
MPRA
Munich Personal RePEc Archive

When A Factor Is Measured with Error:
The Role of Conditional
Heteroskedasticity in Identifying and
Estimating Linear Factor Models

Todd Prono

Commodity Futures Trading Commission

19. September 2011

Online at http://mpra.ub.uni-muenchen.de/33593/
MPRA Paper No. 33593, posted 21. September 2011 16:56 UTC

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Munich Personal RePEc Archive

https://core.ac.uk/display/213930245?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://mpra.ub.uni-muenchen.de/
http://mpra.ub.uni-muenchen.de/33593/


When A Factor Is Measured with Error: The Role of Conditional
Heteroskedasticity in Identifying and Estimating Linear Factor

Models1

Todd Prono2

Commodity Futures Trading Commission

September 2011

Abstract

A new method is proposed for estimating linear triangular models, where identi�ca-
tion results from the structural errors following a bivariate and diagonal GARCH(1,1)
process. The associated estimator is a GMM estimator shown to have the usual

p
T -

asymptotics. A Monte Carlo study of the estimator is provided as is an empirical
application of estimating market betas from the CAPM. These market beta estimates
are found to be statistically distinct from their OLS counterparts and to display ex-
panded cross-sectional variation, the latter feature o¤ering promise for their ability to
provide improved pricing of cross-sectional expected returns.
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1. Introduction

This paper presents a new method for estimating linear triangular models where mea-

surement error or endogeneity e¤ects one of the regressors. Examples of these types of

models include (i) asset return factor models where one of the factors is either measured

inaccurately or an imperfect proxy for the true, latent, factor or (ii) restricted VAR models

from the empirical macro literature. The traditional approach to identifying these models

is through the use of exclusionary restrictions on parameters a¤ecting the conditional mean

or, equivalently, through the assumed existence of valid instruments. In contrast, this pa-

per demonstrates how a certain parametric speci�cation of the conditional heteroskedasticty

(CH) a¤ecting the structural errors to the triangular system allows for identi�cation in the

absence of traditional instruments. As such, this paper contributes to the literature on iden-

ti�cation through various forms of heteroskedasticity. Based on this identi�cation result, a

continuous updating estimator (CUE) is proposed that is shown to be consistent and asymp-

totically normal. It is also robust to many moments bias. This estimator performs well in

Monte Carlo experiments under moment existence criteria that allow for varying fat-tailed

processes. The estimator is also applied to estimating market betas from the familiar CAPM,

o¤ering promising results for the ability of these estimates to price expected returns in the

cross-section.

Consider the model

Y1;t = X
0

t�1 + Y2;t�2 + �1;t;

Y2;t = X
0

t� + �2;t;

where Yt =
h
Y1;t Y2;t

i0
is a vector of endogenous variables, Xt a vector of observable covari-

ates than can include lags of Yt, and �t =
h
�1;t; �2;t

i0
a vector of structural errors. Of course,

E
�
Xt�i;t

�
= 0 for i = 1; 2 is insu¢ cient for identifying the model. Rather than impose zero

restrictions on certain elements in �1, consider the following speci�cation for �t:

E
�
�t j zt�1

�
= 0; E

h
�t�

0

t j zt�1
i
=
�
hij;t

�
; (1)

hij;t = !ij + aij�i;t�1�j;t�1 + bijhij;t�1; i; j = 1; 2; (2)
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where zt = �
�
Zt; Zt�1; : : :

�
and Zt =

�
Y

0
t ; X

0
t

�0
. This speci�cation describes a bivariate,

diagonal GARCH(1,1) model. The univariate version was introduced by Bollerslev (1986),

the multivariate generalization by Bollerslev, Engle, and Wooldridge (1988). This model of

CH can be shown to support identi�cation of the triangular system in the same way as tradi-

tional zero restrictions imposed on �1; namely, through an examination of the reduced form

(see Prono 2010). Allowing for this result are the structural restrictions imposed by the pa-

rameterization in (2). This parameterization imposes a structure on Cov
�
�i;t�j;t; �i;t�k�j;t�k

�
for k � 2, and functions of these covariances can be paired with the moment conditions

E
�
Xt�i;t

�
= 0 to grant identi�cation. A bene�t of this result is that identi�cation of the

triangular system is achieved without the need for considering all of the parameters in (2);

rather, only a subset of these parameters needs to be considered. Before proceeding to the

formal statement of identi�cation and the properties of the associated estimator, it is in-

structive to further consider the source of identi�cation in (1) and (2) as well as a factor

model that would bene�t from this result.

1.1 Identi�cation Source

The identi�cation problem confronting the triangular system can be recast in terms of

a control function as in Klein and Vella (2010). Doing so provides a heuristic basis for

understanding how (1) and (2) solve this problem. Consider the conditional regression

A
�
zt�1

�
� argmin

A
E
�
�1;t � A�2;t j zt�1

�2
= Cov

�
�1;t; �2;t j zt�1

�
=V ar

�
�2;t j zt�1

�
:

In this case, Ut � �1;t �A
�
zt�1

�
�2;t is uncorrelated with �2;t conditional on zt�1 and forms

the basis for the controlled regression

Y1;t = X
0

t�1 + Y2;t�2 + A
�
zt�1

�
�2;t + Ut: (3)

Let Vt =
�
X

0
t ; Y2;t; �2;t

�
. Then, if �t is homoskedastic so that A

�
zt�1

�
is constant, we have

the usual identi�cation problem, since (absent exclusionary restrictions for �1) E [V
0
t Vt] is
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singular.3 Now suppose, instead, that �t is CH, and let Wt =
�
X

0
t ; Y2;t; A

�
zt�1

�
�2;t
�
. Then,

E
�
W

0
tWt

�
is nonsingular, and the identi�cation problem is solved, provided that A

�
zt�1

�
can be consistently estimated. This latter requirement necessitates (2) and illustrates why

CH alone is not su¢ cient for identifying the triangular system.

One approach to make estimation of A
�
zt�1

�
feasible is to assume a constant conditional

covariance. Speci�cally, since A
�
zt�1

�
= h12;t=h22;t, if h12;t = !12, then A

�
zt�1

�
can be

consistently estimated because h22;t is parameterized as a univariate GARCH(1,1) model,

and �2;t is identi�ed provided that E [XtX
0
t] is nonsingular. Sentana and Fiorentini (2001)

employ this precise covariance restriction to identify a latent factor model, where univariate

GARCH(1,1) processes characterize the conditional variances of the factors. Lewbel (2010)

also relies upon a constant conditional covariance restriction for identifying triangular and

simultaneous models. In a similar vein, Vella and Verbeek (1997) and Rummery et al.

(1999), too, rely on a covariance restriction for identi�cation by proposing rank order as an

instrumental variable.

