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Abstract 

Greenhouse gas reduction and energy consumption are becoming two important issues 

in both industrialized and developing countries, and policy makers are developing 

means to reduce total domestic energy use. We evaluate and compare the direct and 

the indirect energy consumption both in the People’s Republic of China (China) and the 

United States of America (US) by looking at a series of hybrid energy input-output 

tables (1997, 2002, and 2007). We also apply structural decomposition analysis (SDA), 

to identify the factors causing energy intensity (energy consumption per unit of gross 

domestic product) to differ between the two countries, which lead to potential energy-

saving options. Our results show that, besides the differences in direct energy 
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consumption, huge differences also exist in indirect energy consumption between the 

two countries. Differences in indirect energy consumption are mainly due to differences 

in technology. Technological change and industrial-structure change are key factors to 

explain the inequality of energy intensity, while there is a significant trend towards the 

convergence of sectorial energy efficiency between the two countries. 

Keywords: Input-output analysis, Structural decomposition analysis, Energy 

 

Introduction 

Climate change is now a major issue that is being widely discussed and debated 

throughout the world. As the largest two energy consumers in the world, the People’s 

Republic of China (China) and the United States each accounted for 19.5% of the total 

global primary energy consumption in 2009 (BP, 2010). Therefore, both countries’ 

energy policies are mainly directed at reducing the domestic consumption of fossil fuels. 

China aims to reduce its carbon intensity (carbon emission per unit of gross domestic 

product (GDP)) by 40-45% relative to 2005 levels by 2020, and launched a national low-

carbon province and low-carbon city experimental project in five provinces and in eight 

cities (China’s National Development and Reform Commission, 2010). The US 

government made clear that clean and renewable energy is central to the economic 

future in the United States (Levin, et al., 2011). 

Energy is used by residents directly, and to produce goods and services consumed 

domestically as well as abroad. Therefore, energy consumption is mainly determined by 

a country’s gross domestic income (product), industrial structure, and sectorial energy 

efficiency. Gross domestic income affects households’ direct energy use and indirect 



energy use (energy embodied in nonenergy goods and services). Industrial structure 

and efficiency determine the amount of energy embodied in nonenergy goods and 

services. 

One technique that analysts use to reveal differences in country performance is energy 

input-output (I-O) analysis. They use this technique to combine information available in 

input–output tables and energy-consumption datasets and to separate total energy 

consumption into various components. In recent decades, they have frequently used the 

energy I-O models for energy and environmental policy analysis (Gay and Proops 1993; 

Lenzen 1998; Labandeira and Labeaga 2002; Lenzen, Pade et al. 2004; Munksgaard, 

Wier et al. 2005; Wiedmann, Minx et al. 2006; Nässén, Holmberg et al. 2007; Liang, 

Fan et al. 2007; Druckman and Jackson 2009).  

In both China and the United States, an increasing number of empirical studies 

emerged using this analytical framework, covering a wide range of topics from 

household consumption and final demand for energy, to energy embodied in goods and 

services, to impacts of energy-related policies (Lin and Polenske 1995; Liu, et al. 2009; 

Zhang, Mu et al. 2009; Chen and Zhang 2010; Liu, et al. 2010). We propose to apply an 

energy input-output framework to a between-country setting to evaluate the relative 

importance of the various determinants of energy use in both countries. We will identify 

where the main gains in energy-saving are likely to be found: should the country under 

observation focus on introducing more efficient technologies, or should it consider 

changing its final demand composition? Hence, our international comparison will 

provide energy-saving policy implications for the policy makers. 



2 Theoretical Background 

Using the basic Leontief model, we show that the total output of an economy, X , can be 

expressed as the sum of intermediate consumption, AX , and final consumption, Y  

(Leontief, 1936), as in Equations 1 and 2. In Equation 1, X  is the 1n  total output 

vector, A  is the nn   direct input coefficients matrix, describing the inter-industry 

relationships between all sectors of the economy, and Y  is the 1n final demand 

vector, which can be treated as exogenous to the system, for example, the level of total 

production can be determined by the final demand. In Equation 2, B  is the Leontief 

inverse matrix ,
1)(  AI .  

YAXX                  （1） 

BYYA)(IX 1     （2） 

In this study, we use the hybrid unit, energy input-output analysis to combine the energy 

consumption information in the input-output tables (Miller and Blair, 2009; Liu, et al., 

2009). We construct the energy input-output matrices following the same logic that 

analysts use to create the basic input-output tables for both countries (Equation 3).  

