal covariance functions and

analogous scheme applies to correlation structiies.
largest class is that of general, stationary or-non
Zst Cohu) (4)  stationary covariance functions. A separable cavag
can be stationary or nonstationary and similarly fo
. . d . fully symmetric covariances.
is defined for (hu) s st t; R° Randis Experiments with time-forward kriging predictors
called astationary spatio-temporal covariance function suggest that the use of more complex and morestigali
of the process, as it exclusively depends on tladiadp covariance models results in improved predictive

covZ st

and temporal separation vectors, respectiveind u.  performance. Thus, recent literature has emphagieed

A stationary covariance function is calledtropic if it ~ need for non-separable spatio-temporal covariarioes,

is rotation and translation-invariant, i.e.: order to take into account the interaction betwten
spatial and temporal components.

C. (h,u) Cs ||h|||u| (5) In the earlier contributions the focus was on

extending spatial or temporal methods to spatio-
temporal ones, considering the spatio-temporal
we denote the usual Euclidean normdependency separately in most of the cases. These
and &_ is a positive definite function extensiqn approaches could bg classified into tvagnm
st o ' o categories: (a) the former considers a pure extansi

Stationarity is only one of the simplifying mytivariate spatial or temporal models and (b) the
assumptions which are often needed for estimatioh a |atter is based on considering a univariate spatio-
modeling. Other very popular assumptions are that Otemporal process. Even if there are many points in
separability and full symmetry. A space-time common between the two approaches, some
covariance function is called separable if we @mtdr:  gjstinctions are necessary in order to see theaghah
applying one approach despite the other.

Some geometrically anisotropic models for spatio-
temporal data were proposed in Dimitrakopoulos and
Lou (1994). Guttorpet al. (1992) used separable
covariance structures, obtained through the tensor

where, with

C. (h,0)C, O.u)

Chw) =00

., (hu) R* R. (6)

In other words, separability means that the spatio q ; ial and | ianceth
temporal covariance structure factors into a purelProduct of a spatial and a temporal covariancethén

spatial and purely temporal component, which allows>2M€ context of separability, Rouhani and Hall )98
for computational efficient estimation and inferenc ProPosed the so called sumvariogram.

Consequently, separable covariance models have been Other appr(_)aches were based on the f_act_ _that the
trend could entirely catch the temporal variabjlity

4
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order to obtain a purely spatial random procesghén reaches the sill in a shorter lag distance along a
nonseparable context, efforts have been focus oparticular direction.

obtaining general classes of spatio-temporal In the second case, called zonal anisotropy, rithe
covariances. It is worth citing Jones and Zhan®7)9 the form or the sill of the covariance structuretioe
Cressie and Huang (1999), Christakos (2000); Dé&cale parameter (or both) are different in distinct
Cesareet al. (2001); Gneiting (2002); Ma (2005), Stein directions. Whilst in the case of geometric anispy
(1999; 2005), Fernandez-Cagalal. (2003). Sahwet ~ ON€ can use an isotropic model simply by setting a

al., 2005, is also a recommended applied reference€formation of the coordinates; the case of zonal
from the Bayesian perspective. Most of thesednisotropy is mathematically much more complex and

contributions deal with stationary spatio-temporal”ee('js].CL"Tther Caﬁ:'on'h. N ithi i
covariances assuming isotropy in space and time. In nisotropy through 1sotropy within. components

particular, Cressie and Huang (1999) proposed gssumes that there is not negessarily isotropyhén t
spectral approach to  obtain spatio-temporaIC(.mmle'_[e spacel, but separatglyln subspaces ofletmp
Covariances and Gneiting (2002) represents theralatu dimension. For instance, &7, if h=(h,h,,h,):
generalization of this approach, obtained by using

completely monotone functions and functions whosecl(h):: él(Hh h h) ‘M)
first derivative is completely monotonic. Stein (&)
puts emphasis on the spectral approach and orathe f
that a spatio-temporal spectral density must bere two examples of covariance functionsRihwhich
sufficiently smooth away from the origin, as well a
on the problems of differentiability at the origin.