A contribution of this paper is to allow h12;t to be time-varying, parameterizing it as an

ARMA(1,1) process, analogous to the speci�cation of each conditional variance. Doing so

complicates estimation of A
�
zt�1

�
by requiring the control function to be treated simulta-

neously along with (3), since h12;t now depends on past values of �1;t. The functional form

in (2) allows for this simultaneous estimation. Rather than propose an estimator for the

controlled regression, however, this paper demonstrates how the moment conditions

E
�
Xt�i;t

�
= 0; Cov

�
�i;t�j;t; �i;t�k�j;t�k

�
� �ijCov

�
�i;t�j;t; �i;t�(k�1)�j;t�(k�1)

�
= 0; (4)

8 i; j = 1; 2 excluding i = j = 1 where �ij = aij + bij identify the triangular system and

how �nite sample analogs to these moment conditions combine to form an estimator for that

system. Since the parametric form of (2) implies this second set of moment conditions, the

source of identi�cation behind the controlled regression in (3) and the moment conditions in

(4) is equivalent.

Klein and Vella (2010) is a work closely related to this one. They show identi�cation

3Singularity follows from �2;t being a linear combination of Y2;t and Xt.
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of the triangular model given heteroskedastic errors of a semi-parametric functional form.

Their estimator is more complicated to implement than this one, owing to the generality of

the heteroskedastic speci�cation. In many applications of �nancial economics, however, the

more restrictive CH speci�cation of (6) and (7) proves warranted (see, for example, Hansen

and Lunde 2005). Moreover, the Klein and Vella approach links the conditional covariance

between errors directly to each conditional variance. In this paper, by contrast, h12;t is not

a direct function of either h11;t or h22;t.
4

Other papers that exploit heteroskedasticity for identi�cation include Rigobon (2003) and

Rigobon and Sack (2003), where multiple unconditional variance regimes act as probabilistic

instruments, and the correlation between structural errors is sourced to common, unobserved,

shocks.

1.2 Measurement Error

Consider the CAPM of Sharpe (1964) and Lintner (1965), where Y1;t is a given excess

security return, Y �
2;t is the excess return on the true market return, which is unobservable,

and Y2;t is an observable proxy to the true excess market return. If the CAPM prices all

security returns including the proxy return, then

Y1;t = �1 + Y �
2;t�2 + U1;t; (5)

Y2;t = 
1 + Y �
2;t
2 + U2;t;

where �1 = 
1 = 0. If E
�
Y2;t
�
= E

�
Y �
2;t

�
, then

Y2;t = Y �
2;t + U2;t; (6)

which casts the relationship between the proxy return and the true market return as one of

measurement error, although not, necessarily, in the classical sense, since the theory does not

restrict U1;t to be orthogonal to U2;t or, equivalently, U1;t to be orthogonal to Y1;t. Consider

4An example where h12;t is a direct function of h11;t and h22;t is the CCC model of Bollerslev (1990).
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the projection equation Y �
2;t = � + V2;t. Substituting (6) into this projection equation and

into (5) produces the triangular system

Y1;t = �1 + Y2;t�2 + �1;t; �1;t = U1;t � �2U2;t; (7)

Y2;t = � + �2;t; �2;t = U2;t + V2;t:

Given a means for consistently estimating (7), one has a response to the Roll critique (1977),

since, in this case, b�2 is a measure of the security return�s sensitivity to the true market
return. Notice, however, that OLIVE from Meng, Hu, and Bai (2011) cannot, necessarily,

provide this consistent estimate, since any additional excess security return, say, Y3;t, which

is priced according to Y3;t = �3 + Y �
2;t�4 + U3;t, is only a valid instrument for Y2;t if all Ui;t

are orthogonal.

This paper explores estimation of the triangular system using (1) and (2), a system

commonly employed on security returns. The associated estimator represents a response to

the Roll critique insofar as one is willing to assume certain higher moment existence criteria

for those security returns. A multi-factor generalization of the above example follows readily

if the non-market factors are not also measured with error.

2. Identi�cation

For the linear triangular model

Y1;t = X
0

t�1;0 + Y2;t�2;0 + �1;t (8)

Y2;t = X
0

t�0 + �2;t (9)

together with the following bivariate GARCH(1,1) speci�cation for its structural errors �t =h
�1;t; �2;t

i0
E
�
�t j zt�1

�
= 0; E

h
�t�

0

t j zt�1
i
=
�
hij;t

�
; (10)

hij;t = !ij;0 + aij;0�i;t�1�j;t�1 + bij;0hij;t�1; i; j = 1; 2; (11)
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�1;0 is the true value of �1 and similarly for the other parameters. Even if there are no zero

restrictions for �1;0, which is equivalent to saying that there are no instruments available for

Y2;t, this section shows that (8) may still be identi�ed given the parametric form of CH in

(11).

ASSUMPTION A1: (i) E [XtX
0
t] and E [XtYt] are �nite and identi�ed from the data.

(ii) E [XtX
0
t] is nonsingular. (iii) E

�
Xt�i;t

�
= 0.

Given A1, the secondary equation (9) is identi�ed, as is the reduced form of the primary

equation (8). Let the reduced form errors from (8) be R1;t = Y1;t�X 0
tE [XtX

0
t]
�1E

�
XtY1;t

�
.

The relationship between these reduced form errors and the structural errors is

R1;t = �1;t + �2;t�2;0: (12)

ASSUMPTION A2: (i) Let Ht =
�
hij;t

�
. Ht is positive de�nite almost surely. (ii)

aij;0 > 0, bij;0 � 0. (iii) Let �ij;0 = aij;0 + bij;0. �12;0 6= �22;0.

In practice, positive de�niteness under A2 can be satis�ed using the BEKK parameteri-

zation of (11) proposed by Engle and Kroner (1995).5 Allowing bij;0 = 0 permits Ht to follow

a diagonal ARCH(1) process. Let Zij;t = �i;t�j;t. Then

Zij;t = hij;t +Wij;t

= !ij;0 + �ij;0Zij;t�1 � bij;0Wij;t�1 +Wij;t;

where, E
�
Wt j zt�1

�
= 0 and E

�
WtWt�s

�
= 0 8 s � 1.

ASSUMPTION A3: Zij;t is covariance stationary 8 i; j = 1; 2 except i = j = 1.

An implication of A3 is that �ij;0 < 1, in which case E
�
Zij;t

�
= �ij;0 =

!ij;0
1��ij;0

(see The-

orem 1 in Bollerslev 1986). Note that while �2;t is required to be fourth moment stationary,

no such restriction is imposed on �1;t. In fact, �1;t need not even have a �nite variance (i.e.,

5See Proposition 2.6 of the aforementioned work.
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�11;0 = 1 as in the IGARCH case is not ruled out). Given A3, if zij;0t = Zij;t � �ij;0, then

zij;0t = �ij;0zij;0t�1 � bij;0Wij;t�1 +Wij;t: (13)

Consider zlm;0t, where l;m = 1; 2 excluding the case where l = m = 1. Multiplying both

sides of (13) by zlm;0t�k for k � 2 and taking expectations produces

E
�
zij;0tzlm;0t�k

�
= �ij;0E

�
zij;0tzlm;0t�(k�1)

�
: (14)

This expression was derived in Bollerslev (1986, 1988) and He and Teräsvirta (1999) for the

case where i = j = l = m.

