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Agreeing to disagree: a syntactic approach

Bassel Tarbush0

May 27, 2011

Abstract We develop a syntactic framework that allows us to emulate
standard results from the “agreeing to disagree” literature with generalised
decision functions (e.g. Bacharach (1985)) in a manner the avoids known
incoherences pointed out by Moses and Nachum (1990). Avoiding the
incoherences requires making some sacrifices: For example, we must require
the decision functions to be independent of interactive information, and,
the language in which the states are described must be “rich” - in some
well-defined sense. Using weak additional assumptions, we also extend all
previous results to allow agents to base their decisions on possibly false
information. Finally, we provide agreement theorems in which the decision
functions are not required to satisfy the Sure-Thing Principle (a central
assumption in the standard results).

Keywords Agreeing to disagree, knowledge, common knowledge, belief,
information, epistemic logic.
JEL classification D80, D83, D89.

1 Introduction
The agreement theorem of Aumann (1976) states that if agents have a common
prior, then if their posteriors on some event are common knowledge, these poste-
riors must be equal, even if the agents’ updates are based on different information.
This was proved for posterior probabilities in the context of a partitional informa-
tion structure.
Briefly, Ω is a finite set of states and any of its subsets E is an event. For each agent
i ∈ N there is an information function Ii : Ω → 2Ω; the information cell Ii(ω) is
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the set of states that i conceives as possible at state ω, and for each i ∈ N , it is as-
sumed that (i) ω ∈ Ii(ω), and (ii) Ii(ω) and Ii(ω�) are either identical or disjoint, so
the set Ii = {Ii(ω)|ω ∈ Ω} partitions the state space. Furthermore, agent i is said
to “know” event E at state ω if ω ∈ Ii(ω) ⊆ E; and an operator Ki(.) is defined,
where “i knows event E” is the event Ki(E) = {ω ∈ Ω|Ii(ω) ⊆ E}. Informally,
E is common knowledge for a group of agents G ⊆ N if everyone knows that E,
everyone knows that everyone knows it, everyone knows that everyone knows that
everyone knows it, and so on ad infinitum. Note that in this framework, the knowl-
edge operator inherits the following properties: (i) Ki(E ∩ F ) = Ki(E) ∩Ki(F ),
(ii) Ki(E) ⊆ E, (iii) Ki(E) ⊆ Ki(Ki(E)) and (iv) Ω\Ki(E) ⊆ Ki(Ω\Ki(E)).

The robustness of the agreement result was tested through various generali-
sations. Still operating in a partitional information structure, Cave (1983) and
Bacharach (1985) independently extended the probabilisitic result to general de-
cision functions, Di : F → A, that map from a field F of subsets of Ω into an
arbitrary set A of actions. To derive the result, it is assumed that agents have
the same decision function (termed “like-mindedness”), and that the decision func-
tions satisfy what we call the Disjoint Sure-Thing Principle (DSTP ): ∀E ∈ E , if
Di(E) = x then Di(∪E∈EE) = x, where E is a set of disjoint events.1 The following
states their result.2

If agents i and j are “like-minded”, decision functions satisfy DSTP ,
information is partitional, and it is common knowledge at some state
ω that i takes action x and j takes action y, then x = y.

Moses and Nachum (1990) criticise the result above on the grounds that defining
decisions over unions of information cells, as required by the DSTP , does not a
have clear meaning in the context of generalised decision functions. Bacharach’s
decision functions map from subsets of Ω to capture the idea that actions must
be contingent upon the agent’s information - in a similar manner to the way in
which posterior probabilities are contingent upon the information function at a
given state. And, DSTP is intended to capture the intuition that if one chooses
to do x in every case where one is “better informed” (e.g. Di(Ii(ω)) = x and
Di(Ii(ω�)) = x), then one must also choose to do x when one is more “ignorant”.
However, one’s decision when one is more ignorant in this case is taken to be
Di(Ii(ω) ∪ Ii(ω�)) = x. This is problematic because it is not clear that the infor-
mational content of Ii(ω) ∪ Ii(ω�) captures “more ignorance”. This point can be
illustrated with the following example. Consider a scenario in which there is a coin

1The DSTP is trivially satisfied when the decision functions are posterior probabilities.
2Note that Aumann (1976) can be derived as a corollary by defining a common prior proba-

bility distribution over the states, and by setting, for an event E, DE
i (Ii(ω)) = Pr(E|Ii(ω)).

2



ω
i

��
�

��

�
��

�� ���
�

� ��� �
� ω�

i
j

��
�

��

�
��

�� ���
�

� ��� �
�

�� ���� ��
Figure 1: Coin in a box

in a box. Agent j cannot look into the box, but can see that i is looking into the
box. This situation is represented in Figure 1.3 We have that Ii(ω) = {ω} and
Ii(ω�) = {ω�}, and Ij(ω) = {ω,ω�}. Suppose that ω is the state in which the coin
is facing heads up, whereas ω� is the state in which the coin is facing tails up. The
set of states in which i knows which side is up is {ω,ω�}; and since Ij(ω) ⊆ {ω,ω�},
we can interpret the event E = {ω,ω�} as “Agent j knows that i knows which side
is up”. Note that at each state, i knows E. But now, suppose we take the union
Ii(ω) ∪ Ii(ω�). Now we may ask, what is the informational content of this set?
Well, on the one hand, since Ii(ω) ∪ Ii(ω�) ⊆ E, it would appear that i knows E.
That is, i knows that j knows that i knows which side is up. On the other hand,
it is not possible that i knows E because now, it is no longer the case that i knows
which side is up!
To be clear, this example does not show that there is anything formally wrong
with Bacharach’s result. Rather, there is a conceptual difficulty: The union of
information cells - which is not itself an information cell - is intended to capture
“more ignorance”. This may be appropriate in a single-agent setting since indeed,
Ii(ω) ∪ Ii(ω�) does contain the information that i no longer knows which side is
facing up. However, it is not clear that cell union captures “more ignorance” in a
setting where there is interactive information - events of the type: i knows that j
knows that E.
Note that information is implicitly modelled in Bacharach’s framework, by being
somehow contained in a set of states. Our solution will consist in explicitly mod-
elling the syntactic information at each state, and the incoherence will be avoided
by selecting only the information that is not interactive - and allowing decisions
only to depend on non-interactive information.
Moses and Nachum (1990) propose their own solution to the generalised agree-
ment theorem by defining a projection from states to an arbitrary set, intended
to capture the information at each state that is relevant to the decision, and the
decision functions map relevant information into actions. Now, relevant informa-

3Obviously, we could have created a more complicated model representing a situation where
j does not see that i can see into the box. That is, a situation in which j does not know that i
knows which side is facing up.
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tion is defined over a variety of sets of states, so the above criticism is resolved.
However they require a stronger version of the Sure-Thing Principle, which does
not require the “disjointness” of the relevant information, which we term the Non-
Disjoint Sure-Thing Principle, NDSTP .
More recently, Aumann and Hart (2006) use the framework developed in Aumann
(1999) to reproduce the results of Bacharach and of Moses & Nachum in a co-
herent manner. They resort to the same idea, pursued here and in Moses and
Nachum (1990), that the incoherence can be avoided by singling out the “right”
kind of information at each state. Our approach has some similarities with theirs.
However, there are also some important differences: Our framework allows us to
give a very natural ranking of information (informativeness) - which turns out to
be a useful concept -, and is more versatile in that it easily admits a generalisation
to non-partitional information structures.

In an altogether different strand of the literature, Samet (1990) and Collins
(1997) prove agreement theorems in a non-partitional information structure. This
is an important line of investigation since partitional structures imply that agents
can only know what is the case; in other words, agents cannot base their decisions
on false information. But surely, it is perfectly plausible for rational agents to do
so. The culprit is the assumption that for all ω ∈ Ω, ω ∈ Ii(ω) since the “actual”
state is always included in the set of states that the agent considers possible. Dis-
carding this assumption, the operator K is then interpreted as a “belief” operator
(since it is possible to believe what is false, but not to know it; in particular, it is
now no longer necessary that Ki(E) ⊆ E).
The results of Samet (1990) and Collins (1997) are derived in a probabilistic frame-
work, and require further assumptions (“Consistency in Samet (1990), “Zero priors”
in ?). In a similar vein, Bonanno and Nehring (1998) also derive an agreement
theorem in a non-partitional information structure, but their framework is more
general. Their analogues of decision functions are required to satisfy a “proper-
ness” condition which in some cases implies the Disjoint Sure-Thing Principle, and
in other cases, is equivalent to the non-disjoint version. Furthermore, they require
an assumption of “quasi-coherence” over the state space - which we define later.
However, it is not clear that any of those results are able to explicitly avoid the
criticism of Moses and Nachum (1990).

In this paper, we use standard concepts from epistemic logic to derive agree-
ment theorems with generalised decision functions in both partitional and non-
partitional models, that are analogous to the results mentioned above, but that
do not suffer from the incoherences pointed out by Moses and Nachum (1990).4

4Although still working with a partitional structure, Samet (2010) takes an altogether different
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We set up a framework in which we can model the syntactic information at each
state explicitly. This allows us to single out non-interactive information, and to
allow decisions to be based only on such information. This is shown to resolve the
conceptual problems of the Sure-Thing Principle used by Bacharach. Furthermore,
we derive a result in which we use an analogous version of the Disjoint Sure-Thing
Principle, which we see as an improvement to the solution proposed by Moses
and Nachum (1990); but this requires us to assume that the language in which
the states are described be “rich” - in some well-defined sense. It is important to
note that our results in partitional models are not intended as generalisations of
Bacharach’s result. Rather, they are analogues of his result with sounder founda-
tions.
Our framework is versatile in that it easily admits a natural extension to non-
partitional models. This extension is important for two reasons. Firstly, since
agents are restricted to base their decisions only on correct information in parti-
tional models, there may be a sense in which they are already forced into agree-
ment. Indeed, the restriction of the information base - to only correct information
- may be a factor driving the agreement results. Therefore, it is important to ver-
ify whether similar results hold when agents are allowed to base their decisions on
possibly false information. Secondly, we show that there are non-trivial examples
that cannot be modelled with parititonal information structures. Nevertheless, we
find that agreement results do hold in non-partitional models, given a weak addi-
tional assumption (“Heterogeneity”) which essentially requires enough variation in
the information of the agents.
Finally, we are also able to prove an agreement theorem in which less restrictions
are imposed on the decision functions. Namely, we no longer require them to sat-
isfy the Sure-Thing Principle (whether disjoint or not).

In section 2, we introduce the basic concepts that we use from epistemic logic.
In section 3, we expand the standard epistemic logic framework to encompass
decision functions, and we state our main assumptions. We derive our main results
in partitional models in section 4, and in non-partitional models in section 5. The
finial theorem with minimal restrictions on the decision functions is found in section
6. All proofs are in the appendix.

approach, deriving a generalised agreement theorem by assuming an “interpersonal” Sure-Thing
Principle (ISTP ), which is a condition imposed on actions across different agents. The general-
isation of his result in our framework to non-partitional structures is the subject of a companion
paper (Tarbush (2011)).
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2 Epistemic Logic
This section introduces concepts from epistemic logic. All the definitions and re-
sults in this section are standard (e.g. see Chellas (1980) and van Benthem (2010)
for general reference).

We must develop the language that our results will be stated in. This will con-
sist in defining a syntax - which determines which symbols or chains of symbols
are part of the language (e.g. “dog” is permissible in the English language, but
“a@b6tt” is not) -, and in defining semantics - which assigns a meaning to the
symbols and thus determines a grammar (e.g. “The dog is barking” is semantically
permissible in the English language, but “Dog towards rain table” is not) -.