GZE                （3） 

E  is the matrix of energy flow from energy producing sectors to all other sectors, which 

is a nc   matrix. c  is the number of primary energy sectors. Z  is the vector of final 

energy demand and G  is the vector of total energy consumption, all measured in 

physical units, tonnes of standard oil equilibrium. We calculate direct primary energy 

intensities as ratios of direct energy consumption (in physical terms) to total inputs (in 



monetary terms), expressed in tonnes of standard oil equivalent per thousand US 

dollars (Equation 4). The total primary energy intensity of a product is equal to the total 

secondary energy intensity of that product plus any amount of energy lost in conversion 

or used for other purposes. Therefore, we calculate total primary energy intensities by 

multiplying direct primary energy intensities with the Leontief inverse matrix of the 

corresponding input-output table (Equation 5). 
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Where ie  is the direct energy intensity of sector i , e  is the nn   diagonal  direct 

primary energy intensity matrix ( ie  in the main diagonal and zeros elsewhere), and L  is 

the nn   total energy-intensity matrix. Given the total primary energy intensity in each 

sector, we calculate the domestic energy impact to produce final demand Y ,  which 

includes households, government, and exports (Equation 6). 

YLEY       (6) 

In general, the domestic energy use to produce final demand, which is the same as 

energy embodied in final demand(Equation 6), changes for a variety of reasons—such 

as, growth in final demand, changes in industrial structure, changes in technology, and 

energy efficiency improvement (Hoekstra and van der Bergh, 2003; Liu and Ang, 2007; 

Wood and Lenzen, 2009). In this paper, we apply the input-output Structural 

Decomposition Analysis (SDA) to obtain insight in the relative importance of the various 



factors that cause differences in energy embodied in final demand between China and 

United States. Since in this we express all monetary values in the same currency 

through the use of Purchasing Power Parities, we can subtract domestic energy use in 

one country (China) from that of any other country (the United States), thus, yielding the 

difference in energy embodied in final demand. To begin with, differences in the energy 

embodied in final demand ( YE ) from sectors, between the United States (country t ) 

and China (country 1t ), can be expressed in terms of differences of total energy 

intensities and final demand as follows. 
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From Equation 7, differences in the energy embodied in final demand ( Y
tΔE ) comprise 

the differences of total energy intensities (L ) and the differences of final demand 

(ΔY ). Note that this structure decomposition is additive and non-unique, and it does 

not include interaction terms. We use the simple average of only two decomposition 

forms, the so-called polar forms (Dietzenbacher and Los, 1998), to solve the non-

uniqueness problem as follows. 
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According to Equation 7, we further divide the differences in total energy intensities into 

the effects caused by differences in direct energy intensities (energy efficiency) and the 

effects caused by differences in the Leontief inverse (Equation 9). The Leontief inverse 

can be expressed in terms of the differences in the direct input-coefficients matrix A

( i.e., the underlying technological difference) (Equation 10). 
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Similarly, we also decompose the difference of final demand into the different 

composition of final demand (the different consumption patterns of the various types of 

final demand users (among which the final consumers, investment, and exports) and 

the different level of final demand (the size of final demand itself) (Equation 11 and 12). 

F  (Column vector) represents the structure of final demand with ratios of each sector’s 

final demand to the total volume of final demand, SY . Hence, we obtain the following 

expression for the decomposition of the difference between two countries’ energy 

embodied in final demand (Equation 13). 



FFYY Siii YYYY   /                                   (11) 

F)()F(F

FFFF

FF

YYΔY

1tt

1tt

1tt

1tt

Δ
2
1)(Δ

2
1

ΔΔΔΔ

1,,

1,

1,,

















tStSS

ttSS

tStS

YYY

YYYY

YY

    (12) 

F)L)(L(

)F)(FL(L

YY)BA(Bee

YYBBeΔE

t1t

1ttt1t

1tt1ttt1tt

1tt1tt
Y
t

Δ
4
1

)(Δ
4
1

))(Δ)((
4
1

))()((Δ
4
1

1,, 















tStS

S

YY

Y
    (13) 

The differences in the energy embodied in final demand between countries are 

decomposed into the effects caused by differences in primary energy efficiency in the 

first term on the right-hand side of Equation (13), the differences caused by different 

structures of intermediate inputs in the second term, the different level of final demand 

in the third term, and the different structures of final demand is the last term. In this 

decomposition, all the terms are multiplied by a Leontief inverse matrix, so that the 

measurements capture both direct and indirect impacts of each causal expression on 

the energy embodied in final demand and take account of the linkage through the 

induced intermediate demand.  