J.nd) or Cy(h)=Ch]

are not isotropic but anisotropic through isotregthin

; components.
Finally, Fernandez-Casat al. (2003) extended the Our strategy is to create partitions of the spéig
Shapiro-Botha approach to flexible variograms ia th d: . ] X
vectorh € R%in the following way: if

spatio-temporal context. In the non-stationary eant P .
important contributions come from Christakos (2902) d = (d;,d,....,d,)andh,k e R°we can always write
Fuentes (2002) and Kolovesal. (2004). Matelet al. h— (hlvhza-“ ’hn> € R%xR%x...xR* (and similarly for
(2007) and Porcet al. (2006) introduced the following )

developments: (a) anisotropy by isotropy within k) so that:
components; (b) the inclusion of the Bernsteinslas *  C(h)=C(k)for any h,k eR%if |h|=|k;]for
the generalization of Gneiting (2002) result. Cleeal. alli=1,2,.. n.

(2006) studied the non-stationary covariance fomsti , The resulting covariance can be written as:
based on mixtures of local orthogonal random

functions. Porcu and Mateu (2007) obtained new non- M = c(lh h

stationary models through completely monotone ( >_ <” 1"” "")

functions. Gregorét al. (2008) developed covariances

with negative values. And Porat al. (2009) had new and (8) admits an integral representation as aescal
insights about quasi-arithmetic means of covariancénixture of Bessel functions.

(8)

functions. For the space-time setting, the elementhas
always cardinality |d|=d+1. Then, although we may
NEW FAMILIES OF ANISOTOPIC force the anisotropy in the spatial components, all
COVARIANCE FUNCTIONS processes are considered as symmetric in time.
As the assumption of isotropy is very often THEBERNSTEIN CLASS OF SPACE-TIME
unrealistic to model real phenomena, the reseatuher COVARIANCE FUNCTIONS
to deal with the problem of relaxing this hypotisedn
other words, it is important to define covariancedels In this context of covariance functions in which
that attain an anisotropic behavior in the spatiaPnisotropy is obtained through isotropy within
component. components, the Bernstein class with a covariance

There are two types of anisotropy. The simplesfunction of the form:
one, called geometric, is defined when the same
covariance form and sill parameter is present in al o e d
directions, but the range changes with directiarthis ~ Ca(h,u) =IO IO eXP(—Z‘/’i (Inf)ea -4, (U)%ﬂjd': ©)
case, there is a single sill, but the semivariogram =

5
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Let ¢,,¢, be either Bernstein functions, variograms

with (h= (hlhd) p o= (a{,---,wdu) ' and orincreasing and concave functions oref, Then,
Y,,...4 Y, Bernstein functions, arises naturally.

In particular, note that an adaptation of Theorem 1C (hhy h, ) = o? \hz\z \hg\z
in Gneiting (2002) to our context can be stated as s‘i'z et/ % 7 2\’ 2
follows, AT A LR

For i=1234, let dON={12.} A (12)
continuous, bounded, symmetric and integrable . ) ) )

. g d g . , with, h,ul0R,i=123is a stationary nonseparable
function C, : R®™ xR% xR%* xR - R is a covariance . . . , .

L i . space-time covariance function with spatially
function if and only if the function:

anisotropic components, defined &1 xR..

o Observe that the arguments in (12) can be

C;’B’“"‘(hl,hz):ﬂe"(“s"“““""‘)C(hl,h2,h3,h4)dh dh,(9) interchanged preserving the validity of the resgiti

covariance function. Another interesting point featt

defined in R® xR®is a covariance function for all this covariance structure admits four trivariatergnas,

p q six bivariate and four univariate ones, so thattisig
(“5""4)DR TXR™. from (12) we can build a wide variety of covariance
Then, following Porcu et al. (2006) we can functions for space and space-time. In additior th

formulate the following general result. Let, ¢, be  extension toR® xR, d > 3, is straightforward.