ASSUMPTION A4: Let Uij;t�2 =
�
Zij;t�2; : : : ; Zij;t�K

�0
. Given (12), the reduced from

of U12;t�2 is U
(R)
12;t�2. The matrix �R =

24 Cov
�
R1;t�2;t; U

(R)
12;t�1

�
Cov

�
�22;t; U

(R)
12;t�1

�
Cov

�
R1;t�2;t; U22;t�1

�
Cov

�
�22;t; U22;t�1

�
35

has full column rank.

SinceR1;t can be estimated by regressing Y1;t onXt, and �2;t can be estimated by regressing

Y2;t on Xt, the matrix rank test of Cragg and Donald (1996) can be applied to an estimate

of �R, rendering A4 testable. Alternatively, one can simply test if the determinant of �
0
R�R

is zero, since A4 requires this matrix to be nonsingular.

THEOREM 1. Consider the model of (8)�(11). Let Assumptions A1�A4 hold. Then �1;0,

�2;0, �12;0, and �22;0 are identi�ed.

Proofs are in the Appendix. The proof of Theorem 1 is based on the reduced form

of (14). As a consequence, only the conditional covariance function and the conditional

variance function for �2;t matter for identi�cation (see section 1.1). Structural parameters

can be retrieved from this reduced form because of the parametric speci�cation in (11). This

speci�cation omits lags of �21;t and �
2
2;t from the conditional covariance function and lags of

�21;t and �1;t�2;t from the conditional variance function of �2;t. These restrictions are analogous

to traditional zero restrictions that produce valid instruments. The diagonal GARCH(1,1)

speci�cation, therefore, is the key identifying assumption.
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3. Estimation

Let St = fYt; Xtg
T
t=1. De�ne �1;t = Y1;t�X

0
t�1�Y2;t�2, �2;t = Y2;t�X

0
t�, zij;t = �i;t�j;t��ij,

and uij;t�2 =
h
zij;t�2; : : : ; zij;t�K

i0
8 i; j = 1; 2 except i = j = 1, and K � 2.

ASSUMPTION A5: � =
�
�1; �2; �; !ij; �ij

	
. �0 2 � � R7, located in the interior of �,

a compact parameter space de�ned such that �12=�22 excludes an open neighborhood of

one.

A5 is a standard regulatory condition. Its only nuance stems from the need to reconcile

compactness with A2(iii). Consider the vector valued functions

g1 (St; �) = Xt�1;t; g2 (St; �) = Xt�2;t;

g3 (St; �) = zij;t

g4 (St; �) = zij;t
�
ulm;t�2 � �ijulm;t�1

�
; 8 l;m = 1; 2 excluding l = m = 1;

where g3 (St; �) and g4 (St; �) stack the vector valued functions 8 i; j; l;m into single column

vectors. Let gt (�) =
h
g1 (St; �) ; g2 (St; �) ; g3 (St; �)

0 ; g4 (St; �)
0
i0
. In addition, let

bg (�) = T�1
TP

t=K+1

gt (�) ; g (�) = E [gt (�)] ;

bG (�) =
@bg (�)
@�

; G (�) = E

�
@gt (�)

@�

�
;

g�t (�) =
@gt (�)

@�
; b� (�) = T�1

TP
t=K+1

gt (�) g�t (�)
0 ; � (�) = E

�
gt (�) g�t (�)

0� ;

 (�) =

s=(L�1)P
s=�(L�1)

E
�
gt�s (�) gt (�)

0� ; L � 1;

b
 (�) =
s=(L�1)P
s=�(L�1)

T�1
TP

t=K+s+1

gt�s (�) gt (�)
0 ;

and consider the estimator b� = argmin
�2�

bg (�)0 �Tbg (�) (15)
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for some sequence of positive semi-de�nite �T . For this estimator, the moment condi-

tions de�ned from g1 (St; �) and g2 (St; �) are standard for linear models and are, of course,

insu¢ cient for identifying the associated triangular system. The moment conditions de�ned

from g3 (St; �) and g4 (St; �) produce the �nite sample version of (14) and are, therefore,

instrumental in enabling identi�cation given Theorem 1.

ASSUMPTION A6: (i)
�
Xt�i;t

	
is an L1 mixingale (see Andrews 1988 for a de�ni-

tion). (ii) 9 an r > 1 such that E
���Xt�i;t

��r� < M . (iii) Let vt;k = zij;0tzlm;0t�k �

E
�
zij;0tzlm;0t�k

�
for k = 1; : : : ; K.

�
vt;k
	
is uniformly integrable.

Mixingale properties for fgt (�)g factor prominently into establishing consistency of b� in
Theorem 2 below. Also, notice that A6(ii) continues to allow �1;t to follow an IGARCH

process.

THEOREM 2 (Consistency). Consider the estimator in (15) for the model of (8)�(11).

Assume that �T
p! �0, a positive de�nite matrix. Let Assumptions A1�A6 hold. Then,b� p! �0.

Consistency under Theorem 2 requires fourth moment existence for �2;t but no corre-

sponding requirement for �1;t. In fact, �1;t does not even need to be covariance stationary.

Depending upon the speci�cation of K, however, the estimator in (15) can involve many

moment conditions. Works by Stock and Wright (2000), Newey and Smith (2004), Han

and Phillips (2006), and Newey and Windmeijer (2009), for instance, highlight the bias

caused by many moment conditions in GMM estimators. Newey and Windmeijer (2009)

illustrate how the CUE of Hansen, Heaton, and Yaron (1996) is robust to this bias. Theo-

rem 2 nests the CUE, provided that su¢ cient moment existence criteria are satis�ed so thatb
�b���1 p! 
 (�0)
�1.6 The bias-reducing feature of the CUE relative to GMM estimators

motivates the following discussion of asymptotic normality to only consider the case where

�T =
b
 (�)�1.

ASSUMPTION A7: (i)
�
Xt�i;t

	
is an L2 mixingale. (ii) 9 a neighborhood N of �0

such that E
�
sup
�2N

kgt (�)k
2

�
<1. (iii)

�
gt�s (�0; �

2
0) gt (�0; �

2
0)
0	 satis�es the UWLLN

6These criteria include �1;t being, at least, covariance stationary, and �2;t having a �nite eighth moment.
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(see Wooldridge 1990, De�nition A.1.). (iv) G (�0)
0
 (�0)

�1G (�0) is nonsingular. (v)

Assumption 1 of De Jong (1997) holds.

A7 is an extension of A6, since A7(i) implies A6(i), and A7(ii) implies both A6(ii) and

A6(iii). The stronger mixingale properties of A7 permit a CLT to apply to bg (�0) (see the
proof of Theorem 3 in the Appendix).

THEOREM 3 (Asymptotic Normality). Consider the estimator in (15) for the model

of (8)�(11), where �T = b
 (�)�1. Assume that b� (�) p! � (�). Let Assumptions A1�A7

hold. Then,
p
T
�b� � �0

�
d! N

�
0;
�
G (�0)

0
 (�0)
�1G (�0)

��1�
: (16)

Admittedly, the assumptions supporting asymptotic normality are strong. For instance,

(16) requires the eighth moment of �2;t to exist. This condition, however, is shared by

the estimators in Kristensen and Linton (2006) and Baillie and Chung (2001) by nature of

a shared reliance on the autocovariances of squared residuals for inference. The degree to

which this condition limits the applicability of (15) is explored in the simulation experiments

of the next section.