3 Data sources and processing 

Two sets of data are required in both China and the United States to apply the hybrid 

energy input-output model discussed above: input-outputdata for the interindustry flows 



and outputs measured in value terms and industry-specific estimates of the physical 

quantities of the different fuels consumed. Both are easily found for China and the 

United States, although the industrial classification systems used in the input-output 

tables and in the energy balance of the country are not the same. Therefore, our first 

task for this research is to make both systems compatible in both countries. Because 

the energy statistics are highly aggregated in both countries, we aggregate the input-

output tables to make the systems compatible. With the uniform criteria for the 

classification of both countries’ input-output tables, we aggregate the Chinese 1997(124 

sectors), 2002 (123 sectors), and 2007 (135 sectors), as well as the United States 1997 

(132 sectors benchmark table), 2002 (136 sectors benchmark table), and 2007 (65 

sectors annual table) industry- by-industry input-output tables into 24-sector input-output 

tables.  

To obtain an accurate evaluation of the industry-specific impacts of an energy policy, we  

calculate the energy consumption of each industry, including both direct combustion 

and the purchase of electricity and other intermediate inputs. To  estimate the quantity 

of energy use in the energy input-output tables, we assume that every sector pays the 

same average price for each kind of energy product. However, we note that this is a 

poor assumption for some industries (e.g., the electricity-generation industry pays a 

lower average price for coal than other industries). For China’s energy input-output 

tables, we obtain industrial energy-use data from the final-energy-consumption-by-

industrial-sector tables (standard quantity) provided by the Chinese Energy Statistical 

Yearbook, and collect energy data for agriculture, electric utility, transportation, and 

services from energy-balance tables (standard quantity) and infer energy use for the 



other industries from the value data by assuming that all these sectors pay the same 

price for a tonne of coal, a kilowatt-hour of electricity, or a unit of any other commodity. 

For the United States, we obtain energy use for the electric-utility industry, agriculture, 

transportation, and services on an end-use basis from the Annual Energy Review. For 

the U.S. industrial energy use, we collect the energy-consumption data for the 

manufacturing industries in the 2002 energy input-output table from the 2002 

Manufacturing Energy Consumption Survey (MECS). For the 1997 and 2007 energy 

input-output tables, we use the 1998 and 2006 MECS data to estimate the quantities of 

energy used by the manufacturing sectors based on a calculation constrained by 

national quantities of the fuels in both years. 

4. Results 

To demonstrate what insights can be obtained from between-country energy input-

output analysis, we apply the technique to analyze direct and indirect energy use in 

China and the United States over time.  

4.1. Economic development and energy consumption in China and US 

In the last three decades, economies of China and the United States, the largest 

developing and developed countries in the world, respectively, have experienced rapid 

growth. During the period from 1981 to 2009, the US gross domestic product (GDP) has 

increased from 3,103 billion Yuan to 14,119 billion US dollars at current prices (Figure 

1), with an annual GDP growth rate of about 5%. China's economy has developed with 

a much higher annual growth rate (about 12%) compared with that of the United States 

In 1981, China’s GDP was only nine percent of the US GDP, but in 2009 China’s GDP 

was already 64% of that of the United States (Figure 1).  



 

Figure 1: PPP GDP of China and US 

Note: Percentage here refers to the ratio of China’s PPP GDP to that of the United 

States. PPP GDP is gross domestic product converted to US dollars using purchasing 

power parity rates.  

Date source: World Bank 

Both China and U.S. economic growth were accompanied with a relatively rapid 

increase of fossil-fuel consumption as well as GHG emissions. Driven by the relatively 

rapidly increasing GDP, the rate of growth of China’s energy consumption was 

significantly faster than the speed of the US energy consumption (Figure 2). In 1981, 

China’s primary energy consumption was 411 million tonnes oil equivalent, which was 

about 24% of that in the United States. In 2009, although China and the United States 

still have huge differences in GDP and population sizes, their energy consumption was 

very similar. China’s primary energy consumption was 2,177 million tonnes oil 

equivalent, which was only five million tonnes oil equivalent less than that of the United 

States. China and U.S. energy consumption each accounts for 19.5% of the world’s 

total energy consumption in 2009 (BP, 2010). 