either (i) positive Bernstein functions or(ii) A final example comes from considering a
intrinsically stationary variograms not vanishingtide  particular case of the Bernstein class by considettie
origin(wz y). Let L be the bivariate Laplace bivariate Laplace transform of a nonnegative random
transform of a nonnegative random vecioX,,X,)  Vector (VW W, ) with distribution functiorF:

with distribution functiorF. Then

2

o [

L
2\ (10 ) [w ) . (In
‘”1(”“1“ ) wZ(HhZH ) 1( ' ) 2( ’ ) Leading to a stationary nonseparable spatio-
(10) temporal covariance function R xR for any positive
natural numbed. Using random vector@/N,,W, ) such
's & covariance function i xR xR™ xR™. that such that the integrating meas réeNlof izwe la
Several particular results are of importance. A u integrating u loap

first result can be obtained by considering thegnarof transform is concentrated on the ling =, we come
(10), C,(C0) orC,(0,0. Then, if ¢ is a completely back to completely monotone functions, obtainirgf:th

Cq(hy,hy,hyhy) =

| .= 30 ) )| @

monotone function andy a Bernstein function, the
function (hu)— ¢(¢1(Vs M) +w, (% (U))). (14)
and:
2 h1 2
chy=—2 I @) (e (s (e () + e (nw))). (15)

¢
dy 2
o(ing) (o)
are stationary covariance functions ofR®xR,
for hORY=R%“xR%, and h:(hl'hZ) with whenever ¢ is a completely monotone function with

h, OR%for i=1,2is a stationary nonseparable #(0)=1 ¢, 4, 4, are Bernstein functions, and, y;

covariance function. are respectively spatial and temporal intrinsically
A second particular case on the spatio-temporastationary variograms.

domain defining a spatially componentwise anisatrop

temporally symmetric covariance function is asdois.
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Some examples: Starting from parametric expressions
of Laplace transforms of bivariate distribution

functions, we provide some examples of covariance
functions belonging to the Bernstein class and for

which anisotropy is obtained through isotropy withi
components.

The Frechet upper bound for bivariate copula
admits Laplace transformh with equation:

1-g%%

L(QJ.’QZ)_ 9 +9
1 2

(16)
for g #0o0r 6,#0, and wherel (0,0) = 1.

Thus the corresponding covariance belonging t
the Bernstein’s class in Eq. 13 would be:

1, ff=0 reu=0
-S> ()4 (1)
— o 17
Ca(hou) 1-e , otherwise (A7)
leM (‘h‘)_WT (\,u\)
where h h,.h, R R, and

., 1 1...d are Bernstein functions.

Using now formula (12), it is possible to obtain a
spatially anisotropic covariance function. We cdesi

here a covariance function defined BAxR, but the

CONCLUSION AND DISCUSSION

Spatio-temporal interactions usually show very
complicated forms. We believe that analytical
procedures which are easy to implement and
interpretable can help in the specification of spatio-

Stemporal dependence. In this study we have predente

an overview of possible solutions to the problem of
modeling anisotropy in space-time data. The methods
are quite general and allow building space-time
covariances which are spatially anisotropic. Tlassbs
here presented are very rich as contain a wideeraifig
particular cases. Note that the ingredients reduioce

the construction of these covariances are easiyb-f

%or instance, it is easy to find a list of Bernstei

functions as indicated above, and even easiernid fi
increasing concave functions. In general, the new
classes of covariance functions we present insthidy

are easy to build and allow for closed forms thioug
simple bivariate or univariate mixtures.

The application of nonseparable anisotropic
covariances to real space-time data is one of @minm
scopes for the future. Although the scope of thisly
is mainly theoretical, in the future we shall dede
time for applications. Besides, simulation of sptioe
random fields is not at all easy for the meantime.
Various computational problems are already
encountered, even in very simple cases. But, okiyou
it will be a very interesting research point foe tluture.

extension to a generic (d+1)-dimensional space i4 this context, it would be nice to consider o@wn
immediate. Thus, we set a partiton of the threefroposed covariance families within a test of

dimensional lag vector of the type
h=(h,h,...,h;)eR® and through straightforward

calculation, using the Bernstein  functions
iy, ¥, applied respectively to the first spatial lag

componenth, and to the temporal componept, we
obtain:

1, ifh=0o0ru=0
In|
e AL

oIl

whereh = (h,h,...,h;)e R*and € R. Observe that

instead of the two Bernstein functions, v, one could

w0 ) |
X———~———— |, otherwise
RAPREIRACYS)

(18)

alternatively use two variogram models, sayy,,

provided that they do not vanish at the origin, ckhis
equivalent to variograms with a nugget effect.

separability and analyze the power of such a test.
Again, we leave this action for the next coming
research.
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