A proposition is a sentence, usually represented by a lower case letter. For
example, “The dog is barking”, and, “It is raining” can represented by p and q
respectively. Propositions can be combined in various ways using the standard
Boolean operators: not, and, or, if...then, if and only if, which are represented
by the following symbols respectively ¬, ∧, ∨, →, and ↔. An example of a
combination of propositions is “The dog is barking and it is raining” (formally
p ∧ q).
Finally, we will also allow for modal operators in our language. These are operators
that qualify an entire proposition. For example, “I know that the dog is barking”
is made up of the proposition “The dog is barking” and the modal operator “I
know that”. We will have two basic symbols for modal operators in our language,
namely �i and CG, although their exact interpretation will be developed later.
Essentially, depending on the semantics, �ip will either stand for “Agent i knows
that p”, or “Agent i believes that p”, whereas CGp will either stand for “It is common
knowledge among the subset of agents G that p”, or “It is common belief among
the subset of agents G that p”.
Propositions are atomic if they do not contain any operators (whether Boolean or
modal), and are thus reduced to the most basic building block. For example, “The
dog is barking” contains no operators, so cannot be made more basic, whereas
“The dog is barking and it is raining” can be reduced to two propositions, so is not
atomic.
A formula is any chain of symbols that is acceptable in the language. Formally,
we construct the syntax, or the set of formulas in our language, as follows:

Definition 1 (Basic syntax). Define a finite set of atomic propositions, P , which
consists of all propositions that cannot be further reduced. Let N denote the set
of all agents. We then inductively create all the formulas in our language, L, as
follows:
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Figure 2: Example of a Kripke structure

(i) Every p ∈ P is a formula.
(ii) If ψ is a formula, so is ¬ψ.
(iii) If ψ and φ are formulas, then so is ψ ◦ φ, where ◦ is one of the following
Boolean operators: ∧, ∨, →, or ↔.
(iv) If ψ is a formula, then so is •ψ, where • is one of the modal operators �i∈N
or CG⊆N .
(v) Nothing else is a formula.

So far, we have pure uninterpreted syntax. Indeed, “Agent i knows that it is
raining and knows that it is not raining” is a formula of our language (represented
as �iq∧�i¬q), but surely it cannot be true. We therefore introduce the semantics
of our language to determine the truth or falsity of formulas. To do this we use
standard Kripke semantics.

Definition 2 (Kripke semantics). A frame is a pair �Ω, Ri∈N�, where Ω is a finite,
non-empty set of states (or “possible worlds”), and Ri ⊆ Ω×Ω is a binary relation
for each agent i, also called the accessibility relation for agent i. A model on a
frame �Ω, Ri∈N�, is a triple M = �Ω, Ri∈N ,V�, where V : P × Ω → {0, 1} is a
valuation map.

Definition 3 (Truth). We say that a proposition p ∈ P is true at state ω in model
M = �Ω, Ri∈N ,V�, denoted M,ω |= p, if and only if V(p,ω) = 1. Truth is then
extended inductively to all other formulas ψ as follows:
(i) M,ω |= ¬ψ if and only if it is not the case that M,ω |= ψ.
(ii) M,ω |= (ψ ∧ φ) if and only if M,ω |= ψ and M,ω |= φ.5
(iii) M,ω |= �iψ if and only if ∀ω� ∈ Ω, if ωRiω� then M,ω� |= ψ.
(iv) M,ω |= CGψ if and only if ∀ω� ∈ ΩG(ω), M,ω� |= ψ.
The component of ω, ΩG(ω), is the set of all states that are accessible from ω in a
finite sequence of Ri (i ∈ G) steps.

The above definitions can be illustrated by the model M = �Ω, Ri∈N ,V� repre-
sented in Figure 2. The state space is Ω = {ω,ω�}. The accessibility relations for
agents i and j are as represented in the figure. Namely, Ri = {(ω,ω), (ω�,ω�)} and
Rj = {(ω,ω), (ω�,ω�), (ω,ω�), (ω�,ω)}. Finally, we can let P = {h, t}, V(h,ω) = 1,
and V(t,ω�) = 1. From this alone, we can generate several new formulas. For
example, note that every state ω�� that is accessible from ω for agent i is such that

5The truth of formulas involving the other Boolean operators are similarly defined.
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ω�� |= h (indeed, the only state that i can “access” from ω is ω itself, and h is true
at ω). Therefore, by the definition of truth, we have that ω |= �ih. Similarly, we
have ω� |= �it. On the other hand, we have ω |= ¬�jh. This is because from ω, j
can “access” the state ω� in which h is not true, but rather t is true.
We can even go further. One can verify that ω |= �ih ∨�it and ω� |= �ih ∨�it;
and therefore, ω |= �j(�ih ∨�it) and ω� |= �j(�ih ∨�it). In fact, since for any
state accessible from ω in a finite sequence of Rk (k ∈ {i, j}) steps, it is the case
that �ih ∨�it, we can also conclude that ω |= C{i,j}(�ih ∨�it).

We can note that some formulas, such as �ih are only true at some state of
the model, whereas others, like �ih ∨ �it are true at every state in the model.
The latter are said to be valid in the model. But there are more general levels of
validity. For example, suppose we keep the same states and accessibility relations
as the model in Figure 2, but modify the valuation map. Then, we obtain a set of
new models, all with the same frame. The formulas that remain true at every state
of each of these models are said to be valid in the frame. Even more generally, we
can allow the frame itself to vary, but within a class of frames. For example, we
could consider all the frames in which for every ω ∈ Ω, (ω,ω) ∈ Ri for each i ∈ N .
The formulas that remain true at every state of every model in every frame within
this class are said to be valid (within this class of frames). Formally, we have the
following definition.

Definition 4 (Validity). Formula ψ is valid in a model M, denoted M |= ψ if and
only if ∀ω ∈ Ω in M, ω |= ψ. Formula ψ is valid in a frame �Ω, Ri∈N�, denoted
�Ω, Ri∈N� |= ψ, if and only if ∀M over �Ω, Ri∈N�, M |= ψ. Formula ψ is T -valid
(or valid), denoted |= ψ, if and only if ∀�Ω, Ri∈N� ∈ T (T , a class of frames), �Ω,
Ri∈N� |= ψ.

The frame classes can be determined by the conditions that are imposed on
the accessibility relations. The following gives a selection of conditions that are
often used to classify frames.

Definition 5 (Conditions on frames). We say that a frame �Ω, Ri∈N� is,
(i) Reflexive if ∀i ∈ N , ∀ω ∈ Ω,ωRiω.
(ii) Symmetric if ∀i ∈ N , ∀ω,ω� ∈ Ω, if ωRiω� then ω�Riω.
(iii) Transitive if ∀i ∈ N , ∀ω,ω�,ω�� ∈ Ω, if ωRiω� and ω�Riω�� then ωRiω��.
(iv) Euclidean if ∀i ∈ N , ∀ω,ω�,ω�� ∈ Ω, if ωRiω� and ωRiω�� then ω�Riω��.
(v) Serial if ∀i ∈ N , ∀ω ∈ Ω, ∃ω� ∈ Ω,ωRiω�.

We will be interested in two particular classes of frames. One of them is the
S5 class, which consists of all frames that are reflexive, symmetric and transitive.
The other class, known as KD45, is the class of all frames that are transitive,
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Euclidean and serial.

We have so far, in our example in Figure 2, been careful not to interpret the
symbol � as a knowledge operator. Indeed, to allow such an interpretation, we
must guarantee that the operator possesses the properties that one might expect
of knowledge. For example, one distinguishing characteristic of knowledge is that
one cannot know what is false. So, we must at least impose the restriction that
the formula �iψ → ψ for any agent i and any formula ψ, be valid.

It turns out that the following formulas are valid in S5 frames:
(i) Distribution: �i(ψ → φ) → (�iψ → �iφ).
(ii) Veracity: �iψ → ψ.
(iii) Positive introspection: �iψ → �i�iψ.
(iv) Negative introspection: ¬�iψ → �i¬�iψ.
In fact, the converse also holds: Namely, if we require (i) - (iv) to be validities,
then the frame must be S5.

The formulas (i) - (iv) happen to be precisely the properties that are consid-
ered to be the defining characteristics of knowledge (Early formal philosophical
underpinnings can be found in Hintikka (1962)). For example, veracity states that
if i knows that ψ, then ψ must be true. In other words, one cannot know what
is false. Positive introspection states that if i knows that ψ, then i knows that i
knows that ψ. That is, if one knows something, then one knows that one knows it.
Finally, negative introspection states that if i does not know that ψ then i knows
that i does not know that ψ. That is, if one does not know something, then one
knows that one does not know it. Admittedly these are properties of a very strong
notion of knowledge. However, they are taken as standard, and we will not discuss
their justification. In fact, they are completely analogous to the properties of the
knowledge operator K mentioned in the introduction.

Given the above, we can return to the model given in Figure 2. One can verify
that the model has an S5 frame, and the modal operators can thus be interpreted
as knowledge and common knowledge.
In fact, the model can be seen as a representation of the coin in a box scenario
described in the introduction, where h is the proposition “The coin is heads side
up”, and t is “The coin is tails side up”.
It was shown previously that ω |= �ih, which means that in the state in which
the coin is indeed heads side up, agent i knows this (since he can see it). Also,
ω� |= �it means that in the state in which the coin is tails side up, i also knows
this. Furthermore, we had that ω |= ¬�jh, so in the state in which the coin is

9



heads side up, j does not know that the coin is heads side up.
Note that the modal formulas in the above paragraph have a single modal operator,
so are said to have a modal depth of 1. However, a formula such as �i�jψ has two
nested modal operators, so has a modal depth of 2. In our example, the formula
�j(�ih∨�it), interpreted as “j knows that i knows which side of the coin is facing
up”, also has a modal depth of 2. Clearly, interactive knowledge - of the form “I
know that you know...” - requires a modal depth of at least 2. A formal definition
of this notion is given below.

Definition 6 (Modal depth). The modal depth md(ψ) of a formula ψ is the
maximal length of a nested sequence of modal operators. This can be defined
by the following recursion on our syntax rules: (i) md(p) = 0 for any p ∈ P , (ii)
md(¬ψ) = md(ψ), (iii) md(ψ ∧ φ) = md(ψ ∨ φ) = md(ψ → φ) = md(ψ ↔ φ) =
max(md(ψ),md(φ)), (iv) md(�iψ) = 1 +md(ψ), (v) md(CGψ) = 1 +md(ψ).

Finally, returning to our example one last time, we showed that C{i,j}(�ih∨�it)
is valid in the model. This is interpreted as it being common knowledge among
i and j that i knows which side is facing up, in the sense that they both know
this, both know that they know it, both know that they know that they know it,
and so on ad infinitum. This is the interpretation of the CG operator because,
completely generally, if M,ω |= CGψ, then one can generate any formula of finite
modal depth of the form �i�j...�rψ with i, j...r ∈ G, and this formula will be
true at ω in model M.6

3 Models with information and decisions
All the definitions in this section are completely general, so hold for arbitrary
frame classes.

Let P be a finite set of atomic propositions. Since P is finite, its closure under
the standard Boolean operators, denoted P ∗, is tautologically finite.7 So P ∗ is
just the set of all possible inequivalent formulas that can be created out of the
propositions in P and the Boolean operators. Let Ψr

0 be the set of all possible
modal formulas that can be generated from P ∗ with modal depth 0 up to r for an

6Note that the definition of the operator CG is drawn from van Benthem (2010), where it is also
mentioned that an alternative definition can be given: One can define a new accessibility relation
R∗

G for the whole group G as the reflexive transitive closure of the union of all separate relations
Ri (i ∈ G), and then simply let M,ω |= CGψ if and only if ∀ω� ∈ Ω, if ωR∗

Gω
� then M,ω� |= ψ.