 

Figure 2: China and U.S. primary energy consumption, 1980-2009 

Source: BP Historical data, 

http://www.bp.com/productlanding.do?categoryId=6929&contentId=7044622 

From the perspective of per capita energy use, China has had a slight increase, while 

the United States has a relatively constant value during the last three decades. China’s 

per capita energy use has increased from 597 kilograms (kg) of oil equivalent in 1981 to 

1,611 kg of oil equivalent in 2009, while the U.S. per capita energy use was 7,647 kg of 

oil equivalent in 1981 and 7,104 kg of oil equivalent in 2009. A significant difference 

exists between China and the U.S. per capita energy use, although the ratio of China’s 

per capita energy use to that of the United States has increased from 8% to 24% from 

1981 to 2009 (Figure 3).  

http://www.bp.com/productlanding.do?categoryId=6929&contentId=7044622


 

Figure 3: China and United States per capita primary energy consumption, 1981-2009 

Data source: World Bank and BP 

From the trend of China’s economic growth and per capita  energy use increase, it is 

obvious that China’s energy consumption will surpass that of the United States in the 

near future. However, China has been following consistently a strategy of Export- Led 

Growth (ELG) and the net exports from China to the rest of world have grown rapidly. 

The energy embodied in China’s exports represents that the  energy used domestically 

for producing goods consumed abroad (Liu et al., 2010). Therefore, it is important to 

determine  the energy embodied in the final demand (household consumption, 

investment, and exports) for both China and the United States.  

4.2. Energy intensities 

Both China and the United States have experienced a decrease in energy intensity as a 

whole (energy use per unit GDP) from 1981 to 2009. In 1981, China’s energy intensity 

was 1,098 kg of oil equivalent per thousand US dollars GDP (constant 2005 PPP). 



During the period from 1981 to 2009, it has decreased by about 76% (260 kg of oil 

equivalent per thousand US dollars GDP in 2009). The US energy intensity has 

decreased from 290 to 170 kg of oil equivalent per thousand US dollars GDP during this 

period.  

Table 1: China and U.S. direct primary energy intensity for 24 sectors, 1997, 2002, 2007 

  

China US 

  

1997 2002 2007 1997 2002 2007 

1 Agriculture 26 43 49 102 97 93 

2 Oil and gas extraction 224 186 148 216 143 82 

3 Other mining 434 343 323 155 112 52 

4 Food, beverage and tobacco  78 60 61 41 38 36 

5 Textile 117 108 102 46 45 55 

6 Wood products and furniture 119 109 106 72 68 57 

7 Paper products 201 116 92 126 84 67 

8 Printing and related activities 40 34 22 19 17 16 

9 Petroleum and coal products 2,396 1,910 1,221 1,047 566 236 

10 Chemical products 476 367 196 291 256 171 

11 Plastics and rubber products 92 60 50 39 36 33 

12 Nonmetallic mineral products 727 613 287 210 201 193 

13 Primary metals 710 457 283 207 180 146 

14 Fabricated metal products 72 64 46 35 28 24 

15 Machinery 87 50 30 16 13 12 

16 Electronic products 29 18 14 11 10 7 

17 Electrical equipment 68 63 25 25 24 18 

18 Transportation equipment 111 64 32 15 14 14 

19 Miscellaneous manufacturing 135 88 45 16 10 9 

20 Utilities 3,451 2,418 1,910 3,042 2,065 1,749 

21 Construction 53 47 36 86 65 38 

22 Transportation 702 468 360 299 283 238 

23 Wholesale and retail trade 42 35 28 21 20 19 



24 Other services 38 29 25 36 33 22 

Source: Authors 

The direct primary energy intensities by sector for China and the United States in 1997, 

2002, and 2007, which are expressed in tonnes oil equivalent per thousand US dollars 

total output at current price, are presented in Table 1. As presented in Table 1, except 

for agriculture, the direct primary energy intensities of the other 23 sectors have 

decreased continuously  from 1997 to 2002 and from 2002 to 2007 in China. The rise of 

agriculture sector’s direct primary energy intensity in China is mainly caused by 

increasing use of agricultural machinery.  The decrease of other 23 sectors’ direct 

primary energy intensities can be considered as the improvement in energy efficiency in 

these sectors. For US, all 24 sectors have decreased their primary energy intensity 

during the period from 1997 to 2007, which means an overall improvement in energy 

efficiency.  By comparing the sectoral direct energy intensities between the two 

countries in these three years, we find China only has relative smaller direct primary 

energy intensities in agriculture and construction, because these two sectors use less 

machinery and more labor in China than these two sectors in US. China’s other 22 

sectors all have relative bigger direct primary energy intensities than those of US’s. 