4. Monte Carlo

This section analyzes the �nite sample performance of (15) with �T =
b
 (�)�1 bench-

marked against the OLS estimator and the controlled regression (CR) estimator of (3), where

A
�
zt�1

�
= h�122;t, under the following simulation design:

Y1;t = X1;t + Y2;t + �1;t;

Y2;t = X1;t + �2;t;

X1;t � N (0; 1) ; �t = H
1=2
t �t;

where each �i;t is distributed either as a N (0; 1) or standardized � (2; 1) random variable.

In the speci�cation of (11), a11;0 = a12;0 = 0:10, a22;0 = 0:20, b11;0 = 0:80, and b12;0 = b22;0 =

0:70. Conditional on these values, the constants !ij;0 are set so that V ar
�
�1;t
�
= V ar

�
�2;t
�
=

11



1, and either Cov
�
�1;t; �2;t

�
= 0:20 (the low correlation state) or Cov

�
�1;t; �2;t

�
= 0:40 (the

high correlation state). Given this speci�cation, when �i;t � N (0; 1), the eighth moment of

�2;t is �nite (see Theorem 2 of Bollerslev 1986). On the other hand, when �i;t �standardized

� (2; 1), the fourth moment of �2;t does not exist (see Corollary 6 of Carrasco and Chen 2002).

All simulations are conducted with 1,000 observations across 500 trials. When generating

observations for each trial, the �rst 200 are dropped to avoid initialization e¤ects. For each

trial using (15), the starting values are the true parameter values. In addition, (15) is

computed using either K = 10 or K = 20.7 Summary statistics for all of the estimators

include the mean and median bias, the standard deviation and decile range (de�ned as the

di¤erence between the 90th and the 10th percentiles), as well as the root mean squared

error (RMSE) and median absolute error (MDAE), where both the RMSE and MDAE are

measured with respect to the true parameter value. The median bias, decile range, and

MDAE are robust measures of central tendency, dispersion, and e¢ ciency, respectively, that

are reported out of a concern over the existence of higher moments. For (15), the coverage

rate for 95% con�dence intervals as well as the rejection rate for the standard test for

overidenti�cation at a 5% level are also reported.

Table 1 summarizes the results for the OLS and CR estimators. As expected, the OLS

estimates of �10 and �20 are biased. The absolute value of this bias increases when mov-

ing from the low correlation to the high correlation state and is generally higher when

�i;t �standardized � (2; 1), the case re�ecting a heavier-tailed process. In general, the mag-

nitude of this bias is large. The CR estimator displays notably less bias than its OLS

counterpart; however, the overall level of bias remains non-negligible, especially in the case

of fat-tailed errors.

Table 2A summarizes the results for (15) whenK = 10. In the case where �i;t � N (0; 1),

the estimates of �10 and �20 are unbiased. The nuisance parameters are slightly biased, but

this tendency does not e¤ect the estimates from the conditional mean. The coverage rates

tend to be too high and the rejection rates too low; however, the latter improves when

moving to the high correlation state. Overall, the CUE in (15) o¤ers a marked improvement

7When K = 10, (15) contains 40 moment conditions. When K = 20, the number of moment conditions
is 80.
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over both the OLS and CR estimators.

What is surprising in Table 2A is that (15) continues to produce unbiased estimates of �10

and �20 even when �i;t �standardized � (2; 1). Irrespective of the correlation state, biases in

the nuisance parameters increase signi�cantly relative to the case where �i;t � N (0; 1), but

this increase does not spill over onto the estimates from the conditional mean. Contrary to

what the theory predicts, therefore, it seems as if (15) remains consistent even if the fourth

moment of �2;t is not well de�ned. Also surprising is the �nding that coverage rates for b�1
and b� correspond to the chosen con�dence interval. The coverage rate for b�2, however, is
too low. In addition, the overidenti�cation test is signi�cantly undersized.

Table 2B summarizes results for the CUE when K = 20. In general, these results

(relative to those in Table 2A) con�rm the CUE as being robust to many moments bias.

For �i;t � N (0; 1) across both correlation states, moving from K = 10 to K = 20 results in

diminished e¢ ciency according to either the RMSE or MDAE. Coverage rates are generally

improved, however, and the rejection rates are much closer to being appropriately sized.

When �i;t �standardized � (2; 1), the same results emerge as in the case where K = 10.

Speci�cally, parameter estimates from the conditional mean remain unbiased even though

the nuisance parameters display non-negligible bias, which, relative to the case whereK = 10,

is more severe. There is also a noticeable deterioration in coverage rates, counter-balanced

against a marked improvement in rejection rates.

5. CAPM Betas

This section uses the CUE from section 3 to estimate CAPM betas for size, B/M, and

momentum portfolios following the example in section 1.2. These portfolios are studied

because they re�ect the size, value, and momentum "premiums" that empirical applications

of the CAPM struggle to explain. The returns are measured weekly (in percentage terms)

from 10/6/67 through 9/28/07. Test results consider 20- and 10-year subperiods of this

overall date range. The daily 25 size-B/M and 25 size-momentum return �les (each 5�5

sorts with breakpoints determined by NYSE quintiles) formed from all securities traded on
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the NYSE, AMEX, and NASDAQ exchanges are used to construct the weekly return series.8

The size portfolios considered are "Small," "Mid," and "Large." "Small" is the average of the

�ve low market-cap portfolios, "Mid" the average of the �ve medium market-cap portfolios,

and "Big" the average of the �ve large market-cap portfolios. The B/M portfolios considered

are "Value," Neutral," and "Growth." Value" is the average of the �ve high B/M portfolios,

"Neutral" the average of the �ve middle B/M portfolios, and "Growth" the average of the �ve

low B/M portfolios.9 Finally, the momentum portfolios considered are "Losers," "Draws,"

and "Winners." "Losers" is the average of the �ve low return-sorted portfolios, "Neutral"

the average of the �ve middle return-sorted portfolios, and "Winners" the average of the

�ve high return-sorted portfolios. The proxy return for the true market return is the CRSP

value-weighted index return formed from all securities traded on the NYSE, AMEX, and

NASDAQ exchanges. Excess returns are calculated using the one-month Treasury bill rate

from Ibbotson Associates.

The most glaring take-away from Table 3, which summarizes estimation results for re-

turns measured between 10/6/67 and 9/25/87, is that di¤erences in beta estimates between

OLS and the CUE are large (i.e., of economic signi�cance) and statistically signi�cant.10

Moreover, this result is not impacted by the lag length chosen for the CUE. Since Theorem

1 nests the case of a zero covariance between structural errors�which, in the context of (7),

means that there is no measurement error in the market return�this �nding strongly suggests

that the standard approach to estimating beta is biased. This �nding is further supported by

Table 4, which summarizes estimation results over the more-recent period 11/6/87 - 9/28/07,

and by Tables 5�7, which consider ten-year subperiods of the two date ranges considered in

Tables 3 and 4, respectively.11

Across the di¤erent portfolios, one can also observe an increase in the dispersion of the

8These return �les are available on Kenneth French�s website. Weekly returns are utilized because the
CUE, which is based on higher moments, bene�ts from many observations in terms of �nite sample per-
formance. Weekly returns are selected over daily returns because the former reduces day-of-the-week and
weekend e¤ects as well as the e¤ects of nonsynchronus trading and bid-ask bounce.

