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Abstract

IV estimators with an instrument vector composed only of past squared residuals,
while applicable to the semi-strong ARCH(1) model, do not extend to the semi-strong
GARCH(1,1) case because of underidenti�cation. Augmenting the instrument vector
with past residuals, however, renders traditional IV estimation feasible, if the residuals
are skewed. The proposed estimators are much simpler to implement than e¢ cient IV
estimators, yet they retain improved �nite sample performance over QMLE. Jackknife
versions of these estimators deal with the issues caused by many (potentially weak)
instruments. A Monte Carlo study is included, as is an empirical application involving
foreign currency spot returns.
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1. Introduction

Despite a plethora of alternative volatility models intended to capture certain "stylized

facts" of �nancial time series, the standard GARCH(1,1) model of Bollerslev (1986) remains

the workhorse of conditional heteroskedasticity (CH) modeling in �nancial economics. The

most common estimator for this model is the QMLE. Properties of this estimator are well-

studied. For example, Weiss (1986) and Lumsdaine (1996) demonstrate that when applied to

the strong GARCH(1,1) model, the QMLE is consistent and asymptotically normal (CAN).

Bollerslev and Wooldridge (1992), Lee and Hansen (1994), and Escanciano (2009) generalize

this result to the semi-strong GARCH(1,1) case. In this paper, I also consider estimation of

the semi-strong GARCH(1,1) model, but I do so through the lens of GMM estimators. In

particular, I propose simple GMM estimators constructed from (i) the covariances between

past residuals and current squared residuals, and possibly (ii) the autocovariances between

squared residuals. These estimators are IV-like, where the instrument vector is comprised

of past residuals and past squared residuals.

Weiss (1986) and Guo and Phillips (2001) discuss IV estimators for the ARCH model

based on the autocovariances between squared residuals. These estimators do not extend

to the GARCH(1,1) case, however, because autocovariances of squared residuals alone are

insu¢ cient for identifying the model. I show that the covariances between past residuals

and current squared residuals are su¢ cient for identifying the GARCH(1,1) model if the

residuals are skewed, which di¤erentiates my results from Baillie and Chung (2001) and

Kristensen and Linton (2006), who both show that autocorrelations of squared residuals

can be used to identify the GARCH(1,1) model. Like Kristensen and Linton (2006), the

simple GMM estimators I propose also have closed-form expressions that when combined

with an iterative GLS estimator have the same asymptotic variance as the QMLE. By the

nature of their reliance on third moment properties, however, these simple estimators are

CAN under less restrictive moment existence criteria than Kristensen and Linton (2006) and

Baillie and Chung (2001) in the GARCH(1,1) case, and Weiss (1986) and Guo and Phillips

(2001) in the ARCH(1) case. Additionally, there are cases where the asymptotic variance of

these estimators decreases as the absolute value of residual skewness increases (i.e., as the
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distribution of residuals moves farther away from normality, these estimators become more

e¢ cient).

Meddahi and Renault (1998) recognize that the covariance between the mean and the

variance, or skewness, is important for e¢ ciency reasons when considering estimators of

ARCH-type processes. This work builds on their results by linking skewness to identi�ca-

tion. Such a feature is common in many high frequency �nancial return series to which the

GARCH(1,1) model is applied.

Bollerslev and Wooldridge (1992) recognize that the "results of Chamberlain (1982),

Hansen (1982), White (1982), and Cragg (1983) can be extended to produce an instrumental

variables estimator asymptotically more e¢ cient than QMLE under nonnormality" (p. 5-6)

for the GARCH(1,1) model. Skoglund (2001) studies this result in detail. In the semi-strong

GARCH(1,1) case, however, his estimator necessitates the conditional variance function,

its �rst derivative, as well as the third and fourth conditional moments to be included

within the moment conditions. The GMM estimators I propose, in contrast, require none of

these features. Speci�cally, neither does the conditional variance function enter the moment

conditions nor do the dynamics of the third and fourth moments need to be estimated.

These omissions render my estimators simple. Such simplicity, of course, comes at the cost

of diminished e¢ ciency. However, even these simple estimators are shown to be serious

competitors to the QMLE.

The proposed estimators are overidenti�ed. As a consequence, the choice of a weighting

matrix is a material concern. Following Hansen (1982), the optimal weighting matrix involves

the variance-covariance matrix of the functions comprising the moment conditions. Since

the estimators I propose de�ne moment conditions in terms of the third and possibly the

fourth moments, however, use of the variance-covariance matrix involves moment existence

criteria up to at least the sixth and possibly the eighth moment. While not so strong as to

exclude certain low ARCH, high GARCH processes encountered in empirical applications,

such criteria are nevertheless quite strong, especially for certain �nancial data. Owing to

this consideration, I propose a rank dependent correlation matrix as a robust analog to the

variance-covariance matrix for use in the weighting matrix. This robust analog requires

no more than fourth moment existence for consistency, and provides superior �nite sample
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performance over simple GMM estimators that utilize a non data dependent weighting matrix

like the identity matrix.

Finally, the proposed estimators (potentially) involve many moment conditions. From

Newey and Windmeijer (2009), the CUE of Hansen, Heaton, and Yaron (1996) with the opti-

mal weighting matrix is robust to the biases caused by many (potentially weak) instruments.

The �nite sample properties of this estimator is investigated in the context of semi-strong

GARCH(1,1) model estimation. In addition, I propose the jackknife CUE (JCUE) for cases

where the optimal weighting matrix is unavailable out of a concern over the existence of

higher moments, so the robust analog is used instead. The JCUE removes the term respon-

sible for many (weak) moments bias from the CUE objective function. Consistency of the

JCUE is demonstrated without the need for considering the variance-covariance matrix of

the moment functions. Doing so avoids the higher moment existence criteria requisite for

the optimal CUE (OCUE), thus making the JCUE a robust alternative. Monte Carlo stud-

ies uncover cases where both the OCUE and the JCUE are more e¢ cient than the QMLE.

These e¢ ciency gains relate to the number of instruments used in constructing the respective

estimators.

2. The Model and Implications

For fYtgt2Z, let zt be the associated �-algebra where zt�1 � zt � � � � � z. The �rst

two conditional moments are

E
�
Yt j zt�1

�
= 0; E

�
Y 2
t j zt�1

�
= ht; (1)

where

ht = !0 + �0Y
2
t�1 + �0ht�1: (2)

In what follows, !0 denotes the true value, ! any one of a set of possible values, and b!
an estimate. Parallel de�nitions hold for all other parameter values. The model of (1)

and (2) describes a semi-strong GARCH(1,1) process according to De�nition 2 of Drost and

Nijman (1993). The more common strong GARCH(1,1) speci�cation where Yt=h
1=2
t is iid and
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drawn from a known distribution nests as a special case. Consider the following additional

assumptions.

ASSUMPTION A1: Let �20 =
!0

1�(�0+�0)
> 0, and de�ne �0 = (�

2
0; �0; �0)

0. �0 2 � � <3

is in the interior of �, a compact parameter space. For any � 2 �, @ � ! � W ,

@ � � � 1� @, 0 � � � 1� @, and � + � < 1 for some constant @ > 0, where @ and

W are given a priori.

Given A1, ht is everywhere strictly positive. Lumsdaine (1996) supplies the individual

bounds on !, �, and �. Since � � 0, A1 nests the ARCH(1) model.

Given �+� < 1, Yt is covariance stationary with E [Y
2
t ] = �20 (see Theorem 1 of Bollerslev

1986). Therefore, the mean-adjusted form of (2) is

eht = �0
eXt�1 + �0

eht�1; (3)

where eht = ht � �20 and eXt = Y 2
t � �20. An implication of (2) is that

eXt =
eht +Wt; (4)

whereWt is a martingale di¤erence sequence (MDS), withE
�
Wt j zt�1

�
= 0 andE

�
WtWt�k

�
=

0 8 k � 1.

ASSUMPTION A2: (i) E [Y 3
t ] = 
0 6= 0. (ii) E jWtYtj < 1. (iii)

neUt;ko is uniformly
integrable, where eUt;k � eXtYt�k � E

h eXtYt�k

i
for k = 1; : : : ; K.

LEMMA 1. Let Assumptions A1 and A2(i) hold for the model of (1) and (2). Then

E
h eXtYt�1

i
= �0E

�
Y 3
t

�
; (5)

and

E
h eXtYt�(k+1)

i
= �0E

h eXtYt�k

i
; (6)

where �0 = �0 + �0.
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Proof. All proofs are stated in the Appendix.