Table 2 provides the total primary energy intensities of all 24 industries in China and the 

United States for 1997, 2002, and 2007, which are expressed in tonnes of oil equivalent 

per thousand US dollars final demand at current prices. For China, just like its direct 

primary energy intensities, with the exception of agriculture, the total primary energy 

intensity for the other 23 sectors decreased from 1997 to 2002 and from 2002 to 2007. 

For the United States total primary energy intensities for all 24 sectors decreased from 



1997 to 2002 and from 2002 to 2007. China’s sectorial total primary energy intensities 

are larger than those for the United States, which indicates that to produce the same 

amount of final demand, more energy is required in China than in the United States. 

Table 2: China and the United States total primary energy intensities for 24 sectors, 

1997. 2002, 2007 

  

China US 

  

1997 2002 2007 1997 2002 2007 

1 Agriculture 269 346 399 424 408 378 

2 Oil and gas extraction 602 457 348 477 335 185 

3 Other mining 951 754 672 387 279 151 

4 Food, beverage and tobacco  212 205 164 107 93 91 

5 Textile 319 279 245 169 154 194 

6 Wood products and furniture 327 304 286 266 178 158 

7 Paper products 796 502 421 364 261 234 

8 Printing and related activities 114 94 77 42 38 36 

9 Petroleum and coal products 3,998 2,418 1,282 2,246 1,338 539 

10 Chemical products 1,405 1,068 689 656 566 399 

11 Plastics and rubber products 290 223 190 90 83 79 

12 Nonmetallic mineral products 1,912 1,664 934 434 413 401 

13 Primary metals 1,723 1,384 918 428 402 379 

14 Fabricated metal products 243 235 170 74 60 55 

15 Machinery 259 153 112 35 29 30 

16 Electronic products 97 64 57 24 23 15 

17 Electrical equipment 230 201 100 59 56 41 

18 Transportation equipment 386 184 92 51 39 39 

19 Miscellaneous manufacturing 272 178 88 33 23 19.3 

20 Utilities 7,460 6,432 5,086 5,097 3,649 2,962 

21 Construction 159 143 132 177 146 97 

22 Transportation 1,889 1,076 780 650 571 483 

23 Wholesale and retail trade 123 87 59 75 70 49 

24 Other services 170 140 133 117 94 77 



Source: Authors 

We also calculated each sector’s indirect primary energy intensity for China and the 

United States, which is the difference between total primary energy intensity and direct 

primary energy intensity and represents the energy embodied in the intermediate inputs 

for each sector. Almost all sectors in China and the United States have relatively larger 

indirect primary energy intensities compared with their direct primary energy intensities. 

One unique case is the utilities sector. It has relative larger indirect primary energy 

intensity in China, while having a relatively smaller indirect primary energy intensity in 

the United States, compared with its direct primary energy intensity (Figure 4). The 

reason is because the geographical distribution of electricity-generating plants and their 

raw-fuel suppliers, coal mines, is mismatched in China, as 67 percent of all proven 

recoverable coal reserves occur in the north and northwest of China (mainly in the 

provinces of Shanxi, Shaanxi, and Inner Mongolia) while the electricity consumption 

mainly occurs in the south and southeast of China. The indirect energy intensity of one 

electricity generating plant is negatively associated with its spatial accessibility to coal 

resources through the national transportation network because of transportation-caused 

energy consumption. 



 

Figure 4: China and U.S. direct and indirect primary energy intensities for Utilities, 1987, 

2002, 2007  

Source: Authors 

4.3. Structural decomposition analysis results 

Based on between-country SDA, we evaluate the relative importance of the factors that 

cause these differences between two countries’ energy embodied in final demand in 

1997, 2002 and 2007. However, the decomposition equation we use in this paper 

(Equation 13) is at the sectoral level. In order to derive the importance of that factor in 

explaining the difference in aggregate energy embodied in final demand, we add up all 

sectoral differences in energy use caused by a specific decomposition factor. The 

results are shown in Table 3 and Figure 5. For each of the three years’ comparisons, 

the three columns in Table 3 depict how much higher domestic energy use is in the 

China (or lower in case of a negative number) because of intercountry differences in 

each of the four decomposition factors.  