9De�nitions for the "Small," "Large," "Value," and "Growth" portfolios are taken from Lewellen and
Nagel (2006).
10Statistical signi�cance is determined using 95% con�dence intervals constructed from the standard errors

of the CUE, which are consistent given general forms of heteroskedasticity and autocorrelation of the �rst
order (i.e., L = 2).
11The subperiod 10/6/67 - 9/30/77 is not considered because the mean of the proxy return is negative.
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beta estimates obtained using the CUE relative to OLS. Moreover, this increased dispersion

does not seem to link to imprecision in the individual beta estimates, since the standard

errors for the CUE are, at least, comparable in magnitude to their OLS counterparts. The

implication, therefore, is that the beta estimates obtained under the CUE display elevated

cross-sectional variation. In empirical asset pricing, betas obtained from time-series regres-

sions are important for their assumed role in pricing expected returns in the cross-section. A

well known empirical feature of cross-sectional expected returns is that (1) they tend to ex-

hibit substantial variation, and (2) their associated betas vary correspondingly little (minor

variations in betas cross-sectionally is evidenced in the �rst two panels of the Tables). This

second feature explains the poor empirical performance of the CAPM, which uses individual

asset sensitivities to the market return as its single pricing factor. Tables 3�7 suggest that

this poor performance may be overstated; using consistent beta estimates may improve the

ability of these estimates to explain variation in expected returns cross-sectionally.

Di¤erences in alpha estimates between the CUE and OLS appear decidedly more muted.

With minor exceptions, these estimates are statistically indistinguishable for the two 20-

year time periods considered (see Tables 3 and 4). For the 10-year subperiods, however,

statistically distinct alpha estimates do arise, and, when they do, increases in their magnitude

(in absolute terms) under the CUE tend to explain the di¤erence, as opposed to reductions

in standard errors.

6. Conclusion

This paper presents a new method for estimating the linear triangular system, one which

does not rely upon the existence of outside instruments for identi�cation but, rather, a

particular parametric form for the CH in the structural errors. This parametric form is

common to empirical asset pricing speci�cations and tests. The estimator is shown to display

the usual
p
T -asymptotics and is robust to many (potentially weak) moments bias. It also

economizes on the number of nuisance parameters out of the CH process that need to be

estimated.

The estimator is applied to estimating market betas in a CAPM setting. The resulting

estimates di¤er signi�cantly from the corresponding OLS estimates and appear to display
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increased cross-sectional variation. The two-pass method of Fama and MacBeth (1973) for

testing asset pricing models relies upon time series beta estimates from the �rst pass. Works

reliant upon this method have found the risk premium associated with these �rst-pass betas

to be near zero or even negative (see, e.g., Jagannathan and Wang 1996 and Lettau and

Ludvigson 2001). Inconsistent beta estimates from the �rst pass will a¤ect the cross-sectional

results from the second pass and may explain these counter-intuitive results. Increased cross-

sectional variation in consistent beta estimates is a promising �nding that supports this

conjecture because of the empirical properties of cross-sectional expected returns.

Appendix

PROOF OF THEOREM 1: Given (14), �rst consider the case where i = j = l = m = 2.

Then

Cov
�
�22;t; U22;t�2

�
= �22;0Cov

�
�22;t; U22;t�1

�
; (17)

which identi�es �22;0 as

�22;0 =
�
Cov

�
�22;t; U22;t�1

�0
Cov

�
�22;t; U22;t�1

���1
Cov

�
�22;t; U22;t�1

�0
Cov

�
�22;t; U22;t�2

�
:

Next let i = 1, j = 2, and l = m = 2. In this case,

Cov
�
�1;t�2;t; U22;t�2

�
= �12;0Cov

�
�1;t�2;t; U22;t�1

�
;

the reduced form of which is

Cov
�
R1;t�2;t; U22;t�2

�
= �12;0Cov

�
R1;t�2;t; U22;t�1

�
+�2;0

�
�22;0 � �12;0

�
Cov

�
�22;t; U22;t�1

�
;

(18)

given (12) and (17). Finally, let i = l = 1 and j = m = 2. Then

Cov
�
�1;t�2;t; U12;t�2

�
= �12;0Cov

�
�1;t�2;t; U12;t�1

�
;
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the reduced form of which simpli�es to

Cov
�
R1;t�2;t; U

(R)
12;t�2

�
= �12;0Cov

�
R1;t�2;t; U

(R)
12;t�1

�
+�2;0

�
�22;0 � �12;0

�
Cov

�
�22;t; U

(R)
12;t�1

�
;

(19)

given (12), (17), (18), and the fact that

Cov
�
�22;t; U

(R)
12;t�2

�
= �22;0Cov

�
�22;t; U

(R)
12;t�1

�
:

Given (18) and (19), 24 Cov
�
R1;t�2;t; U

(R)
12;t�2

�
Cov

�
R1;t�2;t; U22;t�2

�
35 = �R�;

where � =
h
�12;0 �2;0

�
�22;0 � �12;0

� i0
. Given A4, � is identi�ed as

� =
�
�
0

R�R

�
�
0

R

24 Cov
�
R1;t�2;t; U

(R)
12;t�2

�
Cov

�
R1;t�2;t; U22;t�2

�
35 ;

from which �12;0 is identi�ed, and �2;0 is identi�ed conditional on the identi�cation

of both �22;0 and �12;0 and given A2. Finally, given A1, �1;0 is identi�ed as �1;0 =

E [XtX
0
t]
�1E

�
Xt

�
Y1;t � Y2;t�2;0

��
.�

PROOF OF THEOREM 2: Given A6(ii),
�
Xt�i;t

	
is uniformly integrable. A6(i) and

A6(ii), therefore, allow of an application of Theorem 1 in Andrews (1988), which es-

tablishes Result R1: T�1
P
t

Xt�i;t
p! 0. Next, recursive substitution into (13) produces

zij;0t =
1P
p=0

 pWij;t�p; (20)

where  0 = 1 and  p = aij;0�
p�1
ij;0 8 p � 1. Since

�
 p
	1
p=0

is absolutely summable

given A2 and A3, and E
���Wij;t

���2 is �nite given A3, fZij;tg is an L1 mixingale that is
uniformly integrable. As a consequence, Theorem 1 of Andrews (1988) applies again

to establish result R2: T�1
P
t

Zij;t
p! �ij;0. Next, (20) can also be used to show that
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�
vt;k
	
is a L1 mixingale since E

h��Wij;t

��2i is �nite (see Hamilton 1994 p. 192-93 for
a closely related proof). This result together with A6(iii) and R2 establishes Result

R3: T�1
P
t

zij;tzlm;t�k
p! E

�
zij;0tzlm;0t�k

�
. Given results R1�R3, bg (�) p! g (�). Since

�T
p! �0 by assumption, bg (�)0 �T bg (�) p! g (�)0 �0g (�) by continuity of multiplication.