Lemma 1 relates the covariance between eXt and Yt�k to the third moment of Yt (see (22)

in the Appendix). Lemma 1 of Guo and Phillips (2001) establishes an analogous result for

the ARCH(p) model. In contrast to Guo and Phillips, the Lemma presented here is central

to identi�cation because it provides the moment condition in (5) that is only a function of

the data and of �0. Separation of �0 from �0 is the direct consequence of a nonzero third

moment. Skewness in the distribution of Yt, therefore, is the key identifying assumption for

the GMM estimators I discuss.

Newey and Steigerwald (1997) explore the e¤ects of skewness on the identi�cation of

CH models using the QMLE. This paper conducts a similar exploration for certain GMM

estimators. Newey and Steigerwald show that given skewness, there exist conditions under

which the standard QMLE for CH models is not identi�ed. This paper, in contrast, develops

GMM estimators that are not identi�ed without such skewness.

ASSUMPTION A3: (i) E [W 2
t ] = �0. (ii)

neVt;ko is uniformly integrable, where eVt;k �eXt
eXt�k � E

h eXt
eXt�k

i
for k = 2; : : : ; K.

Suppose

Yt = h
1=2
t �t; �t � iid (0; 1) : (7)

Then A3(i) is equivalent to assuming that E
h
(� + ��2t )

2
i
< 1, which grants Yt to have a

�nite fourth moment (see Carrasco and Chen 2002, Corollary 6) and so strengthens A1.3

Finally, A3(i) is su¢ cient for both A2(ii) and A2(iii). These latter two assumptions are only

necessary when A3 does not hold.

It is straight-forward to express (4) as

eXt = �0 eXt�1 +Wt � �0Wt�1: (8)

3Of course, in the semi-strong GARCH case, A3(i) also strengthens A1, but in an unknown way owing
to possible dependence in the fourth moment of �t.
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Multiplying both sides of (8) by eXt�1 and taking expectations produces

E
h eXt

eXt�1

i
= �0E

heh2t�1i+ �0E
�
W 2
t�1
�

(9)

=

�
(1� �0�0) (�0 � �0)

1� �20

�
�0;

where the second equality follows from Lemma 2 (see the Appendix). Multiplying both sides

of (8) by eXt�k for k � 2 and taking expectations then produces

E
h eXt

eXt�k

i
= �0E

h eXt
eXt�k+1

i
: (10)

Even given (10), (9) does not identify �0 owing to the presence of �0. Autocovariances of eXt

alone, therefore, are insu¢ cient for identifying the GARCH(1,1) model.

Let � (k) =
E[ eXt eXt�k]
E[ eX2

t ]
for k � 1. Then

� (1) =
(1� �0�0) (�0 � �0)

1 + �20 � 2�0�0
; (11)

and � (k) = �0� (k � 1) for k � 2.4 Kristensen and Linton (2006) show that (11) can be

expressed as a quadratic equation in �0 with a unique solution based on �0 and � (1) if and

only if �0 > 0. Autocorrelations of eXt do, therefore, identify the GARCH(1,1) model.

Lemma 1 identi�es the GARCH(1,1) model in an analogous fashion to (11) and �0 =

� (2) =� (1). Advantages of basing identi�cation on Lemma 1 include allowing �0 to be zero

and not requiring the fourth moment of Yt to be �nite.

3. Estimation

3.1. Notation

Partition the parameter vector � into (�; �2)0, where � = (�; �)0. For the sequence

of observations fYtg
T
t=1 from a data vector Y , let Z1;t�2 =

�
Yt�2; � � � ; Yt�k

�0
and Z2;t�2 =

4These equations are derived in Bollerslev (1988) and He and Teräsvirta (1999).
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�
Y 2
t�2 � �2; � � � ; Y 2

t�k � �2
�0
for 2 � k � K. Consider the following vector valued functions

g1;t
�
Y ; �; �2

�
=
�
Y 2
t � �2

�
Yt�1 � �Y 3

t ; (12)

g2;t
�
Y ; �; �2

�
=
�
Y 2
t � �2

� �
Z1;t�2 � �Z1;t�1

�
;

g3;t
�
Y ; �; �2

�
=
�
Y 2
t � �2

� �
Z2;t�2 � �Z2;t�1

�
;

and the following de�nitions

gi;t
�
Y ; �; �2

�
= gi;t

�
�; �2

�
; i = 1; 2; 3;

gt
�
�; �2

�
=

�
gi;t
�
�; �2

��
; i = 1; : : : ;max (i) ; 2 � max (i) � 3;

gm;t
�
�; �2

�
= mth element of gt

�
�; �2

�
;

bg ��; �2� = T�1
TP

t=k+1

gt
�
�; �2

�
; g

�
�; �2

�
= E

�
gt
�
�; �2

��
;

bS� ��; �2� =
@bg (�; �2)

@�
; S�

�
�; �2

�
= E

�
@gt (�; �

2)

@�

�
;

bS�2 ��; �2� =
@bg (�; �2)
@�2

; S�2
�
�; �2

�
= E

�
@gt (�; �

2)

@�2

�
;



�
�; �2

�
=

s=(L�1)P
s=�(L�1)

E
h
gt�s

�
�; �2

�
gt
�
�; �2

�0i
; L � 1;

b
 ��; �2� =
s=(L�1)P
s=�(L�1)

T�1
TP

t=k+s+1

gt�s
�
�; �2

�
gt
�
�; �2

�0
;

R
�
gm;t

�
�; �2

��
= rank of gm;t

�
�; �2

�
in gm;k+1

�
�; �2

�
; : : : ; gm;T

�
�; �2

�
;

b�(m;n)t;s

�
�; �2

�
= 1� 6

T (T 2 � 1)
TP

t=k+s+1

�
R
�
gm;t

�
�; �2

��
�R

�
gn;t�s

�
�; �2

���2
;

b� ��; �2� =
s=(L�1)P
s=�(L�1)

hb�(m;n)t;s

�
�; �2

�i
;

where m;n = 1; : : : ; 2k � 1.

3.2. CAN and Robust Estimators

Consider b� = argmin
�2�

bg ��; b�2�0MTbg ��; b�2� ; (13)
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where MT is positive semi-de�nite. (13) is the familiar GMM estimator of Hansen (1982)

with b�2 plugged-in. Given this plug-in feature, (13) is also a VTE similar to that studied by
Engle and Mezrich (1996) as well as by Francq, Horath, and Zakoian (2009). The moment

conditions in (13) are the �nite sample analogs to (5), (6), and (10). Depending on the

choice for MT , (13) supports either the traditional two-step GMM estimator or the CUE,

the latter of which is shown to be a member of the class of Generalized Empirical Likelihood

(GEL) estimators by Newey and Smith (2004). Newey and Windmeijer (2009) show GEL

estimators to be more e¢ cient than (jackknife) GMM estimators under many (potentially

weak) moments. Given the reliance of bg ��; b�2� on k, the association of (13) to the CUE is
important both asymptotically as well as for �nite sample performance.

If � = 0, then (13) has a closed-form solution. Moreover, even if � > 0, (13) retains a

closed-form solution; namely

b�2 = T�1
P
t

Y 2
t ; b� =

P
t

beX tYt�1P
t

Y 3
t

; (14)

b� =

��P
t

beX t
bZt�1�0MT

�P
t

beX t
bZt�1���1 �P

t

beX t
bZt�1�0MT

�P
t

beX t

� bZt�2 � b� bZt�1�� ;
where bZt�2 =

0@ Z1;t�2bZ2;t�2
1A and MT is 2 (k � 1) � 2 (k � 1), making it comparable to the

GARCH(1,1) estimator in Kristensen and Linton (2006).

ASSUMPTION A4: (i) 9 a neighborhood N of �0 such that E
�
sup
�2N



gt (�) gt (�)0

� <1;
or (ii) given (7), E

�
(� + ��2t )

s�
< 1 for s � 3.

ASSUMPTION A5: S� (�0; �
2
0)
0
M0S� (�0; �

2
0) is nonsingular.

ASSUMPTION A6: The conditions relating to an L2 mixingale in Assumption 1 of De

Jong (1997) hold.