Table 3: SDA results of differences in the energy embodied in final demand between 

China and U.S., 1997, 2002, 2007 

Differences (Million tonne of oil equivalent) 1997 2002 2007 

T Energy embodied in final demand 1,058 1,093 384 

e Direct primary energy intensities  -205 -261 -140 

A Structure of intermediate inputs -500 -770 -541 

s Level of final demand 1,817 2,166 1,098 

F Structure of final demand -53 -43 -33 

Note: The symbol T is used to denote the difference between US and China’s energy 

embodied in final demand. The explanatory factors (the e, A, s and F rows) show the 

increase in China’s domestic energy use if it would have been endowed with, 

respectively, US primary energy intensities (e), US intermediate inputs structure (A), US 

final demand level (s), US final demand structure (F). 

Source: Authors 

 

Figure 5: SDA results of differences in the energy embodied in final demand between 

China and U.S., 1997, 2002, 2007 (percent) 

Source: Authors 
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The difference of the energy embodied in final demand between China and the United 

States during the period from 1997 to 2002 increased slightly from 1,058 to 1093 million 

tonne of oil equivalent, but decreased by 709 million tonne of oil equivalent from 2002 to 

2007 (Table 3). Differences in the direct primary energy efficiency and the structure of 

intermediate inputs all decreased difference of the energy embodied in final demand 

between two countries. The relative importance of final demand structure is fairly limited. 

The difference in the level of final demand is the only factor that positively contributed to 

the difference of the energy embodied in final demand between China and the United 

States.  

From Table 3 and Figure 5, we can observe some general patterns. First, China’s 

production is generally more energy-intensive than that of the United States, which is 

caused by China’s relative higher sectoral energy intensities. Technological difference 

plays a more important role in explaining the difference of energy embodied in final 

demand between China and U.S, while there is a significant trend towards the 

convergence of sectorial energy efficiency as well as technology between the two 

countries. Second, gross domestic product in the United States is higher than China, 

and hence energy use in China would increase substantially if it would have the same 

level of final demand. 

4.4. Energy embodied in final demands 

Based on Equation (6), we discuss the impact of final demand on energy consumption 

for China and the United States, to attain a comprehensive and in-depth understanding 

of the relationship of final demand and domestic energy consumption. As presented in 

Figure 5, China’s domestic consumption (including households and government 



consumption) accounts for about 50% of China’s energy requirement, about one-third of 

China’s energy is used to produce products consumed abroad, and about 20% of 

China’s energy is used for investment. For the United States, more than 80% of its total 

energy consumption is used for producing goods and services consumed domestically, 

and less than 20% of its total energy consumption is used for exports and investment. 

  

Figure 5: China and U.S. direct and indirect primary energy intensities in the Utility 

sector, 1997, 2002, 2007  

Source: Authors 

China and the United States are at different development stages. China’s economic 

growth is largely driven by exports and investment, while in the United States, growth is 

mainly driven by domestic consumption. If we take the energy embodied in international 

trade into consideration, the U.S. consumption of China’s goods increases China’s 

energy consumption, while reducing its domestic energy consumption, and vice versa. 

From a global perspective, the U.S. consumption of China’s goods would increase 
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global energy consumption due to the relatively larger sectorial energy intensities in 

China. 

5. Conclusion 

Using an energy input-output framework, we analyzed energy consumption in China 

and the United States, two important energy-consuming countries in the world. First, 

based on a consistent set of 1999, 2002, and 2007 input–output tables for China and 

the United State, we evaluated energy intensity inequality, because it is a determinant 

of energy consumption disparities between countries. Second, we have applied 

between-country SDA to both countries’ energy embodied in final demand. Third, we 

studied the impact of different final demand compositions on energy consumption.  

Our results show that sectoral energy efficiency as well as the technological factor 

(intermediate-input structure) is primarily responsible for changes in direct energy 

intensities and indirect energy intensities, respectively. We also find that China can 

substantially reduce the amount of energy consumed by improving energy efficiency, 

intermediate input structure as well as final demand structure. A large part of China’s 

energy consumption is due to the production of exports as well as investment, while for 

the United States, a major part of energy is used to fulfill domestic goods and services 

consumption. Therefore, it can be concluded that China’s energy policy should focus on 

stimulating the adoption of energy saving technologies and reducing the energy 

intensity of its intermediate and final demand structure.  
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