7In the sense that there is only a finite number of inequivalent formulas (so p and p∧ p count
as one).
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arbitrary r ∈ N0. Again, since P ∗ is finite, so is Ψr
0, so |Ψr

0| = m, for some m ∈ N;
and note that Ψ0

0 = P ∗.8

Definition 7 (New operators). For each agent i ∈ N create a set of modal
operators, Oi = {�i, �̂i, �̇i}, where for every formula ψ, �̂iψ := �i¬ψ and
�̇iψ := ¬(�iψ ∨ �̂iψ).
In S5, �̂iψ stands for “Agent i knows that it is not the case that ψ”, and �̇iψ
stands for “Agent i does not know whether it is the case that ψ”.

Definition 8 (Kens). Order the set Ψr
0 into a vector of length m: (ψ1,ψ2, ...,ψm),

and for each agent i ∈ N , create the sets

Ui = {(ν1
i ψ1 ∧ ν2

i ψ2 ∧ ... ∧ νm
i ψm)|∀n ∈ {1, ...,m}, νn

i ∈ Oi}

Vi = {νi ∈ Ui| |= ¬(νi ↔ (p ∧ ¬p))}

A ken (νi ∈ Vi) for agent i, describes i’s information concerning every formula in
Ψr

0. So, calling νn
i ψn the nth entry of i’s ken, the formula νn

i ψn states - in S5 -
whether i knows that the formula ψn is the case, or knows that it is not the case,
or does not know whether it is the case.
Note that Vi is a restriction of Ui to the set of kens that are not logically equivalent
to a contradiction; so only the logically consistent kens are considered.9

The following lemma shows that at each state, there exists a ken for each agent
which holds at that state, and moreover, that any two different kens must be
contradictory at any given state.

Lemma 1. (i) ∀ω ∈ Ω, ∃νi ∈ Vi,ω |= νi, (ii) ∀ω ∈ Ω, ∀νi, µi ∈ Vi, if νi �= µi then
ω |= ¬(νi ∧ µi).

By the above lemma, there is a unique ken in Vi that holds at a given state.

Definition 9 (Informativeness). Create an order �⊆ Vi × Vj for all i, j ∈ N . We
say that the ken νi is more informative than the ken µj, denoted νi � µj, if and
only if whenever i knows that ψ then j either also knows that ψ or does not know
whether ψ, and whenever i does not know whether ψ, then j also does not know
whether ψ.10

Note that � is not a complete order on kens. For example, consider any two kens
νi and µi for agent i, in which the nth entry is νn

j ψn = �iψn and µn
jψn = �̂iψn.

8If P = {p, q}, then one can generate 20 inequivalent formulas: 2 from p alone, 2 from q alone
and 16 out of p and q together, so |P ∗| = 20.

9An example of a logically inconsistent ken would be one containing �ip, �iq and �i(p → ¬q).
10Formally, (i) if νni ψn = �iψn then (µn

j ψn = �jψn or µn
j ψn = �̇jψn), (ii) if νni ψn = �̂iψn

then (µn
j ψn = �̂jψn or µn

j ψn = �̇jψn), and (iii) if νni ψn = �̇iψn then (µn
j ψn = �̇jψn).
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These two kens would not be comparable with �.
Finally, note that νi ∼ µj denotes νi � µj and µj � νi; which is interpreted as νi
and µj carrying the same information, but seen from the perspectives of agents i
and j respectively.

The infimum of νi and µi, denoted inf{νi, µi}, is the most informative ken that
is less informative than νi and µi.

Lemma 2. For any νi, µi ∈ Vi, inf{νi, µi} exists in Vi and is characterised by:

inf{νi, µi}nψn = �iψn iff (νn
i ψn = µn

i ψn = �iψn)

inf{νi, µi}nψn = �̂iψn iff (νn
i ψn = µn

i ψn = �̂iψn)

inf{νi, µi}nψn = �̇iψn iff (νn
i ψn �= µn

i ψn or νn
i ψn = µn

i ψn = �̇iψn)

Definition 10 (Decision function). For each i ∈ N , Di : Vi → A, is the decision
function of agent i, where A is a set of actions.

The decision function Di determines what agent i would do given every possible
ken. By Lemma 1, there is a unique ken that is actually true at a given state, so
only one action actually ends up being performed at each state. So, if ω |= νi and
Di(νi) = x, we write ω |= dxi , where dDi(νi)

i is a formula - added to the syntax -
that states “Agent i performs action Di(νi)”, where Di(νi) is the decision that is
taken over the ken, νi, that is true at that state.

Definition 11 (Richness). The language in a component ΩG(ω) is rich if and only
if for all i ∈ G, and any ω�,ω�� ∈ ΩG(ω) such that ω� |= νi, ω�� |= µi and νi �= µi,
there is n ∈ {1, ...,m} such that νn

i = �i and µn
i = �̂i.

Essentially, the language in a component is rich if any two distinct kens in the
component for agent i are incomparable via �. In other words, any two distinct
kens must be contradictory about some “fact” - i.e. formula - (so in one ken, the
agent knows that the fact is true, whereas in the other ken, the agent knows that it
is false). Richness is how we capture the idea of “disjointness” in our framework.11

3.1 Main assumptions

We will assume two distinct versions of the Sure-Thing Principle, and prove an
agreement theorem with each respectively. The first version is the analogue of the
“non-disjoint” version used by Moses and Nachum (1990):

11Note that richness is analogous to what we understand as the requirement that all knowledge
be “elementary” in Aumann and Hart (2006); and is intended to capture the idea that the
information be “disjoint” (in line with the Sure-Thing Principle of Bacharach (1985)).
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νi µi inf{νi, µi}
�ia �̂ia �̇ia
�̂ib �ib �̇ib
�̂ic �̂ic �̂ic

�i(a ∨ b) �i(a ∨ b) �i(a ∨ b)

Figure 3: Dinner party example

Assumption 1 (Non-Disjoint Sure-Thing Principle - NDSTP ).
For all i ∈ N and all νi, µi ∈ Vi, if Di(νi) = Di(µi) then Di(inf{νi, µi}) = Di(νi).

This states that whenever an agent would take the same decision given the in-
formation νi and µi, then the agent would take the same decision over the infimum
of those kens - i.e. in the situation in which the agents is “just” less informed. The
second version of the Sure-Thing Principle, which we call DTSP , is closer to the
original one used by Bacharach (1985), because it requires disjointness. In our
framework, DSTP is simply NDSTP but is only required to hold over kens that
are expressed in a “rich” language.

Assumption 1’ (Disjoint Sure-Thing Principle - DSTP ).
Let Ti = {(νi, µi) ∈ Vi × Vi|∃n such that νn

i = �i and µn
i = �̂i}.

For all i ∈ N and all νi, µi ∈ Ti, if Di(νi) = Di(µi) then Di(inf{νi, µi}) = Di(νi).

The above versions of the Sure-Thing Principle can be illustrated by means of
the following examples. Alice, Bob and Charlie are invited to dinner. Charlie eats
anything, but Alice and Bob are vegetarian. Agent i cooks vegetarian if i knows
that a vegetarian guest is coming. This can be represented in Figure 3. With ken
νi, agent i knows that Alice is coming, and that Bob and Charlie are not coming;
whereas with ken µi, agent i knows that Bob is coming, but that Alice and Charlie
are not coming. In both cases, i knows that some vegetarian guest is coming, so i
cooks vegetarian. By the Sure-Thing Principle, i must also cook vegetarian when
her information is the infimum of those kens. This makes sense since with the
infimum, i still knows that a vegetarian guest is coming. Indeed, i no longer know
which vegetarian guest is coming (�̇ia ∧ �̇ib), but does know that at least one is
indeed coming (�i(a ∨ b)).12

Note that the kens in the above example are expressed in a “rich” language.
However, there are situations in which we ought to require disjointness. Consider
the following example represented in Figure 4: A prize is behind door A, B or C.

12Incidentally, this shows the importance of basing kens on all possible formulas, not just on
the atomic propositions.
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νi µi inf{νi, µi}
�̂ia �̇ia �̇ia
�̇ib �̇ib �̇ib
�̇ic �̂ic �̇ic

Figure 4: Prize behind doors example

Agent i is willing to make a bet about which door the prize is behind only if i
knows that it is behind one of only two doors. With ken νi, agent i knows that
the prize is not behind door A, so the agent bets. In the second case, i knows
the prize is not behind door C, so the agent bets. The Non-Disjoint Sure-Thing
Principle would require the agent to also make a bet when her ken is the infimum;
but in this case, the agent no longer knows that the prize is behind only one of
two doors!13

Note that in Bacharach’s framework, the richness of kens is implicitly assumed:
Disjoint sets of states must have contradictory information. (E.g. in our case
above, if we model the situation with three possible states - one for each possi-
ble location of the prize - then any two disjoint states do contain contradictory
information; that is, the kens are “rich”).

Assumption 2 (Like-mindedness). For all νi ∈ Vi and νj ∈ Vj, if νi ∼ νj then
Di(νi) = Dj(νj).

The assumption of like-mindedness captures the idea that the agents would
take the same decision if they had the same information.

4 Results in S5

In S5, the accessibility relation Ri of each agent i is reflexive, symmetric and tran-
sitive. So it is an equivalence relation for each i ∈ N . Let Ii(ω) = {ω� ∈ Ω|ωRiω�}
be the information cell of i at ω. One can verify that the set Ii = {Ii(ω)|ω ∈ Ω}
is a partition of the state space Ω - we thus have a partitional model.

13Aumann et al. (2005) essentially argue that the Sure-Thing Principle is a reasonable assump-
tion when all possible signals are taken into consideration. In our example, in ken νi the agent
knows that he/she was not told that the prize is behind door A, and knows that he/she was
told that the prize is behind doors B or C. Similarly for the ken µi. In this case, we can let the
decision rule be: Make a bet if you know that you were told that the prize is behind only one of
two doors. Now, the Sure-Thing Principle makes more sense, and the information has become
disjoint because the signals must be disjoint.
Given this interpretation, the language is called “rich” because it also contains the atomic propo-
sitions describing the way in which the information was acquired - i.e. all possible signals.
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Figure 5: State space in S5

We provide a schematic representation of an S5 model in Figure 5. The state
space is Ω = {ω1, ...,ω9}. The partition for agent i is given by the set Ii =
{{ω1}, {ω5}, {ω2,ω3}, {ω4,ω7}, {ω6,ω8,ω9}}. Agent j’s partition is found simi-
larly. Furthermore, Ω{i,j}(ω1) = {ω1,ω4,ω7}, and Ω{i,j}(ω2) = Ω\Ω{i,j}(ω1).

The following lemma states that in S5, the information cells of every agent
exhaust any component.

Lemma 3. ∀i ∈ G,
�

ω�∈ΩG(ω) Ii(ω
�) = ΩG(ω).

The lemma below states that kens are identical across all the states that are
in the same information cell.

Lemma 4. If for some ω� ∈ Ii(ω), ω� |= νi, then for all ω�� ∈ Ii(ω), ω�� |= νi.

It will now be useful to introduce a new definition which will eventually allow
us to provide a semantic characterisation of inf{νi, µi} for any kens νi, µi ∈ Vi.