THEOREM. Consider the estimator in (13) for the model of (1) and (2). Let b�2 =
T�1

TP
t=1

Y 2
t , and assume that MT

p! M0, a positive de�nite matrix. If max (i) = 2,
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then b� p! �0 given Assumptions A1 and A2. If max (i) = 3, then b� p! �0 given

Assumptions A1�A3. If, in addition, Assumptions A4(i), A5, and A6 hold, then

p
T
�b�� �0

�
d! N

�
0; H (�0; �

2
0)
�1
S� (�0; �

2
0)
0
M0
 (�0; �

2
0)M0S� (�0; �

2
0)H (�0; �

2
0)
�1
�
;

(15)

where H (�0; �
2
0) = S� (�0; �

2
0)
0
M0 S� (�0; �

2
0).

The �rst part of the Theorem establishes weak consistency of (13) through the properties

of L1 mixingales (see Andrews 1988). Whenmax (i) = 2, third moment existence is necessary

for this result. When max (i) = 3, fourth moment existence becomes necessary, owing to the

consideration of autocovariances between squared residuals.5 Theorem 4.4 of Weiss (1986),

the estimator in Rich et al. (1991), as well as Theorems 2.2 and 4.1 of Guo and Phillips (2001)

all require fourth moment existence for the consistency of their, respective, ARCH model

estimators. Baillie and Chung (2001) and Kristensen and Linton (2006) require the same

condition for autocorrelation-based estimators of the GARCH(1,1) model. The Theorem

replaces necessary with su¢ cient for the condition of a �nite fourth moment by nature of

the fact that identi�cation links to properties of the third moment.

Given (4), it is straight-forward to show that

E
h
Z�1

� eXt �X
0

�1�
�i
= g

�
�; �20

�
; (16)

where X�1 =
h eXt�1;

eht�1 i0 and Z�1 = h Yt�1; eZ 0t�2 i0, thus linking (13) to IV estima-
tion. The sample moment conditions associated with the left-hand-side of (16), however,

are infeasible, since they involve elements not included in the time-t information set. The

sample moment conditions associated with the right-hand-side of (16), on the other hand,

are feasible, since they are only a function of fYtg
T
t=1. As a consequence, (13) can be regarded

as a feasible IV-like estimator for the GARCH(1,1) model constructed using an "instrument

vector" of past residual and squared residual values.

The second part of the Theorem establishes the traditional asymptotic result for GMM

5Such consideration is made for e¢ ciency reasons, since the introduction of autocovariances of squared
residuals provides additional moment conditions without adding parameters.
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estimators using the CLT for L2 mixingales developed by De Jong (1997). This result, of

course, is also e¢ cient if M0 = 
(�0; �
2
0)
�1.6 In the e¢ cient case, b
�b�; b�2� p! 
 (�0; �

2
0)

given
�
gt�s (�0; �

2
0) gt (�0; �

2
0)
0	T
t=1

satisfying the UWLLN and Lemma 4.3 of Newey and

McFadden (1994) applied to a (z; �) = gt�s (�; �
2) gt (�; �

2)
0.7 Also worthy of note is that

the asymptotic variance of b�2 does not impact the asymptotic variance of b�, meaning that
nothing is lost (asymptotically) by plugging b�2 into (13) as opposed to �20. This result stands
in contrast to the VTE studied by Francq, Horath, and Zakoian (2009).

COROLLARY 1. For the estimator in (13), let b�2 = T�1
TP
t=1

Y 2
t , and MT

p!M0, a positive

de�nite matrix. If max (i) = 2, then (15) holds given A4(ii) with s = 3 and A5. If

max (i) = 3, then (15) holds given A4(ii) with s = 4 and A5.

Corollary 1 facilitates comparison of the asymptotic properties of (13) to those of the

estimator in Kristensen and Linton (2006). Establishing
p
T -asymptotic normality for the

latter case requires existence of the eighth moment, or, speci�cally, A4(ii) to hold with s = 4.
p
T -asymptotic normality of (13) can result, on the other hand, given existence of only the

sixth moment, since the estimator relies on third moment properties for identi�cation.8

Rather than relying on asymptotic approximations (and the higher moment existence

criteria those approximations entail), standard errors for (13) can, alternatively, be computed

via the parametric bootstrap. Suppose that the data generating process for Yt is characterized

by (1), (2), and (7), where E
�
�t j zt�1

�
= 0, E

�
�2t j zt�1

�
= 1, and the higher moments

of �t follow Lth order Markov processes with a �nite L << T . Use (13) to obtain bht. Letb�t = Yt=

qbht, and apply the nonoverlapping block bootstrap method of Carlstein (1986) to
these standardized residuals to obtain the bootstrap sampleb��t . Use these bootstrap residuals
to construct the series bY �

t =

qbh�tb��t , where bh�t depends on the parameter estimates from the

original data sample. Estimate the model of (1) and (2) on bY �
t , making sure to center the

bootstrap moment conditions with the original parameter estimates as suggested in Hall and

6The proof of this result is based on the two-step GMM estimator. For the CUE, although the �rst order
condition contains an additional term, this term does not distort the limiting distribution in (15). Pakes and
Pollard (1989) discuss this result in detail as do Donald and Newey (2000).

7The UWLLN replaces Khintchine�s law of large numbers in the proof of Lemma 4.3.
8Since (13) nests the ARCH(1) model, this same condition (also shared by the Theorem) relaxes the

moment existence criteria necessary for asymptotic normality under Theorem 4.4 of Weis (1986).
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Horowitz (1996). Repetition of this procedure permits the calculation of bootstrap standard

errors for b� that are robust to higher moment dynamics in �t. This same procedure can
also be used to bootstrap the GMM objective function as discussed in Brown and Newey

(2002) for a non-parametric test of the overidentifying restrictions that speaks to the �t of

the GARCH(1,1) model to the given data under study.

3.3. E¢ ciency Issues

From (15), let VGMM = H (�0)
�1 when M0 = 
(�0)

�1. If max(i) = 2, then

VGMM =
1


20
(�00M0�0)

�1
;

where the individual entrees of �0 are functions of �0, �0, and k. This expression illustrates

the underidenti�cation of �0 when fYtg is symmetrically distributed.

ASSUMPTION A7: For an r > 0, j
0j < 2
r
excluding an open set around zero. For any

x 6= 0, (i) x0 @
(�0)



x � rx0
 (�0)x if 
0 > 0, while (ii) x0 @
(�0)



x � �rx0
 (�0)x if


0 < 0.

PROPOSITION. Let Assumption A7 hold. Then VGMM decreases as j
0j increases.

As skewness increases in absolute value, (13) becomes more e¢ cient. When 
0 > 0,
@
(�0)



can be expected to be positive de�nite, since a positive change in 
0 can be expected to

increase the variance of the moment conditions through an increase in the higher moments

of fYtg.9 Conversely, when 
0 < 0, @
(�0)



can be expected to be negative de�nite, since

positive changes in 
0 can be expected to decrease the variance of the moment conditions

by decreasing the higher moments of fYtg. The substantive assumption of the Proposition,

therefore, is that the size of @
(�0)



is bounded by the size of 
 (�0).

Populate the parameter vector b# = (b!; b�; b�)0 using (14) and b! = b�2 �1� b��. De�ne
the iterative GLS iterative estimator,

b#GLSl+1 =

�P
t

bh�2l;t Xl;t�1X
0
l;t�1

��1�P
t

bh�2l;t Xl;t�1Y
2
t

�
; l � 1; (17)

9Given (7), examples where this statement is true include �t being distributed as as a standardized �(�; #)
or � (�) distribution for strictly positive and decreasing values of �.
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where bhl;t = b!GLSl + b�GLSl Y 2
t�1 +

b�GLSl
bhl;t�1, Xl;t�1 =

h
1; Y 2

t�1;
bhl;t�1i0, and b#GLS1 = b#. From

Kristensen and Linton (2006, Theorem 3),

p
T
�b#GLSl+1 � #0

�
d! N

�
0; H�1�H�1

�
;

where H is the Hessian of the QMLE for the semi-strong GARCH(1,1) model, and � is

the variance-covariance matrix of the score. Given (14) and (17), it is possible to de�ne a

semi-strong GARCH(1,1) estimator that does not require any numerical optimization and

has the same asymptotic variance as the QMLE (see, e.g., Bollerslev and Wooldridge 1992

and Lee and Hansen 1994).