Finally, given Theorem 1, g (�)0 �0g (�) is uniquely minimized at � = �0.�

PROOF OF THEOREM 3: Using well known results on derivatives of inverse matrices,

the �rst order conditions for (15) with �T = b
 (�)�1 are� bG�b��0 b
 (�)�1 � bg �b��0 b
�b���1 b��b�� b
�b���1� bg �b�� = 0:
Multiplying this expression by

p
T and expanding bg �b�� around �0 produces

p
T
�b� � �0

�
=
�
G (�0)

0
 (�0)
�1G (�0)

��1
G (�0)

0
 (�0)
�1pTbg (�0) ;

given A7(iv) and the following Results: (R4) bg �b�� p! g (�0) = 0, b��b�� p! � (�0), andbG�b�� p! G (�0) given Theorem 2 (speci�cally, bG�b�� p! G (�0) from the mixingale

and uniform integrability properties of A6); (R5) b
�b���1 p! 
 (�0)
�1 given Theorem

2, A7(ii), A7(iii), and Lemma 4.3 of Newey and McFadden (1994) applied to a (z; �) =

gt�s (�) gt (�)
0, where A7(iii) replaces the reliance on Khintchine�s law of large numbers

within the proof of this Lemma. Next, given absolute summability of
�
 p
	1
p=0

(see the

proof of Theorem 2), fzij;0tg and
�
vt;k
	
are L2 mixingales, since E

h��Wij;t

��4i is �nite
under A7(ii). This result together with A7(i) establishes the L2 mixingale property for

fgt (�0)g, which satis�es the �rst element of Assumption 1 in De Jong (1997). Since

the remaining elements hold under A7(v),
p
Tbg (�0) d! N (0;
 (�0)) by Theorem 1 of

the aforementioned work, where 
 (�0) is �nite by A7(ii). The statement in (16) then

follows by an application of the Slutzky theorem.�
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TABLE 1
S.E Mean Med. Dec.

Dist. Est. Para. Bias Bias SD Rge. RMSE MDAE

N (0; 1) �1 -0.196 -0.197 0.057 0.146 0.205 0.197

OLS �2 0.195 0.196 0.048 0.119 0.200 0.196

� 0.002 0.003 0.033 0.081 0.033 0.021

�1 -0.066 -0.064 0.107 0.257 0.125 0.081

CR �2 0.064 0.064 0.100 0.248 0.119 0.077

� 0.001 0.002 0.026 0.067 0.026 0.018

� = 0:20 � (2; 1) �1 -0.205 -0.204 0.070 0.182 0.217 0.204

OLS �2 0.204 0.203 0.064 0.157 0.214 0.203

� 0.001 0.002 0.033 0.082 0.032 0.021

�1 -0.057 -0.047 0.122 0.297 0.134 0.080

CR �2 0.056 0.044 0.119 0.283 0.131 0.071

� 0.000 0.001 0.027 0.071 0.027 0.018

N (0; 1) �1 -0.374 -0.374 0.061 0.159 0.379 0.374

OLS �2 0.372 0.374 0.055 0.139 0.376 0.374

� 0.001 0.001 0.033 0.080 0.033 0.021

�1 -0.125 -0.125 0.103 0.245 0.162 0.127

CR �2 0.124 0.123 0.097 0.228 0.158 0.124

� 0.001 0.000 0.027 0.066 0.027 0.019

� = 0:40 � (2; 1) �1 -0.387 -0.387 0.088 0.223 0.397 0.387

OLS �2 0.387 0.392 0.085 0.201 0.396 0.392

� 0.001 0.000 0.032 0.086 0.032 0.021

�1 -0.121 -0.109 0.138 0.330 0.184 0.117

CR �2 0.121 0.104 0.136 0.322 0.182 0.113

� 0.000 0.000 0.027 0.070 0.027 0.019

Notes: Simulations are conducted using 1,000 observations across 500 trials. � is the correlation between
structural errors. The true parameter vector is �10 = �20 = �0 = 1. S.E. Dist. is the standardized error
distribution, Para. the parameter estimate. CR is the controlled regression. Med. Bias is the median bias,
SD the standard deviation, Dec. Rge. the decile range (measured as the di¤erence between the 90th and 10th
percentiles), RMSE the root mean squared error, and MDAE the median absolute error. RMSE and MDAE
are measured with respect to the true parameter values.
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TABLE 2A
S.E Mean Med. Dec.

Dist. Para. Bias Bias SD Rge. RMSE MDAE COV. OVER

� = 0:20 �1 0.002 0.000 0.021 0.041 0.021 0.009 0.994 0.018

�2 -0.005 -0.004 0.019 0.041 0.020 0.010 0.990

N (0; 1) � -0.001 0.000 0.023 0.052 0.023 0.011 0.960

�12 -0.010 -0.004 0.055 0.090 0.056 0.020

�22 -0.030 -0.014 0.051 0.107 0.059 0.016

�1 0.004 0.004 0.041 0.062 0.041 0.015 0.950 0.006

�2 -0.007 -0.007 0.042 0.063 0.042 0.015 0.846

� (2; 1) � -0.002 -0.002 0.029 0.072 0.029 0.018 0.940

�12 -0.031 -0.012 0.119 0.295 0.123 0.059

�22 -0.082 -0.057 0.090 0.199 0.122 0.057

� = 0:40 �1 0.001 0.000 0.014 0.035 0.014 0.008 1.000 0.030

�2 -0.004 -0.003 0.014 0.034 0.015 0.008 0.990

N (0; 1) � -0.001 -0.001 0.021 0.046 0.021 0.009 0.974

�12 -0.014 -0.011 0.030 0.059 0.033 0.016

�22 -0.019 -0.011 0.034 0.049 0.039 0.013

�1 0.004 0.003 0.044 0.058 0.044 0.014 0.950 0.010

�2 -0.006 -0.006 0.044 0.058 0.045 0.015 0.866

� (2; 1) � -0.002 0.000 0.027 0.067 0.027 0.016 0.950

�12 -0.044 -0.017 0.104 0.202 0.113 0.033

�22 -0.068 -0.036 0.081 0.179 0.106 0.036

Notes: Simulations are conducted using 1,000 observations across 500 trials. For the CUE, k = 10, and
L = 1. � is the correlation between structural errors, S.E. Dist. the standardized error distribution, Para. the
parameter estimate. The true parameter vector is �10 = �20 = �0 = 1. Med. Bias is the median bias, SD
the standard deviation, Dec. Rge. the decile range (measured as the di¤erence between the 90th and 10th
percentiles), RMSE the root mean squared error, and MDAE the median absolute error. RMSE and MDAE are
measured with respect to the true parameter values. COV. is the coverage rate for a 95% con�dence interval,
and OVER is the rejection rate for the standard test for overidenti�cation restrictions.
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TABLE 2B
S.E Mean Med. Dec.