Definition 12 (Cell merge). Consider a model in S5, M = �Ω, Ri∈N , V �. Let
Ii(ω) = {ω�� ∈ Ω|ωRiω��} and Ii(ω�) = {ω�� ∈ Ω|ω�Riω��}. Create a new model
M(Ii(ω), Ii(ω�)) = �Ω�, R�

i∈N , V
�� where,

Ω� = Ω

R�
i = R��

i ∪Ri|Ω\Ii(ω)∪Ii(ω�)

where R��
i = {(ω��,ω���) ∈ Ω× Ω|ω��,ω��� ∈ Ii(ω) ∪ Ii(ω

�)}
and Ri|Ω\Ii(ω)∪Ii(ω�) = {(ω��,ω���) ∈ Ri|ω��,ω��� ∈ Ω\Ii(ω) ∪ Ii(ω

�)}
R�

j = Rj for all j �= i

V � = V
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One can verify that the model M(Ii(ω), Ii(ω�)) is itself a model in S5, but where
the cells Ii(ω) and Ii(ω�) are merged to form a single information cell (with all the
accessibility relations appropriately “rewired”), yet leaving the rest of the original
model, M, unchanged.

For sake of illustration, let us return to the example given in Figure 5. Let
the model represented be M. We can, for example, create the “merged” model,
M(Ii(ω4), Ii(ω5)), in which j’s information partition is unchanged, but i’s parti-
tion is now {{ω1}, {ω2,ω3}, {ω4,ω5,ω7}, {ω6,ω8,ω9}}.

The following lemmas provides a semantic characterisation of inf{νi, µi} in S5,
which turns out to be the ken that holds in a model in which the information cells
at which νi and µi hold are merged (ignoring interactive information).

Lemma 5. Consider Ψr
0 with r = 0.

If M,ω |= νi and M,ω� |= µi, then for all ω��� ∈ Ii(ω)∪Ii(ω�), M(Ii(ω), Ii(ω�)),ω��� |=
inf{νi, µi}.

Lemma 6. Consider Ψr
0 with r = 0 and let G = {i, j}.

For any ΩG(ω), inf{νi|ω� |= νi & ω� ∈ ΩG(ω)} ∼ inf{νj|ω� |= νj & ω� ∈ ΩG(ω)}.

Finally, we are in a position to state our agreement results in S5:

Theorem 1. Consider Ψr
0 with r = 0, suppose NDSTP holds, the agents are

like-minded, and the system is S5. Let G = {i, j} ⊆ N . Then, |= CG(dxi ∧ dyj ) →
(x = y).

Theorem 2. Consider Ψr
0 with r = 0, suppose DSTP holds, the agents are like-

minded, the language is rich in every component, and the system is S5. Let G =
{i, j} ⊆ N . Then, |= CG(dxi ∧ dyj ) → (x = y).

Note that there is a slight abuse of notation in the statement of the theorems
above. Technically, “=” is not part of our syntax, so x = y should not appear
anywhere. However, we simply use it as shorthand. Our results should really be
read as: |= CG(dxi ∧ dyj ) → (dzi ∧ dzj), and z = x = y.

4.1 Discussion

The intuition behind the results is that at each state, each agent has some ken,
and performs some action, say dxi , based on it. However, the Sure-Thing Princi-
ple allows us to discover that i’s decision would also be x if i’s information were
inf{νi|ω� |= νi & ω� ∈ ΩG(ω)}. This is not the ken that i has at ω, so i’s action
is not taken based on this ken. However, over a similar ken, we find that j’s de-
cision would be y. But since this is the same uninformative ken, and agents are
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like-minded, we conclude that x = y.
Note the role of the infimum of kens in the theorems: Effectively, it only preserves
those propositions that both agents know. Any proposition p where i knows that
p while j knows that ¬p, or where i knows that p and j does not know whether
p, is discarded. That is, implicitly, the only information that becomes relevant for
the decisions of the agents is the information on which they already agree.

Theorem 2 in particular, highlights an awkwardness of the agreement results:
If we require the weaker version of the Sure-Thing Principle to hold (DSTP ),
then whether or not the agreement theorem holds depends on the richness of the
language. In other words, it depends on the way in which the environment is de-
scribed! (That is, if the language were not rich enough in every component, then
agreement would not necessarily follow).

Note that both theorems rely on the restriction that only Ψr
0 with r = 0 be

considered (that is, Ψ0
0 = P ∗). This means that decisions cannot be based on

formulas involving nested modal operators; that is, on interactive information.14

This is analogous to the assumption made in Aumann and Hart (2006) that deci-
sions be substantive: “Only knowledge of elementary facts matters, not knowledge
about knowledge (i.e. interactive knowledge)”. Formally, the reason for the re-
striction is that Lemma 5 does not hold for Ψr

0 if r > 0. This is because the truth
of formulas of a modal depth one or greater is fully determined by the accessibility
relations of all agents. The trouble is that by moving from the model M to a
merged model M(Ii(ω), Ii(ω�)), we are modifying the accessibility relations, and
there is no guarantee that truth of higher depth formulas will remain unchanged,
so kens in the merged model may be incomparable (via �) with the kens in the
original model.
The coin in a box example, reproduced in Figure 6, provides a counter-example
to Lemma 5 when r > 0: Recall that h is true at ω while t is true at ω�. One
can verify that for all ω ∈ Ω, M,ω |= �i�j(�ih∨�it), and M(Ii(ω), Ii(ω�)),ω |=
�̂i�j(�ih∨�it). Therefore, whatever ken i might have in the merged model, it is
incomparable (via �) with her kens in the original model, so the ken in the merged
model is not the infimum of i’s kens.
Conceptually, the restriction r = 0 avoids the incoherence presented in Bacharach

(1985). Firstly, the infimum of kens is a ken, whereas the union of information
cells is not an information cell. Secondly, we have just shown that in the original
model, i knows that j knows that i knows which side is facing up, in each of i’s
kens. Suppose that i takes the same decision over both of those kens. Bacharach’s

14Note: Tarbush (2011) finds that a distinguishing feature of the agreement result in Samet
(2010) is that it holds for all r ≥ 0.
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Figure 6: Merge with r > 0

Sure-Thing Principle would require i to take the same decision over her ken in the
model where her information cells are merged. However, in the merged model,
it is not the case that i knows that j knows that i knows which side is facing
up. That is, we do not have a clear case of i being “more ignorant”. In fact, i’s
information over the proposition “j knows that i knows which side is facing up” is
the opposite in the merged model to what it was in the original model! With the
restriction r = 0 however, Lemma 5 guarantees that the move to “more ignorance”
is respected in merged models.
Of course, the upshot of this is that, given our assumptions, agents could agree to
disagree if their decision functions are allowed to depend on interactive informa-
tion. We can illustrate this point as follows: In the non-interactive case, suppose
agent i performs action x when he knows heads is up, and when he knows tails is
up. By the Sure-Thing Principle, i must also perform x when he does not know
which side is up. Similarly, j must also perform y when she does not know which
side is up. But this information is the same for both agents, so we must have
x = y. Contrast this with the case where interactive information does matter for
decisions. For example, suppose the agents decide to listen to the other agent’s
claim about which side is up only if they know that the other knows which side is
up. In the state in which the coin is heads up, i knows that j does not know which
side is facing up, and decides not to listen. Similarly in the state in which the coin
is tails up. By the Sure-Thing Principle, at the infimum, i also knows that j does
not know which side is up, and therefore also decides not to listen. However, at all
her possible kens, and therefore also over the infimum (syntactic), j knows that i
knows which side is up, so j decides to listen. No contradiction arises here, so the
agents can agree to disagree!
The above demonstrates how our syntactic approach to explicitly model informa-
tion allows us to avoid the known incoherence, because we can single out only
the non-interactive information of kens. This cannot formally be done within
Bacharach’s framework. Note furthermore that our results so far are not general-
isations of Bacharach (1985), but rather analogous results with sounder founda-
tions.
It should be noted that the condition r = 0 can be seen as restrictive. Consider a

18



simple game where i and j are required to write what side of the coin is facing up
on a piece of paper. If they get it right, they earn a prize. Now, if j’s decision can
depend on the fact that she knows that i knows what side is facing up, j can write:
“The side that is facing up is the one that i says is facing up”. However, if this
interactive information must be ignored, this strategy is, as far as j is concerned,
just as good as simply guessing, since she might as well not know that i knows
which side is facing up.

Both Theorems 1 and 2, and indeed all the results in this paper, are stated
with global assumptions, however, local assumptions would have sufficed. Indeed,
our framework is such that decision functions are global, in the sense that they
somehow exist “outside” any given model. As a result, all our other assumptions
involving decision functions, like the Sure-Thing Principle and like-mindedness,
are also global. However, all the results in this paper would also hold in the fol-
lowing modified version of our framework: We could let a “decision rule”, ∆i, be
a set of conditional formulas of the form νi → dxi , with νi ∈ Vi, x ∈ A, and the
requirement that dxi is unique for each νi. So, a decision rule is a set of formulas
specifying for each ken νi: “If agent i has ken νi, then agent i performs action
x”. This is a relaxation of our original setup because now, in principle, different
decision rules can be true at different states in a model (That is, we could have
ω |= ∆i and ω� |= ∆�

i where ∆i �= ∆�
i). Nevertheless, if we impose the following

assumptions within a given component, then we can recover all our results locally
- within that component: (i) The decision rules of both agents must be invariant
across all the states within a given component - which amounts to requiring the
decision rules to be commonly known, and (ii) we can require syntactic analogues
of the Sure-Thing Principles and like-mindedness assumptions to hold. Within any
component in which these conditions hold, the agents cannot agree to disagree.
Such results would be local in the sense that there may be components within the
state space in which the assumptions hold, and others where they may not. That
is, there may exist “pockets” of agreement and “pockets” of disagreement. On the
other hand, we could recover the global results by requiring the assumptions to
hold in every component in the state space.

Finally, to conclude this section, we can show that our framework in S5 can
be mapped directly into that of Bacharach (1985), and to that of Aumann and
Hart (2006) (see Appendix B). However, the framework developed here has some
advantages: (i) The use of epistemic logic allows for a very transparent account
of the conditions on the modal depth of formulas, (ii) the ordering � on kens
gives a clear definition of informativeness, and hence of inf{νi, µi}, (iii) explicitly
modelling the accessibility relations between states allows us to easily consider
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extensions in a non-partitional state space - in the next section -, and finally (iv)
our approach allows us to unify and compare the results of the literature in one
methodological approach.

5 Results in KD45

We have so far derived all our results within partitional models - that is, in S5
frames. However, the � operator has very strong properties in such frames. In
particular, one cannot “know” what is false. There may be a sense in which the
agreement theorems are driven by this property. Indeed, the information on which
agents can base their decisions is restricted - to only correct information - and this
de facto “coordination” on correct information may be a crucial factor in driving
the results. That is, since their information must already “agree”, maybe they are
also forced into agreement over decisions.
Furthermore, there is nothing inherent to the notion of rationality that requires
rational agents to base their decisions only on correct information. For this reason,
we will now consider models in which agents can base their decisions on potentially
false information.
We therefore consider KD45 frames, in which the accessibility relations are tran-
sitive, Euclidean and serial. The following formulas are valid in KD45 frames:
(i) Distribution: �i(ψ → φ) → (�iψ → �iφ).
(ii) Consistency: �iψ → ¬�i¬ψ.
(iii) Positive introspection: �iψ → �i�iψ.
(iv) Negative introspection: ¬�iψ → �i¬�iψ.
The converse also holds: Namely, if we require (i) - (iv) to be validities, then the
frame must be KD45.
These validities describe the properties that we would require � to satisfy in order
to be interpreted as a belief, rather than a knowledge, operator (Again, see Hin-
tikka (1962) for philosophical underpinnings). Essentially, the only difference is
that unlike knowledge, belief is not infallible: By dropping reflexivity, it is possible
to have �ip ∧ ¬p in a KD45 frame - that is, agents are allowed to believe what is
false, and thus to base decision on false information. Note however, that agents
are at least required to have consistent beliefs.
One can verify that all S5 frames are also KD45 frames, but the converse is not
true. In fact, S5 = KD45 + reflexivity.