3.4. The Weighting Matrix

The estimator in (13) requires speci�cation of a weighting matrix. Use of the optimal

weighting matrix requires existence of, at least, the sixth moment and as high as the eighth

if autocovariances are also considered. Such an assumption may prove overly restrictive,

especially for certain �nancial data. A key question, therefore, is what potential weighting

matrices exist that economize on the number of higher moment existence criteria needed

for consistency. One option, of course, is to use a non data dependent weighting matrix

like the identity matrix. Skoglund (2001), however, reports that the identity matrix used

in an E¢ cient IV estimator for the strong GARCH(1,1) model results in quite poor �nite

sample performance. This result is also found (though not reported) in Monte Carlo studies

of (13). Alternatively, one can consider using a robust analog to b
�b�� when constructing
the weighting matrix. One such alternative is b��b��. The matrix hb�(m;n)t;s

�b��i is Spearman�s
(1904) correlation matrix for the vector valued functions gt

�b�� and gt�s �b��. The matrixb��b��, therefore, re�ects rank dependent measures of contemporaneous and lagged associa-
tion between the sequences of vector valued functions that comprise the moment conditions.

The following lemma is useful for establishing consistency of b��b��.
LEMMA 3. Let at;s (�) =

�
R
�
gm;t (�)

�
�R

�
gn;t�s (�)

�	2
. For a �t ! 0, de�ne �t;s (�) =

sup
k���0k��t



at;s (�)� at;s (�0)


. Assume that ��t;s (�)

	
satis�es the UWLLN. Then for

13



b� p! �0, b�(m;n)t;s

�b��� b�(m;n)t;s (�0)
p! 0.

Consistency of b�(m;n)t;s

�b�� follows from Lemma 5 and selected results in Schmid and

Schmidt (2007).10 Conditions for consistency involve the copula for gm;t (�0) and gn;t�s (�0)

(speci�cally, existence and continuity of its partial derivatives), but do not explicitly impose

higher moment existence criteria on either. It is in this sense, therefore, that b��b�� can be
thought of as robust.

3.5. Many (Weak) Moments Bias Correction

For the estimator in (13), k (the number of lags, which corresponds to the number of

instruments) needs to be speci�ed. Standard GMM asymptotics point to e¢ ciency gains

from increasing k. Work by Stock and Wright (2000), Newey and Smith (2004), Han and

Phillips (2006), and Newey and Windmeijer (2009), however, discuss the biases of GMM

estimators when the instrument vector is large, (possibly) inclusive of (many) weak in-

struments, and allowed to grow with the sample size. To see how these biases relate

to k, suppose that there exists a �nite L such that E
�
gt (�) j zt�L

�
is constant.11 Let

s� = fS : s � t+ L or s � t� L; s = 1; : : : ; Tg. Then, the expectation of the GMM objec-

tive function bg (�)0MTbg (�) for a nonrandom weighting matrix MT is

E
�bg (�)0MTbg (�)� = T�2E

"P
t2s�

gt (�)
0
MTgs� (�) +

s=(L�1)P
s=�(L�1)

P
t

gt (�)
0
MTgt�s (�)

#
(18)

=

�
1� L

T

�
g (�)0MTg (�) + T�1tr

 
MT

s=(L�1)P
s=�(L�1)

E
h
gt�s (�) gt (�)

0
i!

;

which is an adaptation of (2) in Newey and Windmeijer (2009) to dependent time series

data.12

10These results are Theorem 5 and the fact that lim
n!1

p
n
�b�1;n � b�S;n	 = 0, where b�S;n relates tob�(m;n)t;s (�0).

11gt (�) can be thought of as a vector of residuals. The requirement is satisi�ed if these residuals follow an
MA process of order L� 1.
12This expansion is also valid under a random MT because estimation of MT does not e¤ect the limiting

distribution.
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In the language of Newey and Windmeijer (2009),
�
1� L

T

�
g (�)0MTg (�) is a "signal"

term minimized at �0. The second term is a "noise" term that is, generally, not minimized

at �0 if
@gt(�)

@�
is correlated with gt (�), as is the case, generally, in the IV setting, and is

increasing in k.13 From (18), if MT = 
(�)
�1, then the "noise" term is no longer a function

of �, and the GMM objective function is minimized at the truth. This result shows that (13)

speci�ed as the optimal CUE (OCUE) is robust to many (potentially weak) instruments.

If MT 6= b
 ��; b�2��1 (e.g., MT =
b
�e�; b�2��1 for some preliminary consistent estimatore� or MT =

b� ��; b�2��1), then (13) will be biased and increasingly so at large values of k. To
correct for this problem, consider the estimator

^

� = argmin
�2�

^

Q
�
�; b�2� ; (19)

where

^

Q
�
�; b�2� = T�2

P
t2s�

gt
�
�; b�2�0MTgs�

�
�; b�2� (20)

= bQ ��; b�2�� T�1tr

 
MT

(
s=(L�1)P
s=�(L�1)

T�1
P
t

gt�s
�
�; b�2� gt ��; b�2�0

)!
;

and bQ ��; b�2� = bg ��; b�2�0MTbg ��; b�2�. (19) removes the "noise" term from the GMM ob-

jective function. It will be referred to as the jackknife CUE (JCUE) whenMT =
b� ��; b�2��1

because, as seen through (20), it leaves out contemporaneous and certain lagged observations

from the CUE objective function.

COROLLARY 2. Consider the estimator in (13) for the model of (1) and (2). Let b�2 =
T�1

TP
t=1

Y 2
t , and assume that MT

p!M0, a positive de�nite matrix. In addition, assume

that L = 1. If max (i) = 2, then
^

�
p! �0 given Assumptions A1�A2. If max (i) = 3,

then
^

�
p! �0 given Assumptions A1�A3.

When L = 1, a straightforward way of demonstrating consistency of (19) is by examining

13This "noise" or bias term is analogous to the higher order bias term BG in Newey and Smith (2004). If
k is increasing with T , this term need not even vanish asymptotically (see Han and Phillips 2006), although
this case is beyond the scope of the paper.

15



the second equality in (20), in which case, the conditions under the Theorem (including A4�

A6) are su¢ cient. By involving the variance-covariance matrix of the moment conditions

through the bias correction term, however, such a demonstration involves precisely those

higher moment existence criteria that I am looking to avoid when specifying (19). Corollary 2,

therefore, bases consistency on the �rst equality in (20) and shows that A1�A3 are su¢ cient.

Following from Newey and Windmeijer (2009, p. 702), the two-step version of
^

� is

asymptotically normal (provided that the requisite moment existence criteria hold) if L = 1.

If �0 = 0, L = 1, and
^

� is the two-step GMM estimator, then the solution to (19) is JIVE2

from Angrist, Imbens, and Krueger (1999).

From (14), the closed-form estimator is susceptible to many moments bias through b�.
Following the discussion above, one solution to this problem is to estimate b� using JIVE2.
Alternatively, one can estimate b� using either the OCUE or the JCUE. In these cases,

a closed-form solution for b� is no longer available; however, minimization of the relevant
objective function via a grid search is feasible, thus bypassing the need for numerical opti-

mization techniques. Since JIVE2 is a special case of JGMM, and Newey and Windmeijer

(2009) show the CUE to be more e¢ cient JGMM under many moments, it is likely that the

alternative involving CUE for b� will be preferable.
4. Monte Carlo

Consider the data generating process in (1), (2), and (7) for di¤erent values of �0, where

�t is the negative of a standardized �(�; 1) random variable, with values of � ranging from

2 to 5. Simulations consider the OCUE and JCUE benchmarked against the QMLE. Two-

step GMM and JGMM estimators are not considered because of the results from Newey

and Windmeijer (2009). All simulations are conducted with 5,000 observations across 500

trials. When generating those observations, the �rst 200 are dropped to avoid initialization

e¤ects. Starting values for � in each simulation trial are the true parameter values. Summary

statistics for the simulations include the median bias, decile range (de�ned as the di¤erence

between the 90th and the 10th percentiles), standard deviation, and median absolute error

(measured with respect to the true parameter value) of the given parameter estimates. The
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median bias, decile range, and median absolute error are robust measures of central tendency,

dispersion, and e¢ ciency, respectively, reported out of a concern over the existence of higher

moments. The standard deviation, while not a robust measure, provides an indication of

outliers. Finally, MM denotes the method of moments plug-in estimator b�2.
Table 1A summarizes the results for the OCUE and JCUE (13 and 19, respectively) at

various lag lengths k, when max (i) = 2 and � = 2. For this speci�cation of �t and the three

values of �0 considered, Yt has at least a �nite fourth moment. MM estimates b�2 with more
bias than does QMLE, but also with less dispersion. With near uniformity, the dispersion

of b� (k) and b� (k) for each estimator is decreasing in k. JCUE tends to be less biased than
OCUE for b� (k), although the magnitudes of the bias for OCUE tend to be small. JCUE is
signi�cantly more dispersed than OCUE. The dispersion of b� (k) for OCUE is less than that
of b� for k = 20; 40. The dispersion of b� (k) for OCUE approaches that of b� as k increases,
exceeding it for �(1)0 and �(2)0 . In these latter two cases, however, the bias of b� (k) is higher
than that of b�. In summary, when max (i) = 2, OCUE becomes comparable to QMLE as k
increases. JCUE does not.