Dist. Para. Bias Bias SD Rge. RMSE MDAE COV. OVER

� = 0:20 �1 0.006 0.004 0.036 0.053 0.036 0.012 0.968 0.030

�2 -0.005 -0.005 0.034 0.049 0.034 0.012 0.930

N (0; 1) � 0.000 0.000 0.030 0.077 0.030 0.017 0.892

�12 -0.035 -0.019 0.102 0.224 0.108 0.037

�22 -0.067 -0.037 0.069 0.155 0.096 0.037

�1 0.003 0.006 0.045 0.061 0.045 0.016 0.900 0.028

�2 -0.002 -0.004 0.045 0.058 0.045 0.014 0.754

� (2; 1) � -0.001 -0.002 0.032 0.078 0.032 0.022 0.858

�12 -0.040 -0.026 0.138 0.316 0.144 0.072

�22 -0.109 -0.097 0.087 0.206 0.140 0.097

� = 0:40 �1 0.006 0.003 0.023 0.046 0.024 0.010 0.986 0.044

�2 -0.006 -0.005 0.022 0.041 0.023 0.010 0.952

N (0; 1) � -0.001 -0.001 0.026 0.066 0.026 0.013 0.940

�12 -0.044 -0.032 0.073 0.118 0.086 0.035

�22 -0.049 -0.029 0.057 0.133 0.075 0.029

�1 0.004 0.005 0.041 0.063 0.041 0.015 0.936 0.042

�2 -0.006 -0.005 0.039 0.063 0.040 0.015 0.786

� (2; 1) � -0.001 0.000 0.028 0.072 0.028 0.017 0.898

�12 -0.062 -0.045 0.119 0.273 0.134 0.063

�22 -0.095 -0.087 0.077 0.175 0.122 0.087

Notes: Simulations are conducted using 1,000 observations across 500 trials. For the CUE, k = 20, and
L = 1. � is the correlation between structural errors, S.E. Dist. the standardized error distribution, Para. the
parameter estimate. The true parameter vector is �10 = �20 = �0 = 1. Med. Bias is the median bias, SD
the standard deviation, Dec. Rge. the decile range (measured as the di¤erence between the 90th and 10th
percentiles), RMSE the root mean squared error, and MDAE the median absolute error. RMSE and MDAE are
measured with respect to the true parameter values. COV. is the coverage rate for a 95% con�dence interval,
and OVER is the rejection rate for the standard test for overidenti�cation restrictions.
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TABLE 3
Size B/M Momentum

Small Mid Large Value Neutral Growth Losers Draws Winners

Panel A: Alpha (OLS)

est. 0.045 0.060 0.016 0.113 0.053 -0.053 -0.106 0.045 0.132

std. error 0.045 0.026 0.013 0.033 0.023 0.028 0.043 0.022 0.033

Panel B: Beta (OLS)

est. 0.925 0.953 0.950 0.890 0.882 1.196 1.152 0.898 1.061

std. error 0.030 0.019 0.008 0.022 0.017 0.020 0.027 0.013 0.032

Panel C: Alpha (CUE, k = 12)

est. 0.069 0.075 0.021 0.130 0.069 -0.043 -0.186* 0.053 0.197

std. error 0.041 0.025 0.011 0.030 0.022 0.025 0.037 0.020 0.040

Panel D: Beta (CUE, k = 12)

est. 0.761* 0.817* 0.902* 0.724* 0.755* 1.117* 1.376* 0.860* 0.628*

std. error 0.024 0.013 0.007 0.016 0.011 0.016 0.021 0.012 0.017

Panel E: Overidenti�cation Test

J-stat 33.44 37.02 41.48 33.13 33.72 30.49 32.87 36.00 33.94

p-value 0.793 0.648 0.450 0.804 0.783 0.885 0.813 0.692 0.775

Panel F: Alpha (CUE, k = 24)

est. 0.086 0.084 0.018 0.138 0.074 -0.045 -0.195* 0.046 0.187

std. error 0.036 0.021 0.009 0.026 0.018 0.021 0.033 0.018 0.030

Panel G: Beta (CUE, k = 24)

est. 0.715* 0.753* 0.908* 0.694* 0.751* 1.110* 1.368* 0.846* 0.615*

std. error 0.014 0.008 0.004 0.010 0.018 0.009 0.012 0.007 0.011

Panel H: Overidenti�cation Test

J-stat 72.43 80.74 83.76 76.76 73.61 74.59 62.62 68.54 86.82

p-value 0.899 0.722 0.637 0.819 0.880 0.863 0.985 0.947 0.546

Notes: The date range considered is 10/6/67 - 9/25/87. Estimates marked with a * have 95% con�dence
intervals that do not include the corresponding OLS estimate. All standard errors are consistent given general
forms of heteroskedasticty and �rst-order autocorrelation (i.e., L = 2).
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TABLE 4
Size B/M Momentum

Small Mid Large Value Neutral Growth Losers Draws Winners

Panel A: Alpha (OLS)

est. 0.049 0.040 0.027 0.094 0.063 -0.070 -0.129 0.059 0.148

std. error 0.048 0.028 0.023 0.034 0.026 0.036 0.058 0.026 0.039

Panel B: Beta (OLS)

est. 0.810 0.917 0.879 0.779 0.811 1.160 1.139 0.761 1.121

std. error 0.039 0.023 0.029 0.032 0.020 0.027 0.050 0.028 0.038

Panel C: Alpha (CUE, k = 12)

est. 0.074 0.055 0.057 0.118 0.079 -0.048 -0.215 0.082 0.201

std. error 0.040 0.026 0.018 0.030 0.025 0.031 0.050 0.023 0.032

Panel D: Beta (CUE, k = 12)

est. 0.760* 0.829* 0.735* 0.615* 0.652* 1.206* 1.358* 0.631* 0.943*

std. error 0.023 0.018 0.012 0.018 0.015 0.015 0.035 0.013 0.017

Panel E: Overidenti�cation Test

J-stat 42.51 42.18 31.45 46.82 48.48 38.47 34.88 37.69 45.48

p-value 0.406 0.420 0.859 0.246 0.205 0.583 0.738 0.618 0.291

Panel F: Alpha (CUE, k = 24)

est. 0.074 0.049 0.058* 0.122 0.082 -0.046 -0.202 0.072 0.189

std. error 0.034 0.023 0.014 0.025 0.021 0.027 0.038 0.019 0.028

Panel G: Beta (CUE, k = 24)

est. 0.742* 0.818* 0.781* 0.609* 0.623* 1.220* 1.356* 0.606* 0.918*

std. error 0.014 0.010 0.006 0.012 0.009 0.009 0.018 0.008 0.011

Panel H: Overidenti�cation Test

J-stat 72.92 83.35 83.89 78.43 79.13 79.54 70.60 82.41 86.49

p-value 0.892 0.649 0.633 0.781 0.764 0.754 0.925 0.676 0.556

Notes: The date range considered is 11/6/87 - 9/28/07. Estimates marked with a * have 95% con�dence
intervals that do not include the corresponding OLS estimate. All standard errors are consistent given general
forms of heteroskedasticty and �rst-order autocorrelation (i.e., L = 2).
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TABLE 5
Size B/M Momentum