We can provide a description of the links between states in a KD45 frame:
Some sets of states within Ω are “completely connected”, in the sense that the
accessibility relation over states within such sets in an equivalence relation, so these
sets have the same properties as information cells in S5; and, for each one of these
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Figure 7: State space in KD45

completely connected sets there exists a (possibly empty) set of “associated” states
that have arrows pointing from them to every state in the completely connected
set, but with no arrow (by the same agent) pointing towards them. The set of
all completely connected sets and their set of associated states exhaust the state
space.
Formally, let Si(ω) = {ω� ∈ Ω|ωEiω�}, where Ei is an equivalence relation. We
call this set of completely connected states the information sink of state ω for
player i. The set Si do not necessarily partition the state space, hence we have
a non-partitional model. Note, that this way of defining the sink guarantees that
if Si(ω) �= ∅ then ω ∈ Si(ω). Furthermore, we define ω’s set of associated states
as Ai(ω) = {ω�� ∈ Ω|∀ω��� ∈ Si(ω),ω��Fiω���}, where Fi is now a simple arrow. So,
note that now, for any agent i, we have that Ri = Ei ∪ Fi. Finally, we can define
Ji(ω) = Si(ω)∪Ai(ω), and note that Ji = {Ji(ω)|ω ∈ Ω} exhausts the entire state
space.

Proposition 1. The above is a complete characterisation of the KD45 state space.

We provide a schematic representation of a KD45 model in Figure 7. For ex-
ample, i’s information sink at state ω4 is the set Si(ω4) = {ω4,ω5}, and the set of
associated states is Ai(ω4) = {ω1,ω2,ω3}. Furthermore, note for example that the
component of state ω1 is the set Ω{i,j}(ω1) = Ω\{ω1,ω7}, so it is now possible that
ω �∈ ΩG(ω).
We can see how having false beliefs is possible in such frames: For example, let
ω1 |= ¬p and ω4 |= p. Then, ω1 |= �jp ∧ ¬p. This also shows how it is only in the
sets Ai that the agent could potentially hold false beliefs.

We will need to add the following assumptions to derive the main results:
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Assumption 3 (Heterogeneity). For all i ∈ G, if for all ω� ∈ ΩG(ω), we have
ω |= νi, ω� |= µi and νi = µi, then for all ω� ∈ ΩG(ω), with ω� |= ν �

i ∧ ν �
j we have

ν �
i ∼ ν �

j.

This assumption is termed “heterogeneity” because it is equivalent to the state-
ment: In any component, either the agents have the same information, or at least
one of the agents has different information at different states within the component.

The following lemmas are generalisations of the ones found for S5.

Lemma 7. ∀i ∈ G,
�

ω�∈ΩG(ω) Si(ω�) ⊆ ΩG(ω) ⊆
�

ω�∈ΩG(ω) Ji(ω
�).

Lemma 8. If for some ω� ∈ Ji(ω), ω� |= νi, then for all ω�� ∈ Ji(ω), ω�� |= νi.

Definition 13 (Sink merge). Consider a model in KD45, M = �Ω, Ri∈N , V �.
Let Ji(ω) = Si(ω) ∪ Ai(ω) and Ji(ω�) = Si(ω�) ∪ Ai(ω�). Create a new model
M(Ji(ω), Ji(ω�)) = �Ω�, R�

i∈N , V
�� where,

Ω� = Ω

R�
i = E �

i ∪ F �
i

E �
i = E ��

i ∪ Ei|Ω\Si(ω)∪Si(ω�)

where E ��
i = {(ω��,ω���) ∈ Ω× Ω|ω��,ω��� ∈ Si(ω) ∪ Si(ω

�)}
and Ei|Ω\Si(ω)∪Si(ω�) = {(ω��,ω���) ∈ Ei|ω��,ω��� ∈ Ω\Si(ω) ∪ Si(ω

�)}
F �
i = F ��

i ∪ Fi|Ω\Ai(ω)∪Ai(ω�)

where F ��
i = {(ω��,ω���) ∈ Ω× Ω|ω�� ∈ Ai(ω) ∪ Ai(ω

�),ω��� ∈ Si(ω) ∪ Si(ω
�)}

and Fi|Ω\Ai(ω)∪Ai(ω�) = {(ω��,ω���) ∈ Fi|ω��,ω��� ∈ Ω\Ai(ω) ∪ Ai(ω
�)}

R�
j = Rj for all j �= i

V � = V

One can verify that the model M(Ji(ω), Ji(ω�)) is itself a model in KD45, but
where Ji(ω) and Ji(ω�) are merged to form a new information sink with a set of
associated states, yet leaving the rest of the original model, M, unchanged.

For sake of illustration, let us return to the example given in Figure 7. Let
the model represented be M. We can, for example, create the “merged” model,
M(Jj(ω1), Jj(ω8)), in which i’s accessibility relation is unchanged, but j now has
a sink Si(ω8) = {ω4,ω8,ω9} and a set of associated states Aj(ω8) = {ω1}. That
is, there is an equivalence relation over the states in Si(ω8), and there are arrows
from ω1 pointing to each of the states in Si(ω8); and, the relations between the
rest of the states remain as they were in the original model for j.

Lemma 9. Consider Ψr
0 with r = 0.

If M,ω |= νi and M,ω� |= µi, then for all ω�� ∈ Ji(ω)∪Ji(ω�), M(Ji(ω), Ji(ω�)),ω�� |=
inf{νi, µi}.
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Figure 8: Trading example

Lemma 10. Consider Ψr
0 with r = 0, and heterogeneity holds. Let G = {i, j}.

For any ΩG(ω), inf{νi|ω� |= νi & ω� ∈ ΩG(ω)} ∼ inf{νj|ω� |= νj & ω� ∈ ΩG(ω)}.

We can now state our generalised agreement results in KD45.

Theorem 3. Consider Ψr
0 with r = 0, suppose NDSTP holds, the agents are

like-minded, heterogeneity holds, and the system is KD45. Let G = {i, j} ⊆ N .
Then, |= CG(dxi ∧ dyj ) → (x = y).

Theorem 4. Consider Ψr
0 with r = 0, suppose DSTP holds, the agents are like-

minded, heterogeneity holds, the language is rich in every component, and the
system is KD45. Let G = {i, j} ⊆ N . Then, |= CG(dxi ∧ dyj ) → (x = y).

5.1 Discussion

We can provide an example of a situation that cannot be dealt with within an S5
system, but for which our agreement results hold. It should be noted that due to
veracity in S5, the following must always be true at any state: �ip → ¬�̂jp. So, it
is impossible for agents to completely be at odds about any fact. That is, �ip∧�̂jp
cannot be true at any state in S5. However, it is possible in KD45. Consider the
KD45 model represented in Figure 8, where p is true at ω� and ω��� while ¬p is
true at ω�� and ω����. Note that we have ω |= �ip ∧ �̂jp, and ω |= �i�̇jp ∧�j�̇ip.
We can imagine this as representing a situation where a trader i believes that p,
“the price share will go up”, while trader j believes that the price share will not go
up, and each trader thinks the other one has no particular information about the
share pointing in either direction. Our theorem applies here, so the agents cannot
agree to disagree: If it becomes common knowledge among them what each will
do given his/her information, they must do the same thing.
This can be seen as a strong version of “no-trade” results (see Milgrom and Stokey
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(1982)) because, (i) in contrast with the standard results, the agents are not as-
sumed to be maximising expected utilities. In fact, the do not even have subjective
probabilities, so are behaving in a situation of complete uncertainty about the rel-
evant outcomes; and, (ii) the standard results can only model situations in which
one trader may have some correct information about a share while others are
uncertain about the potential share price, whereas in our case, trader can have
outright contradictory information about the share price.

Heterogeneity requires that at least some agent has some variation in her in-
formation in the set ΩS(ω) (or that the agents’ information be the same). Note
that the assumption is always satisfied in an S5 model:

Proposition 2. Heterogeneity holds in any S5 model.

We construct a model in which heterogeneity fails (where both agents have no
variation in their information), and show that the agents can agree to disagree.
Consider the model represented in Figure 9 and suppose that ω |= p, and ω� |= ¬p.
In this model, at every state, i believes that p is the case, whereas j believes that
¬p is the case. So we can let i’s decision at every state be x while letting j’s be y.
An interpretation of this example is that the agents are systematically biased in

the way they acquire new information. For example, suppose Alice and Bob have
a decision function whereby they leave the country if they believe that taxes will
rise after the election, and stay if they believe that taxes stay the same. Now,
suppose that in state ω, Alice consults one expert, and in ω�, she consults another,
but both experts tell her that taxes will rise; so Alice would always come to believe
that taxes will rise, so she decides to leave the country. On the other hand, in
state ω, Bob consults one expert, and another in ω�, but in both cases, he is told
that taxes will not rise, so he always comes to believe that they will not rise, and
thus decides to stay.
Now, even though it is the case that Bob knows that Alice will leave the country,
and he knows that she has the same decision function as he does, he cannot
“update” his decision when he is given the information about her decision, because
there is simply no other information that he deems it is possible to acquire.
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5.1.1 A taxonomy of conditions

In this section, we contrast and compare various conditions that have been used in
the literature in relation to agreement theorems. This will allow us to place het-
erogeneity in relation to more familiar conditions, and also to provide a discussion
of the richness assumption in KD45.
Each condition will be given semantically (a), and essentially syntactically (b).15

Definition 14 (Condition 1). Condition (1.a): For all ω ∈ Ω and i, j ∈ G, there
exists an ω� ∈ ΩG(ω) such that Si(ω�) = Sj(ω�). Condition (1.b): For all ω ∈ Ω
and i, j ∈ G, there exists an ω� ∈ ΩG(ω) such that ω� |= νi ∧ νj for some νi, νj,
such that νi ∼ νj.

Definition 15 (Condition 2). Condition (2.a): For all ω ∈ Ω and i, j ∈ G, there
exists an ω� ∈ ΩG(ω) such that Si(ω�) ⊆ Sj(ω�). Condition (2.b): For all ω ∈ Ω
and i, j ∈ G, there exists an ω� ∈ ΩG(ω) such that ω� |= νi ∧ νj for some νi, νj,
such that νi � νj, and there exists an ω�� ∈ ΩG(ω) such that ω�� |= µi∧µj for some
µi, µj, such that µj � µi.

Condition 1 states that in any component, there must exist a state in which
both agents have the same sink. Syntactically: It must not be commonly believed,
among the agents, that they do not have the same information. This condition can
be seen as a requirement that there be a “grain of agreement” among the agents -
in the sense that there must exist some state within each component in which the
agents have the same information.
Condition 2 states that in any component, a state must exist in which i’s ken
is more informative than j’s, and a state must exist in which j’s ken is more
informative than i’s.

Definition 16 (Condition 3). Condition (3.a): For all ω ∈ Ω and i, j ∈ G, there
exists an ω� ∈ ΩG(ω) such that ∪ω��∈ΩG(ω�)Si(ω��) = ∪ω��∈ΩG(ω�)Sj(ω��). Condition
(3.b): For all ω ∈ Ω and i, j ∈ G, there exists an ω� ∈ ΩG(ω) such that for all
ω�� ∈ ΩG(ω�), ω�� |= (

�
n∈{1,...,m}

�
i∈G �iψn → ψn).

Definition 17 (Condition 4). Condition (4.a): For all ω ∈ Ω and i, j ∈ G,
there exists an ω� ∈ ΩG(ω) such that Si(ω�) ⊆ ∪ω��∈ΩG(ω)Sj(ω��). Condition (4.b):
Heterogeneity.