Table 1B summarizes the results for the OCUE and JCUE under the same conditions as

Table 1A except that max (i) = 3. In this case, for all values of �0 considered, b� (k) from the
OCUE is more e¢ cient than b� for all k considered. For �(3)0 , b� (k) from the OCUE is more

e¢ cient than b� for k = 40. For �(1)0 and �(2)0 , b� (k) from the OCUE is less dispersed than b�,
but with higher biases. For the JCUE, b� (k) is more e¢ cient than b� for all k considered, andb� (k) is seen to approach the e¢ ciency of b� as k increases. In summary, when max (i) = 3,
OCUE and JCUE are now seen to both be serious competitors to the QMLE, with the OCUE

able to deliver more e¢ cient individual point estimates than its QMLE counterpart.

Table 2 summarizes the results for the OCUE at various values of both � and k, when

max (i) = 2, for values of �0 considered in the previous tables. Note that higher values of

� correspond to lower levels of skewness. For the QMLE, as skewness increases, so, too,

does the dispersion of the parameter estimates. For the OCUE, in contrast, as skewness

increases, the dispersion of the parameter estimates decreases, con�rming the result of the

Proposition in section 3.3. When making comparisons at a given level of �, b� (40) is less
dispersed than b� in all cases considered, while b� (20) is less dispersed than b� in nearly all
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cases. The dispersion of b� (40), on the other hand, is only less dispersed than b� when � = 2.
For levels of � higher than 2, b� (k) is generally more dispersed than b�.
Table 3A summarizes additional simulation results for the OCUE and JCUE when

max (i) = 2, and � = 2. In this case, values for �0 are selected that support a �nite variance

of Yt but not a �nite fourth moment. The degree to which �0 violates E
h
(� + ��2t )

2
i
< 1

increases from �
(4)
0 to �(6)0 . In these simulations, neither the QMLE nor the MM estimator

is particularly apt at estimating b�2. As before, the QMLE displays relatively less bias but
is signi�cantly more dispersed. As expected, JCUE is unbiased for b� (k) across the di¤er-
ent speci�cations. Unexpected for the JCUE, however, is the �nding that b� (k) evidences
non-neglible biases (much larger than those of the OCUE) for speci�cations �(5)0 and �(6)0 .

In addition, JCUE is far less e¢ cient than the QMLE. Also unexpected is the �nding that

OCUE appears to be a serious competitor to the QMLE in the case of �(4)0 . Equally a surprise

is the �nding that the OCUE maintains its previous tendency of providing relatively more

e¢ cient estimates than b�.
Finally, Table 3B replicates the conditions from Table 3A but for max (i) = 3. In this

case, a surprising result given the non-existence of the fourth moment is the �nding that

both b� (20) and b� (40) for the OCUE and JCUE are more e¢ cient than b� for �(4)0 and

�
(5)
0 . Equally surprising for �

(4)
0 is that the OCUE and JCUE remain serious competitors to

the QMLE generally, since, in each case, b� (20) and b� (40) are quite comparable to b�. In
general, for the OCUE and JCUE, b� (20) and b� (40) tend to be less dispersed than b� across
the three speci�cations. The biases of b� (20) and b� (40), however, increase signi�cantly for
�
(5)
0 and �(6)0 . While contrary to what theory predicts, the results from Tables 3A and 3B

are supported by simulation results in Kristensen and Linton (2006), where for data lacking

a �nite fourth moment, their autocorrelation-based estimator continued to display descent

�nite sample performance.

5. FX Spot Returns

Let Si;t be the spot rate of foreign currency imeasured in US Dollars, where i =Australian

Dollars (AUD) or Japanese Yen (JPY). Each spot series is measured daily from 1/1/90 -
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12/31/09 and is obtained from Bloomberg. Consider the spot return de�ned as Yi;t =

log
�
Si;t=Si;t�1

�
. This section �ts the model of (1) and (2) to

�
Yi;t
	T
t=1
.14 Engle and Gonzalez-

Rivera (1999) as well as Hansen and Lunde (2005) employ similar speci�cations to British

Pound and Deutsche Mark exchange rate series, respectively. Hansen and Lunde (2005) �nd

no evidence that the simple GARCH(1,1) speci�cation is outperformed by more complicated

volatility models in their study of exchange rates. Their work guides the selection of �nancial

data analyzed here.

For the AUD series, skewness is�0:33; and kurtosis is 15:05. For the JPY series, skewness

is 0:43, and kurtosis is 8:34. Both series appear decidedly non-normal with the requisite

distributional asymmetry required under A2. Table 4 reports the estimation results for the

JCUE, OCUE, and QMLE. For both the JCUE and OCUE, L = 1. For the JCUE, only

the speci�cation with max (i) = 3 is considered. For the OCUE, both max (i) = 2 and

max (i) = 3 are considered. Also for the OCUE, when max (i) = 2, k is twice as large as

when max (i) = 3 so that the total number of moment conditions being used in each case is

the same. Starting values for the JCUE and OCUE are the QMLE estimates.

The JCUE estimates are closer to the QMLE estimates than are the OCUE estimates.

For the AUD series, the OCUE with max (i) = 3 implies appreciably higher ARCH and

appreciably lower GARCH e¤ects than does the QMLE. For the JPY series, the OCUE

with max (i) = 2 produces much larger ARCH and much smaller GARCH estimates than

the QMLE. Across both exchange rate series, however, di¤erences in point estimates are

accompanied by signi�cantly higher standard errors than in the QMLE case. These higher

standard errors are likely related to the near proximity of b�+b� to one.
6. Conclusion

The main contribution of this paper is to provide simple GMM estimators for the semi-

strong GARCH(1,1) model with a straightforward IV interpretation. The moment conditions

from these estimators are stated entirely in terms of covariates observable at time t, and while

14Preliminary investigations �t, among other speci�cations, ARMA(1,1) �lters to both series. For the JPY
series, this �lter was insigni�cant. For the AUD series, it proved signi�cant; however, its removal had no
meaningful impact on the GARCH estimates.
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they rely on skewness for identi�cation, these estimators do not require treatment of the third

and fourth conditional moments. Standard
p
T -asymptotics apply to these estimators given

moment existence criteria no stronger than those required for comparable moment estimators

discussed in the literature. These criteria can even be relaxed somewhat by nature of the fact

that identi�cation links to properties of the third as opposed to the fourth moment. These

simple estimators (can) involve many (potentially weak) moments, the bias from which can

be eliminated by using either a CUE with the optimal weighting matrix or what this paper

terms the JCUE. Both the OCUE and JCUE can outperform QMLE in �nite samples.

The identi�cation result in this paper can be extended to a GARCH(1,1) model with a

leverage e¤ect. Suppose that ht = !0+
�
�0 + ��0 � 1

�
Yt�1 < 0

��
Y 2
t�1+�0ht�1. Then (5) can

be divided into the set of moment conditions E
heY 2

t Yt�1

i
=
�
�0 + ��0 � P (Yt < 0)

�
E [WtYt],

and E
heY 2

t Yt�1 �
�
1� 1

�
Yt�1 < 0

��i
= �0 (1� P (Yt < 0))E [WtYt], which can be used to

identify a semi-parametric IV estimator of the semi-strong GARCH(1,1) model with a lever-

age e¤ect. Such an estimator would be applicable to stock returns given the results of Hansen

and Lunde (2005) and would expand the set of empirical applications to which simple IV

estimators of the GARCH(1,1) model can apply.