Small Mid Large Value Neutral Growth Losers Draws Winners

Panel A: Alpha (OLS)

est. 0.091 0.081 -0.002 0.130 0.068 -0.045 -0.081 0.048 0.141

std. error 0.053 0.031 0.016 0.039 0.025 0.036 0.052 0.026 0.046

Panel B: Beta (OLS)

est. 0.826 0.922 0.972 0.803 0.873 1.177 1.001 0.859 1.110

std. error 0.040 0.024 0.010 0.033 0.018 0.025 0.035 0.017 0.041

Panel C: Alpha (CUE, k = 12)

est. 0.096 0.069 0.023 0.207* 0.062 -0.086 -0.175* 0.037 0.178

std. error 0.040 0.026 0.016 0.033 0.020 0.032 0.046 0.021 0.037

Panel D: Beta (CUE, k = 12)

est. 0.947* 0.974* 0.816* 0.575* 0.886 1.421* 1.287* 0.874 1.107

std. error 0.027 0.019 0.008 0.020 0.015 0.019 0.021 0.014 0.026

Panel E: Overidenti�cation Test

J-stat 31.87 31.49 37.34 39.55 34.84 36.387 44.13 41.27 29.14

p-value 0.846 0.858 0.634 0.535 0.740 0.676 0.341 0.459 0.917

Panel F: Alpha (CUE, k = 24)

est. 0.061 0.069 0.027 0.184* 0.075 -0.131* -0.188* 0.041 0.185

std. error 0.033 0.019 0.014 0.027 0.016 0.026 0.036 0.016 0.031

Panel G: Beta (CUE, k = 24)

est. 0.959* 0.983* 0.794* 0.579* 0.890* 1.440* 1.205* 0.875* 1.137

std. error 0.017 0.010 0.004 0.012 0.008 0.012 0.012 0.007 0.016

Panel H: Overidenti�cation Test

J-stat 73.55 72.20 84.14 81.37 77.25 79.88 79.81 77.89 74.79

p-value 0.881 0.903 0.626 0.705 0.808 0.745 0.747 0.794 0.859

Notes: The date range considered is 10/7/77 - 9/25/87. Estimates marked with a * have 95% con�dence
intervals that do not include the corresponding OLS estimate. All standard errors are consistent given general
forms of heteroskedasticty and �rst-order autocorrelation (i.e., L = 2).
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TABLE 6
Size B/M Momentum

Small Mid Large Value Neutral Growth Losers Draws Winners

Panel A: Alpha (OLS)

est. 0.029 0.039 0.008 0.079 0.047 -0.074 -0.134 0.044 0.112

std. error 0.054 0.031 0.017 0.035 0.025 0.041 0.058 0.024 0.038

Panel B: Beta (OLS)

est. 0.693 0.873 1.031 0.789 0.821 1.075 1.007 0.786 1.085

std. error 0.040 0.026 0.013 0.026 0.019 0.031 0.045 0.020 0.028

Panel C: Alpha (CUE, k = 12)

est. 0.060 0.051 -0.012 0.040 0.028 0.004 -0.226* 0.025 0.170

std. error 0.043 0.028 0.015 0.033 0.020 0.038 0.047 0.019 0.036

Panel D: Beta (CUE, k = 12)

est. 0.624 0.845 1.092* 0.776 0.885* 0.938* 1.349* 0.828 0.866*

std. error 0.058 0.030 0.017 0.042 0.028 0.037 0.058 0.031 0.039

Panel E: Overidenti�cation Test

J-stat 41.92 33.50 29.08 42.88 42.04 38.72 49.45 41.86 38.76

p-value 0.431 0.791 0.919 0.391 0.426 0.572 0.171 0.433 0.571

Panel F: Alpha (CUE, k = 24)

est. 0.123* 0.074 -0.015 0.120 0.054 0.009 -0.240* 0.047 0.240

std. error 0.033 0.020 0.011 0.021 0.016 0.030 0.036 0.015 0.027

Panel G: Beta (CUE, k = 24)

est. 0.650* 0.854 1.107* 0.748* 0.881* 1.114* 1.358* 0.830* 0.864*

std. error 0.018 0.013 0.007 0.018 0.010 0.014 0.018 0.008 0.019

Panel H: Overidenti�cation Test

J-stat 84.65 82.24 72.25 82.70 80.20 72.61 84.03 86.34 82.69

p-value 0.611 0.681 0.902 0.668 0.736 0.90 0.629 0.560 0.668

Notes: The date range considered is 11/6/87 - 9/26/97. Estimates marked with a * have 95% con�dence
intervals that do not include the corresponding OLS estimate. All standard errors are consistent given general
forms of heteroskedasticty and �rst-order autocorrelation (i.e., L = 2).
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TABLE 7
Size B/M Momentum

Small Mid Large Value Neutral Growth Losers Draws Winners

Panel A: Alpha (OLS)

est. 0.087 0.048 0.021 0.107 0.077 -0.052 -0.102 0.070 0.190

std. error 0.078 0.047 0.039 0.056 0.044 0.058 0.099 0.044 0.068

Panel B: Beta (OLS)

est. 0.863 0.937 0.810 0.775 0.807 1.199 1.199 0.750 1.138

std. error 0.051 0.032 0.036 0.045 0.028 0.034 0.072 0.039 0.053

Panel C: Alpha (CUE, k = 12)

est. 0.221 0.110 0.044 0.207* 0.126 0.000 -0.161 0.155* 0.301

std. error 0.065 0.044 0.028 0.050 0.051 0.044 0.079 0.040 0.051

Panel D: Beta (CUE, k = 12)

est. 0.561* 0.718* 0.696* 0.461* 0.398* 1.239* 1.337* 0.469* 0.783*

std. error 0.021 0.016 0.011 0.019 0.015 0.013 0.032 0.013 0.017

Panel E: Overidenti�cation Test

J-stat 44.00 35.78 34.55 40.36 44.77 33.89 38.62 39.77 41.66

p-value 0.346 0.701 0.751 0.499 0.317 0.776 0.577 0.525 0.442

Panel F: Alpha (CUE, k = 24)

est. 0.125 0.078 0.038 0.148 0.120 -0.057 -0.116* 0.104 0.229

std. error 0.043 0.035 0.018 0.034 0.033 0.030 0.050 0.030 0.037

Panel G: Beta (CUE, k = 24)

est. 0.615* 0.738* 0.697* 0.503* 0.509* 1.231* 1.294* 0.514* 0.877*

std. error 0.013 0.009 0.005 0.011 0.009 0.009 0.016 0.007 0.011

Panel H: Overidenti�cation Test

J-stat 81.25 77.66 72.05 92.11 86.37 64.19 68.15 79.47 101.73

p-value 0.708 0.799 0.905 0.390 0.559 0.978 0.951 0.755 0.168

Notes: The date range considered is 10/3/97 - 9/28/07. Estimates marked with a * have 95% con�dence
intervals that do not include the corresponding OLS estimate. All standard errors are consistent given general
forms of heteroskedasticty and �rst-order autocorrelation (i.e., L = 2).
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