Condition 3 and 4 are clearly weaker counterparts of conditions 1 and 2 respec-
tively. Their direct interpretation is not obvious. However, their syntactic implica-
tions are interpretable: Condition (3.b) is what Bonanno and Nehring (1998) term

15The (b) conditions are syntactic in the sense that they could be stated purely in our syntax,
but they are complicated formulas so stating them explicitly might obscure their meaning.
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Figure 10: Taxonomy of conditions

quasi-coherence: “agents consider it jointly possible that they commonly believe
that what they believe is true”. They show that it is equivalent to the impossibility
of unbounded gains from betting (with moderately risk averse agents), which gives
it normative appeal. Condition (4.b) is simply heterogeneity: “if agents’ beliefs
(kens) are commonly believed, then their beliefs (kens) must be the same”.

Definition 18 (Condition 5). Condition (5.a): For all ω ∈ Ω and i, j ∈ G, there
exists an ω� ∈ ΩG(ω) such that Si(ω�)∩Sj(ω�) �= ∅. Condition (5.b): For all ω ∈ Ω
and i, j ∈ G, there exists an ω� ∈ ΩG(ω) such that ω� |= (

�
n∈{1,...,m} ¬(�iψn ∧

�̂jψn)).

This condition states that it cannot be the case that all the information sinks
are disjoint across agents. (Syntactically: The agents must jointly consider it
possible that they are not completely at odds about every “fact” - i.e. one believes
that it is the case while the other believes that it is not the case). Obviously,
imposing such a condition would rule out the scenario represented in Figure 9.

Proposition 3. The arrows (⇒) represent logical implication in Figure 10.

Notably, it is shown that quasi-coherence implies heterogeneity. However, the
converse does not hold, as shown in Figure 11. Suppose that ω |= p, ω� |= p and
ω�� |= ¬p. Clearly, there is a state, namely ω�� in ΩG(ω) at which (ω��,ω��) �∈ Ri so
quasi-coherence fails. However, at ω |= �jp whereas ω�� |= �̇jp so heterogeneity
holds.
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Figure 12: Condition (5.b) holds and heterogeneity fails (left); Heterogeneity holds
and (5.b) fails (right)

On the other hand, there is no implication in either direction between hetero-
geneity and condition (5.b). In the model on the left in Figure 12, let ω |= p,
ω� |= ¬p and ω�� |= p. It is easy to see that condition (5.b) holds since the sinks
intersect at ω. However, �ip holds at every state while �̇jp holds at every state, so
heterogeneity fails. However, in the model on the right, let ω |= p∧q, ω� |= ¬q∧¬p,
ω�� |= q ∧ ¬p and ω��� |= p ∧ ¬q. One can verify that at every state, there exists a
proposition ψ such that �iψ ∧ �̂jψ, so (5.b) fails. However, there is variation in
the agents’ kens across states, so heterogeneity holds.

Finally, it is important to note that (1.a) is in fact strictly stronger than (1.b):
If ω� is such that Si(ω�) = Sj(ω�), then at that state, not only do the agent have
the same information regarding all the atomic propositions, it is also common
knowledge among them that they have the same information about the atomic
propositions. On the other hand, (1.b) does not have this strong implication.
More generally, agents having the same information sink (or cell) is not equivalent
to them having the same information!
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6 Agreement without the Sure-Thing Principle
In this section, we present a theorem that does not restrict the decision functions
to satisfy the Sure-Thing Principle; so the following result applies even when the
principle is violated behaviourally (which is common, as surveyed in Shafir (1994)).
Theorem 5. Suppose agents are like-minded and condition (1.b) hold, and the
system is S5 or KD45. Let G = {i, j} ⊆ N . Then, |= CG(dxi ∧ dyj ) → (x = y).

This result has several striking features: Firstly, it does not assume any-
thing about the decision functions, other than the requirement of like-mindedness.
Therefore, this theorem applies to all decision functions, including the ones that
do not satisfy the Sure-Thing Principle. Secondly, it makes no requirement on
the richness of the language. Thirdly, it does not require any restriction on r, the
modal depth of formulas. This means that decisions can be based on interactive
information. That is, formulas of the form: i believes that j believes that p.
Furthermore, recall that in our discussion of the results in S5, we mentioned that
our “global” decision functions, Di, could have been replaced by “decision rules”,
∆i, on which local conditions could have been imposed. One requirement that
would have been needed for all the results in this paper is that decision rules are
invariant across all the states within a component. This invariance requirement
essentially means that the decision rules of the agents must be commonly known
among them. However, for this result, the invariance requirement would not be
needed. That is, how the agents “reason” - i.e. their decision rules - need not be
common knowledge among them!
Of course, the main driver of the result is condition (1.b) - the “grain of agreement”
condition - which states that it must not be commonly believed among the agents
that they do not have the same information.
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Figure 13: Application of Theorem 5 in S5

The model with the traders represented in Figure 8 is an example where Theo-
rem 5 applies in KD45. The model represented in Figure 13 provides an example
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in S5. Let p be false at ω� and true everywhere else. At ω, the agents have differ-
ent information, however, they do have the same information at some state within
the component, namely at ω��. Therefore, by Theorem 5, they cannot agree to
disagree.16

16Note that in this model, the agents do not have the same information cells, however condition
(1.b) does hold.
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Appendix A
Proof of Lemma 1 (i) Consider an arbitrary i ∈ N and ω ∈ Ω, and suppose that
ω |= ψ, for some formula ψ ∈ Ψr

0. It must be the case that either (i.a) ∀ω� ∈ Ω, if
ωRiω� then ω� |= ψ, or (i.b) ∀ω� ∈ Ω, if ωRiω� then ω� |= ¬ψ, or (i.c) ∃ω�,ω�� ∈ Ω,
such that ωRiω� and ωRiω��, and ω� |= ψ and ω�� |= ¬ψ (i.e. neither (i.a) nor (i.b)).
If (i.a) is the case, then ω |= �iψ. If (i.b) is the case, then ω |= �̂iψ, and finally,
if (i.c) is the case, then ω |= �̇iψ. Therefore, in all cases, the operator over ψ
belongs to the set Oi, and since this holds for any ψ ∈ Ψr

0, it holds for each entry
of a ken. Furthermore, |= can only generate consistent lists of formulas, so kens
cannot be inconsistent. This implies that a ken must exist that belongs to Vi.
(ii) Consider an arbitrary i ∈ N and ω ∈ Ω. Let νi, µi ∈ Vi, and consider the nth

entry of each ken such that νn
i ψn �= µn

i ψn. Case (ii.a): Suppose ω |= νn
i ψn = �iψn.

So, ∀ω� ∈ Ω, if ωRiω�, then ω� |= ψn. By definition, this rules out the possibility
that also, ω |= �̂iψn, or ω |= �̇iψn. For cases (ii.b), ω |= νn

i ψn = �̂iψn, and (ii.c),
ω |= νn

i ψn = �̇iψn, proceed analogously to (ii.a).

Proof of Lemma 2 For ease of notation, let inf{νi, µi} = ηi.
(a) Suppose νn

i ψn = µn
i ψn = �iψn. Then, if νi � ηi and µi � ηi, it must be

the case that ηni ψn = �iψn or ηni ψn = �̇iψn. However, if the latter, then ηi
would not be maximal in the set {ηi ∈ Vi|νi � ηi and µi � ηi}. Therefore,
ηni ψn = �iψn. Conversely, suppose ηni ψn = �iψn. Furthermore, suppose, without
loss of generality that µn

i ψn = �̂iψn or µn
i ψn = �̇iψn. In the former case, ηi and

µi would not be comparable, and in the latter case, ηi would be more informative
than µi on that entry. Therefore, in either case, ηi would not belong to the set
{ηi ∈ Vi|νi � ηi and µi � ηi}. Therefore, νn

i ψn = µn
i ψn = �iψn. Proving cases

(b), ηni ψn = �̂iψn iff (νn
i ψn = µn

i ψn = �̂iψn) and (c), ηni ψn = �̇iψn iff (νn
i ψn �=

µn
i ψn or νn

i ψn = µn
i ψn = �̇iψn) can be done analogously to case (a).

Finally, suppose |= ηi ↔ (p ∧ ¬p). Then, there exist n and n� such that ηni ψn ↔
¬ηn�

i ψn� . But ηni is essentially generated by the conjunction of νn
i and µn

i . So, we
have (νn

i ψn∧µn
i ψn) ↔ ¬(νn�

i ψn�∧µn�
i ψn�). But this implies that νn

i ψn ↔ ¬νn�
i ψn� or

µn
i ψn ↔ ¬µn�

i ψn� . That is, ηi is not in Vi if νi or µi are not in Vi. Therefore, ηi ∈ Vi.

Proof of Lemma 3 Suppose ω�� ∈
�

ω�∈ΩG(ω) Ii(ω
�). So, ω�� ∈ Ii(ω�) for some

ω� ∈ ΩG(ω). But, ω�Riω��, and there exists a sequence of Ri (i ∈ G) steps such that
ω� is reachable from ω. Therefore, there exists a sequence, one step longer, such
that ω�� is reachable from ω. So, ω�� ∈ ΩG(ω). (And, note that Ii(ω��) ⊆ ΩG(ω)).
Suppose ω�� ∈ ΩG(ω). Reflexivity guarantees that ω�� ∈ Ii(ω��). So, for some
ω∗ ∈ ΩG(ω), ω�� ∈ Ii(ω∗), so ω�� ∈

�
ω�∈ΩG(ω) Ii(ω

�).

Proof of Lemma 4 Suppose ω� |= νi for some ω� ∈ Ii(ω). Consider the nth
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entry of the ken, namely, νn
i ψn.

(a) Suppose ω� |= νn
i ψn = �iψn. Then, for all ω�� ∈ Ω, ω�Riω�� implies ω�� |= ψn.

So, for all ω�� ∈ Ii(ω�), ω�� |= ψn. But since Ri is an equivalence relation, and
ω� ∈ Ii(ω), it follows that Ii(ω�) = Ii(ω). So, for all ω�� ∈ Ii(ω), ω�� |= ψn, from
which it follows that for all ω�� ∈ Ii(ω), ω�� |= �iψn.
Case (b), ω� |= νn

i ψn = �̂iψn and (c), ω� |= νn
i ψn = �̇iψn are analogous to case (a).

Proof of Lemma 5 Suppose that for all ω� ∈ Ii(ω), M,ω� |= νi and for all
ω�� ∈ Ii(ω�), M,ω�� |= µi. Consider the nth entry of each of these kens, which are
only defined for formulas in Ψ0

0.
Case (a): Suppose that νn

i pn = µn
i pn = �ipn, then for all ω��� ∈ Ii(ω) ∪ Ii(ω�),

ω��� |= pn, and therefore, for all ω��� ∈ Ii(ω) ∪ Ii(ω�), M(Ii(ω), Ii(ω�)),ω��� |=
inf{νi, µi}npn = �ipn.
Case (b), νn

i pn = µn
i ψn = �̂ipn, and (c) (νn

i pn �= µn
i pn or νn

i pn = µn
i pn = �̇ipn) are

treated analogously to case (a).