Applications in empirical asset pricing involve GARCH assumptions within the GMM

paradigm and are, therefore, amendable to the estimators that I propose. For instance,

Mark (1988) and Bodurtha and Mark (1991) consider versions of the conditional CAPM

that parameterize market betas as ARCH(1) processes. The moment conditions from the

simple GMM estimators I propose can easily be appended to the moment conditions of

these models to allow the market betas to display GARCH properties without the need for

specifying the entire conditional distribution of asset returns.

Finally, since the estimators proposed in this paper are IV estimators with (potentially)

many instruments, methods for selecting the number of instruments like those proposed by

Donald, Imbens, and Newey (2008) are, therefore, of interest. Future research may look to

relax the symmetry assumption in Donald, Imbens, and Newey (2008) and de�ne criteria

that are not (necessarily) dependent upon the variance-covariance matrix of the moment

conditions.
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Appendix

PROOF OF LEMMA 1: From (1) , (2), E
�
Wt j zt�1

�
= 0, and the law of iterated

expectations,

E
h eXtYt�1

i
= E

h�eht +Wt

�
Yt�1

i
(21)

= E
h�
�0
eXt�1 + �0

eht�1�Yt�1i
= �0E

�
Y 3
t�1
�
;

E
h eXtYt�2

i
= E

hehtYt�2i
= �0E

h eXt�1Yt�2

i
= �0�0E

�
Y 3
t�2
�
;

and

E
h eXtYt�3

i
= �0E

h eXt�1Yt�3

i
= �20E

h eXt�2Yt�3

i
= �0�

2
0E
�
Y 3
t�3
�
:

Given A2(i), these results imply that

E
h eXtYt�k

i
= �0�

k�1
0 E

�
Y 3
t

�
: (22)

Solving (22) for k = k + 1 and comparing the result to E
h eXtYt�k

i
produces (6).�

LEMMA 2. Given the model of (1) and (2), let Assumptions A1 and A3(i) hold. Then

E
heh2ti = � �20

1� �20

�
�0: (23)

21



PROOF OF LEMMA 2: Given (4), E
h eX2

t

i
= E

heh2ti+ E [W 2
t ]. Given (3),

E
heh2ti = �20E

heh2t�1i+ �20�0: (24)

Recursive substitution into (24) using (3) produces

E
heh2ti = �1 + �20 + � � �+ �

2(��1)
0

�
�20�0 + �2�0 E

heh2t��i
for � � 1. It is well known that�2�0 ! 0 as � ! 1 if and only if �0 < 1, which

establishes (23).�

PROOF OF THE THEOREM: Given Lemma 2, Y 2
t is covariance stationary. As a con-

sequence, b�2 p! �20 by a law of large numbers. Recursive substitution into (8) produces

eXt =
1P
i=0

 iWt�i; (25)

where  0 = 1 and  i = �0�
i�1
0 for i = 1; 2; : : :. Given (25) and A3(i), eVt;k is an

L1 mixingale (see Andrews 1988 for a de�nition and Hamilton 1994 p. 192-193 for a

proof). Given A3(ii), T�1
P
t

eVt;k p! 0 (see Theorem 1 of Andrews 1988). Similarly,eUt;k is an L1 mixingale given (25) and either A2(ii) or A3(i) for which T�1P
t

eVt;k p! 0

given either A2(iii) or A3(i). It then follows that (a) bg1;t ��; b�2� p! (�0 � �) 
0, (b)bg(k)2;t ��; b�2� p! �0 (�0 � �)�k�10 
0, and (c) bg(k)3;t ��; b�2� p! (�0 � �)�k�10 (�0�0 + �0�0),

where g(k)2;t
�
�; b�2� and g(k)3;t ��; b�2� are the kth elements of g2;t ��; b�2� and g3;t ��; b�2�,

respectively, for k = 2; : : : ; K and �0 = E
heh2ti. Let Q (�; �20) = g (�; �20)

0
M0g (�; �

2
0),

and bQ ��; b�2� = bg ��; b�2�0MTbg ��; b�2�. Given (a)�(c) and continuity of multiplication,bQ ��; b�2� p! Q (�; �20). For max (i) = 2, (a) and (b) establish that the only � 2 �

satisfying g (�; �20) = 0 is � = �0, since 
0 6= 0 and �0 is strictly positive. For max (i) =

3, (a)�(c) establish the same result with parallel reasoning given that �0�0 + �0�0 is

also strictly positive. Q (�; �20) is then uniquely minimized at � = �0. Next, let MT =

MT

�e�; b�2�. Then the �rst order condition from (13) is bS� �b�; b�2�0MTbg �b�; b�2� = 0.
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Let H
�b�; �; �20� = bS� �b�; b�2�0MT

bS� ��; b�2�, where � is between b� and �0. Given A5,
expanding bg �b�; b�2� �rst around �0, then around �20, and then solving for �b�� �0

�
produces

p
T
�b�� �0

�
= �H

�b�; �; �20��1 bS� �b�; b�2�0MT

p
T
�bg ��0; �20�+ bS�2 ��0; �2� �b�2 � �20

��
= � H

�
�0; �

2
0

��1
S�
�
�0; �

2
0

�0
M0

p
Tbg ��0; �20� ;

where the second equality follows from bS� �b�; b�2� p! S� (�0; �
2
0) given that either eUt;k

is an L1 mixingale that is uniformly integrable if max (i) = 2 or eVt;k is an L1 mixingale
that is uniformly integrable if max (i) = 3 and Theorem 1 of Andrews (1988), andbS�2 ��0; b�2� p! 0 given that Y 2

t is covariance stationary. From A4(i) and (25), gt (�0; �
2
0)

is an L2 mixingale.15 Given A6,
p
Tbg (�0; �20) d! N

�
0; 
 (�0; �

2
0)
�
by Theorem 1 of

De Jong (1997). The conclusion then follows from the Slutzky Theorem. �

PROOF OF COROLLARY 1: A4(ii) grants ht to be �-mixing with decreasing mixing

coe¢ cients (see Corollary 6 of Carrasco and Chen 2002). Theorem 17.0.1 of Meyn and

Tweedie (1993) then establishes
p
Tbg (�0; �20) d! N

�
0; 
 (�0; �

2
0)
�
. The rest follows

from the proof of the Theorem. �

PROOF OF THE PROPOSITION: Given the results for derivatives of inverse matri-

ces,

@VGMM

@

=
1


20

�
� 2

0
(�00M0�0)

�1
+ (�00M0�0)

�1
�00M0

@
 (�0)



M0�0 (�

0
0M0�0)

�1
�
.

15The proof of this result follows closely with those of eUt;k and eVt;k being L1 mixingales and is available
upon request.

23



Consider �rst the case where 
0 > 0, and let x =M0�0 (�
0
0M0�0)

�1. Then

� 2

0
(�00M0�0)

�1
+ (�00M0�0)

�1
�00M0

@
 (�0)



M0�0 (�

0
0M0�0)

�1 �

� 2

0
(�00M0�0)

�1
+ r (�00M0�0)

�1
�00M0
 (�0)M0�0 (�

0
0M0�0)

�1
=�

r � 2


0

�
(�00M0�0)

�1
< 0:

Next, consider the case where 
0 < 0. Then

� 2

0
(�00M0�0)

�1
+ (�00M0�0)

�1
�00M0

@
 (�0)



M0�0 (�

0
0M0�0)

�1 �

� 2

0
(�00M0�0)

�1 � r (�00M0�0)
�1
�00M0
 (�0)M0�0 (�

0
0M0�0)

�1
=

�
�
r +

2


0

�
(�00M0�0)

�1
> 0:

�

PROOF OF LEMMA 3: From the de�nition of b�(m;n)t;s (�),

b�(m;n)t;s

�b��� b�(m;n)t;s (�0) =
�6

T 2 � 1

�
T�1

P
t

at;s

�b��� at;s (�0)

�
:

By the consistency of b� established under Theorem 1, 9 a �t ! 0 such that



b� � �0




 �
�t. By the triangle inequality,



T�1P

t

at;s

�b��� at;s (�0)





 � T�1
P
t




at;s �b��� at;s (�0)



 � T�1

P
t

�t;s (�)
p! E

�
�t;s (�)

�
establishing the result.�
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PROOF OF COROLLARY 2:

^

Q
�
�; b�2� = T�2

TP
s=1

TP
t6=s
gt
�
�; b�2�0MTgs

�
�; b�2�

= T�1
TP
s=1

T�1
TP
t6=s
gt
�
�; b�2�0MTgs

�
�; b�2�

= T�1
TP
s=1

As
�
�; b�2� gs ��; b�2� ;

where

As
�
�; b�2� =  T�1 TP

t6=s
gt
�
�; b�2�!0MT :

From the Theorem, bg ��; b�2� p! g (�; �20) if max (i) = 2 or 3, which means that each

As
�
�; b�2� has the same probability limit. As a consequence, ^Q ��; b�2� p! Q (�; �20),

which has a unique minimum at � = �0 (see the proof of the Theorem).�
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TABLE 1A

�
(1)
0 = (1:0; 0:15; 0:75) �

(2)
0 = (1:0; 0:10; 0:85) �

(3)
0 = (1:0; 0:05; 0:94)

Med Dec Med Dec Med Dec

Para. Est. Bias Rge SD MDAE Bias Rge SD MDAE Bias Rge SD MDAE

�2 QMLE -0.003 0.244 0.095 0.065 -0.004 0.291 0.113 0.080 -0.028 0.602 0.352 0.163

MM -0.018 0.235 0.100 0.060 -0.022 0.289 0.129 0.076 -0.066 0.501 0.272 0.148

� QMLE -0.001 0.054 0.021 0.013 0.000 0.039 0.015 0.010 0.000 0.022 0.008 0.005

� (10) OCUE -0.009 0.053 0.028 0.014 -0.006 0.040 0.018 0.010 -0.004 0.034 0.018 0.008

JCUE -0.017 0.101 0.045 0.030 -0.008 0.077 0.034 0.020 0.002 0.064 0.028 0.014

� (20) OCUE -0.006 0.040 0.021 0.010 -0.003 0.022 0.014 0.005 -0.002 0.019 0.011 0.004

JCUE -0.016 0.091 0.042 0.028 -0.009 0.067 0.031 0.020 0.000 0.048 0.022 0.011

� (40) OCUE -0.003 0.035 0.019 0.007 -0.001 0.017 0.014 0.003 0.000 0.007 0.008 0.001

JCUE -0.003 0.071 0.036 0.016

� QMLE 0.000 0.081 0.033 0.020 0.000 0.056 0.022 0.013 -0.001 0.023 0.009 0.006

� (10) OCUE -0.013 0.109 0.056 0.029 -0.012 0.107 0.050 0.029 -0.021 0.144 0.079 0.034

JCUE 0.009 0.229 0.096 0.058 0.005 0.203 0.099 0.049 -0.038 0.316 0.187 0.050

� (20) OCUE -0.015 0.091 0.042 0.024 -0.009 0.067 0.031 0.018 -0.010 0.077 0.045 0.019

JCUE 0.010 0.173 0.076 0.043 0.009 0.137 0.061 0.036 -0.008 0.144 0.154 0.031

� (40) OCUE -0.015 0.079 0.039 0.022 -0.010 0.055 0.028 0.014 -0.004 0.038 0.020 0.010

JCUE 0.005 0.126 0.065 0.030

Notes: Simulations are conducted using 5,000 observations across 500 trials. The true parameter vector �0
= (�20; �0; �0)

0, and � = 2. b� (k) and b� (k) are the � and � estimates, respectively, based on k lags. QMLE
is the quasi-maximum likelihood estimator. MM is the method of moments estimator. OCUE and JCUE are
the optimal and jackknife continuous updating estimator, respectively, with max (i) = 2, k = 10; 20; 40, and
L = 1. Med. Bias is the median bias, SD the standard deviation, and MDAE the median absolute error of the
estimates. Dec Rge is the decile range of the estimates, measured as the di¤erence between the 90th and the
10th percentiles.
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TABLE 1B

�
(1)
0 = (1:0; 0:15; 0:75) �

(2)
0 = (1:0; 0:10; 0:85) �

(3)
0 = (1:0; 0:05; 0:94)

Med Dec Med Dec Med Dec

Para. Est. Bias Rge SD MDAE Bias Rge SD MDAE Bias Rge SD MDAE

� QMLE -0.001 0.054 0.021 0.013 0.000 0.039 0.015 0.010 0.000 0.022 0.008 0.005

� (10) OCUE -0.009 0.041 0.021 0.011 -0.006 0.033 0.022 0.009 -0.003 0.026 0.013 0.005

JCUE -0.003 0.044 0.023 0.007 -0.001 0.023 0.014 0.003 0.000 0.009 0.006 0.001

� (20) OCUE -0.006 0.032 0.017 0.009 -0.003 0.015 0.009 0.004 -0.001 0.011 0.009 0.002

JCUE -0.001 0.029 0.027 0.006 0.000 0.014 0.011 0.002 0.000 0.004 0.005 0.001

� (40) OCUE -0.002 0.037 0.024 0.007 -0.001 0.017 0.013 0.003 0.000 0.002 0.004 0.001

JCUE -0.001 0.029 0.014 0.005 0.000 0.013 0.011 0.002 0.000 0.003 0.005 0.000

� QMLE 0.000 0.081 0.033 0.020 0.000 0.056 0.022 0.013 -0.001 0.023 0.009 0.006

� (10) OCUE -0.018 0.091 0.042 0.027 -0.011 0.077 0.035 0.021 -0.006 0.069 0.027 0.018

JCUE 0.005 0.108 0.053 0.025 0.004 0.088 0.041 0.022 0.000 0.077 0.038 0.017

� (20) OCUE -0.026 0.078 0.036 0.028 -0.014 0.049 0.022 0.016 -0.006 0.030 0.013 0.009

JCUE 0.000 0.104 0.058 0.022 0.000 0.063 0.036 0.015 0.000 0.035 0.022 0.009

� (40) OCUE -0.028 0.079 0.038 0.029 -0.018 0.052 0.023 0.018 -0.004 0.020 0.008 0.006

JCUE 0.000 0.089 0.040 0.020 0.000 0.059 0.032 0.014 -0.001 0.025 0.029 0.006

Notes: Simulations are conducted using 5,000 observations across 500 trials. The true parameter vector �0
= (�20; �0; �0)

0, and � = 2. b� (k) and b� (k) are the � and � estimates, respectively, based on k lags. QMLE is
the quasi-maximum likelihood estimator. OCUE and JCUE are the optimal and jackknife continuous updating
estimator, respectively, with max (i) = 3, k = 10; 20; 40, and L = 1. Med. Bias is the median bias, SD the
standard deviation, and MDAE the median absolute error of the estimates. Dec Rge is the decile range of the
estimates, measured as the di¤erence between the 90th and the 10th percentiles.
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TABLE 2

�
(1)
0 = (1:0; 0:15; 0:75) �

(2)
0 = (1:0; 0:10; 0:85) �

(3)
0 = (1:0; 0:05; 0:94)

Med Dec Med Dec Med Dec

Para. Est. Bias Rge SD MDAE Bias Rge SD MDAE Bias Rge SD MDAE

� QMLE (5) -0.001 0.044 0.017 0.011 0.000 0.033 0.013 0.008 0.000 0.018 0.007 0.005

QMLE (4) -0.001 0.046 0.018 0.011 0.000 0.034 0.013 0.008 0.000 0.019 0.007 0.005

QMLE (3) -0.001 0.051 0.019 0.012 0.000 0.036 0.014 0.009 0.000 0.020 0.008 0.005

QMLE (2) -0.001 0.054 0.021 0.013 0.000 0.039 0.015 0.010 0.000 0.022 0.008 0.005

� (20) OCUE (5) -0.003 0.039 0.025 0.009 -0.001 0.024 0.018 0.005 0.000 0.019 0.013 0.004

OCUE (4) -0.004 0.038 0.025 0.009 -0.002 0.023 0.017 0.005 0.000 0.018 0.014 0.004

OCUE (3) -0.005 0.035 0.023 0.009 -0.002 0.023 0.017 0.005 -0.001 0.020 0.012 0.004

OCUE (2) -0.006 0.040 0.021 0.010 -0.003 0.022 0.014 0.005 -0.002 0.019 0.011 0.004

� (40) OCUE (5) 0.001 0.032 0.024 0.007 0.001 0.014 0.018 0.003 0.000 0.008 0.008 0.001

OCUE (4) 0.000 0.031 0.020 0.007 0.000 0.014 0.014 0.003 0.000 0.007 0.009 0.001

OCUE (3) -0.001 0.031 0.018 0.007 0.000 0.013 0.014 0.003 0.000 0.007 0.008 0.001

OCUE (2) -0.003 0.035 0.019 0.007 -0.001 0.017 0.014 0.003 0.000 0.007 0.008 0.001

� QMLE (5) 0.000 0.071 0.028 0.017 0.000 0.048 0.019 0.011 -0.002 0.021 0.008 0.006

QMLE (4) 0.000 0.073 0.029 0.018 0.000 0.049 0.019 0.012 -0.001 0.022 0.009 0.006

QMLE (3) 0.000 0.077 0.030 0.020 0.000 0.051 0.020 0.012 -0.001 0.022 0.009 0.006

QMLE (2) 0.000 0.081 0.033 0.020 0.000 0.056 0.022 0.013 -0.001 0.023 0.009 0.006

� (20) OCUE (5) -0.010 0.107 0.049 0.025 -0.006 0.077 0.047 0.020 -0.007 0.097 0.081 0.019

OCUE (4) -0.010 0.098 0.051 0.025 -0.007 0.078 0.035 0.018 -0.007 0.067 0.067 0.019

OCUE (3) -0.012 0.089 0.046 0.023 -0.007 0.070 0.037 0.018 -0.008 0.085 0.052 0.020

OCUE (2) -0.015 0.091 0.042 0.024 -0.009 0.067 0.031 0.018 -0.010 0.077 0.045 0.019

� (40) OCUE (5) -0.009 0.098 0.050 0.021 -0.006 0.064 0.036 0.014 -0.002 0.048 0.042 0.010

OCUE (4) -0.010 0.085 0.045 0.020 -0.006 0.058 0.030 0.013 -0.002 0.043 0.041 0.010

OCUE (3) -0.012 0.084 0.039 0.021 -0.008 0.056 0.030 0.013 -0.003 0.041 0.022 0.010

OCUE (2) -0.015 0.079 0.039 0.022 -0.010 0.055 0.028 0.014 -0.004 0.038 0.020 0.010

Notes: See Table 1A. QMLE (�) and OCUE (�) refer to the QMLE and CUE estimator, respectively,
applied to data where � = 2; : : : ; 5.
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TABLE 3A

�
(4)
0 = (1:0; 0:10; 0:88) �

(5)
0 = (1:0; 0:20; 0:78) �

(6)
0 = (1:0; 0:30; 0:68)

Med Dec Med Dec Med Dec

Para. Est. Bias Rge SD MDAE Bias Rge SD MDAE Bias Rge SD MDAE

�2 QMLE -0.017 0.718 0.352 0.171 -0.082 1.991 6.941 0.338 -0.223 3.729 4.517 0.464

MM -0.090 0.579 0.333 0.157 -0.293 0.795 1.218 0.337 -0.463 0.768 2.104 0.485

� QMLE 0.000 0.035 0.014 0.009 0.000 0.056 0.022 0.014 -0.003 0.076 0.029 0.019

� (20) OCUE -0.003 0.021 0.013 0.005 -0.009 0.028 0.022 0.011 -0.020 0.036 0.036 0.021

JCUE -0.009 0.071 0.034 0.019 -0.034 0.133 0.066 0.046 -0.058 0.188 0.099 0.073

� (40) OCUE -0.001 0.009 0.018 0.002 -0.006 0.014 0.017 0.007 -0.018 0.024 0.021 0.018

JCUE -0.004 0.064 0.031 0.015

� QMLE -0.002 0.037 0.015 0.010 0.000 0.052 0.020 0.012 0.001 0.063 0.025 0.015

� (20) OCUE -0.014 0.065 0.030 0.019 -0.026 0.070 0.050 0.029 -0.040 0.069 0.049 0.042

JCUE 0.006 0.147 0.083 0.038 0.007 0.210 0.108 0.052 0.004 0.286 0.143 0.067

� (40) OCUE -0.009 0.038 0.025 0.011 -0.023 0.047 0.026 0.023 -0.039 0.053 0.032 0.039

JCUE 0.001 0.119 0.055 0.027

Notes: Simulations are conducted using 5,000 observations across 500 trials. The true parameter vector
�0 = (�20; �0; �0)

0, and � = 2. b� (k) and b� (k) are the � and � estimates, respectively, based on k lags.
QMLE is the quasi-maximum likelihood estimator. MM is the method of moments estimator. OCUE and
JCUE are the optimal and jackknife continuous updating estimator, respectively, with max (i) = 2, k = 20; 40,
and L = 1. Med. Bias is the median bias, SD the standard deviation, and MDAE the median absolute error of
the estimates. Dec Rge is the decile range of the estimates, measured as the di¤erence between the 90th and
the 10th percentiles.
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TABLE 3B

�
(4)
0 = (1:0; 0:10; 0:88) �

(5)
0 = (1:0; 0:20; 0:78) �

(6)
0 = (1:0; 0:30; 0:68)

Med Dec Med Dec Med Dec

Para. Est. Bias Rge SD MDAE Bias Rge SD MDAE Bias Rge SD MDAE

� QMLE 0.000 0.035 0.014 0.009 0.000 0.056 0.022 0.014 -0.003 0.076 0.029 0.019

� (20) OCUE -0.002 0.008 0.008 0.003 -0.008 0.014 0.017 0.008 -0.020 0.024 0.016 0.021

JCUE -0.001 0.007 0.008 0.001 -0.006 0.022 0.017 0.006 -0.018 0.049 0.030 0.018

� (40) OCUE -0.001 0.004 0.005 0.001 -0.007 0.011 0.016 0.007 -0.020 0.022 0.012 0.020

JCUE

� QMLE -0.002 0.037 0.015 0.010 0.000 0.052 0.020 0.012 0.001 0.063 0.025 0.015

� (20) OCUE -0.011 0.036 0.016 0.012 -0.026 0.042 0.022 0.026 -0.042 0.051 0.025 0.042

JCUE -0.004 0.039 0.020 0.009 -0.018 0.048 0.043 0.019 -0.031 0.085 0.057 0.032

� (40) OCUE -0.011 0.027 0.012 0.012 -0.023 0.047 0.026 0.023 -0.045 0.053 0.023 0.045

JCUE

Notes: Simulations are conducted using 5,000 observations across 500 trials. The true parameter vector �0
= (�20; �0; �0)

0, and � = 2. b� (k) and b� (k) are the � and � estimates, respectively, based on k lags. QMLE is
the quasi-maximum likelihood estimator. OCUE and JCUE are the optimal and jackknife continuous updating
estimator, respectively, with max (i) = 3, k = 20; 40, and L = 1. Med. Bias is the median bias, SD the standard
deviation, and MDAE the median absolute error of the estimates. Dec Rge is the decile range of the estimates,
measured as the di¤erence between the 90th and the 10th percentiles.
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TABLE 4

Currency Para. JCUE OCUE QMLE

max (i) 3 2 3

k 40 80 40b�2 0.5579 0.5579 0.5579 0.4957b� 0.0511 0.0706 0.1192 0.0532

AUD (0.0979) (0.0608) (0.0088)b� 0.9215 0.9180 0.8772 0.9382

(0.0276) (0.0231) (0.0101)b�+b� 0.9726 0.9887 0.9964 0.9914

max (i) 3 2 3

k 40 80 40b�2 0.4963 0.4963 0.4963 0.5057b� 0.0539 0.1984 0.0558 0.0486

JPY (0.0517) (0.0443) (0.0095)b� 0.9099 0.7523 0.9277 0.9361

(0.0288) (0.0114) (0.0123)b�+b� 0.9638 0.9507 0.9835 0.9848

Notes: GARCH(1,1) models are �t to Australian Dollar (AUD) and Japanese Yen (JPY) spot returns,
where the spot rates are measured in terms of US Dollars. The time period for each series is daily from 1/1/90
- 12/31/09. JCUE and OCUE are the jackknife and optimal continuous updating estimator, respectively, where
L = 1. k is the number of lags used in the given estimator (if applicable). max(i) speci�es whether the given
estimator is based on properties of the third moment only (max(i) = 2) or also on properties of the fourth
(max(i) = 3). b�2 is the unconditional variance estimate for the given spot return. b� is the ARCH estimate,
and b� is the GARCH estimate.
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