Proof of Lemma 6 By Lemma 1, for each ω� ∈ Ω, there is a ken that
holds at ω�. That is, ω� |= νi for some νi ∈ Vi. By Lemma 4, we have that
for all ω�� ∈ Ii(ω�), ω�� |= νi. Now, consider the set of kens {νi|ω� |= νi & ω� ∈�

ω�∈ΩG(ω) Ii(ω
�)}. By Lemma 5, it follows that for all ω�� ∈

�
ω�∈ΩG(ω) Ii(ω

�),
M({Ii(ω�)|ω� ∈ ΩG(ω)}),ω�� |= inf{νi|ω� |= νi & ω� ∈

�
ω�∈ΩG(ω) Ii(ω

�)}. By
Lemma 3, for all ω�� ∈ ΩG(ω), M({Ii(ω�)|ω� ∈ ΩG(ω)}),ω�� |= inf{νi|ω� |= νi & ω� ∈
ΩG(ω)}. So, in the model in which i’s information cell is equal to ΩG(ω), leaving
j’s partition unchanged, inf{νi|ω� |= νi & ω� ∈ ΩG(ω)} holds at every state in
ΩG(ω). Reasoning similarly for agent j, in the model in which j’s information cell
is equal to ΩG(ω), leaving i’s partition unchanged, inf{νj|ω� |= νj & ω� ∈ ΩG(ω)}
holds at every state in ΩG(ω). However, since r = 0, an agent i’s ken only de-
pends on i’s accessibility relation (higher depth nested formulas are ignored). So,
inf{νi|ω� |= νi & ω� ∈ ΩG(ω)} and inf{νj|ω� |= νj & ω� ∈ ΩG(ω)} hold at every
state ω� ∈ ΩG(ω) of a model M∗ in which all the set Ii(ω�) are “merged” and all
the sets Ij(ω�) are merged. But ∪ω�∈ΩG(ω)Ii(ω�) = ∪ω�∈ΩG(ω)Ij(ω�) = ΩG(ω). That
is, the agents have the same information cell in M∗. Trivially, it follows that
inf{νi|ω� |= νi & ω� ∈ ΩG(ω)} ∼ inf{νj|ω� |= νj & ω� ∈ ΩG(ω)}.

Proof of Theorem 1 Suppose r = 0, so Ψ0
0 = P ∗ and that NDSTP holds,

the agents are like-minded, and the system is S5. Arbitrarily choose ω ∈ Ω,
and consider the set ΩG(ω). By Lemma 1 part (i), we have that at every state,
ω |= νi ∧ νj for some νi and νj. Since the decision function is defined over those
kens, we have that ω |= dDi(νi)

i ∧ d
Dj(νj)
j . Now, suppose that ω |= CG(dxi ∧ dyj ). By

definition, ∀ω�� ∈ ΩG(ω), ω�� |= dxi ∧d
y
j . In particular, since ω ∈ ΩG(ω), ω |= dxi ∧d

y
j .
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Therefore, we have that Di(νi) = x and Dj(νj) = y for all kens that are true at
the states within the component . It remains to show that x = y.
By NDSTP we obtain that Di(inf{νi|ω� |= νi & ω� ∈ ΩG(ω)}) = x.
By a similar argument, we have that that Di(inf{νj|ω� |= νj & ω� ∈ ΩG(ω)}) = y.
By Lemma 6, inf{νi|ω� |= νi & ω� ∈ ΩG(ω)} ∼ inf{νj|ω� |= νj & ω� ∈ ΩG(ω)}. So,
by like-mindedness, it follows that x = y.

Proof of Theorem 2 Repeat the proof of Theorem 1, replacing Assumption
NDSTP with DSTP and the assumption that the language is rich in every com-
ponent.

Proof of Proposition 1 Let “i-arrow” refer to an arrow of i’s accessibility
relation. Firstly, we can show that Ri = Ei ∪ Fi. An arbitrary ω ∈ Ω either has
an i-arrow pointing to it or it does not. If it does not, by seriality, it points to
another state. If it does, then there exists a state ω� that points to ω which itself
points to some state ω�� by seriality. Transitivity implies that ω� points to ω�� and
Euclideaness implies that ω�� points to ω. From here it is easy to prove that ω, ω�

and ω�� are in an equivalence class.
Secondly, we show that if Ji(ω�) �= Ji(ω��) then Ji(ω�) ∩ Ji(ω��) = ∅. Suppose
ω ∈ Ji(ω�) ∩ Ji(ω��). If ω ∈ Si(ω�) ∩ Si(ω��) then Si(ω�) and Si(ω��) are indis-
tinguishable, and one can verify that Ji(ω�) = Ji(ω��). If ω ∈ Si(ω�) ∩ Ai(ω��)
then ω both does have and does not have an i-arrow pointing to it. Finally, if
ω ∈ Ai(ω�) ∩ Ai(ω��) then by Euclideaness, ω� and ω�� are indistinguishable, and
Ji(ω�) = Ji(ω��).
Thirdly, we can show that ∪ω∈ΩJi(ω) = Ω. Suppose ω� ∈ ∪ω∈ΩJi(ω), then by the
definitions of Si and Ai, ω� ∈ Ω. On the other hand, suppose ω ∈ Ω. Then if there
is an i-arrow pointing to ω, ω ∈ Si(ω) ⊆ Ji(ω). If there is no i-arrow pointing to
it, then by seriality, there is an ω� that ω points to, so ω ∈ Ai(ω�) ⊆ Ji(ω�). So,
ω ∈ ∪ω∈ΩJi(ω).

Proof of Lemma 7 Suppose ω�� ∈
�

ω�∈ΩG(ω) Si(ω�). So, ω�� ∈ Si(ω�) for some
ω� ∈ ΩG(ω). But, ω�Eiω��, and there exists a sequence of Ri (i ∈ G) steps such
that ω� is reachable from ω. Therefore, there exists a sequence, one step longer,
such that ω�� is reachable from ω. So, ω�� ∈ ΩG(ω).
Suppose ω�� ∈ ΩG(ω). Either ω�� has an i-arrow pointing towards it, in which
case ω�� ∈ Si(ω��). So, ω�� ∈ Si(ω��) ∪ Ai(ω��) = Ji(ω��), or, ω�� has no i-arrow
pointing towards it, in which case, by seriality, there exists some ω��� such that
ω�� ∈ Ai(ω���). Note that ω��� must be in ΩG(ω) since it is reachable from ω��. So,
ω�� ∈ Si(ω���)∪Ai(ω���) = Ji(ω���). In either case, for some ω∗ ∈ ΩG(ω), ω�� ∈ Ji(ω∗),
so ω�� ∈

�
ω�∈ΩG(ω) Ji(ω

�).
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Proof of Lemma 8 Suppose ω� |= νi for some ω� ∈ Ji(ω). Firstly, suppose
ω� ∈ Si(ω), and consider the nth entry of the ken, namely, νn

i ψn.
(a) Suppose ω� |= νn

i ψn = �iψn. Then, for all ω�� ∈ Ω, ω�Eiω�� implies ω�� |= ψn.
So, for all ω�� ∈ Si(ω�), ω�� |= ψn. But since Ei is an equivalence relation, and
ω� ∈ Si(ω), it follows that Si(ω�) = Si(ω). So, for all ω�� ∈ Si(ω), ω�� |= ψn, from
which it follows that for all ω�� ∈ Si(ω), ω�� |= �iψn. Also, each ω��� ∈ Ai(ω) has an
arrow pointing to each state in Si(ω), so for all ω∗ ∈ Si(ω), if ω���Fiω∗, ω∗ |= ψn.
So, for all ω��� ∈ Ai(ω), ω��� |= �iψn. It follows that for all ω�� ∈ Ji(ω), ω�� |= �iψn.
Case (b), ω� |= νn

i ψn = �̂iψn and (c), ω� |= νn
i ψn = �̇iψn are analogous to case

(a).
Now, suppose ω� ∈ Ai(ω), and consider the nth entry of the ken, namely, νn

i ψn.
(d) Suppose ω� |= νn

i ψn = �iψn. Then, for all ω�� ∈ Ω, ω�Fiω�� implies ω�� |= ψn.
So, for all ω�� ∈ Si(ω�), ω�� |= ψn. This implies that ω�� |= �iψn for all ω�� ∈ Si(ω),
and ω��� |= �iψn for all other states ω��� ∈ Ai(ω). It follows that for all ω�� ∈ Ji(ω),
ω�� |= �iψn.
Case (e), ω� |= νn

i ψn = �̂iψn and (f), ω� |= νn
i ψn = �̇iψn are analogous to case (d).

Proof of Lemma 9 Suppose that for all ω ∈ Ji(ω), M,ω |= νi and for all
ω� ∈ Ji(ω�), M,ω� |= µi. Consider the nth entry of each of these kens, defined only
for formulas in Ψ0

0.
Case (a): Suppose that νn

i pn = µn
i pn = �ipn, then for all ω�� ∈ Si(ω) ∪ Si(ω�),

ω�� |= pn, and therefore, following the proof of Lemma 8, for all ω�� ∈ Ji(ω)∪Ji(ω�),
M(Ji(ω), Ji(ω�)),ω�� |= inf{νi, µi}npn = �ipn.
Case (b), νn

i pn = µn
i ψn = �̂ipn, and (c) (νn

i pn �= µn
i pn or νn

i pn = µn
i pn = �̇ipn) are

treated analogously to case (a).

Proof of Lemma 10 By Lemma 1, for each ω� ∈ Ω, there is a ken that
holds at ω�. That is, ω� |= νi for some νi ∈ Vi. By Lemma 8, we have that
for all ω�� ∈ Ji(ω�), ω�� |= νi. Now, consider the set of kens {νi|ω� |= νi & ω� ∈�

ω�∈ΩG(ω) Ji(ω
�)}. By Lemma 9, it follows that for all ω�� ∈

�
ω�∈ΩG(ω) Ji(ω

�),
M({Ji(ω�)|ω� ∈ ΩG(ω)}),ω�� |= inf{νi|ω� |= νi & ω� ∈

�
ω�∈ΩG(ω) Ji(ω

�)}.
By Lemma 7, since ΩG(ω) ⊆

�
ω�∈ΩG(ω) Ji(ω

�), it follows that for all ω�� ∈ ΩG(ω), we
have that M({Ji(ω�)|ω� ∈ ΩG(ω)}),ω�� |= inf{νi|ω� |= νi & ω� ∈

�
ω�∈ΩG(ω) Ji(ω

�)}.
Furthermore, the kens that hold in states (

�
ω�∈ΩG(ω) Ji(ω

�))\ΩG(ω) must be iden-
tical to the ones that hold at the states in ΩG(ω), because all the states in
the former set must be associated states, and thus the information that holds
at them must be the same as the information that holds true in their respec-
tive information sinks, which are contained in ΩG(ω). Therefore, inf{νi|ω� |=
νi & ω� ∈

�
ω�∈ΩG(ω) Ji(ω

�)} = inf{νi|ω� |= νi & ω� ∈ ΩG(ω)}. It follows there-
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fore, that for all ω�� ∈ ΩG(ω), we have that M({Ji(ω�)|ω� ∈ ΩG(ω)}),ω�� |=
inf{νi|ω� |= νi & ω� ∈ ΩG(ω)}. So, in the model in which i’s information sink
plus associated states is equal to ΩG(ω), leaving j’s accessibility relation un-
changed, inf{νi|ω� |= νi & ω� ∈ ΩG(ω)} holds at every state in ΩG(ω). Rea-
soning similarly for agent j, in the model in which j’s information sink plus
associated states is equal to ΩG(ω), leaving i’s accessibility relation unchanged,
inf{νj|ω� |= νj & ω� ∈ ΩG(ω)} holds at every state in ΩG(ω).17

Now, since r = 0, an agent i’s ken only depends on i’s accessibility relation
(higher depth nested formulas are ignored). So, inf{νi|ω� |= νi & ω� ∈ ΩG(ω)}
and inf{νj|ω� |= νj & ω� ∈ ΩG(ω)} hold at every state ω� ∈ ΩG(ω) of a model
M∗ in which all the set Si(ω�) are “merged” and all the sets Sj(ω�) are merged.
Now, by heterogeneity, it follows that inf{νi|ω� |= νi & ω� ∈ ΩG(ω)} ∼ inf{νj|ω� |=
νj & ω� ∈ ΩG(ω)}.18

Proof of Theorem 3 Suppose we restrict ourselves to Ψ0
0 and that NDSTP

holds, the agents are like-minded, heterogeneity holds, and the system is KD45.
Arbitrarily choose ω ∈ Ω, and consider the set ΩG(ω). By Lemma 1 part (i), we
have that at every state, ω |= νi∧νj for some νi and νj. Since the decision function
is defined over those kens, we have that ω |= dDi(νi)

i ∧ d
Dj(νj)
j . Now, suppose that

ω |= CG(dxi ∧ dyj ). By definition, ∀ω�� ∈ ΩG(ω), ω�� |= dxi ∧ dyj . By Lemma 8, the
kens are uniform across the sets J , so even if ω �∈ ΩG(ω) - which is possible in
KD45 - the actions that are performed at ω must be the same as the action that is
performed in the set J that ω is a member of, for each agent. Thus in particular,
ω |= dxi ∧ dyj . Therefore, for any kens νi, νj that are true at any state in the set
ΩG(ω) ∪ {ω}, it is the case that Di(νi) = x and Dj(νj) = y. It remains to show
that x = y.
By NDSTP we obtain that Di(inf{νi|ω� |= νi & ω� ∈ ΩG(ω)}) = x.
By a similar argument, we have that that Di(inf{νj|ω� |= νj & ω� ∈ ΩG(ω)}) = y.
By Lemma 10, inf{νi|ω� |= νi & ω� ∈ ΩG(ω)} ∼ inf{νj|ω� |= νj & ω� ∈ ΩG(ω)}.
So, by like-mindedness, it follows that x = y.

Proof of Theorem 4 Repeat proof of Theorem 3, replacing NDSTP with
DSTP and the assumption that the language is rich in every component.

Proof of Proposition 2 Suppose that for some νi ∈ Vi, ω� |= νi for every
ω� ∈ ΩG(ω). Consider the nth entry of the ken.

17Note that the set ΩG(ω) does not change as a result of the sink merge operation: No state
in ΩG(ω) becomes connected to a state outside the set, and states within the set can only gain
connections, never lose any.

18We require heterogeneity since there is no guarantee that ∪ω�∈ΩG(ω)Si(ω�) =
∪ω�∈ΩG(ω)Sj(ω�), and an agent i’s ken essentially depends only on the sets Si.
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Case (a): Suppose that ∀ω� ∈ ΩG(ω), ω� |= νn
i ψn = �iψn. Then, for all ω�� ∈ Ii(ω�),

ω�� |= ψn. But, by Lemma 3, since
�

ω�∈ΩG(ω) Ii(ω
�) = ΩG(ω), it follows that for all

ω� ∈ ΩG(ω), ω� |= ψn.
Furthermore, by Lemma 3,

�
ω�∈ΩG(ω) Ij(ω

�) = ΩG(ω). Therefore, no matter what
information cell j might be in, ψn will be true at each state in that information
cell. Therefore ∀ω� ∈ ΩG(ω), ω� |= �jψn. That is, the nth entry of the kens carry
the same information.
Case (b): ∀ω� ∈ ΩG(ω), ω� |= νn

i ψn = �̂iψn is treated analogously to case (a).
Case (c): Suppose that ∀ω� ∈ ΩG(ω), ω� |= νn

i ψn = �̇iψn. Then, there exists
ω�� and ω��� with ω�Riω�� and ω�Riω���, such that ω�� |= ψn and ω��� |= ¬ψn. It fol-
lows that there exists ω��,ω��� ∈ ΩG(ω) such that ω�� |= ψn and ω��� |= ¬ψn. Now,
suppose that for all ω� ∈ ΩG(ω), ω� |= νn

j ψn = �jψn or that for all ω� ∈ ΩG(ω),
ω� |= νn

j ψn = �̂jψn. If for all ω� ∈ ΩG(ω), ω� |= �jψn, then (as above) for all
ω� ∈ ΩG(ω), ω� |= ψn, which contradicts the fact that ω��� |= ¬ψn. Similarly, if for
all ω� ∈ ΩG(ω), ω� |= �̂jψn, then (as above) for all ω� ∈ ΩG(ω), ω� |= ¬ψn, which
contradicts the fact that ω�� |= ψn. Therefore, ∀ω� ∈ ΩG(ω), ω� |= �̇jψn.
Since the above cases exhaust every possibility of an entry in a ken, and since
the entry was chosen arbitrarily, it follows that for all ω� ∈ ΩG(ω), such that
ω� |= νi ∧ νj, we have νi ∼ νj.

Proof of Proposition 3 The implications among the conditions expressed
semantically are simple.
Now, we can show that for any ω ∈ Ω such that Si(ω) ⊆ Sj(ω), if ω |= νi∧ νj then
νi � νj; which would establish the semantic to syntactic implications for condi-
tions 1 and 2. Consider some arbitrary state ω ∈ Ω. Suppose Si(ω) ⊆ Sj(ω) and
ω |= νi ∧ νj. Consider the nth entry of these kens. (a) Suppose ω |= νn

i ψn = �iψn,
and suppose that ω |= νn

j ψn = �̂jψn. Then, ∀ω� ∈ Sj(ω), ω� |= ¬ψn. But if
Si(ω) ⊆ Sj(ω), then ∀ω� ∈ Si(ω), ω� |= ¬ψn, which contradicts the statement
that ω |= �iψn. Therefore, ω |= (νn

j ψn = �jψn ∨ νn
j ψn = �̇jψn). Cases (b),

ω |= νn
i ψn = �̂iψn and (c) ω |= νn

i ψn = �̇iψn can dealt with analogously to case
(a).
Now we can show that (3.a) implies (3.b): By the definition of (3.a), there is a
state ω� ∈ ΩG(ω) such that every state reachable from ω� is reflexive in both Ri

and Rj. So, at each one of those states, �iψn → ψn for all formulas and all agents.
We can show that (4.a) implies (4.b): Suppose that (4.a) holds, but not (4.b).
So suppose that for some νi and µj, ω� |= νi ∧ µj for all ω� ∈ ΩG(ω), and yet,
it is not the case that νi ∼ µj. Case (a): At ω� ∈ Si(ω�), for some ψn, we have
ω� |= �iψn∧�̂jψn. But if Si(ω�) ⊆ Sj(ω��) for some ω��, then ω�� |= ψn, in which case
we cannot have �̂jψn at every state in the component. Case (b): At ω� ∈ Sj(ω�),
for some ψn, we have ω� |= �iψn ∧ �̇jψn. But if Sj(ω�) ⊆ Si(ω��) for some ω��, then
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ω��� |= ¬ψn for some ω��� ∈ Si(ω��), in which case we cannot have �iψn at every
state in the component. All other cases are trivial, or resemble one of the above.
We can show that (5.a) implies (5.b): Suppose ω� ∈ Si(ω�) ∩ Sj(ω�). Suppose that
for some ψn, ω |= �iψn. By reflexivity of Ri, ω |= ψn. Now, suppose ω |= �̂jψn.
By reflexivity of Rj at ω�, ω� |= ¬ψn, a contradiction.
Finally, that (1.b) implies (2.b) implies (4.b) is trivial. Also, that (1.b) implies
(3.b) is trivial.
We can show that (3.b) implies (4.b): Suppose (3.b) holds and that (4.b) does not
hold. (3.b) implies that there is a state ω� ∈ ΩG(ω) such that every state reachable
from ω� is reflexive in both Ri and Rj. Suppose that for some νi and µj, ω� |= νi∧µj

for all ω� ∈ ΩG(ω), and yet, it is not the case that νi ∼ µj. Let ω�� be reachable
from ω�. Case (a): suppose that at ω��, for some ψn, we have ω�� |= �iψn ∧ �̂jψn.
By reflexivity of both Ri and Rj, ω�� |= ψn ∧ ¬ψn, a contradiction. Case (b):
ω�� |= �iψn∧ �̇jψn. Then, for some reachable ω���, ω��� |= ¬ψn. Since Ri is reflexive
at ω���, it cannot be the case that ω��� |= �iψn, thus contradicting the assumption
that i’s ken is the same across each state in the component.
Finally, we can show that (3.b) implies (5.b): (3.b), implies that there is a state
ω� ∈ ΩG(ω) such that every state reachable from ω� is reflexive in both Ri and
Rj. Let ω�� be reachable from ω�. Suppose that at ω��, for some ψn, we have
ω�� |= �iψn ∧ �̂jψn. By reflexivity of both Ri and Rj, ω�� |= ψn ∧ ¬ψn, a contra-
diction.

Proof of Theorem 5 Suppose that there is some ω ∈ Ω such that ω |=
CG(dxi ∧ dyj )∧ (dxi ∧ dyj ) and x �= y. Then, for any νi and µj that are true at states
within ΩG(ω), Di(νi) = x �= y = Dj(µj). By like-mindedness, it follows that it is
not the case that νi ∼ µj for any of those kens. But this contradicts (1.b). Namely,
that there exists a state ω�� ∈ ΩG(ω) such that ω�� |= ν �

i ∧ µ�
j such that ν �

i ∼ µ�
j.

Appendix B

Map to Bacharach (1985)

Note that by Lemma 4, if for some ω ∈ Ω, ω |= νi, then for all ω� ∈ Ii(ω), ω� |= νi;
so decision are invariant across information cells. So, for each agent i ∈ N , we can
define a function Hi : 2Ω → A, where Hi(Ii(ω)) = Di(νi) whenever ω |= νi. Fur-
thermore, we can define another function hi : Ω → A such that for all ω� ∈ Ii(ω),
hi(ω�) = Hi(Ii(ω)). This thus defines a map from our decision functions into
Bacharach’s framework.
Finally, we can also define Bacharach’s Sure-Thing Principle: If Hi(Ii(ω)) =
Hi(Ii(ω�)) and clearly Ii(ω) ∩ Ii(ω�) = ∅, then Hi(m(Ii(ω), Ii(ω�))) = Hi(Ii(ω)).
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Now, m(Ii(ω), Ii(ω�)), in Bacharach (1985) would simply be equal to Ii(ω)∪Ii(ω�).

Map to Aumann & Hart (2006)

Aumann and Hart (2006) derive their agreement theorem using the framework
developed in Aumann (1999) for the analysis of interactive knowledge in a parti-
tional state space. Essentially, restricting ourselves to Ψ0

0, we can define a mapping
νi �→ e ∈ P ∗, where,

e :=
�

x∈{pn|νni pn=�ipn}

x ∧
�

y∈{¬pn|νni pn=�̂ipn}

y

That is, e is the conjunction of all the propositions (or their negation) that i knows,
and all the propositions pn for which νn

i pn = �̇ipn are ignored.
Given this, if we have ω |= νi, then e is the “minimal” formula that i knows at ω,
in the sense that if �ie� then e → e�. Note furthermore, that given our “richness”
assumption on Ψ0

0, we have that if e �= e� then ¬(e∧e�), and if νi �→ e� and µi �→ e��,
then inf{νi, µi} �→ (e� ∨ e��). Given this map, our decision functions Di : Vi → A
become Hi : P ∗ → A.
The Disjoint Sure-Thing Principle now becomes,

|=
�

i∈N

�

e,e�∈P ∗

[Hi(e) = Hi(e
�) ∧ ¬(e ∧ e�) → Hi(e ∨ e�) = Hi(e)]

which is the formulation given in Aumann and Hart (2006).
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